XS]] UNIVERSITY OF AGDER

An exploration of
semi-supervised text
classification

Henrik Lien

SUPERVISORS

Daniel Biermann
Morten Goodwin

Master’s Thesis
University of Agder, 2021
Faculty of Engineering and Science
Department of ICT

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of ICT
© 2021 Henrik Lien. All rights reserved

Abstract

Obtaining labeled data to train natural language machine learning algo-
rithms is often expensive and time-consuming, while unlabeled data usually
is free and easy to get. Frequently a large amount of labeled data is required
by supervised learning to achieve good text classification performance.

Semi-supervised learning (SSL) for text classification is an exciting area
of research. SSL is a technique exploiting unlabeled and labeled data to
achieve better classification performance than using labeled data alone and
is particularly useful with limited labeled data.

This thesis explores the impact of different parameters on SSL with
unsupervised pre-training and supervised fine-tuning for a text classifica-
tion task. Key to this work is the study of hyperparameters, including the
amount of preprocessing data and model size. We examine smaller and
larger models, including feed-forward, recurrent, and seq2seq models, used
for experimentation. This thesis uses SSL performance as a performance
metric. It measures the difference in text classification performance of a
model when using the SSL compared to the supervised learning approach.
Thus, the SSL performance is an intuitive measure for investigating the
benefits of SSL.

We find that the hyperparameter setup significantly impacts SSL per-
formance, and the learning rate has the most impact across all models.
We show that larger models reach a higher SSL performance than smaller
models, mainly with a smaller preprocessing data amount. However, when
scaling the amount of preprocessing data, we see that the recurrent models
reach a performance threshold. On the other hand, increasing data for hy-
perparameter configurations more tuned for SSL, SSL performance improves
for the feed-forward model. The combination of fewer model parameters,
dropout, and higher learning rate likely causes this.

iii

Table of Contents

Abstract
Glossary

List of Figures
List of Tables

1 Introduction
1.1 Motivation
1.2 Thesis Outline

2 Background
2.1 Theory o . o
2.1.1 Artificial Neural Networks (ANNs)
2.1.2 Recurrent Neural Networks (RNNs)
2.1.3 Gated Recurrent Unit (GRU)
2.1.4 Sequence to Sequence (Seq2seq) Models
2.1.5 Transfer Learning
2.1.6 Semi-Supervised Learning
2.1.7 Self-Supervised Learning
2.2 Literaturereviewo Lo oo
2.2.1 Transfer Learning Within NLP
2.2.2 Semi-Supervised Learning
2.2.3 Self-Supervised Learning
2.2.4 Impact of Parameters on SSL Performance
2.2.5 Summary of Literature Review

3 Thesis Definition and Method
3.1 Thesis Definition
3.1.1 Thesis Goals

iii

vii

xi

11
13
18
21
22
23
23
24
33
35
37
40

Table of Contents Table of Contents

3.1.2 Hypotheses 44
3.2 Contributions o o 45
3.3 Structure of Experimentso 46
34 Models. e 46
3.4.1 Feed-Forward Model 47
342 GRUmodel 49
3.4.3 Sequence to Sequence (Seq2seq) Model With Atten-
tion Mechanism 50
3.4.4 Classifier Model 51
3.5 Running Experiments 51
3.6 Data Handling 54
3.7 Preprocessing/Pretext Task 55
3.8 Hyperparameters 55
4 Results and Discussion 57
4.1 Experiment 1: Impact of hyperparameter configuration and
model size on the SSL performance 60
4.2 Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance 62
4.3 Experiment 3: Impact of changing single hyperparameter on
the SSL performance 68
4.3.1 Experiment 4: impact of changing two hyperparame-
ters on the SSL performance 85
4.4 Conclusion of Results, Hypotheses and Goals
................................... 88
4.4.1 Hypothesis 1: The hyperparameter configuration has
a significant impact on the SSL performance. 88

4.4.2 Hypothesis 2: Additional preprocessing data improves

the SSL performance. 89
4.4.3 Hypothesis 3: The learning rate has the most signifi-

cant impact among the hyperparameters on the SSL

performance., . 89

4.4.4 Hypothesis 4: Larger models improve the SSL perfor-
MANCE. « v v v v v v e e e e e e e e e e e e e e e 90
445 Goals 91
5 Conclusion and Future Work 93
5.1 Conclusion e 93
5.2 Future Work 94

vi

Table of Contents Table of Contents

References 105

vii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4

3.5

4.1

4.2

Adeep MLP [B5] o
A single perceptron [69]
An RNN [62]
A bidirectional RNN [24]o ..
Asingle GRU [47] oo
GRU notations for Figure 2.5 [47]
Update gate within Figure 2.5 [47]
Reset gate within Figure 2.5 [47]
Calculating current memory content within Figure 2.5 [47] . .
Calculating final memory within Figure 2.5 [47]
Seq2seq model [48]o
Seq2seq architecture with attention technique [30]
Overview of transfer learning within NLP [73]
Hard parameter sharing [73]
Overview of the taxonomy of semi-supervised classification.

Every leaf represents a technique for including unlabelled

data into classification tasks. [78]

Structure of experiments using SSL (top) and supervised

learning (bottom) L oL
Architecture of feed-forward model
Architecture of GRU model
High-level architecture of seq2seq model with an attention

mechanism
High-level architecture of classifier model

Vanilla configuration versus SOTA configuration, using 25k
preprocessing data, 200 epochs for each training phase, and
ten simulations for each configuration.
Comparing preprocessing data amounts, using SOTA config-
uration and 200 epochs for each training phase

ix

17
18

61

List of Figures

List of Figures

4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Pre-training using the feed-forward model with SOTA con-
figuration.o
Pre-training using the GRU model with SOTA configuration.
Comparing preprocessing data amounts, using Vanilla con-
figuration and 200 epochs for each training phase
Changing one parameter at a time from SOTA configuration,
using 25k preprocessing data and 200 epochs for each training
phase
Supervised and downstream training using the seq2seq model,
with the LR set to 0.001
Supervised and downstream training using the seq2seq model,
with the LR set to 0.0001
Preprocessing training using the seq2seq model, with the LR
set t0 0.001 L
Preprocessing training using the seq2seq model, with the LR
set t0 0.0001
Preprocessing training using the seq2seq model, with the
dropout rate set to 0.0,
Changing one parameter at a time from SOTA configuration,
using 100k preprocessing data and 200 epochs for each train-
ing phase
Preprocessing training for the seq2seq model, using SOTA
configuration and 100k preprocessing data
Supervised and downstream training for the seq2seq model,
using SOTA configuration and 100k preprocessing data
Preprocessing training for the seq2seq model, using SOTA
configuration, but with learning rate set to 0.0001 and using
100k preprocessing data
Supervised and downstream training for the seq2seq model,
using SOTA configuration, but with learning rate set to 0.0001
and using 100k preprocessing data
Changing one parameter at a time from Vanilla configuration,
using 25k preprocessing data and 200 epochs for each training
phase
Changing two parameters at a time from SOTA configura-
tion, using 25k preprocessing data and 200 epochs for each
training phase oo

List of Tables

2.1 Activation functions

3.1 Overview of hyperparameters used in this thesis

4.1 Baseline Vanilla configuration and SOTA configuration hy-

perparameters for experimentation

xi

Chapter 1

Introduction

Text classification has many useful application areas, for example classify-
ing spam, medical texts, or intentions. Manual text classification is unfea-
sible due to significant time and economical costs. Artificial Intelligence
(AI) techniques automate text classification tasks, making text classifica-
tion cheaper and practical. Within Al, neural networks using traditional
supervised learning often require a substantial amount of labeled data to
achieve good text classification performance during testing with previously
unseen data.

Obtaining labeled data frequently requires expert domain knowledge, for
example for labeling spam, medical texts, or intentions. Manual labeling
is usually time-consuming and expensive. Therefore, obtaining a large size
of labeled data is regularly challenging. In contrast, obtaining an extensive
volume of unlabeled data is commonly free and simple. For example, a
significant volume of free unlabeled data is created on the internet every
day which can be extracted easily.

There is a significant amount of research within the exciting area of semi-
supervised learning (SSL) for text classification. The SSL technique exploits
both unlabeled and labeled data to achieve improved classification perfor-
mance compared to using only labeled data. This is useful because it lowers
the volume of labeled data required for achieving good text classification
performance. It also enables the usage of the enormous amount of unla-
beled data. Therefore, SSL makes obtaining data for text classification

1.1. Motivation Introduction

more practical. In the last few years, there has been a substantial volume
of research significantly furthering the state of the art of SSL.

SSL does not always improve performance compared to supervised learning
[86] [20] [76] [52] [64]. Experiments in the literature show performance
decline, which has probably been under-reported due to publication bias
[86]. To the best of our knowledge, there has not been a significant amount of
research investigating the impact of parameters on SSL for text classification
— in particular with a fixed number of epochs.

This thesis explores the impact of hyperparameters, including preprocessing
data size and model size on an SSL technique for a text classification task.
Relations between these parameters are also examined. A limited number
of epochs and smaller models are used, due to hardware limitations. A
program for running experiments is written based on code from an earlier
project [53].

1.1 Motivation

Investigating the impact of parameters on SSL performance for text classifi-
cation results in several benefits. For example, an improved understanding
of which parameters have the most impact on SSL for text classification
benefits future projects by making it easier to make SSL work, in particu-
lar; if time-restricted. Another benefit is increased understanding of model
size impact on SSL for text classification, to faster choose a model for future
SSL projects. Increased understanding of parameter relations is an addi-
tional benefit. This can result in less training time for future SSL projects,
in particular, if being time-constrained.

This thesis builds upon a previous project [53] which encompassed multiple
experiments to answer some hypotheses related to SSL. The main conclu-
sions of this project are:

e If a model is large enough, it is possible that SSL can improve text
classification performance.

e Some preprocessing tasks for SSL improve performance for text clas-
sification compared to other tasks.

1.2. Thesis Outline Introduction

e Additional unlabeled and labeled data leads to less significant SSL
performance gains for text classification.

e More extensive models improve text classification performance using
SSL, compared to smaller models.

The written code for the previous project mentioned above was built upon
for this thesis.

To explore the impact of model size on SSL for text classification, three
models of different sizes are used for this thesis. Here, larger models are
models containing more sophisticated architectures. A feed-forward model,
a recurrent model, and a seq2seq model are used. Since 2017, the trans-
former [81] architecture has been popular in SSL research within NLP. All
experiments for this thesis are executed using personal hardware, so there
are hardware limitations involved. Therefore, for this thesis, smaller models
are used.

1.2 Thesis Outline

In Chapter 2, Section 2.1 presents relevant background theory for Artifi-
cial Neural Networks (ANNs) (2.1.1), Recurrent Neural Networks (RNNs)
(2.1.2), Gated Recurrent Unit (GRU) (2.1.3), Sequence to Sequence (Seq2seq)
Models (2.1.4), Transfer Learning (2.1.5), Semi-Supervised Learning (2.1.6)
and Self-Supervised Learning (2.1.7).

Also in Chapter 2, Section 2.2 explores previous relevant research for Trans-
fer Learning Within NLP (2.2.1), Semi-Supervised Learning (2.2.2), Self-
Supervised Learning (2.2.3) and Impact of Parameters on SSL Performance
(2.2.4). Section 2.2.5 presents a Summary of Literature Review.

Chapter 3 first presents the Thesis Definition (3.1), which includes thesis
goals and hypotheses. It then describes Contributions (3.2) and proposed
solutions for achieving the thesis goals (3.1.1). Section 3.3 describes the
Structure of Experiments. Section 3.4 describes the Models. Section 3.5
describes how experimentation is done. Section 3.6 describes how datasets
are created. Section 3.7 briefly summarizes the Pretext Task used. Section
3.8 describes the Hyperparameters for experimentation.

1.2. Thesis Outline Introduction

In Chapter 4, the Sections 4.1, 4.2, 4.3 and 4.3.1 present the experiment
results and discuss them for Experiment 1, 2, 3 and 4 respectively. Section
4.4 presents the Conclusion of Results, Hypotheses and Goals.

Chapter 5 presents the Conclusion and Future Work.

Chapter 2

Background

This chapter presents basic background theory (2.1) and explores previous
relevant research (2.2).

2.1 Theory

Al systems are designed to get knowledge by extracting patterns from data.
This ability is called machine learning. [34]

Machine learning includes several areas, one of which is deep learning.
Within this area, neural networks are central — which SSL most frequently
uses.

Inspired by the biological learning of brains, the first learning algorithms
attempted to model how the brain works or could work. [34]

This section presents the basic theory on Artificial Neural Networks (ANNs)
(2.1.1), Recurrent Neural Networks (RNNs) (2.1.2), Gated Recurrent Unit
(GRU) (2.1.3), Sequence to sequence (seq2seq) models (2.1.4), Transfer
Learning (2.1.5), Semi-Supervised Learning (2.1.6) and Self-supervised Learn-
ing (2.1.7).

2.1. Theory Background

2.1.1 Artificial Neural Networks (ANNs)

An artificial neuron can be observed as a mathematical function. In simple
terms, it is a node that contains a particular value. Within a binary neuron,
this value can either be one or zero. Usually, in machine learning, this value
is a real number.

Artificial neurons are the fundamental building blocks of ANNs. Frequently,
an artificial neuron takes inputs from other neurons, where inputs are multi-
plied with weights and summed together. The result is usually put through
an activation function, which computes the final output of the neuron. This
output is usually sent to other neurons.

Within deep learning, the nodes of an ANN are regularly split into layers.
Within an ANN, there is often an input layer, one or more hidden layers,
and an output layer. From a source, data is sent to the input layer. This
data originates from multiple possible sources. These include for example
text files, image files, or a microphone. The hidden layers process data from
the input layer, and the output layer creates one or multiple outputs. Each
output results from the overall function within the network.

If an ANN contains two or more hidden layers, it is known as a Deep Neural
Network (DNN).

Within deep learning, the fundamental example is a deep feed-forward ANN,
more precisely an under-category known as a Multilayer Perceptron (MLP).

2.1. Theory Background

Hidden
Layer 2
Hidden

4/ ."'.,1- 4’;
X AN AN
ﬁ"':, P N L N g
Y% WK ;.
\"F 1-." . _ﬁi:i A . ~ SN\AX -
OO AR N7 X
#l"‘?\ RIS /7 0y,
A . A > TV ... >
O A\ -\ Z4
\ M'h' A7 Qutput
= W, ® ww/ W "
[N.4] (45 . ' 173
w, XY
[SF?] f'?
Figure 2.1: A deep MLP [55]
X1 W1
I il
X2 Ww:

Figure 2.2: A single perceptron [69]

7

2.1. Theory Background

Within an MLP, the fundamental building block is the Perceptron. A per-
ceptron detects features within input data, through calculations.

Figure 2.2 shows a single perceptron. Here, z; and z9 are inputs to the
perceptron. w; and wy are weights for each of the inputs. Each input is
multiplied by its weight, and frequently the bias is added. Then the results
are added together. The result is then put through the binary step activation
function. If the input to this function is over a particular threshold, then the
perceptron is activated. In the other case, the perceptron is deactivated,
with the final output of zero. Equation 2.1 shows the calculation by the
perceptron in Figure 2.2.

f(x)_{lif S (wi ki) +b >0 2.1)

~] 0 otherwise

There are also other activation functions, for example Rectified Linear Unit
(ReLU), Sigmoid and Softmax. See Subsection 2.1.1.

Activation Functions

The choice of which activation functions to use within a neural network
is important. Within hidden layers, the activation function decides how
capable the model is adapting to training data. For the output layer, the
activation function decides the category of predictions the network does.

Within a network, an activation function decides how the weighted sum
from a neuron should be modified before being passed to the next layer. An
activation function can also decide how the final output from the last layer
is calculated.

A model can contain linear activation functions within the hidden layers.
However, a model can learn better functions if it contains non-linear acti-
vation functions. A non-linear function estimates better a non-linear phe-
nomenon compared to a linear function. This results in better performance
during validation and testing.

Within hidden layers, popular activation functions include ReLU, TanH,
and Sigmoid. For the output layer, popular activation functions include

2.1.

Theory

Background

Activation
function

Equation

Parameters

ReLU

x otherwise

f(m):{Oforx<O

x: Weighted sum of
neuron inputs.

TanH

f(w)zl_s_%zz—

1

x: Weighted sum of
neuron inputs.

e: Exponential
stant, which approxi-
mately equals 2.71828.

con-

Sigmoid

x: Weighted sum of
neuron inputs.

e: Exponential
stant, which approxi-
mately equals 2.71828.

con-

Softmax

f(T)i = =

Zngl e

fori=1...K

7’ Input vector, con-
taining xg, ..., Tk

xz;: FElement of input
vector. Is any real num-
ber.

e: Exponential
stant, which approxi-
mately equals 2.71828.
e”: The standard expo-
nential function is used
on all input vector ele-
ments.

ZJK:1 e®i: Forces the
outputs to sum to one.
Every output is between
zero and one, creating
a probability distribu-
tion. The K exponen-
tial terms sum together
here.

K: Amount of possible
classes.

con-

Linear

flx) ==

x: Weighted sum of
neuron inputs.

