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Abstract

A surveillance camera is an efficient solution to prohibit crimes for both small and big
businesses, and is broadly utilized in big cities. Today, the police force can only access
the camera footage for further investigation after an act of crime. In order to observe, find
patterns, and react appropriately to an event, the Oslo Police wants to use its own CCTV
cameras and analyze such footage in real-time. To investigate real-time CCTV footage
and share such footage with a third-party for analyzing, the people in the footage need to
be de-identified. In this thesis, we focus on de-identification of CCTV footage, preserving
age and gender for more precise context information.

DeepPrivacy is a neural network model that creates new faces using image inpainting.
It is found to be suitable for de-identification of CCTV footage but the creators did not
intend to preserve age and gender. The thesis proposes combining DeepPrivacy and an
attribute-driven network to enforce preservation of age and gender, and performs experi-
ments on two state-of-the-art, attribute-driven Generative Adversarial Networks (GANs),
AttGAN, and StarGAN v1. These networks are designed to keep the input image intact
while changing specific attributes. The thesis also studies the option of changing the
subjects’ skin tone to a specific color to bypass potential ethnicity bias.

To preserve attributes in CCTV footage, AttGAN and StarGAN v1 should be trained on
a dataset with diverse image quality and poses, with a good representation of different
age groups and a balanced representation of gender. No such dataset exists, and thus,
this thesis proposes a new dataset “Diverse Faces” of 223,548 images labeled with age
and gender. To enable change of skin tone to bypass potential ethnicity biases, the thesis
proposes an additional dataset named “Diverse Faces with Distinct Skin tones” contain-
ing 188,113 images, labeled with skin tone in addition to age group and gender.

The de-identification rate of DeepPrivacy is 97.40%, and the network originally preserves
77.50% gender and 42.25% age group. The proposed solution combines DeepPrivacy and
AttGAN. For AttGAN, the thesis proposes instance normalization for better preservation
of image background and combining Multi-scale Structural Similarity (MS-SSIM) and
L1 norm for reconstruction loss for reducing image noise. “DeepPrivacy and AttGAN”
(DP-ATT), trained on “Diverse Faces”, preserves 89.00% gender and 79.78% age group.
“DeepPrivacy and AttGAN with Skin tone” (DP-ATT-S), trained on “Diverse Faces with
Distinct Skin tones”, preserves 84.25% and 83.58% gender, and 62.42% and 63.50% age
group for dark and light skin tone respectively.
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Chapter 1

Introduction

Technology becomes more and more integrated in our everyday lives. In 1923, Samuel
Shlafrock invented the first instant camera, which combined a camera and a dark room
in a single compartment [9]. Now, nearly 100 years later, it is expected that we may reach
one billion CCTV surveillance cameras globally by the end of 2021 [42].
In relation to the growth of use cases for technology, the term smart city has appeared.
The European Commission defines a smart city as “a place where traditional networks
and services are made more efficient with the use of digital and telecommunication tech-
nologies for the benefit of its inhabitants and business” [59]. The enormous amount of
CCTV surveillance cameras produces huge volumes of data which, when gathered and
analyzed, can be a great contributing factor to a smart city.

The Oslo Police district have decided to take part in the smart city movement and want to
utilize CCTV footage to detect anomalies to react appropriately. Examples of anomalies
in this context could be situations such as a fight, a person that have fallen and do not
get up, theft, etc. Currently the Oslo Police are not allowed to real-time monitor the city
of Oslo due to laws and regulations. The police force are only allowed to use data from
legal and illegal CCTV cameras in relation to an investigation of a crime or event that
has already taken place. Illegal CCTV cameras refer to cameras that are not approved
for surveillance. For the Oslo Police to potentially gain access to deploy their own CCTV
cameras and use them to capture real-time CCTV footage, the footage needs to be de-
identified. Also, manually detection of anomalies using human operators is too resource
intensive. Therefore, the Oslo Police want to use Artificial Intelligence (AI) to analyze and
identify anomalies when they take place in real-time. They plan to use crowd sourcing
and use external partners that can provide such anomaly detection network. In order
to train the anomaly detection network, real CCTV footage needs to be used as training
data. For the Oslo Police to be able to provide such training data, the footage, again,
needs to be de-identified.