Table 2.1: Activation functions

9

2.1. Theory Background

Softmax, Sigmoid, and Linear. See Table 2.1. For Multiclass Classification,
Softmax should be used for the output layer. With Softmax, there is one
neuron for each possible class.

Optimization

For a training procedure, it is essential to update model parameters for
improving prediction results. An optimizer is a technique for updating, for
example, model parameters and learning rate for lowering loss. It links the
model weights and the loss function by adjusting weights based on outputs
from the loss function. The optimizer improves the model by updating the
model weights. The loss function guides the optimizer in the right direction
for improving the model results.

Gradient descent is an optimizer. The first order derivate of the loss function
is used for calculating how each weight should be updated, for lowering loss.
Based on losses, a loss is backpropagated layer by layer. Then, each weight
is updated for lowering the loss. After computing the error gradient from
the total dataset, the model weights are updated. If the training dataset is
massive, then it takes a significant amount of time before minimizing the
loss.

Stochastic Gradient Descent (SGD) is an alternative version of gradient
descent. Instead of updating weights from the total dataset, weights are
updated after computing loss for each sample. The weights are then up-
dated more often. Stochastic refers to extracting a random sample from the
dataset in every iteration. SGD updates weights based on gradient calcu-
lated from one sample in each iteration. Therefore, it is significantly more
effective than gradient descent. Updating weights usually results in effec-
tive minimizing of the loss function, but the minimizing process is more
unstable.

Another version is Mini-Batch SGD. With this optimizer, the training data
is split into batches. The weights are updated after calculating the gradient
from a single batch. With this optimizer, the weights are updated frequently,
and the minimizing process is more stable compared to SGD.

Other optimizers include for example Adagrad, AdaDelta and Adam.

10

2.1. Theory Background

Loss Functions

The objective function evaluates a prediction with the ground truth. Fre-
quently, the goal of training a model is to minimize the error. Therefore,
the objective function is known as the loss function. The computed value
is known as loss.

A loss function is selected for the optimization process for computing the
prediction error. There exist several popular loss functions. Cross-Entropy
Loss is an example of one of these functions. From the predicted probability
of a class, Cross-Entropy Loss calculates a score. This score reflects the
distance between predicted class probability and ground truth, which is
zero or one. This score is logarithmic, meaning that larger differences are
penalized significantly more than smaller differences. For Cross-Entropy
Loss, a smaller loss means a better model compared to a higher loss. Cross-
Entropy Loss can be used for multi-class prediction tasks.

Hyperparameters

Before the training process, hyperparameters are decided. There are mul-
tiple different hyperparameters. Examples include learning rate, number of
hidden layers and nodes, batch size, dropout rate and number of epochs.
Some hyperparameters determine final model architecture, other hyperpa-
rameters decide how the model is optimized.

2.1.2 Recurrent Neural Networks (RNNs)

Within a feed-forward model, data flows in one direction. Here, data flows
from the input layer through the hidden layer(s) to the output layer. Recur-
rent Neural Networks (RNNs) work differently by sharing weights through
time. In contrast to a standard feed-forward network, an RNN can remem-
ber prior inputs. It uses older knowledge for the current computation. For
some tasks within NLP, for example, data usually needs sequential process-
ing. For these tasks, RNNs are effective due to having useful attributes.

An RNN contains an inner memory. Output for the current input results
not only from the current input but additionally from the previous output.

11

2.1. Theory Background

The calculated output is used for the next output calculation.

RNNs are often effective for sequential data processing. RNNs use their
inner memory to process sequential data, learning relations between inputs.
Within feed-forward networks, inputs are independent of each other.

Pt Tr T

A - A)—-|A}—-|A|—.

& 6 o

An unrolled recurrent neural network.

Figure 2.3: An RNN [62]

In Figure 2.3, zg is put into the network. Then, the network outputs hg.
The next output h; results from both the new input x; and hg from the
previous step. The next output results from zo and hq, and so on. This
way, an RNN uses current context while learning. Therefore, it is effective
for sequential data processing.

RNNs have both positive and negative attributes. Negative attributes in-
clude the following: An RNN does not easily learn effectively. With TanH or
ReLU as an activation function, it struggles to learn with larger sequences.
Another negative attribute is the parallelization challenge, because of the
sequential processing.

While a deep network learns, gradients are backpropagated through many
layers to early layers. The chain rule results in many gradients to multiply
for computing gradients, in particular for the early layers. The number of
layers to backpropagate through decides the number of gradients to multiply
for computing gradient. If multiplying a significant number of high gradi-
ents, then the computed gradient increases fast. After a while, the gradient
can explode and render the model useless. This is the problem of exploding
gradient. If multiplying a significant number of small gradients, then the
computed gradient decreases fast. In this case, the model has problems with
learning. This is the problem of vanishing gradient.

12

2.1. Theory Background

An RNN also struggles with vanishing and exploding gradients. Within se-
quence data, there are regularly long-term dependencies. For example, an
extensive sequence starting with “I am from Norway” and ending with “I
speak Norwegian”, contains a long-term dependency. Prediction of the word
“Norwegian” depends on the word “Norway” from earlier in the sequence.
If the distance between words is significant, then there is a long-term de-
pendency. This is a dependency between long-distance sequence data. As
dependency distance increases, an RNN struggles to learn this dependency.
This is due to the problem of vanishing or exploding gradient.

Bidirectional RNNs

r 3
r 3
¥ 3

r 3

(:}4—}-\' A A A S
@ A,0A A, A A A, A_"@

()

Figure 2.4: A bidirectional RNN [24]

\ 4

As observed in Figure 2.4, the central concept of bidirectional RNNs is com-
bining two independent RNNs. Sequential data is used in the standard time
sequence for the first RNN, and in backward time sequence for the other.
For each time step, the output is often the concatenation of the two outputs
from each RNN. The two outputs can alternatively be summed together,
for example. Therefore, a bidirectional RNN considers context from each
direction for each time step. This frequently improves performance.

2.1.3 Gated Recurrent Unit (GRU)

The architecture Gated Recurrent Unit (GRU), was presented by Cho et
al. [22] in 2014. Tt fixes the vanishing gradient problem encountered by

13

2.1. Theory Background

traditional RNNs. Because of architectural similarities, GRU is known as
an alternative version of the well-known Long Short Term Memory (LSTM)
architecture. LSTM was first presented in 1997, by Hochreiter and Schmid-
huber [40].

For fixing the vanishing gradient problem, GRU uses two vectors known
as gates. These are the Reset gate and the Update gate. They decide the
data which should be sent to the output. These gates are trained to avoid
forgetting useful knowledge from earlier time steps.

ht
ht-'l he
ht
Xt
Figure 2.5: A single GRU [47]
o ©)
“plus” operation “sigmoid” function “Hadamard product” operation “tanh” function

Figure 2.6: GRU notations for Figure 2.5 [47]

14

2.1. Theory Background

2t =o0(W(z)xs + U(2)hi—1) (2.2)

Equation 2.2 computes the update gate z; for time step t. The input
and the previous hidden state h;_; representing previous data are each
multiplied by their weights W(z) and U(z) respectively. The results are
added together, and put through a Sigmoid activation function. The output
is between zero and one. See Figure 2.7 below.

t-1

Figure 2.7: Update gate within Figure 2.5 [47]

re =o(W(r)xy + U(r)hi—1) (2.3)

Equation 2.3 computes the reset gate, which helps the model decide what
knowledge from previous time steps is not useful and can be ignored. Al-
though the reset gate has another purpose than the update gate, their equa-
tions are similar. The difference is the weights used. See Figure 2.8 below.

15

2.1. Theory Background

he
N hy
"t
c
*t
Figure 2.8: Reset gate within Figure 2.5 [47]
h; = tanh (W.ft +7rt© Uht_l) (2.4)

Equation 2.4 computes the current memory for saving useful previous data,
using the reset gate. x; and h;—; are multiplied by their weights W and
U, respectively. The element-wise product of the reset gate ry and Uh;—;
computes what data to remove from prior time steps. The result is then
added to Wx;. This result is then put through the non-linear tanh activation
function. See Figure 2.9.

16

2.1. Theory Background

Xt

Figure 2.9: Calculating current memory content within Figure 2.5 [47]

he =2 © hy—1 + (1 — Zt) O) h; (2.5)

The final memory h; for the time step to be sent to the next step must be
computed. Equation 2.5 calculates this. The update gate z; is used. It
decides what data to keep from current memory h} and from prior steps
hi_1. Element-wise multiplication is done between the update gate z; and
hi—1, and also between (1 —2;) and h}. The results are then added together.
See Figure 2.10.

17

2.1. Theory Background

t-1

'I—zt

Xt

Figure 2.10: Calculating final memory within Figure 2.5 [47]

For fixing the vanishing gradient problem, the update gate is useful. The
update gate helps the model to decide what knowledge from earlier time
steps should be sent into the next time steps. The model can potentially
transfer all knowledge from previous time steps into the next steps. This
prevents the vanishing gradient problem.

2.1.4 Sequence to Sequence (Seq2seq) Models

Sutskever et al. [77] presented the seq2seq model in 2014. The seq2seq
model outputs a particular sized output, from a particular sized input. The
input and output lengths are not always equal. For example, a seq2seq
model could translate a three-word sequence to another five-word sequence.
A single GRU model or LSTM model could not do this. Therefore, a seq2seq
model makes it possible to have variable length inputs and outputs, which
is impossible with a single RNN.

18

2.1. Theory Background

Seq2seq models have multiple use cases. These include for example machine
translation, speech recognition, and video captioning. The seq2seq model
is useful for sequence-based tasks, in particular, if the input and output
lengths are variable.

Encoder

10J08)\ Jopoous

Decoder

Figure 2.11: Seq2seq model [48]

As seen in Figure 2.11, the seq2seq model contains three main parts. These
are the encoder, the encoder vector, and the decoder.

Encoder

An encoder contains multiple connected recurrent cells, frequently LSTM
or GRU cells for improved performance. Each recurrent cell uses an element
from the input sequence, calculates, and transfers output to the next time
step.

Encoder Vector

The encoder vector is the final hidden vector calculated by the encoder.
It is the first hidden vector within the decoder, to support the decoder in
making the best possible predictions. The encoder vector contains data,
which represents the whole input sequence from the encoder.

19

2.1. Theory Background

Decoder

The decoder contains multiple connected recurrent cells, usually GRU or
LSTM cells. This is similar to the encoder. Each recurrent cell uses the
previous hidden state, outputs an output, and its hidden state. This is
transferred to the next time step.

Attention

With extensive sequences, the seq2seq model struggles to represent the se-
quence within the encoder vector. After processing a large sequence, the
encoder regularly has forgotten useful knowledge from the start of the se-
quence. The attention technique addresses this challenge of long-term de-
pendencies.

In 2014, Bahdanau et al [6] presented the attention technique. They showed
fundamentals which resulted in the known paper by Vaswani et al. [81] in
2017. Vaswani et al. presented transformers and the idea of computing
inputs in parallel rather than sequence. Parallel calculations lowers training
time, for example.

For the attention technique, during output prediction by the decoder, cer-
tain parts of the input sequence in the encoder are particularly important.
In simple terms, this means paying attention to the most important inputs
during output prediction.

The attention technique links the encoder and decoder. With it, the decoder
has access to hidden encoder vectors. This way, the model pays attention
to specific inputs during output predictions. Through training, the model
learns connections between inputs. The network uses the attention tech-
nique to process more extensive sequences with better performance.

Figure 2.12 below shows that the number of hidden states sent from the
encoder is equal to the number of elements within the input sequence. In
this figure, HS1, HS2, and HS3 are hidden states from the encoder. The
decoder uses these for predictions.

20

2.1. Theory Background

Attention scores

Encoder
{ e $ 4
i 1 7 7
Encoder ? Encoder ;‘ Encoder ;‘ ;‘ ;‘ ;‘ g Decoder ﬂ Decoder ﬂ Decoder
RNN RNN RNN ! RNN S RNN S RNN
1 2 31 112131,
2
i !
| ST Decoder

Figure 2.12: Seq2seq architecture with attention technique [30]

2.1.5 Transfer Learning

Within artificial intelligence, transfer learning is an important technique for
multiple reasons. These reasons include using less training time, usually
improving model results, and lowering required data size. Due to training
an extensive model from scratch with a comprehensive task frequently takes
a significant time amount, transfer learning lowers training time. It also
usually improves results using less labeled data due to the network has pre-
trained earlier.

Using transfer learning, a model created for one task is reused as the initial
model on another task. Previous understanding from one task and domain
is transferred to another task and domain.

Using pre-trained models, transfer learning breakthroughs have been achieved
within computer vision. For deep networks, this has improved training time
and performance. Substantial datasets, ImageNet for example, have re-
sulted in the latest pre-trained models for transfer learning. NLP did not
have its ImageNet counterpart until a few years ago.

Pre-trained language models are important for transfer learning within NLP.
The concept here is reusing pre-trained models trained within resource-rich
domains and languages. These models are often fine-tuned using limited
resources for downstream tasks. Examples of pre-trained language models
are BERT [29], RoBERTa [54] and GPT-3 [13]. Examples of downstream
tasks are text classification, named-entity recognition, and part-of-speech

21

2.1. Theory Background

tagging. In NLP, pretraining happens on unlabeled data and is, therefore,
an example of SSL.

2.1.6 Semi-Supervised Learning

The field of machine learning frequently draws a line between supervised
learning and unsupervised learning [11]. Supervised learning uses a dataset
containing x-samples with target y-samples. This learning type aims to
create a model capable of predicting target labels for previously unseen
x-samples. In contrast, unsupervised learning uses a dataset containing x-
samples but not target y-samples. This learning type aims to learn useful
patterns from unlabeled data.

Semi-supervised learning uses both supervised and unsupervised learning
[20] [86]. Usually, semi-supervised learning aims to increase the perfor-
mance of either the supervised or unsupervised approach. It achieves this
by using knowledge from the other learning approach. For example, for text
classification, often there is only a small amount of labeled data available.
Adding unlabeled data can help performance. The model can usually im-
prove classification performance, by using extracted knowledge from both
unlabeled and labeled data.

In particular, if labeled data is challenging to extract, using unlabeled data
also can be significantly useful. For example, for classifying medical images,
intentions, or doing part-of-speech tagging, obtaining labeled data is regu-
larly costly and time-consuming. Therefore, using SSL is commonly cheaper
and saves time for improving classification results, compared to obtaining
additional labeled data.

Research within both SSL and machine learning frequently uses the classi-
fication task, which is one of the most common tasks for machine learning.
SSL has also been utilized in situations where there has been a substantial
volume of labeled data. If an unlabeled dataset contains additional knowl-
edge useful for the classification task, then the unlabeled data can improve
classification performance.

According to Chapelle et al. [20], for the successful use of SSL, three as-
sumptions need to be satisfied.

22

2.2. Literature review Background

e The smoothness assumption: If a pair of data samples x1 and x5
are close within a high-density area, also the outputs y; and ys should
be close.

e The cluster assumption: Data samples are probably within the
same class, if they are within the same cluster.

e The manifold assumption: ”The (high-dimensional) data lie (roughly)
on a low-dimensional manifold” [20, p. 6].

2.1.7 Self-Supervised Learning

Self-supervised learning is a category of unsupervised learning, where a neu-
ral network learns using labels automatically extracted from the data itself.
No human labeling is involved. [31] [39]

Massive amounts of unlabeled data can be used for model training with
self-supervised learning, making this technique important.

Transfer learning and self-supervised learning are related research fields.
Together, they use one task with a significant volume of unlabeled data and
transfers understanding to another task. Across domains, these techniques
have increased in scope because of their scalability and furthering of state-
of-the-art performance.

2.2 Literature review

The research within relevant fields advances fast. This section explores pre-
vious research for Transfer Learning Within NLP (2.2.1), Semi-Supervised
Learning (2.2.2), Self-Supervised Learning (2.2.3) and Impact of Parame-
ters on SSL Performance (2.2.4). Finally, a Summary of Literature Review
(2.2.5) is given.

23

2.2. Literature review Background
2.2.1 Transfer Learning Within NLP
Domain
Different domains adaptation

Same task;
labeled data
only in source
domain

Transfer

learning

labeled data
in target
domain

Transductive

transfer

learning

Different tasks;

Different languages

Cross-lingual

learning

Tasks learned

simultaneously

Indu
transfer

ctive

learning

Tasks learned

sequentially

Multi-task

learning

Sequential

transfer learning

Figure 2.13: Overview of transfer learning within NLP [73]

Ruder [73] divides transfer learning into inductive and transductive trans-
fer learning. He claims that within transductive transfer learning, original
and target tasks are equal. He says that within inductive transfer learning,
original and target tasks are not equal. He divides inductive transfer learn-
ing into a pair of sub-types, called multitask learning [15] and sequential

transfer learning.

Sequential Transfer Learning

Language models (2.2.1) often use sequential transfer learning. Sequential
transfer learning [74] uses the concept of pre-training then fine-tuning. With

24

2.2. Literature review Background

neural networks, the initial phase is known as pre-training and the second
phase of training is known as fine-tuning [56].

Sequential transfer learning with fine-tuning described by Ruder [73] and
pre-training described by Engelen and Hoos [78] are descriptions of the same
concept.

Ruder [73] mentions different pre-training types for sequential transfer learn-
ing. These are supervised, distantly supervised, unsupervised, and multi-
task pre-training. Architectures are also included. This thesis focuses on
both unsupervised and multi-task pre-training.

A pre-training task included in either multi-task learning or single-task
learning should extract useful features. A useful pre-training task enables
the use of significant amounts of additional data for training a neural net-
work.

Sequential transfer learning is important within NLP. According to [73],
sequential transfer learning is valuable within three settings in particular:

e Not possible to use data for tasks simultaneously.
e Have a large amount of data for one task but not for the other.

e [t is important to fine-tune to multiple downstream tasks.

In summary, sequential transfer learning is useful, for example when having
a substantial unlabeled volume of data and a small labeled volume of data.
Including unlabeled data for training can improve results. Fine-tuning a pre-
trained model for multiple downstream tasks is also useful, due to usually
improving results. Only doing pre-training once is also beneficial, due to
saving training time. There are different pre-training types, unsupervised
and multi-task pre-training for example. A pre-training task is useful if it
extracts relevant knowledge.

Unsupervised Pre-Training

Unsupervised pre-training is significantly more scalable and more related
to how humans learn, compared to supervised pre-training. Unsupervised
pre-training does not demand labeled data. [14] [68].

25

2.2. Literature review Background

Due to the massive volume of available unlabeled data available on the in-
ternet, unsupervised pre-training within NLP is useful [72]. Commonly it is
possible to improve results by training a larger model on a more substantial
data set because neural models have significant scalability [46] [38].

In summary, unsupervised pre-training has significant scalability due to
not requiring labeled data. This scalability combined with neural network
scalability is usually a good combination for improving results.

Multi-Task Learning

Caruana [15] claims the following about Multi-task Learning (MTL): “MTL
improves generalization by leveraging the domain-specific information con-
tained in the training signals of related tasks”. He further points out that it
accomplishes this by training tasks side by side and utilizing a shared repre-
sentation. He says that multi-task learning is frequently accomplished with
hard or soft parameter sharing using hidden layers within deep learning.

26

2.2. Literature review Background

Task A lask B Task ¢ Taslk.
1 I specific
layers
Shared
layers

Figure 2.14: Hard parameter sharing [73]

Originating from Caruana [16], hard parameter sharing is the most popu-
lar technique to accomplish multi-task learning using neural networks. As
observed in Figure 2.14, it is commonly done by sharing hidden layers be-
tween tasks. There are multiple output layers for different tasks. According
to Ruder [73], every task has its network and parameters with soft parame-
ter sharing. He further claims that a neural network learns to solve multiple
tasks simultaneously, with multi-task learning.

pre-training on multiple tasks with multi-task pre-training can improve rep-
resentations [7]. For example, both masked language modeling and next-
sentence prediction is done by Devlin et al. [29] with BERT.

In summary, multi-task learning can improve performance by training tasks
in parallel with a shared representation. Neural networks often use hard
parameter sharing, but soft parameter sharing is also possible. Multi-task
pre-training can improve performance.

27

2.2. Literature review Background

Word Embeddings

For transfer learning within NLP, word embeddings are important. Word
embeddings use the idea that words can be represented by vectors. Fre-
quently, words with similar meanings are present within a similar context.
Similar words are represented by similar vectors. [72]

Multiple techniques have been developed to create word embedding vectors.
This section gives an overview of popular techniques, but does not go into
detail on how these work.

Based on the co-occurrence of words in a document setting, the classic
technique Latent Semantic Analysis (LSA) [27] creates low dimensional
distributed word representations. LSA enhances information retrieval com-
pared to earlier techniques. It presents the important concept of reducing
the dimensionality in the information retrieval challenge.

One-hot encoding is an example of a simpler technique for representing
words as vectors. Omne-hot encoding represents each word with a vector,
where all features are zero except one. This exception represents the word
index in the vocabulary. One-hot encoding has multiple disadvantages.
These include the similarity problem, where similar words are not con-
taining similar features. Another problem is that while vocabulary size
increases, the number of features grows. Another one is the computational
problem because most machine learning techniques are not efficient with
many and sparse features. Word embeddings solve the important problem
of generalization. For example the words “car” and “truck” are often in
similar contexts. These words, therefore, have similar word embeddings. If
a model sees the word “truck”, it understands this word is similar to “car”
due to containing similar features. Therefore, the model processes “truck”
” similarly. Instead of learning how to represent “truck” from
scratch, it notices the embedding is similar to “car” and can be processed
similarly. This results in a significantly more generalized model, compared
to using one-hot encoding. Word embeddings improve results for almost all
NLP tasks, in particular, if not utilizing a substantial training dataset.

and “car

Word2vec [61], released in 2013, is a toolkit used for simple training and
utilization of pre-trained embeddings. It led to the popularity of word
embeddings. Word2vec presents two model architectures for learning dis-
tributed word representations with large corpora: CBOW (Continous Bag-

28

2.2. Literature review Background

of-Words) and Skip-gram model. 1t aims to keep down computational de-
mands. Word2vec outperformed earlier architectures for creating word vec-
tors, taking into account syntactic and semantic similarities. Word2vec has
multiple improvements compared to LSA. These include: Word2vec tracks
word meanings, context knowledge is kept track of, and embedding vector
length is small. In a Word2vec embedding vector, every dimension carries
knowledge concerning a word feature. Large sparse vectors are avoided here,
in contrast to with LSA.

Glove [66], presented by Pennington et al. in 2014, is a technique for cre-
ating word vectors. Glove is short for Global Vectors. Glove is a global
log-bilinear regression model for unsupervised learning of word vectors. It
improved previous models on named entity recognition, word similarity,
and word analogy tasks. Glove not only uses local word context data but
also global statistics to create word representations. This is in contrast to
word2vec. Glove uses count information and linear substructures common
in log-bilinear prediction-based techniques, word2vec for example.

In summary, word embeddings result in more generalized models, compared
to one-hot encoding, for example. Word embeddings use the idea of rep-
resenting words as vectors, where similar words have similar vectors. The
classic technique Latent Semantic Analysis [27] creates low dimensional dis-
tributed word representations. Word2vec [61] trains and utilizes pre-trained
embeddings, and led to the popularity of word embeddings. Glove [66] uses
both local word context data and global statistics to create word represen-
tations. It improved earlier models on different tasks.

Language Models

Language modeling (LM) creates probabilistic models that predict the next
word based on previous words. An N-gram model predicts the next word,
based on the earlier N — 1 words.

Bengio et al [9] presented in 2001 the initial neural language model, a feed-
forward model. Inputting word embeddings to a neural model, Neural Lan-
guage Models (NLM) solve the n-gram data sparsity problem.

McCann et al. were impressed by the effective transfer learning use within
computer vision. In 2017, they presented the CoVe [58] paper. CoVe aims to

29

2.2. Literature review Background

transport understanding from machine translation to various downstream
tasks. To contextualize word embeddings, CoVe uses a deep LSTM encoder
from an attentional seq2seq network trained for translation.

Peters et al. presented the ELMo (Embeddings from Language Models) [67]
paper in 2018. ELMo solves the main restriction of CoVe, that pre-training
is limited by accessible datasets for the supervised translation task. Using
unsupervised pre-training, ELMo addresses this problem.

Howard and Ruder presented ULMFiT [42] in 2018. ULMFiT addresses
the problem of previous NLP techniques, demanding changes for each task
and learning from scratch. In computer vision inductive transfer learning
had been effectively used. ULMFiT presents a successful transfer learning
technique that can be used with all NLP tasks. For fine-tuning language
models, ULMFit presents important methods.

Radford et al. at OpenAl presented GPT (Generative Pre-training Trans-
former) [70], enlarging the unsupervised language model to a significantly
larger scale. GPT uses a massive quantity of text corpora, with the con-
cept from ELMo. Generative pre-training for GPT may input the most
extensive possible text amount during the initial phase. During the second
phase, GPT uses as few new parameters as possible to train and a small
volume of labeled data. This way, the network is fine-tuned on different
challenges. GPT learns to predict only the next left-to-right context. It is
limited by this one-directional property. GPT contains a transformer [81]
decoder architecture.

BERT (Bidirectional Encoder Representations from Transformers) [29] builds
on the concepts of GPT. The bi-directional training of BERT is the most im-
portant advancement and distinction from GPT. BERT uses a bi-directional
multi-layer transformer encoder.

ALBERT (A Lite BERT) [49], released in 2019, is a smaller version of BERT
while keeping results. It trains roughly 1.7 times quicker using 18 times less
parameters compared to BERT.

GPT-2 [71] is a descendant of GPT. It contains 10 times the quantity of
parameters compared to GPT: 1.5 billion. GPT-2 demonstrates that using
additional parameters and training with more data improves model perfor-
mance. It improves results for multiple challenges within zero shot learning
compared to earlier models.

30

2.2. Literature review Background

Liu et al. presented RoOBERTa (Robustly optimized BERT approach) [54],
demonstrating that BERT [29] could improve or get the same results of all
earlier models. Therefore, RoOBERTa shows that BERT was largely under-
trained. It presents how to train BERT to improve performance, through
some changes. For example, hyperparameters were discovered to signifi-
cantly affect model results. Changes are the following:

1. Doing model training for more time, with larger batch size and a more
substantial amount of data.

2. Removing the next sentence prediction task.
3. Using extended sequences during training.

4. For training data, modifying masking pattern dynamically.

T5 (Text-to-Text Transfer Transformer) [72] is a newer language model.
Using the transformer architecture, it contains an encoder-decoder struc-
ture. With a variety of tasks, the text-to-text setting results in a simpler
assessment of transfer learning using the same network.

GPT-3 [13], presented in 2020, contains about 100 times the quantity of
parameters compared to GPT-2: 175 billion. GPT-3 and GPT-2 use the
same architecture. Inspired by the Sparse Transformer [21], GPT-3 uti-
lizes alternating dense and locally banded sparse attention patterns within
transformer layers. Compared to fine-tuned BERT networks, GPT-3 reaches
significant results with different NLP tasks.

At the beginning of 2021, Google presented their paper on Switch Trans-
formers [32]. While keeping the same amount of floating-point calculations
per second, switch transformers present a new technique for significantly in-
creasing parameter quantity. Networks usually reuse the same parameters
for every input, within deep learning. For every sample, Mixture of Experts
(MoE) networks counter this by using varying parameters. Using a massive
parameter amount, the achievement is a sparsely activated network with
a static calculation cost. Switch transformers are intuitive and enhanced
models with less calculation and communication costs and make simpler
the MoE routing technique. They reach a factor of four-time improvement
using the T5-XXL network. Switch transformers further the latest scale of

31

2.2. Literature review Background

language models by pre-training networks containing up to a trillion pa-
rameters using the Colossal Clean Crawled Corpus (C4). C4 was initially
presented in the T5 [72] paper.

In a paper released in 2021 by Bender et al. [8], they point out the following:
With regards to the volume of training data and parameters, a significant
pattern within NLP has been the growing scale of language models. This
pattern is observed when looking at the previous work above. Related to
the trend of enlarging language models, Bender et al. [8] present different
risks and costs. These include for example environmental and financial
costs. The authors hope these points motivate NLP scientists to focus work
and resources on methods for doing NLP tasks, that are efficient and not
significantly data demanding.

Neural language models achieve enhanced performance compared to statis-
tical language models. A key reason for this is that neural language models
generalize better, mainly due to using word embeddings. The generaliza-
tion of representations provided by word embeddings is not easily replicated
in statistical language models. See information on word embeddings above
2.2.1.

In summary, a language model aims to forecast the likelihood of a word
sequence. An N-gram model predicts the next word, based on prior words.
Using word embeddings, Neural Language Models (NLM) solve the n-gram
data sparsity problem. Bengio et al [9] present the initial NLM. CoVe [58]
transfers translation knowledge to downstream tasks. ELMo [67] solves the
restriction of CoVe, that pre-training is limited by accessible datasets, us-
ing unsupervised pre-training. ULMFiT [42] presents a transfer learning
technique for NLP tasks. GPT [70] enlarges the language model to a sig-
nificantly more substantial size, using a massive volume of unlabeled data.
Bi-directional training of BERT [29] is a significant improvement compared
to GPT. ALBERT [49] is a smaller BERT version. GPT-2 [71] uses 10
times the parameter amount from GPT. RoBERTa [54] shows how to modify
BERT training to improve results, for example changing hyperparameters.
T5 [72] uses a text-to-text setting, which results in a simpler transfer learn-
ing assessment with a single network for multiple tasks. GPT-3 [13] uses 10
times the parameter quantity from GPT-2. Switch Transformers [32] use a
new technique for significantly increasing parameter amount while keeping
the same number of calculations per second. Bender et al. [8] show risks
and costs, related to increasing language models. Neural language models

32

2.2. Literature review Background

achieve improved results compared to statistical language models, mainly
due to generalizing better with word embeddings.

2.2.2 Semi-Supervised Learning

Semi-supervised
classification

Inductive Transductive
Graph-based
Unsupervised Construction
preprocessing
Weighting
Inference
Feature Cluster-
Pre-trainin,
extraction then-label e
Wrapper Intrinsically
methods semi-supervised
- - . Maxi - ion- i
Self-training Co-training Boosting aximurm Perturbation Manifolds Generative
margin based models

Figure 2.15: Overview of the taxonomy of semi-supervised classification.
Every leaf represents a technique for including unlabelled data into classifi-
cation tasks. [78]

Pre-Training

Multiple semi-supervised classification techniques have been presented, dur-
ing the last two decades. See Figure 2.15 above.

Unsupervised preprocessing, an inductive technique in Figure 2.15, utilizes
labeled and unlabelled data within two phases. This is in contrast to wrap-

33

2.2. Literature review Background

per methods and intrinsically semi-supervised methods.

Before supervised learning, unlabelled data moves the decision border to-
wards potentially more relevant areas with pre-training methods. Deep
belief networks and stacked autoencoders are popular techniques using this
concept. Within deep learning, pre-training techniques have important ori-
gins. Deep neural architectures containing multiple hidden layers have in-
creased in popularity, beginning near the start of the millennium. Parame-
ters for unsupervised preprocessing are static after the unsupervised stage
within feature extraction techniques. They can be modified during the su-
pervised fine-tuning stage within pre-training techniques. See subsection
2.2.1 for history and the current state-of-the-art for language models, which
often are using pre-training methods.

Unsupervised pre-training of a model commonly lowers the required vol-
ume of labeled data for downstream tasks to achieve good performance.
Downstream NLP tasks are then simpler and cheaper to accomplish. Un-
supervised pre-training also makes possible fine-tuning a model to multiple
downstream tasks. This way, a pre-trained model is used for many down-
stream tasks, reducing training time and regularly improving downstream
performance. Pre-training research is therefore valuable within NLP.

In summary, multiple semi-supervised classification techniques are used.
Unsupervised preprocessing utilizes labeled and unlabelled data in two phases.
Unlabelled data moves the decision border towards potentially more useful
areas using pre-training, prior to supervised learning. Parameters for un-
supervised preprocessing are static after the unsupervised phase in feature
extraction techniques. They can be changed during the supervised fine-
tuning phase while pre-training. Unsupervised pre-training usually lowers
the demanded labeled data amount for downstream tasks to reach good per-
formance, and makes it possible to fine-tune a model to many downstream
tasks. Pre-training research in NLP is therefore useful.

History of Semi-Supervised Learning

Self-learning, additionally called self-labeling, self-training, and decision-
directed learning, is likely the first concept utilizing unlabeled data within
classification tasks. This is a wrapper method repeatedly utilizing a super-
vised learning technique. This concept has been known since the 1960s [75]

34

2.2. Literature review Background

[33] [2].

Transductive inference, also known as transduction, with foundations laid
by Vapnik [80] [79], is tightly connected to semi-supervised learning. Hart-
ley and Rao [36] presented in 1968 an early use of transduction, but were not
observing it as a concept directly. To increase probability of their model,
they present a combinatorial optimization on labels of the test elements.
During the 1970s, with the task of approximating the Fisher linear discrim-
inant rule using unlabeled data, it appears SSL became significantly more
used [41] [60] [65] [59]. Because of uses mainly within natural language
challenges and text classification, during the 1990s popularity of SSL grew
larger [83] [57] [12] [25] [45].

In summary, self-learning is probably the first concept utilizing unlabeled
data for classification challenges. During the 1990s SSL utilization grew [83]
[57] [12] [25] [45], due to uses mainly in natural language challenges and text
classification.

2.2.3 Self-Supervised Learning

Self-supervised learning extracts features and understanding from unlabeled
data, using a pre-training, also called pretext task [44]. After a neural
network has trained on a pre-training task, the network can be adjusted to
a target task using transfer learning.

Pretext tasks are varied. Often they include imputing or transforming in-
put data, aiming to make the network predict absent data parts, or using a
data bottleneck. GLUE [82] is a widely used benchmark within NLP. It is
utilized to test training techniques within self-supervised learning, on dif-
ferent challenges. These include for example sentiment analysis, paraphrase
identification, and natural language inference.

Within self-supervised learning, generative techniques create parts or total
training data in the network output [44]. On an abstract level, discrimina-
tive techniques separate positive examples from negative examples [56].

Bottleneck-based techniques learn a restricted representation of information,
frequently by training to recreate input information. An early bottleneck-
based linear technique for dimensionality reduction is latent semantic analy-

35

2.2. Literature review Background

sis. Non-linear deep autoencoders [28] [39] extract more useful low-dimensional
knowledge from data. There are compression-based, sparse, and variational
autoencoders. There are also other techniques for doing bottleneck learning.

State-of-the-art techniques are commonly prediction-based because bottle-
neck techniques are frequently worse than prediction-based techniques [85].
Prediction-based techniques usually learn good information representations.
This is done by learning a useful predictive task, to predict absent parts of
input given its context for example. Techniques here are varied. It could for
example be to predict absent parts within an image, absent words within
a word sequence, or the future using present knowledge. Through predic-
tions, the network learns relations between global and local information
parts. Prediction-based techniques are used within both continuous and
discrete domains. These domains often use separate techniques.

There are techniques for continuous domain challenges within self-supervised
learning. These include for example speech and vision. Popular pretext
tasks for continuous domains include spatial prediction, channel prediction,
temporal prediction, order prediction, and hybrid approaches. [56]

For example NLP, within the discrete environment, also uses techniques for
self-supervised learning. These techniques include word embeddings (see
Subsection 2.2.1), contextual embeddings (see Subsection 2.2.1), language
models (see Subsection 2.2.1), sequence to sequence pre-training (see TH
in Subsection 2.2.1) and discriminative pre-training tasks (see BERT in
Subsection 2.2.1).

Natural language sees the text as orders of discrete symbols, also known as
tokens. The effective use of self-supervised learning with language model-
ing challenges and their variations has been important for the significant
growing popularity of transfer learning within NLP. [56]

In summary, self-supervised learning extracts knowledge using unlabeled
data, with a pre-training, also called pretext task [44]. Frequently pretext
tasks include imputing or transforming inputs, attempting to make the net-
work predict missing data, or utilizing a data bottleneck. State-of-the-art
techniques are often prediction-based [85]. Pretext tasks for continuous do-
mains include spatial prediction, channel prediction, temporal prediction,
order prediction, and hybrid approaches [56]. For example NLP within the
discrete context, also uses self-supervised learning techniques. These in-
clude word embeddings, contextual embeddings, language models, sequence

36

2.2. Literature review Background

to sequence pre-training and discriminative pre-training tasks. Success-
ful utilization of self-supervised learning with language modeling challenges
and variations has been central for the popularity of transfer learning within
NLP [56].

History of Self-Supervised Learning

Using no labels, initial research within self-supervised pre-training for deep
neural architectures aims at successfully training deep belief networks [39]
and stacked auto-encoders [10].

Instead of greedy layer-wise unsupervised learning, end-to-end training where
a deep architecture is learning in a single operation has grown in popular-
ity during the last 10 years. It has become possible to train significantly
deep models [4], and avoiding local minima. This became possible due to
improved activation functions [63], normalization [43] and architectural in-
novations [37]. Modern techniques are usually trained end-to-end, which is
different from early research on greedy self-supervised learning [1] [28].

In the paper by Clark et al. [23], they pre-train a network by predicting if an
input symbol was randomly replaced by a small BERT network. Training
discriminator results in a good performance on downstream challenges, with
significantly improved sample efficiency. This is because, in each iteration,
all positions are trained.

In summary, initial research in self-supervised pre-training for deep mod-
els attempt to train deep belief networks [39] and stacked auto-encoders
[10]. Instead of greedy layer-wise unsupervised learning, end-to-end train-
ing where a deep model learns in a single operation has grown in popularity.
For example, in the paper by Clark et al. [23], they pre-train a network by
predicting if an input symbol was randomly replaced by a small BERT net-
work. This results in good downstream task performance, with improved
sample efficiency.

2.2.4 Impact of Parameters on SSL Performance

If some unlabelled data contains information relevant for predicting labels
that are not within labeled data or is challenging to extract, then the un-

37

2.2. Literature review Background

labelled data is beneficial. A technique needs the ability to extract this
information for it to work using an SSL technique with a task. This leads
to a question, for both scientists and users of SSL generally: When does
this work?. It is challenging to accurately find circumstances where an SSL
technique is effective and also finding to what degree these circumstances
are suited. Further, unlabelled data does not always improve results. [78]

Experiments in the literature have shown worsening of results. Its existence
has probably been under-reported, because of publication bias [86]. Several
papers have shown the challenge of possible result worsening using SSL [86]
[20] [76] [52] [64], but it is still challenging to handle.

This challenge is distinctively present in settings where good results are
reached using purely supervised classifiers. Potential result degradation is
larger compared to potential improvement, within these scenarios. The key
point here is that SSL does not always improve results. Instead, while
locating and setting up a learning method for a challenge, it should be
observed as an alternative direction. [78§]

In summary, SSL does not always improve performance. This is also the case
within NLP. This is useful knowledge when setting up a learning technique
because it means other techniques could work better.

There are multiple parameters which can potentially significantly impact
SSL performance within text classification. These include hyperparameters,
including preprocessing dataset size, and model size.

Preprocessing Data Size

Raffel [72] et al. and Baevski et al. [5] show that reducing the volume of
pretext data can result in performance degradation of downstream tasks.
Raffel et al. [72] recommend utilizing a significant amount of pretext data
if feasible. This is because more pretext data can improve results, and
obtaining additional unlabeled data is simple and inexpensive. Raffel et
al. [72] conclude that a larger network could overfit on a small quantity of
pretext data. Therefore, they point out that this recommendation aims in
particular at extensive networks.

In essence, more preprocessing data can improve SSL performance within

38

2.2. Literature review Background

NLP. This is useful knowledge if the goal is to improve SSL performance in
NLP.

Model Size

Enlarging network size and /or training time improve results generally. Com-
pared to only enlarging batch size or training time, enlarging network size
results in another bump in results. For improving results, expanding model
size and training time can be matching techniques. [72]

According to a recent paper by Bender et al. [8], the expanding scale of
language models as estimated by volume of training data and parameters
has within NLP been a significant trend. They further claim that it seems
creating increasingly larger scale language models is a contest between or-
ganizations.

In summary, more expansive models improve SSL performance within NLP.
This is also important knowledge if the aim is to improve SSL performance
in NLP.

Hyperparameters

There exists much literature showing that hyperparameters are highly rel-
evant for achieved performance using SSL.

Devlin et al. [29] observe that learning with a significant data amount and
enlarging hyperparameters, improves particular GLUE [82] results.

In the RoBERTa paper [54], Liu et al. claim that model training is not
cheap computationally. They state that training is commonly accomplished
using different expansive private datasets. They show hyperparameters have
a significant impact on SSL performance. See Subsection 2.2.1.

You et al. [84] show that with 32k as batch size, BERT training time can
be shortened significantly without result degradation.

Dai and Le [26] conclude LSTM models can be trained and reach good
results on multiple text classification challenges, with fine adjustment of

39

2.2. Literature review Background

hyperparameters.

Modifying particular hyperparameters frequently impacts the results more
than others. According to Goodfellow et al. [35], “The learning rate is
perhaps the most important hyperparameter”.

Overall, literature shows hyperparameters have a significant impact on SSL
performance within NLP. There exist hyperparameter explorations for word2vec
and BERT, for example with [18] and [54] respectively. However, there is not

a significant volume of research exploring impact of parameters on SSL per-
formance for text classification, in particular within the context described

in Section 3.2.

2.2.5 Summary of Literature Review

Sequential transfer learning is useful when for example having a large un-
labeled data amount and a small labeled data quantity. Fine-tuning a pre-
trained model for multiple downstream tasks is also useful.

Unsupervised pre-training is significantly scalable due to not requiring la-
beled data. Multi-task pre-training can improve performance by training
tasks in parallel with a shared representation.

Word embeddings result in more generalized models, compared to one-hot
encoding, for example. Important papers include the following: Latent
Semantic Analysis [27], Word2vec [61] and Glove [66].

Neural language models achieve improved results compared to statistical
language models, mainly due to generalizing better with word embeddings.
Using word embeddings, Neural Language Models (NLMs) solve the n-gram
data sparsity problem. Important papers include the following: The initial
NLM by Bengio et al. [9], CoVe [58], ELMo [67], ULMFiT [42], GPT [70],
BERT [29], ALBERT [49], GPT-2 [71], RoBERTa [54], T5 [72], GPT-3 [13],
Switch Transformers [32] and the paper by Bender et al. [8].

Multiple semi-supervised classification techniques are used. Unsupervised
preprocessing utilizes labeled and unlabelled data in two phases. Unlabelled
data moves the decision border towards potentially more useful areas using
pre-training, prior to supervised learning.

40

2.2. Literature review Background

Self-learning is probably the first concept utilizing unlabeled data for classi-
fication challenges. During the 1990s SSL utilization grew [83] [57] [12] [25]
[45], due to uses mainly in natural language challenges and text classifica-
tion.

Self-supervised learning extracts knowledge using unlabeled data, with a
pre-training, also called pretext) task [44]. State-of-the-art techniques are
usually prediction-based [85]. Successful utilization of self-supervised learn-
ing with language modeling challenges and variations has been central for
the popularity of transfer learning within NLP [56].

Initial research in self-supervised pre-training for deep models attempt to
train deep belief networks [39] and stacked auto-encoders [10]. Instead of
greedy layer-wise unsupervised learning, end-to-end training where a deep
model learns in a single operation has grown in popularity.

SSL does not always improve performance. To potentially improve SSL per-
formance within NLP, the following can be done: Using a larger preprocess-
ing data size, using more extensive models, or changing hyperparameters.

41

Chapter 3

Thesis Definition and
Method

This chapter first presents the Thesis Definition (3.1), which includes thesis
goals and hypotheses. It then describes Contributions (3.2) and proposed
solutions.

3.1 Thesis Definition

This thesis explores the impact of different parameters on an SSL technique
for a text classification task. Nine thesis goals and four hypotheses are
defined.

3.1.1 Thesis Goals

See Subsection 3.1.2 for the context and definitions for the goals and hy-
potheses.

Goal 1: Through experimentation, investigate if the hyperparameter con-
figuration has a significant impact on the SSL performance.

Goal 2: Through experimentation, investigate if additional pre-training

43

3.1. Thesis Definition Thesis Definition and Method

data improve the SSL performance.

Goal 3: Through experimentation, investigate if the learning rate has
the most significant impact among the hyperparameters on the SSL perfor-
mance.

Goal 4: Through experimentation, investigate if larger models improve
the SSL performance.

Goal 5: Explore background theory particularly on transfer learning, SSL,
and self-supervised learning.

Goal 6: Explore previous research of transfer learning, SSL, self-supervised
learning, and impact of parameters on SSL performance within NLP.

Goal 7: Create an experimentation program for obtaining results.

Goal 8: Create datasets for pre-training, downstream, and supervised
phases.

Goal 9: Create three models of different sizes for experimentation.

3.1.2 Hypotheses

This thesis uses smaller models and a limited number of epochs. Smaller
models have several benefits, including lower hardware requirements and
faster model training. All experiments use 200 epochs in each training
phase. Therefore, 200 epochs are used during pre-training, supervised, and
downstream training.

The hypotheses are within the context of Natural Language Processing
(NLP). Therefore, these hypotheses only apply to the NLP domain. More
specifically, these hypotheses are within the context of text classification.

Hypothesis 1: The hyperparameter configuration has a significant impact
on the SSL performance.

The hyperparameter configuration means the hyperparameters used. SSL
performance means how effective SSL is for text classification, compared
to using supervised learning. Therefore, Hypothesis 1 claims that hyperpa-

44

3.2. Contributions Thesis Definition and Method

rameters have a significant impact on the SSL performance.

Hypothesis 2: Additional preprocessing data improves the SSL perfor-
mance.

Preprocessing data refers to the dataset used during preprocessing training
in SSL. Preprocessing means pre-training a model using unlabeled data, with
a pre-training task. This aims to improve performance for the downstream
text classification task. The downstream text classification task means the
text classification task after pre-training the model. For this thesis, the
terms preprocessing and pre-training are used interchangeably. Hypothesis
2 claims that a more substantial pre-training dataset in SSL improves SSL
performance for text classification.

Hypothesis 3: The learning rate has the most significant impact among
the hyperparameters on the SSL performance.

Why we singled out the learning rate here, is due to the fact that the learning
rate has an immediate effect on how fast a network learns features in the
data. For example, a too low learning rate does not allow the pre-training
to learn the underlying features fast enough. Hypothesis 3 claims that the
learning rate is the most impactful hyperparameter on the SSL performance.

Hypothesis 4: Larger models improve the SSL performance.

Models means neural networks. Larger models refers to models containing
more sophisticated architectures. Therefore, Hypothesis 4 claims that mod-
els containing more sophisticated architectures improve SSL performance
for text classification.

3.2 Contributions

This thesis explores the impact of hyperparameters, including the volume
of pre-training data and model size, on an SSL technique for a text classi-
fication task. This is in the context of hardware constraints, so a limited
amount of epochs and smaller models are used. There is not a significant
bulk of other research exploring the impact of these parameters, within this
context.

45

3.3. Structure of Experiments Thesis Definition and Method

A program for experimentation was created using the code-base from an
earlier project [53]. The source code is located on GitHub 1.

3.3 Structure of Experiments

Two experiment types are run for each model: Supervised learning experi-
ments and SSL experiments. Supervised learning experiments train model
with labeled data only, without pre-training. After supervised learning,
the model has finished training. SSL experiments pre-train model using
unlabeled data first. Then, the model fine-tunes with labeled data. The
fine-tuned model has then finished training. See Figure 3.1 below.

Unlabeled data (20newsgroups) Labeled data (banking77)

\ 4
A 4

Pre-training model Fine-tuning model Fine-tuned model

Labeled data (banking77)

Trained model

Y

Training model

Figure 3.1: Structure of experiments using SSL (top) and supervised learn-
ing (bottom)

3.4 Models

Our experiments use three models of different sizes. The first is a feed-
forward model, the second is a recurrent model containing a GRU layer, and

"https://github.com/Henrik0808 /ikt590-project

46

3.4. Models Thesis Definition and Method

the third is a sequence to sequence model with an encoder and a decoder.
The decoder uses an attention mechanism.

3.4.1 Feed-Forward Model

Predicted class Predicted masked token Predicted masked token Predicted masked token
A

Output layer (text | [Output layer (predicting| |Output layer (predicting| |Output layer (predicting

classification) first masked token) second masked token) third masked token)
A A A A

Sigmoid

A

Dense layer

Dense layer

A

Dropout layer

A

Embedding layer

Input sequences (for text classification or predicting two/three masked tokens)

Figure 3.2: Architecture of feed-forward model

This is the least sophisticated model for experimentation. See Figure 3.2. It
contains an embedding layer, a dropout layer, two hidden layers, and one or
multiple output layers. It uses a single output layer for the text classification
task because this requires only a single output. For the pretext task with
predicting two or three masked tokens, it uses two or three output layers.
These output layers are sharing hidden layers. Therefore, this model does
multi-task pre-training with hard parameter sharing. See Subsection 2.2.1.

47

3.4. Models Thesis Definition and Method

Figure 3.2 only uses the left-most output layer among the output layers
during text classification training. It only uses two or three of the other
right-most output layers during pre-training.

For each used vocabulary word, the embedding layer contains the word
embedding. Output from the embedding layer is put through the dropout
layer. This layer disables randomly a proportion of neurons within the
embedding layer.

Each hidden layer is put through the Sigmoid activation function, which
constrains outputs to be between zero and one.

An output layer contains multiple nodes, which reflect the number of pos-
sible labels. Therefore, for the classification task, the output layer contains
77 nodes which mean 77 possible labels. For the pretext task of predicting
masked tokens, the number of nodes in each output layer is the number of
used vocabulary words.

48

3.4. Models Thesis Definition and Method

3.4.2 GRU model

Predicted class Predicted masked token Predicted masked token Predicted masked token
A

Output layer (text | [Output layer (predicting| |Output layer (predicting| |Output layer (predicting
classification) first masked token) second masked token) third masked token)
A A A A A

ReLU

A

Dense layer
A

GRU layer

A

Dropout layer
A

Embedding layer

Input sequences (for text classification or predicting two/three masked tokens)

Figure 3.3: Architecture of GRU model

Compared to the feed-forward model, the GRU model is more sophisticated.
See Figure 3.3. This model contains an embedding layer, a dropout layer,
a GRU layer, a dense hidden layer, and a single or two/three output layers.
The output layers are similar to the output layers in the feed-forward model.

Similar to Figure 3.2, Figure 3.3 only utilizes the left-most output layer
among the output layers during supervised or downstream training. For
pre-training, it only utilizes two or three of the other output layers.

Embedding layer output advances through a dropout layer. The final GRU
hidden state goes through the dense hidden layer. Dense hidden layer output
goes through a ReLU activation function, which disables negative inputs
and leaves positive inputs unchanged. The result then goes to the output

layer(s).

49

3.4. Models Thesis Definition and Method

3.4.3 Sequence to Sequence (Seq2seq) Model With Atten-
tion Mechanism

Predicted two or three masked tokens for each input sequence

T

Decoder with attention mechanism
A

Encoder

A

Input sequences (predicting two or three masked tokens)

Figure 3.4: High-level architecture of seq2seq model with an attention mech-
anism

For experimentation, this model is the most most sophisticated. It contains
an encoder and a decoder. The decoder implements an attention mecha-
nism.

The encoder contains an embedding layer, a dropout layer, a bidirectional
GRU layer, and the hidden layer.

The decoder contains an embedding layer, a dropout layer, a GRU layer, an
energy layer, and an output layer. Embedding layer output goes through the
dropout layer. Result proceeds to the energy layer, and output is modified
by ReLU. The softmax activation function modifies the resulting output.
Inputs are then between zero and one, and when added together sum to
one. The extracted vector is known as attention. The attention vector
and encoder_states are used to generate the contexrt_vector. The attention
technique is described in Subsection 2.1.4.

The implemented Seq2seq model with attention mechanism is based on code
from GitHub by aladdinpersson [3].

This model does single-task learning during pretext task training, in con-
trast to other models which are doing multi-task learning. See Subsection
2.2.1. Pretext task training uses the Seq2seq model, while supervised text
classification training uses the Classifier model. Both these models con-
tain an encoder. In contrast to the Seq2seq model, the Classifier model

50

3.5. Running Experiments Thesis Definition and Method

does not have a decoder. The Classifier achieved similar performance as the
Seq2seq model during testing for the previous project [53]. Therefore, to
improve training time, the Classifier model was used when possible for the
earlier project. For this thesis also, the Classifier model is utilized for the
text classification task. Similar to the earlier project report [53], this thesis
simplifies the term usage. If in reality the Classifier model is utilized, it is
still called the Seg2seq model. The Classifier model is further described in
Subsection 3.4.4 below.

3.4.4 Classifier Model

Predicted class for each input sequence

Output layer (77 possible classes)

Encoder

Input sequences (for text classification)

Figure 3.5: High-level architecture of classifier model

This model has an encoder and an output layer. The hidden vector from the
encoder goes through a Sigmoid activation function. The resulting hidden
vector then proceeds to the output layer. Instead of a decoder, this model
uses a standard output layer.

3.5 Running Experiments

This section presents a detailed step-by-step description of the workflow in
the code.

o1

3.5. Running Experiments Thesis Definition and Method

Before experimentation, the program creates a tokenizer. This tokenizer
is created using two datasets. These are the 20newsgroups and Bank-
ing77 datasets. The tokenizer is created using eleven-word sequences in the
20newsgroups dataset and Banking77 queries. The tokenizer vocabulary is
limited to words used at minimum twice. This lowers the number of words
containing one-time writing errors in the tokenizer vocabulary, resulting in
a higher quality vocabulary.

The tokenizer tokenizes training and validation datasets. This way, datasets
are prepared for experimentation with model training and validation. A
data loader is created for each dataset to simplify the loading of experiment
data. Each data loader reshuffles data for every epoch. Experiments run
on a GPU, if available. If not, they run on a CPU. Each model runs both
supervised learning and SSL experiments.

During experimentation, different data are saved to disk. These include
model checkpoints, training loss and validation loss for each epoch, loss
graphs, and a summary file containing for example best-achieved loss and
accuracy for each model and training approach.

Experimentation does multi-task pre-training with hard parameter sharing
(2.2.1) for the feed-forward and recurrent models. These models learn one
task for each token prediction. The seq2seq model does single-task learn-
ing. Therefore, this model combines individual token prediction tasks into
one task. Therefore, the optimization task in pre-training utilizes one loss
function for a single task.

An experiment run creates a model initially. A downstream task experi-
ment initializes model weights with the best model weights obtained during
pretext task training. Best model weights achieve the lowest validation
loss. If not pre-trained, model weights are randomly initialized. A model
trains and validates for a particular number of epochs. For training, a data
loader loads one batch at a time. For training or validation using the feed-
forward model, all sequences in a batch are padded with zeros. This way,
all sequences have equal length. The feed-forward model expects inputs to
have equal length. All sequences are padded to equal length, where this
length is the largest sequence in the total training data. This includes both
the 20newsgroups and Banking77 data. The most expansive sequence is
in the Banking77 dataset, with a length of 79 without the starting “sos”
and “/mask/” tokens. Therefore, with the feed-forward model, all input se-

52

3.5. Running Experiments Thesis Definition and Method

quences pad with zeros to a length of 79. For other models, sequences in a
batch are padded so that they have the same length as the longest sequence
in the batch. This is for use with the pack_padded_sequence function in the
code.

During preprocessing training or validation, each batch uses dynamic mask-
ing. The “/mask/” token replaces two or three random tokens in each se-
quence. A sequence example is “I think that asking the wrong question is
probably the”. If two tokens are masked, this sequence can change to for
example: “I [MASK] that asking the wrong [MASK] is probably the”. Se-
quence target is then: “think, question”. By randomly masking sequences
in each batch, preprocessing dataset is enlarged artificially. This results
in less overfitting and more general features learned during preprocessing,
compared to if preprocessing dataset is static. Sequences in preprocessing
batches randomly mask during both training and validation.

For each batch during training, gradients zero out first. Then sequences
proceed to model, and model output(s) are extracted. CrossEntropyLoss
calculates loss. Loss gradients are then computed and finally, model param-
eters are updated using the Adam optimizer.

During training for one epoch, summing individual losses in all batches
calculates total loss. After every batch is through during an epoch, the
total loss is divided by the number of batches. The result is the average
batch loss for a single epoch, which is observed in the loss graph. Each
epoch also calculates accuracy, which is not used for this thesis.

Validation batch sequences proceed to the model, and model output(s) are
extracted. CrossEntropyLoss calculates loss. Loss value and accuracy for a
single epoch are calculated similarly to during training.

During an experiment, the model achieving the lowest validation loss is
saved to disk. The downstream task loads the saved pre-trained model
parameters from preprocessing. This initializes model parameters for the
downstream task.

53

3.6. Data Handling Thesis Definition and Method

3.6 Data Handling

For pre-training, a training, a validation, and a testing dataset are created
from the original 20newsgroups [50] dataset. Using newsgroups mentioned
in 3.8, data is extracted from the original 20newsgroups dataset. This data
contains no headers, footers, or quotes. This stops models from overfitting
using metadata. Unwanted characters are removed from this data. These
include for example commas, parentheses, and underscores. A sequence is
also removed if it contains particular sequences, for example “—", “@” or
“=="_ This cleans the data further.

Data is split into sentences. Sentences which do not at the minimum contain
11 words are skipped. For each sentence, a sliding 10-word window iterates
over the words. For each 10-word sequence, the words “sos” and “/MASK]”
are inserted before the 10 words themselves. This includes the “sos” and
“IMASK]” tokens in the resulting tokenizer. The eleventh word is also used,
mainly because of using the codebase from the previous project [53].

Using training, validation, and testing ratios mentioned in Subsection 3.8,
data is split into training, validation, and testing datasets. Training, val-
idation, and testing datasets are saved to disk. During experimentation,
these are used for preprocessing. An example 10-word sequence is “PIO-
NEER 18 sent four small probes into the atmosphere in, with eleventh word
December” .

Both supervised and downstream text classification training use data from
the original Banking77 [17] dataset. Testing data from this dataset is used
in experiments as validation data. The Banking77 dataset contains on-
line banking queries, with matching intents. This dataset contains in total
10003 training examples, 3080 testing examples, and 77 intent categories.
An example query from the Banking77 dataset is “Is there a way to know
when my card will arrive?”, with corresponding intent “card_arrival”. In
the previous project [53], we only increased labeled and unlabeled data si-
multaneously, while in this thesis we increase unlabeled data independently
of the labeled data.

o4

3.7. Preprocessing/Pretext Task Thesis Definition and Method

Hyperparameter Value
Training, validation and test ratio 0.8, 0.1 and 0.1 respectively
Dataset size 25k, 50k, 75k, 100k, 125k, 150k,
175k, 200k, 300k, 400k or 500k
Newsgroups selected 15 newsgroups (see names below)
Length of embedding vector 256 or 512
Batch size 512 or 1024
Length of word sequences 10
Length of hidden vector 512 or 1024
Number of GRUs to stack 1
Dropout 0.0 or 0.2
Learning rate 0.0001 or 0.001
Number of masked tokens 20r3
Number of epochs 200

Table 3.1: Overview of hyperparameters used in this thesis
3.7 Preprocessing/Pretext Task

The pretext task used is predicting two or three masked tokens in a sequence.
The “/mask/” token replaces two or three random tokens. The objective is
to predict each masked token.

3.8 Hyperparameters

This thesis uses multiple hyperparameters for experimentation. Table 3.1
shows an overview of hyperparameters used in this thesis. More detailed,
these hyperparameters are:

e Training, validation and test ratio. A training ratio of 0.8 (80 %), a
validation ratio of 0.1 (10 %) and a test ratio of 0.1 (10 %) are used
for creating training, validation and testing datasets from the dataset
generated from the original 20newsgroups dataset. Only training and
validation datasets are used for experiments. If for example dataset
size is set to 100 000, then 0.8 x 100000 = 80000 sentences are created
for training dataset, 0.1 x 100000 = 10000 sentences are created for

95

3.8. Hyperparameters Thesis Definition and Method

validation dataset and 0.1 * 100000 = 10000 sentences are created for
testing dataset.

e Dataset size. The number of 10-word sequences to generate from the
original 20newsgroups dataset, to generate training, validation, and
testing datasets from.

e Newsgroups from the 20newsgroups dataset to generate datasets from.
15 newsgroups are used: ’soc.religion.christian’, ’comp.graphics’, ’comp.os.ms-
windows.misc’, ’comp.sys.ibm.pc.hardware’, ‘rec.autos’, 'rec.motorcycles’,
'rec.sport.baseball’, 'rec.sport.hockey’, ’sci.med’, ’sci.space’, ’sci.electronics’,
'talk.politics.misc’, *talk.politics.guns’, "talk.politics.mideast’ and 'misc.forsale’.

e Length of embedding vector. For experiments, this is set to either 256
or 512.

e Batch size. For experiments, this is set to either 512 or 1024.

e Length of word sequences to generate from the original 20newsgroups
dataset. Training, validation, and testing datasets are created from
these sequences. The value of 10 is used here, which means that 10-
word sequences are generated from the 20newsgroups dataset.

e Length of hidden vectors in models. For experiments, this value is 512
or 1024.

e Number of GRUs to stack together in recurrent models for each GRU
layer. For experiments, this value is 1.

e Dropout value. For experiments, this value is 0.0 or 0.2.
e Learning rate. For experiments, this value is 0.0001 or 0.001.

e Number of randomly masked tokens in each 10-word sequence from
preprocessing dataset. For experiments, this value is 2 or 3.

e Number of epochs for supervised, preprocessing, and downstream train-
ing. 200 epochs are used for each training category.

o6

Chapter 4

Results and Discussion

This chapter presents and discusses the results of our experiments, summa-
rizes the main results for each hypothesis, and concludes the main findings
regarding hypotheses and goals.

For testing the thesis hypotheses (3.1.2), four experiments are run:

1. Experiment 1 shows the impact of hyperparameter configuration and
model size on the SSL performance.

2. Experiment 2 presents the impact of increasing pre-training dataset
size on the SSL performance.

3. Experiment 3 shows the impact of changing single hyperparameter on
the SSL performance.

4. Experiment 4 presents the impact of changing two hyperparameters
on the SSL performance.

These experiments result in a total of seven figures, presented below.

Three different models are used for experimentation: A feed-forward model,
a GRU model, and a seq2seq model. Multiple preprocessing dataset sizes
are used: 25k, 50k, 75k, 100k, 125k, 150k, 175k, 200k, 300k, 400k, and 500k.
Here, “k” means thousand.

o7

Results and Discussion

Supervised, preprocessing, and downstream training use 200 epochs each
during experimentation. Because of time constraints, it is not practical to
use more epochs. Validation loss in preprocessing graphs frequently starts
to stabilize at about 200 epochs. See for example Figures 4.3 and 4.4. We
did not consider using fewer epochs, as the validation loss for pre-training
has not stabilized then. Therefore, 200 epochs are used. Additional epochs
would make the validation loss of preprocessing graphs stabilize more. See
for example Figure 4.3. This would be ideal, for models to learn more during
preprocessing training. This is considered future work.

Multiple hyperparameters are considered for experiments. These include the
number of masked tokens in each 10-word sequence, learning rate, hidden
size, batch size, embedding size, and dropout size.

This thesis uses two baseline hyperparameter configurations for experimen-
tation. The reason behind this is to test if hyperparameter configuration has
a significant impact on SSL performance for text classification. Frequently,
hyperparameters are chosen by manual tuning or by inspiration from previ-
ous research. As manual tuning is computationally expensive, in this thesis
we do not tune manually using all possible combinations. Approaches for
creating hyperparameter configurations are not important for this thesis.
The key point is to use two different configurations. For example, if a hyper-
parameter configuration significantly improves SSL performance compared
to the other configuration, then Hypothesis 1 is supported. Throughout the
experiments, these two configurations are modified. See sections below for
each experiment rationale.

The first hyperparameter configuration, called Vanilla configuration, is meant
to represent a typical configuration of hyperparameters used in machine
learning.

The second configuration, called SOTA configuration, is partly based on
hyperparameters in two GitHub projects [19] [51]. These projects are based
on a paper [26] by Dai and Le.

Each SOTA configuration hyperparameter value, except batch size and the
number of masked tokens, is used by minimum one of the GitHub projects
[19] [51]. Both Github projects use a batch size of 64. The Github projects
use a language model or an auto-encoder as a pre-trained model. The
number of masked tokens in 10-word sequences is not relevant in these
GitHub projects.

o8

Results and Discussion

Hyperparameter Vanilla | SOTA
Embedding size 012 256
Batch size 012 1024
Hidden size 1024 512
Dropout rate 0.0 0.2
Learning rate 0.0001 0.001
Number of masked tokens 2 3

Table 4.1: Baseline Vanilla configuration and SOTA configuration hyperpa-
rameters for experimentation

The reason for using an expanded batch size, in particular for SOTA con-
figuration, is to use less training time per epoch. This is based on manual
testing. For example, the set of possible batch sizes for both Vanilla con-
figuration and SOTA configuration is limited. This is mainly due to time
constraints.

To the best of our knowledge, there is only limited research using masked
language modeling with smaller models. By using masked language model-
ing in the preprocessing, we test the effectiveness in smaller models. Masked
language modeling artificially enlarges the preprocessing dataset by random-
izing for each batch which sequence tokens to mask. Because of time con-
straints, experimentation uses only the masked language modeling objective
as preprocessing technique. Doing experiments with other preprocessing
techniques is considered future work.

The SOTA configuration masks three tokens in each ten-word sequence.
This is based on minimal manual hyperparameter testing, using a few thou-
sand preprocessing data. This results in a masking percentage of 30 percent
for each 10-word sequence. This thesis always represents a masked token by
the “[mask]” token. Inspired by BERT [29], it is possible that not always
representing masked tokens with “[mask]” could improve SSL performance.

This thesis focuses on how much SSL improves text classification loss com-
pared to supervised learning. Therefore, it focuses on relative text classifi-
cation loss, instead of absolute text classification loss. This thesis calculates
SSL performance with the following approach: The lowest achieved text
classification validation loss using supervised learning, minus the lowest
achieved text classification validation loss using SSL for the text classifi-
cation task. See Equation 4.1. Therefore, if SSL performance > 0, then

99

4.1. Experiment 1: Impact of hyperparameter configuration and
model size on the SSL performance Results and Discussion

SSL improves validation loss for the text classification task compared to
supervised learning. In other words, SSL improves text classification per-
formance. If SSL performance < 0, in this case, supervised learning reaches
lower validation loss compared to the SSL approach. Here, using SSL would
not benefit the text classification performance. For this thesis, “improving
SSL performance” means achieving higher SSL performance.

SSL performance = Lg — Lgsr, (4.1)

In Equation 4.1, Lg is the text classification loss using purely supervised
learning, and Lggy, is the text classification loss using SSL.

4.1 Experiment 1: Impact of hyperparameter con-
figuration and model size on the SSL perfor-
mance

Experiment 1, represented by Figure 4.1, contributes to answer Hypothesis 1
and Hypothesis 4. For each parameter configuration and model, we repeat
the simulation ten times. These ten repetitions generate the box plot of
the respective configuration. This shows how much variance we can expect
between simulations and if the differences between the models are within
or outside this variance. If these differences are outside this variance, this
supports Hypothesis 1. Hypothesis 4 is also supported if more sophisticated
models improve SSL performance.

The expectation here is that box plots for each model will not “overlap”
significantly, due to the impact of hyperparameters found in previous re-
search (2.2.4). Another expectation is that more expansive models improve
SSL performance compared to smaller models, based on research mentioned
earlier (2.2.4). Therefore, the expectation is that this experiment supports
Hypothesis 1 and Hypothesis 4.

60

4.1. Experiment 1: Impact of hyperparameter configuration and
model size on the SSL performance Results and Discussion

Vanilla vs SOTA configuration (25k data, 10 simulations for each)

0.10
—— Vanilla configuration

—— SOTA configuration
0.05 A

% —
N =

L 7

1

SSL performance

—0.10 - T

.
1

Feed-forward GRU Seq2seq
Model

—0.15 4

—-0.20

Figure 4.1: Vanilla configuration versus SOTA configuration, using 25k pre-
processing data, 200 epochs for each training phase, and ten simulations for
each configuration.

Figure 4.1 shows multiple box plots. The y-axis represents SSL performance
as defined above. The x-axis represents the experiment model. This figure
shows multiple experiment results. Each combination of model and config-
uration repeats simulation ten times, using 25k preprocessing data and 200
epochs. These 10 repetitions are used to plot the box plot of the respective
configuration.

For all models with SOTA configuration, SSL performance improves com-
pared to using Vanilla configuration. This supports Hypothesis 1, because
it shows that the hyperparameter configuration has a significant impact
on SSL performance. It is expected that one configuration improves SSL
performance compared to another. Ten simulations is not a substantial
number of simulations for each model, so this figure should not be observed
as significantly conclusive. However, this figure shows that using SOTA

61

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

configuration generally improves SSL performance.

One possible explanation for this is: SOTA configuration uses a larger learn-
ing rate and fewer model parameters, therefore it learns more over 200
epochs. Dropout makes it overfit less, making the model learn more general
features. This improves SSL performance. This is only speculation.

As expected, more extensive models improve SSL performance compared
to smaller models. This supports Hypothesis 4. It is possible that with
more epochs, all models achieve better SSL performance — particularly the
feed-forward model.

4.2 Experiment 2: Impact of increasing pre-training
dataset size on the SSL performance

Experiment 2, represented by figures 4.2 and 4.5, contributes to answer Hy-
pothesis 2 and Hypothesis 4. Here, preprocessing data volume is increased.
The reasoning behind this is to test if increasing preprocessing data amount
improves SSL performance. If results show this, then these results support
Hypothesis 2. This experiment also investigates if larger models improve
SSL performance. If they do, this supports Hypothesis 4. Vanilla configu-
ration and SOTA configuration are each used while increasing the data.

The general expectation is that increasing preprocessing data leads to per-
formance improvements across all models. This expectation is based on
research described earlier (2.2.4). Further, because larger models in Experi-
ment 1 generally improve SSL performance compared to smaller models, it is
expected they also generally improve SSL performance here. Therefore, the
expectation is that this experiment supports Hypothesis 2 and Hypothesis
4.

62

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

Compare data sizes using SOTA configuration

m o~

25k 100k 125k 150k 175k 200k 300k 400k 500k

SSL performance

0,05

0,1

Pre-training data amount

—Simple —SimpleGRU Seq2seq

Figure 4.2: Comparing preprocessing data amounts, using SOTA configu-
ration and 200 epochs for each training phase

Figure 4.2 shows the impact of changing preprocessing dataset size using
SOTA configuration. The blue line shows feed-forward model results, the
orange line shows GRU model results, and the grey line shows seq2seq
model results. Similar to previous experiments, each training phase uses
200 epochs.

The x-axis in Figure 4.2 represents preprocessing dataset size. The left-
most x-value, 25k, means the preprocessing dataset consists of 25k 10-word
sentences. The next x-value, 50k, means that preprocessing dataset size is
50k 10-word sequences. This logic applies to the other x-values also. The
y-axis axis represents SSL performance.

In case of the feed-forward model, increasing the preprocessing data amount
leads to an increase in SSL performance. This result supports Hypothesis
2 and is expected. As the pre-training data quantity increases with other
models, SSL performance reaches a threshold after about 100k preprocessing
data. Therefore, in this experiment, a feed-forward model benefits from as
much pre-training data as possible. With a recurrent model, increasing

63

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

preprocessing data size beyond 100k does not improve the SSL performance
significantly. This result partially supports Hypothesis 2 because increasing
the pre-training data improves SSL performance up to a threshold. This
result is unexpected.

One possible explanation for this is that with recurrent layers a model learns
faster, and learns a larger number of useful features from preprocessing data.
This is because of using more parameters. Therefore, more expansive mod-
els containing more parameters require less pre-training data to learn the
most useful features during preprocessing. For this reason, increasing the
pre-training data amount indefinitely benefits the SSL performance of the
feed-forward model more, compared to the other two models. This is only
speculation. It is possible that Figure 4.2 looks different with other hyperpa-
rameters. Creating additional similar figures using other hyperparameters,
is considered future work. It is also possible that increasing preprocess-
ing data quantity to for example one million results in SSL performance
improving significantly for recurrent models also. Experiments with addi-
tional pre-training data are also considered future work.

64

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

Pre-training (25k data, feed-forward, SOTA configuration)

—— Training
22 A Validation

20 A

18 -

16 -

Loss

14

12 A

10 -

0 25 50 75 100 125 150 175 200
Epoch

Figure 4.3: Pre-training using the feed-forward model with SOTA configu-
ration.

65

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

Pre-training (25k data, GRU, SOTA configuration)

—— Training
\ Validation
)
20 A A
15 A
9]
(%)
o
-
10 A
5 .
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.4: Pre-training using the GRU model with SOTA configuration.

Pre-training figures 4.3, 4.4 and 4.9 show that for larger models, loss graphs
converge faster. Therefore, more comprehensive models learn more useful
features from preprocessing data per epoch. Also, more extensive models
reach lower loss values as expected, meaning they have learned more useful
features over 200 epochs. Both these observations support the possible ex-
planation above. These pre-training figures show that the more converged
a loss graph is, the less use of additional preprocessing data improves SSL
performance. This can be observed in Figure 4.2. A possible reason for this
is that a converged model from pre-training has already learned most of
the useful features for the downstream task. In particular, the feed-forward
model still learns valuable features per epoch after the 200th epoch. Ad-
ditional preprocessing data for the feed-forward model results in a greater
number of features learned from pre-training data per epoch due to more
training samples. This results in the model learning a larger number of
useful features through 200 epochs. Therefore, in case of the feed-forward
model, the SSL performance benefits from more preprocessing data. This

66

4.2. Experiment 2: Impact of increasing pre-training dataset size
on the SSL performance Results and Discussion

is only speculation. If we would not restrict the number of epochs, we
could pre-train each model to a similar level of convergence. It would be
interesting to see whether increasing pre-training data size then would im-
prove SSL performance less compared to Figure 4.2 for all models. This is
because each model then already would have learned many useful features
for the downstream task. This is aimed at more expansive models more
than smaller ones, due to capturing more complex and useful features from
less preprocessing data compared to the smaller models. Experiments using
additional epochs are considered future work.

Compare data sizes using Vanilla configuration

25k 50k 75K 100k 125k 150k 175k 200k 300k 400k 500k

SSL performance

Pre-training data amount

—Simple —SimpleGRU Seqg2seq

Figure 4.5: Comparing preprocessing data amounts, using Vanilla configu-
ration and 200 epochs for each training phase

Figure 4.5 is similar to Figure 4.2. The difference is that Figure 4.5 uses
Vanilla configuration, and Figure 4.2 uses SOTA configuration.

Increasing preprocessing data volume with SOTA configuration results in
SSL performance generally improving for all models, at minimum up to a

67

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

threshold. Increasing preprocessing data size with Vanilla configuration has
a smaller impact on improving SSL performance, particularly for the feed-
forward model compared to if using SOTA configuration. This supports
Hypothesis 1 and is unexpected.

One possible explanation for this is: The Vanilla configuration has a lower
learning rate and additional model parameters, leading to slower learning
compared to SOTA configuration using a higher learning rate and fewer
model parameters. Therefore, with SOTA configuration, increasing the vol-
ume of preprocessing data has a larger impact on SSL performance com-
pared to Vanilla configuration. This is due to the higher learning rate and
the fixed amount of 200 epochs, which particularly restricts Vanilla config-
uration using a lower learning rate. Additional epochs for Vanilla configu-
ration potentially make the Vanilla configuration figure more similar to the
SOTA configuration figure, because Vanilla configuration then converges
and learns more during pre-training.

4.3 Experiment 3: Impact of changing single hy-
perparameter on the SSL performance

Experiment 3, represented by figures 4.6, 4.12 and 4.17, contributes to an-
swer Hypothesis 1, Hypothesis 3 and Hypothesis 4. One individual hy-
perparameter is modified at a time from SOTA configuration or Vanilla
configuration. The rationale behind this is to identify the most impactful
hyperparameters, and to test if the impact of changing hyperparameters de-
pends on other hyperparameters. For example, it is possible that lowering
the learning rate improves SSL performance in one experiment and not in
another. This suggests then that the impact of changing hyperparameters
depends on other hyperparameters. However, if for example changing the
learning rate has a significant impact on SSL performance for both config-
urations, then this supports Hypothesis 1 and Hypothesis 3. By changing
one hyperparameter at a time, the impact of changing hyperparameters
can be compared to each other. This way, hyperparameters with the most
impact on SSL performance are identified. If for example, larger models
in figures generally improve SSL performance compared to smaller models,
this supports Hypothesis 4. Hyperparameters are modified both with 100k
preprocessing data and 25k data. This tests if preprocessing data amount
has an impact on the results of modifying hyperparameters.

68

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

The expectation is that some hyperparameters will have more impact on SSL
performance than others. For example, the learning rate is generally known
to have a significant impact on model training. Therefore, the expectation
is that the learning rate generally has a strong impact here also. Another
expectation is that more extensive models improve SSL performance com-
pared to smaller models due to capturing additional useful features during
pre-training. Therefore, the expectation is that this experiment supports
Hypothesis 1, Hypothesis 3, and Hypothesis 4. Another expectation is that
increasing pre-training data quantity does not have a substantial impact on
the results of changing one parameter at a time. It is also expected that
hyperparameters with significant impact using one configuration, also have
a strong impact on the other configuration.

Change one parameter (SOTA configuration, 25k data)

0,05

.0 1 1 1 1
IA Idz ' Hi 1024 I512 E lding D t0.0

-0,05

-0,1

Changed hyperparameter

o

SSL performance

mSimple ®SimpleGRU ™ Seq2seq

Figure 4.6: Changing one parameter at a time from SOTA configuration,
using 25k preprocessing data and 200 epochs for each training phase

Figure 4.6 shows the impact of changing one hyperparameter at a time from
SOTA configuration while keeping everything else fixed. Blue bars represent

69

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

feed-forward model results, orange bars represent GRU model results and
grey bars represent seq2seq model results.

In Figure 4.6, the x-axis represents the modified hyperparameter. The left-
most x-value means that all hyperparameters are unchanged. The next
x-value, Masked 2, means that the number of masked tokens in each 10-
word sequence is changed from 3 to 2, while all other hyperparameters are
unchanged. The next x-value, LR 0.0001, means that the learning rate
is modified from 0.001 to 0.0001, while all other hyperparameters are un-
changed. This logic applies to the other x-values also. The y-axis represents
the SSL performance.

Figure 4.6 displays experiment results using a preprocessing dataset size of
25k 10-word sequences, and 200 epochs for each training type.

Changing the learning rate from 0.001 to 0.0001 significantly lowers the SSL
performance for each model. Therefore, changing the learning rate here to
0.0001 worsens SSL performance compared to using the learning rate of
0.001. This result supports Hypothesis 1 and Hypothesis 3. It is expected
that the learning rate has a significant impact on SSL performance.

A possible explanation for this result is that increasing the learning rate by
a factor of ten results in a significantly faster model adjustment to the pre-
training task. Because the number of epochs is fixed at 200, increasing the
learning rate results in more substantial weight modifications per update.
This results in faster model converging. If the learning rate is 0.0001 instead
of 0.001, then the model adapts significantly slower to the pre-training task
through 200 epochs. Here, during pre-training, the number of epochs is not
enough for the model to adapt adequately to the problem.

70

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Supervised and downstream (25k data, seq2seq, SOTA configuration)

—— Supervised training
4 —— Downstream training
—— Supervised validation
—— Downstream validation
3 .
[%]
%]
32
1 .
0 -
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.7: Supervised and downstream training using the seq2seq model,
with the LR set to 0.001

Figure 4.7 shows loss graphs for both the supervised and the downstream
text classification task. The y-axis represents the loss value, and the x-axis
represents the epoch number. The blue and green lines show loss graphs for
the supervised approach. The blue line uses training data, and the green
line uses validation data. The orange and red lines show loss graphs for
the downstream task. The orange line uses training data, and the red line
uses validation data. This graph shows experimental results for the seq2seq
model, with a learning rate of 0.001.

71

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Supervised and downstream (25k data, seq2seq, SOTA, LR 0.0001)

—— Supervised training
4 - —— Downstream training
—— Supervised validation
—— Downstream validation
3 .
(%]
%)
S5
1 -
0 -
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.8: Supervised and downstream training using the seq2seq model,
with the LR set to 0.0001

Figure 4.8 is similar to Figure 4.7. The difference is that Figure 4.8 uses a
learning rate of 0.0001, while Figure 4.7 uses a learning rate of 0.001.

These two figures show that a learning rate of 0.001 results in loss graphs
converging significantly faster, compared to a learning rate of 0.0001. There-
fore, a learning rate of 0.001 here results in a lower required number of
epochs and training time.

72

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Pre-training (25k data, seq2seq, SOTA configuration)

—— Training
7 7 \\ Validation

0 25 50 75 100 125 150 175 200
Epoch

Figure 4.9: Preprocessing training using the seq2seq model, with the LR
set to 0.001

Figure 4.9 shows loss graph for the pre-training task using SSL. The y-axis
represents the loss value, and the x-axis represents the epoch number. The
blue line shows the loss graph for the pre-training task using training data,
and the orange line shows the loss graph for the pre-training task using
validation data. This graph shows experimental results for the seq2seq
model, with a learning rate of 0.001.

73

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Pre-training (25k data, seq2seq, SOTA, LR 0.0001)

—— Training
Validation
8_
77 =Rl
‘\\
267
o
-
5_
4
3_
0 25 50 75 100 125 150 175 200

Epoch

Figure 4.10: Preprocessing training using the seq2seq model, with the LR
set to 0.0001

Figure 4.10 is similar to Figure 4.9. The difference is that Figure 4.10 uses
a learning rate of 0.0001, and Figure 4.9 uses a learning rate of 0.001.

These two figures also show that using a learning rate of 0.001 results in
a loss graph to converge significantly faster compared to a learning rate of
0.0001. Therefore, again, using a learning rate of 0.001 results in a signifi-
cantly smaller required amount of epochs and training time. A learning rate
of 0.001 results in the model converging within 200 epochs, while a learning
rate of 0.0001 results in the model not converging within 200 epochs. If
the model has not converged, then the model has not adjusted completely
to the problem. This means it is not done with learning useful features.
This comparison supports the possible explanation provided above for why
a higher learning rate improves SSL performance compared to a lower learn-
ing rate. A larger learning rate here results in the model learning more useful
features in fewer epochs. If the model has learned more useful knowledge
during pre-training, it frequently has adapted better to the downstream

74

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

task. This improves downstream performance.

Another observation is that changing the dropout rate from 0.2 to 0.0 also
lowers SSL performancees significantly. This also supports Hypothesis 1
and is an unexpected result.

One possible explanation for this is related to the amount of preprocess-
ing data. Because of using only 25k preprocessing data samples, models
probably overfit on this data during pre-training.

Pre-training (25k data, seq2seq, SOTA, dropout 0.0)

—— Training
7 1 \ Validation

T T T

0 25 50 75 100 125 150 175 200
Epoch

Figure 4.11: Preprocessing training using the seq2seq model, with the
dropout rate set to 0.0

Figure 4.11 overfits more compared to Figure 4.9. Comparing the valida-
tion loss graphs, this is observed. Larger distance between the training and
validation loss graphs means more overfitting. Dropout is known for low-
ering overfitting and improving the generalization of deep neural networks.
Adding dropout results in models learning more general knowledge during
pre-training, which improves downstream classification performance on val-

75

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

idation data. Therefore, dropout improves SSL performance, resulting in
better SSL performances in Figure 4.6.

The feed-forward model is frequently more sensitive to hyperparameter
modifications, compared to other models. The smaller and less sophisti-
cated models are generally more sensitive to hyperparameters, compared to
other models. This supports Hypothesis 4 and is not an unexpected result,
given that smaller models generally are less powerful for learning than more
expansive models.

One possible explanation for this result is: Less sophisticated models are
more dependant on tuned hyperparameters for learning effectively because
they often do not learn effectively compared to more sophisticated models.
Because of being less sophisticated, they need to start learning from a better
“initial point” compared to other models for learning effectively. Therefore,
smaller and less sophisticated models are more sensitive to hyperparameters.
Potentially, more epochs could lead to models showing similar sensitivity
with regards to hyperparameters. This is due to allowing smaller models to
converge more during pre-training, and learning more useful knowledge for
the downstream classification task.

76

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Change one parameter (SOTA configuration, 100k data)

0,1

. [| - I. - T

|
lOTA sked 2 01 Hidden 1024 Batch512 Ejbedding Dropout 0.0
512

SSL performance

-0,1

-0,2

Changed hyperparameter

H Simple ® SimpleGRU Seq2seq

Figure 4.12: Changing one parameter at a time from SOTA configuration,
using 100k preprocessing data and 200 epochs for each training phase

Figure 4.12, similar to Figure 4.6, shows impact of changing one hyperpa-
rameter at a time using SOTA configuration. There is a difference between
Figure 4.12 and Figure 4.6. Figure 4.12 shows experiment results using a
preprocessing dataset volume of 100k 10-word sequences, while Figure 4.6
shows results using a preprocessing dataset amount of 25k.

Figure 4.12 presents several interesting results. For example, comparing
this figure to Figure 4.6, the learning rate is an important hyperparameter
to consider for SSL in both figures. For all models, in Figure 4.12, changing
the learning rate from 0.001 to 0.0001 results in worse SSL performance
compared to when learning rate is 0.001. This result supports Hypothesis
1 and Hypothesis 3 and is expected.

Comparing Figures 4.13, 4.14, 4.15 and 4.16 to figures using 25k data, learn-
ing rate is an important hyperparameter to consider regardless of the quan-
tity of preprocessing data. One possible explanation for this is given above,

T

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

which also applies when preprocessing data size is changed from 25k to 100k.

Comparing figures using 25k preprocessing data to figures using 100k pre-
processing data, one unexpected result is that preprocessing data size has
an impact on the significance of single hyperparameters. For example, us-
ing 25k data, changing dropout to 0.0 has a significant negative impact
on SSL performance, for all models. Using 100k pre-training data, chang-
ing dropout to 0.0 has a minor negative impact for the GRU and seq2seq
models, while for the feed-forward model it has a small positive impact.

One possible explanation for this is that larger models with recurrent layers
have more use of dropout compared to the feed-forward model because of
more overfitting without dropout. The feed-forward model does not overfit
as much — also without dropout. Because the feed-forward model has a less
sophisticated architecture, it overfits less. This improves results without
dropout. Dropout makes the feed-forward model ignore too much useful
information. Using 25k preprocessing data, changing dropout to 0.0 makes
the feed-forward model overfit more because of the small pre-training data
size. This leads to worse SSL performance. Using 100k preprocessing data,
changing dropout to 0.0 for the feed-forward model is fine because the pre-
training data amount is expansive enough for it to learn the most useful
features. Removing dropout results in the feed-forward model to learn more
useful features through 200 epochs compared to using dropout. This im-
proves SSL performance. It is possible that more epochs to make all models
converge during pre-training would result in all models improving SSL per-
formance using a dropout of 0.2 compared to 0.0 to overfit less. This is only
speculation.

78

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Pre-training (100k data, seg2seq, SOTA configuration)

—— Training
7 1 Validation

0 25 50 75 100 125 150 175 200
Epoch

Figure 4.13: Preprocessing training for the seq2seq model, using SOTA
configuration and 100k preprocessing data

79

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Supervised and downstream (100k data, seqg2seq, SOTA configuration)

—— Supervised training
4 1 —— Downstream training
—— Supervised validation
—— Downstream validation
3 -
(%]
%)
S 2
1 .
0 -
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.14: Supervised and downstream training for the seq2seq model,
using SOTA configuration and 100k preprocessing data

80

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Pre-training (100k data, seg2seq, SOTA, LR 0.0001)

8 1 —— Training
Validation
71 ™\
\
6 -
@
3
5 -
4 .
3 -
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.15: Preprocessing training for the seq2seq model, using SOTA con-
figuration, but with learning rate set to 0.0001 and using 100k preprocessing
data

81

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Supervised and downstream (100k data, seg2seq, SOTA, LR 0.0001)

—— Supervised training
4 - —— Downstream training
—— Supervised validation
—— Downstream validation
3 .
(%]
%)
3,
1 .
0 -
0 25 50 75 100 125 150 175 200
Epoch

Figure 4.16: Supervised and downstream training for the seq2seq model,
using SOTA configuration, but with learning rate set to 0.0001 and using
100k preprocessing data

82

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Change one parameter (Vanilla configuration, 25k data)

0,05

0 - -
la d3 l l E g 256 1!2

-0,05

-0,1

0,15

SSL performance

Changed hyperparameter

H Simple ®SimpleGRU ™ Seq2seq

Figure 4.17: Changing one parameter at a time from Vanilla configuration,
using 25k preprocessing data and 200 epochs for each training phase

Figure 4.17 is similar to Figure 4.6. The difference is that Figure 4.17 uses
Vanilla configuration, while Figure 4.6 uses SOTA configuration.

Figure 4.17 presents several interesting results. For example, similar to
observations above, learning rate here also is an important hyperparameter
to consider for SSL. This supports Hypothesis 1 and Hypothesis 3, and is
expected.

Comparing Figures 4.17 and 4.6 for example, an observed unexpected result
is: Figure 4.17 changes learning rate from 0.0001 to 0.001 and Figure 4.6
changes learning rate from 0.001 to 0.0001, but the result for both is that
SSL performance worsens after changing the learning rate. Therefore, for
example the learning rate needs to be tuned based on other hyperparame-
ters.

For Figure 4.6, a possible explanation for why changing learning rate wors-
ens SSL performance is given above. For Figure 4.17, a possible explanation
for why changing the learning rate from 0.0001 to 0.001 worsens SSL perfor-
mance is the following: The combination of larger embedding size, hidden

83

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

size, and no dropout leads to more overfitting on pre-training data. This
results in worse SSL performance when increasing the learning rate due to
overfitting and learning non-useful features faster. This is only speculation.

Figure 4.6 shows that changing dropout to 0.0 makes SSL performance sig-
nificantly worse for all models, and Figure 4.17 shows that changing dropout
does not change results as significantly. This result is unexpected.

The result of changing dropout for Figure 4.6 is discussed above. One
possible explanation for the result of changing dropout for Figure 4.17 is:
Using Vanilla configuration means additional model parameters and smaller
learning rate, leading to slower learning compared to SOTA configuration.
This leads to less convergence during pre-training with Vanilla configura-
tion. Changing dropout to 0.2 slows learning down further using Vanilla
configuration, which worsens SSL performance with 200 epochs. The feed-
forward model is the exception here, which can be a random incident. It
is possible that if more epochs are used, then using a dropout of 0.2 would
improve SSL performance for both Vanilla configuration and SOTA config-
uration. Due to SOTA configuration utilizing fewer model parameters and
a higher learning rate, training is faster. Therefore, using dropout does not
slow down training enough for it to worsen SSL performance through 200
epochs, like with Vanilla configuration. This is only speculation.

Changing a single parameter from baseline Vanilla configuration makes SSL
performance worse mostly while changing all or multiple hyperparameters
simultaneously can improve SSL performance. This supports Hypothesis 1
and is unexpected.

One possible explanation for this is: The combination of fewer model pa-
rameters and a larger learning rate with SOTA configuration makes training
models faster over 200 epochs, where dropout reduces overfitting. Therefore,
more useful features are learned over 200 epochs during pre-training, im-
proving SSL performance. With additional epochs, it is possible that chang-
ing a single hyperparameter at a time from Vanilla configuration sometimes
improves SSL performance. This is then due to enough epochs for models
to converge during pre-training.

With Vanilla configuration, most hyperparameters have less impact on SSL
performance compared to if using SOTA configuration. This also supports
Hypothesis 1 and is unexpected.

84

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

One possible explanation for this is: With Vanilla configuration, the learning
rate is smaller, resulting in a more limited ability to learn useful features and
converge during pre-training over 200 epochs. Therefore, hyperparameters
have mostly less impact on SSL performance with Vanilla configuration com-
pared to SOTA configuration where the learning rate is higher. If additional
epochs are used, resulting in more converging with Vanilla configuration in
particular, these figures potentially show more similar results.

4.3.1 Experiment 4: impact of changing two hyperparame-
ters on the SSL performance

Experiment 4, represented by Figure 4.18, also contributes to answering
Hypothesis 1, Hypothesis 3, and Hypothesis 4.

Experiment 2 modifies two hyperparameters at a time from SOTA config-
uration. This tests if patterns are showing which combination of hyper-
parameters generally have the strongest impact on SSL performance. For
example, if lowering the learning rate generally worsens SSL performance,
then this supports Hypothesis 1 and Hypothesis 3. Again, if larger models
generally improve SSL performance, then this supports Hypothesis 4.

The expectation is that hyperparameters with significant impact in Exper-
iment 3 also have a substantial impact here. For example, because the
learning rate and dropout have a significant impact in Experiment 3, it is
expected that combinations containing these two hyperparameters also have
a significant impact in this experiment. Because larger models in Exper-
iment 3 generally improve SSL performance compared to smaller models,
it is expected they also improve SSL performance here. Therefore, the ex-
pectation is that this experiment also supports Hypothesis 1, Hypothesis 3,
and Hypothesis 4.

85

SSL performance

o I [|]] _
© l&\(\ 3 2 K\ S &
0,05 o & N4 S & W3
O
S
N R N RN
8 O o O Q
N & S & N o° ¥ N
o B < S

0,15

-0,2

-0,25

03

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Change two parameters (SOTA configuration, 25k data)

Changed hyperparameters

B Simple ™ SimpleGRU m Seq2seq

Figure 4.18: Changing two parameters at a time from SOTA configuration,
using 25k preprocessing data and 200 epochs for each training phase

Figure 4.18 shows the impact of changing two hyperparameters at a time
from SOTA configuration while keeping everything else fixed.

Similar to Figure 4.6, the x-axis in Figure 4.18 represents the modified
hyperparameters. Again, the left-most x-value means that all hyperparam-
eters are unchanged. The next x-value, Dropout 0.0, LR 0.0001, means that
dropout rate is changed from 0.2 to 0.0 and learning rate is modified from
0.001 to 0.0001. All other hyperparameters are unchanged. The next x-
value, Dropout 0.0, Embedding 512, means that the dropout rate is changed
from 0.2 to 0.0, and the embedding size is changed from 256 to 512. Again,
all other hyperparameters are unchanged. The other x-values follow the
same pattern. In Figure 4.18, similar to Figure 4.6, the y-axis represents
SSL performance.

86

4.3. Experiment 3: Impact of changing single hyperparameter on
the SSL performance Results and Discussion

Figure 4.18, similar to Figure 4.6, shows experiment results using a pre-
processing dataset size of 25k 10-word sequences, and 200 epochs for each
training phase.

Both the feed-forward and the seq2seq model obtain the highest SSL per-
formance when modifying batch size from 256 to 512, and hidden size from
512 to 1024. The GRU model obtains the highest SSL performance when
embedding size changes from 256 to 512, and hidden size changes from 512
to 1024. The common factor here is that increasing hidden size from 512 to
1024 makes SSL performance best for all three models. One possible expla-
nation is that SSL performance improves with larger and more sophisticated
models due to learning additional features during pre-training.

The differences in SSL performance might not exceed the performance vari-
ance. Therefore, if the same experiments are rerun, the results can change.
Rerunning the same experiments multiple times to extract SSL performance
distributions is considered future work.

Figure 4.6 shows that learning rate is an important hyperparameter to con-
sider for SSL. Figure 4.18 shows a similar result. This figure shows that
when the learning rate changes from 0.001 to 0.0001, then frequently SSL
performance worsens compared to when the learning rate is 0.001. This is
generally the case for the feed-forward and seq2seq models. For the GRU
model, this is the case for three cases out of five. This result supports
Hypothesis 1 and Hypothesis 3 and is expected.

One possible explanation that the SSL performance worsens when the learn-
ing rate is 0.0001 compared to when the learning rate is 0.001, is the same as
the one suggested above. Pre-training loss graphs for simulations in Figure
4.18 are similar to loss graphs shown above. Therefore, the learning rate
is generally an important hyperparameter for SSL. A possible explanation
that the SSL performance for the GRU model is not lowered in the two cases
mentioned above, is due to random variations during the training process.
See Subsection 4.1.

Figure 4.6 shows dropout ratio is an important hyperparameter to consider
for SSL, at least with 25k preprocessing data. Figure 4.18 shows a similar
result. Also Figure 4.18 shows that when dropout is modified from 0.2 to
0.0, then frequently SSL performance worsens compared to when dropout
ratio is 0.2. This is generally the case for the feed-forward and GRU models.
For the seq2seq model, this is the case for four out of five cases. This result

87

4.4. Conclusion of Results, Hypotheses and Goals
Results and Discussion

supports Hypothesis 1 and is expected.

One possible explanation that the SSL performance worsens when dropout
is 0.0 compared to when dropout is 0.2, is the same as the one suggested
above. Preprocessing figures for simulations in Figure 4.18 also show similar
loss graphs as those shown above (4.11, 4.9). Therefore, in addition to the
learning rate, the dropout rate is an important hyperparameter to consider
for SSL. A possible explanation that the SSL performance for the seq2seq
model is not lowered in the one case when dropout is lowered from 0.2 to 0.0
mentioned above, is due to random variations during the training process.
See Subsection 4.1.

4.4 Conclusion of Results, Hypotheses and (zoals

4.4.1 Hypothesis 1: The hyperparameter configuration has
a significant impact on the SSL performance.

Based on the discussion above, the hyperparameter configuration gener-
ally has a significant impact on SSL performance — at least with a fixed
number of epochs. Some hyperparameters have a stronger impact on SSL
performance compared to others. Particularly the learning rate has a signif-
icant impact. The amount of preprocessing data has an impact on results
of changing hyperparameters, the dropout rate for example. The impact
of changing a single hyperparameter depends on other hyperparameters,
for example for dropout. If changing individual hyperparameters worsens
SSL performance, changing multiple hyperparameters simultaneously can
improve SSL performance.

In summary, the hyperparameter configuration generally has a significant
impact on SSL performance, at least with a fixed amount of epochs. If only
having time for tuning one hyperparameter for SSL, the learning rate has
most impact. If enough time, experimenting using different hyperparameter
configurations can significantly improve SSL performance.

88

4.4. Conclusion of Results, Hypotheses and Goals
Results and Discussion

4.4.2 Hypothesis 2: Additional preprocessing data improves
the SSL performance.

Based on the discussion above, using a higher volume of preprocessing data
generally improves SSL performance, up to a threshold at the minimum.
Hyperparameters have a significant impact on how much increasing prepro-
cessing data size improves SSL performance. Choosing a hyperparameter
configuration that improves SSL performance for more extensive and so-
phisticated models, increasing the amount of preprocessing data improves
SSL performance until an upper limit is reached. For smaller models with
hyperparameters tuned for SSL, increasing data improves SSL performance.
With hyperparameters less suited for SSL, increasing the size of preprocess-
ing data benefits SSL performance less, particularly for smaller models.

In summary, for hyperparameter configurations more tuned for SSL, SSL
performance improves for smaller models as preprocessing data quantity
increases, while larger models reach a performance threshold — at least with
a fixed amount of epochs. Therefore, if using a smaller model, particularly a
feed-forward model, then as much preprocessing data as possible should be
used for achieving the best possible SSL performance. For more expansive
recurrent models, it is not necessary to use as much preprocessing data as
possible. Instead, one should experiment with different data volumes and
use as little data as possible. This can potentially significantly save training
time. This would also be better for the environment, for example. For other
configurations less suited for SSL, the effect of increasing data quantity is
not as significant, particularly for smaller models. Therefore, one should
experiment using different dataset sizes and use as little data as possible
— for all models. This also means that the hyperparameter configuration
can be more important than the amount of pre-training data. Using the
“wrong” configuration can severely hinder SSL performance even with large
amounts of data.

4.4.3 Hypothesis 3: The learning rate has the most signif-
icant impact among the hyperparameters on the SSL
performance.

Based on the discussion above, the learning rate has a significant impact
on SSL performance. Learning rate has a significant impact regardless of

89

4.4. Conclusion of Results, Hypotheses and Goals
Results and Discussion

pre-training dataset size, when comparing 25k and 100k data. For example,
the learning rate needs tuning based on other hyperparameters.

4.4.4 Hypothesis 4: Larger models improve the SSL perfor-
mance.

Based on the discussion above, larger models generally show higher SSL
performance than smaller models. Our experiments show exceptions to
this, but these might occur due to parameter choices. Using additional
pre-training data, smaller models can catch up with more extensive mod-
els regarding SSL performance. However, throughout the entire thesis we
do not look at absolute text classification performance. Instead, relative
text classification performance is considered. For example in Figure 4.2,
for 500k pre-training dataset size, the feed-forward model reaches higher
SSL performance than the larger models. This does not mean that the
feed-forward model improves absolute classification performance compared
to other models. Experimenting with additional preprocessing data can po-
tentially increase SSL performance for the feed-forward model, and maybe
also for other models. The feed-forward model can benefit from even more
pre-training data than used here. At the same time, there might be a point
even for the feed-forward model where an upper limit is reached regarding
benefit through pre-training datasize. This is considered future work.

In summary, extensive models show higher SSL performance compared
to smaller models — particularly with a smaller volume of preprocessing
data. With a substantial enough pre-training data size, smaller models
can catch up with expansive models regarding SSL performance. With less
pre-training data, a larger model frequently improves SSL performance com-
pared to a smaller model. With a hyperparameter configuration suited more
for SSL using a smaller model, particularly a feed-forward model, increasing
preprocessing data amount improves SSL performance. However, if aiming
to achieve the best possible absolute results for the downstream text clas-
sification task, then generally larger and more sophisticated models should
be used.

90

4.4. Conclusion of Results, Hypotheses and Goals
Results and Discussion

4.4.5 Goals

Below is a summary for each thesis goal:

e Goal 1: Through experimentation, investigate if the hyperparameter
configuration has a significant impact on the SSL performance. Sub-
section 4.4.1 summarizes the insights gained through experimentation.

e Goal 2: Through experimentation, investigate if additional pre-training
data improve the SSL performance. Subsection 4.4.2 summarizes the
insights gained through experimentation.

e Goal 3: Through experimentation, investigate if the learning rate has
the most significant impact among the hyperparameters on the SSL
performance. Subsection 4.4.3 summarizes the insights gained through
experimentation.

e Goal 4: Through experimentation, investigate if larger models improve
the SSL performance. Subsection 4.4.4 summarizes the insights gained
through experimentation.

o Goal 5: FExplore background theory particularly on transfer learning,
SSL, and self-supervised learning. Subsections 2.1.5, 2.1.6 and 2.1.7
summarize the insights gained through exploration.

e Goal 6: FEzplore previous research of transfer learning, SSL, self-
supervised learning, and impact of parameters on SSL performance
within NLP. Subsections 2.2.1, 2.2.2, 2.2.3 and 2.2.4 summarize the
insights gained through exploration.

o Goal 7: Create an experimentation program for obtaining results. Chap-
ter 4 shows this goal is achieved.

e Goal 8: Create datasets for pre-training, downstream, and supervised
phases. This goal is also achieved.

e Goal 9: Create three models of different sizes for experimentation.

This goal is additionally achieved.

In summary, all thesis goals are achieved.

91

Chapter 5

Conclusion and Future Work

This chapter presents the thesis conclusion and potential future work.

5.1 Conclusion

There is a growing interest in SSL research caused by limited labeled data
in many domains. However, the setup of SSL neural networks for text clas-
sification is cumbersome, frequently based on trial and error, with little
knowledge on which setup is beneficial for SSL. Research has shown that
SSL does not always improve performance compared to supervised learn-
ing. Additionally, in recent years, several methods have been presented that
improve performance within NLP tasks using SSL. These include using ad-
ditional preprocessing data, utilizing more extended models, or changing
hyperparameters.

We found that the hyperparameter configuration significantly impacts SSL
performance, and the learning rate has the most impact. Hence, experi-
menting with different hyperparameter configurations can dramatically im-
prove SSL performance. We showed that the overall SSL performance in-
creased with the proper hyperparameter setup for SSL-based feed-forward,
recurrent, and sequence to sequence models. This underlines the significant
impact of hyperparameter setup on SSL performance.

More extensive models often improve SSL performance than smaller mod-

93

5.2. Future Work Conclusion and Future Work

els, particularly with a smaller preprocessing data quantity. However, as
preprocessing data amount increases, recurrent models generally reach a
performance threshold. On the other hand, increasing data for hyperpa-
rameter configurations more tuned for SSL, SSL performance improves for
the feed-forward model. Therefore, one should generally experiment using
different data volumes and use a smaller data size, if possible, for all mod-
els. If aiming to achieve the best possible absolute downstream performance,
larger and more sophisticated models should be used.

This thesis explored the impact of hyperparameters, including preprocess-
ing data size and model size, on an SSL technique for a text classification
task. This exploration improves understanding of which parameters have
the most impact on SSL for text classification, making it more manageable
to perform SSL work for future NLP projects, particularly if time-restricted.
This research also advances the understanding of model size impact on SSL
for text classification, enabling a better experience of model selection for
SSL designs. With this, we enhance the knowledge of parameter relations,
potentially lowering the training time for SSL-based machine learning.

5.2 Future Work

There are multiple interesting potential paths for future work. These in-
clude:

e Using other fixed or variable pre-training sequence lengths, for exam-
ple, variable-length sentences. This way, preprocessing data is more
similar to downstream data, potentially improving SSL performance.

e Utilizing other numbers of randomly masked tokens in each input
sequence from preprocessing data.

e Not using the eleventh word after each 10-word sequence during tok-
enizer creation.

e Without creating a testing dataset, allowing additional preprocessing
data for training and validation.

e Using additional epochs during pre-training, allowing models to con-
verge more during pre-training.

94

5.2. Future Work Conclusion and Future Work

e With other pretext tasks, for example predicting input sequence or
reordering a shuffled sequence.

e Modifying used pretext task of predicting masked tokens. For exam-
ple: Using inspiration from BERT [29], meaning to for example 10% of
time replace a selected masked token by a random vocabulary token,
and 10% of time leave token unchanged.

e Utilizing additional pre-training data.

e With other hyperparameter configurations. For example, creating
other configurations using known hyperparameter tuning methods (for
instance grid search or random search) or tuning with additional pre-
processing data, potentially improves SSL performance.

e Using all 20 newsgroups to generate preprocessing datasets from the
20newsgroups dataset. Preprocessing datasets are more varied then,
potentially improving SSL performance.

Also, running experiments multiple times to extract additional SSL perfor-
mance distributions could change the thesis conclusion.

95

References

1]

[7]

8]

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learn-
ing algorithm for boltzmann machines. Cognitive science, 9(1):147-169,
1985.

A Agrawala. Learning with a probabilistic teacher. IEEE Transactions
on Information Theory, 16(4):373-379, 1970.

aladdinpersson. seq2seq_attention. https://github.com/
aladdinpersson/Machine-Learning-Collection/blob/master/ML/
Pytorch/more_advanced/Seq2Seq_attention/seq2seq_attention.
py, 2021. [Online; accessed 3-June-2021].

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry
Mao, Garrison W Cottrell, and Julian McAuley. Rezero is all you need:
Fast convergence at large depth. arXiv preprint arXiv:2003.04887,
2020.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and
Michael Auli. Cloze-driven pretraining of self-attention networks. arXiv
preprint arXiv:1903.07785, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv
preprint arXiw:1409.0473, 2014.

Jonathan Baxter. A model of inductive bias learning. Journal of arti-
ficial intelligence research, 12:149-198, 2000.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and
Shmargaret Shmitchell. On the dangers of stochastic parrots: Can

97

https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/Seq2Seq_attention/seq2seq_attention.py
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/Seq2Seq_attention/seq2seq_attention.py
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/Seq2Seq_attention/seq2seq_attention.py
https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/Seq2Seq_attention/seq2seq_attention.py

References References

[11]

[12]

[19]

language models be too big?. In Proceedings of the 2021 ACM Con-
ference on Fairness, Accountability, and Transparency, pages 610-623,
2021.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural prob-
abilistic language model. In Advances in Neural Information Processing
Systems, pages 932-938, 2001.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.
Greedy layer-wise training of deep networks. Advances in neural infor-
mation processing systems, 19:153, 2007.

Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92—-100, 1998.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiw preprint arXiw:2005.14165, 2020.

Susan Carey and Elsa Bartlett. Acquiring a single new word. 1978.

Rich Caruana. Multitask learning. Machine learning, 28(1):41-75,
1997.

Richard Caruana. Multitask learning: A knowledge-based source of
inductive bias. In Proceedings of the Tenth International Conference
on Machine Learning, pages 41-48. Morgan Kaufmann, 1993.

Inigo Casanueva, Tadas Temcinas, Daniela Gerz, Matthew Henderson,
and Ivan Vulié. Efficient intent detection with dual sentence encoders.
arXiv preprint arXiv:2008.04807, 2020.

Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier.
Word2vec applied to recommendation: Hyperparameters matter. In
Proceedings of the 12th ACM Conference on Recommender Systems,
pages 352-356, 2018.

chao ji. Semi-supervised-sequence-learning. https://github.com/chao-
ji/semi-supervised-sequence-learning, 2021. [Online; accessed 3-June-
2021].

98

References References

[20]

[21]

[22]

[26]

[27]

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-
Supervised Learning. 09 2006.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Gen-
erating long sequences with sparse transformers. arXiv preprint
arXiv:1904.10509, 2019.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Man-
ning. Electra: Pre-training text encoders as discriminators rather than
generators. arXiv preprint arXiv:2003.10555, 2020.

colah. Neural networks, types, and functional programming.
http://colah.github.io/posts/2015-09-NN-Types-FP/, 2015. [Online;
accessed 3-June-2021].

Michael Collins and Yoram Singer. Unsupervised models for named
entity classification. In 1999 Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, 1999.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning.
arXiv preprint arXiv:1511.01432, 2015.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6):391-407,
1990.

David DeMers and Garrison W Cottrell. Non-linear dimensionality
reduction. In Advances in neural information processing systems, pages
580-587. Citeseer, 1993.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

Pranay Dugar. Attention — seq2seq models.
https://towardsdatascience.com/day-1-2-attention-seq2seq-models-
65df3f49e263, 2019. [Online; accessed 3-June-2021].

99

References References

[31]

[39]

[40]

[41]

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent.
Why does unsupervised pre-training help deep learning? In Proceed-
ings of the thirteenth international conference on artificial intelligence
and statistics, pages 201-208. JMLR Workshop and Conference Pro-
ceedings, 2010.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.
arXw preprint arXiw:2101.03961, 2021.

S Fralick. Learning to recognize patterns without a teacher. IFEFE
Transactions on Information Theory, 13(1):57-64, 1967.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

Herman O Hartley and JNK Rao. A new estimation theory for sample
surveys. Biometrika, 55(3):547-557, 1968.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 770-778, 2016.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos,
Heewoo Jun, Hassan Kianinejad, Md Patwary, Mostofa Ali, Yang Yang,
and Yanqi Zhou. Deep learning scaling is predictable, empirically. arXiv
preprint arXiw:1712.00409, 2017.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527-1554,
2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

David W Hosmer Jr. A comparison of iterative maximum likelihood
estimates of the parameters of a mixture of two normal distributions
under three different types of sample. Biometrics, pages 761-770, 1973.

Jeremy Howard and Sebastian Ruder. Universal language model fine-
tuning for text classification. arXiv preprint arXiv:1801.06146, 2018.

100

http://www.deeplearningbook.org

References References

[43]

[44]

[45]

[49]

[52]

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448-456. PMLR, 2015.

Longlong Jing and Yingli Tian. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

Thorsten Joachims et al. Transductive inference for text classification
using support vector machines. In Icml, volume 99, pages 200-209,
1999.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming
Xiong, and Richard Socher. Ctrl: A conditional transformer language

model for controllable generation. arXiv preprint arXiv:1909.05858,
2019.

Simeon Kostadinov. Understanding gru networks.
https://towardsdatascience.com/understanding-gru-networks-
2ef37df6c9be, 2017. [Online; accessed 3-June-2021].

Simeon Kostadinov. Understanding encoder-decoder sequence to
sequence model. https://towardsdatascience.com/understanding-
encoder-decoder-sequence-to-sequence-model-679e04af4346, 2019. [On-
line; accessed 3-June-2021].

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for
self-supervised learning of language representations. arXiv preprint
arXiw:1909.11942, 2019.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learn-
ing Proceedings 1995, pages 331-339. Elsevier, 1995.

Dongjun Lee. Transfer learning for text classification with tensorflow.
https://github.com/dongjun-Lee/transfer-learning-text-tf, 2018. [On-
line; accessed 3-June-2021].

Yu-Feng Li and Zhi-Hua Zhou. Towards making unlabeled data never
hurt. IEEFE transactions on pattern analysis and machine intelligence,
37(1):175-188, 2014.

101

References References

[53]

[57]

[58]

Henrik Lien and Bjgrn V. Ledaal. Semi-supervised learning for text
classification. Student project in the course IKT442: ICT Seminar 3
at UiA, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiw:1907.11692, 2019.

Andrea Manero-Bastin. How to configure the num-
ber of layers and nodes in a neural network.
https://www.datasciencecentral.com /profiles/blogs/how-to-configure-
the-number-of-layers-and-nodes-in-a-neural, 2019. [Online; accessed
3-June-2021].

Huanru Henry Mao. A survey on self-supervised pre-training for
sequential transfer learning in neural networks. arXiv preprint
arXiv:2007.00800, 2020.

Andrew McCallum, Kamal Nigam, et al. A comparison of event models
for naive bayes text classification. In AAAI-98 workshop on learning
for text categorization, volume 752, pages 41-48. Citeseer, 1998.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
Learned in translation: Contextualized word vectors. arXiv preprint
arXw:1708.00107, 2017.

Geoffrey J McLachlan and S Ganesalingam. Updating a discrimi-
nant function on the basis of unclassified data. Communications in
Statistics-Simulation and Computation, 11(6):753-767, 1982.

Geoffrey John McLachlan. Estimating the linear discriminant function
from initial samples containing a small number of unclassified observa-
tions. Journal of the American statistical association, 72(358):403-406,
1977.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiw:1301.3781, 2013.

Aditi Mittal. Understanding rnn and Istm. https://aditi-
mittal.medium.com/understanding-rnn-and-Istm-f7cdf6dfcl4e, 2019.
[Online; accessed 3-June-2021].

102

References References

[63]

[64]

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Ieml, 2010.

Avital Oliver, Augustus Odena, Colin Raffel, Ekin D Cubuk, and Ian J
Goodfellow. Realistic evaluation of deep semi-supervised learning al-
gorithms. arXiv preprint arXiv:1804.09170, 2018.

Terence J O’neill. Normal discrimination with unclassified observations.
Journal of the American Statistical Association, 73(364):821-826, 1978.

Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532-1543, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contex-
tualized word representations. arXiv preprint arXiv:1802.05365, 2018.

Steven Pinker. Learnability and Cognition, new edition: The Acquisi-
tion of Argument Structure. MIT press, 2013.

The Glowing Python. The perceptron.
https://glowingpython.blogspot.com/2011/10/perceptron.html, 2011.
[Online; accessed 3-June-2021].

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Ex-
ploring the limits of transfer learning with a unified text-to-text trans-
former. arXiw preprint arXiv:1910.10683, 2019.

Sebastian Ruder. Neural transfer learning for natural language process-
ing. PhD thesis, NUI Galway, 2019.

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and
Thomas Wolf. Transfer learning in natural language processing. In
Proceedings of the 2019 Conference of the North American Chapter of

103

References References

[76]

[77]

78]

[79]

[83]

[84]

the Association for Computational Linguistics: Tutorials, pages 15—18,
2019.

Henry Scudder. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information Theory,
11(3):363-371, 1965.

Aarti Singh, Robert Nowak, and Jerry Zhu. Unlabeled data: Now
it helps, now it doesn’t. Advances in neural information processing
systems, 21:1513-1520, 2008.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. arXiv preprint arXiv:1409.3215, 2014.

Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised
learning. Machine Learning, 109(2):373-440, 2020.

Vladimir Naumovich Vapnik and AM Sterin. Controlled minimization
of the total risk in pattern recognition. Awtomatika i Telemekhanika,
(10):83-92, 1977.

VN Vapnik and A Ya Chervonenkis. The method of ordered risk min-
imization, i. Avtomatika i Telemekhanika, 8:21-30, 1974.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. arXiv preprint arXiv:1706.03762, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

David Yarowsky. Unsupervised word sense disambiguation rivaling su-
pervised methods. In 33rd annual meeting of the association for com-
putational linguistics, pages 189-196, 1995.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Sri-
nadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and
Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

104

[85] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoen-
coders: Unsupervised learning by cross-channel prediction. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1058-1067, 2017.

[86] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. 2005.

UiA University of Agder

Master’s thesis

Faculty of Engineering and Science
Department of ICT

© 2021 Henrik Lien. All rights reserved

	Abstract
	Glossary
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline

	Background
	Theory
	Artificial Neural Networks (ANNs)
	Recurrent Neural Networks (RNNs)
	Gated Recurrent Unit (GRU)
	Sequence to Sequence (Seq2seq) Models
	Transfer Learning
	Semi-Supervised Learning
	Self-Supervised Learning

	Literature review
	Transfer Learning Within NLP
	Semi-Supervised Learning
	Self-Supervised Learning
	Impact of Parameters on SSL Performance
	Summary of Literature Review

	Thesis Definition and Method
	Thesis Definition
	Thesis Goals
	Hypotheses

	Contributions
	Structure of Experiments
	Models
	Feed-Forward Model
	GRU model
	Sequence to Sequence (Seq2seq) Model With Attention Mechanism
	Classifier Model

	Running Experiments
	Data Handling
	Preprocessing/Pretext Task
	Hyperparameters

	Results and Discussion
	Experiment 1: Impact of hyperparameter configuration and model size on the SSL performance
	Experiment 2: Impact of increasing pre-training dataset size on the SSL performance
	Experiment 3: Impact of changing single hyperparameter on the SSL performance
	Experiment 4: impact of changing two hyperparameters on the SSL performance

	Conclusion of Results, Hypotheses and Goals
	Hypothesis 1: The hyperparameter configuration has a significant impact on the SSL performance.
	Hypothesis 2: Additional preprocessing data improves the SSL performance.
	Hypothesis 3: The learning rate has the most significant impact among the hyperparameters on the SSL performance.
	Hypothesis 4: Larger models improve the SSL performance.
	Goals

	Conclusion and Future Work
	Conclusion
	Future Work

	References