Traditional de-identification methods, such as blurring, are not sufficient for this sce-
nario as they remove too much information, including all facial information, objects that
may be in front of a face, and some of the surroundings. Face detection networks use
facial landmarks like eyes, nose, ears, and other facial features to categorize an object as
a human being. Such features may be lost when the images are blurred, and the imagery
is altered to a point where it is hard to find useful information like age and gender. Age
and gender can put context to a situation that may clarify the harmfulness in an act, like
the difference between an adult and a child hitting another adult.

Although a person can be recognised by various factors, such as clothing, GPS data, the
way they walk or the surroundings, the focus for de-identification of CCTV footage in this
thesis is limited to de-identifying the face.
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The Black Lives Matter movement originating in the United States 2020 and became
a subject in Europe as well, and is proof of a biased world where different ethnicity may
lead to different treatment by the federal state. CCTV footage does not differentiate on
ethnicity, however an anomaly detection system based on a potentially biased training set
might do. In the thesis we suggest an option of choosing a collective color unrelated to
ethnicity that is persistent throughout the set of de-identified images. Because ethnicity
holds more than just a color, it is also necessary to change the appearance of the original
face, which is a process needed for de-identification either way.

1.1 Motivation

In this thesis we seek to find a neural network design meant to compete with state-of-
the-art solutions for de-identification with preservation of age and gender. We believe
it will make a valuable contribution to the ongoing de-identification research and add
another tool to the collection of de-identification methods for images and videos. This
field of research helps the realization of Smart Cities, a concept that most likely is going
to improve the use of surveillance cameras and make them a standby alert system rather
than a box of information that is rarely used.

The value of de-identified images and videos goes beyond the Smart City and government
usage. In a more general perspective, such a solution enables any person to upload im-
ages and videos of themselves while de-identified. Their audience would still be able to
see the gender and age group of the creator but would not be able to identify the original
face, nor the ethnicity. This makes it possible to create and share content without being
afraid that it will be related to yourself personally.

The method of de-identification can also be used in research when observing human
behavior to create possibly more realistic statistics. If one were to film in a public space,
consent from the people that may appear in the video would be needed. Asking for such
consent may also include revealing the behavioral study, which may result in less nat-
ural behavior. Using the method of de-identification while preserving age and gender
makes it possible to use said footage without the consent as the people in it would not
be identifiable. As the people that are being studied are unaware of the study itself, they
will presumably behave more naturally, while age and gender are still attributes that the
study may include. An example of such behavior study where this would be relevant, can
be a study performed in grocery stores to find statistics on which time of the day different
genders and age groups go shopping. Envisioning a store chain that uses TV screens for
marketing in their stores, such study would enable more targeted marketing, targeting
different age groups and genders on different times of the day. A different example may
be a study for a pub that wants to know which ages and genders their client base consists
of, or a nutrition study, where footage from several restaurants is used to estimate the
nutritional values that the different ages and genders get when eating out.

1.2 Problem Statement

The problem this thesis focuses on is de-identifying a person by only changing the face,
while still preserving gender and age group, and also changing skin color to avoid racial
bias. It is also important to maintain trackability as it is assumed that the anomaly
detection network will need to track people in order to find an anomaly event. Although
time is an important aspect of real-time de-identification, it will not be in focus for this
thesis.

2



1.3 Research Question and Hypotheses

The research question of this thesis is:
Can we remove all recognizable features from a face and still generate a new face with
same gender and approximately same age?

It is accompanied by the following hypotheses:

1. H1: We can remove all recognizable features from a face and still generate a new face
with same gender.
This hypothesis focuses on preserving gender. A confirmation of this hypothesis
would be if, after using the proposed solution, a gender estimation network is able
to estimate the original gender in most of the de-identified images. The hypothesis
will be confirmed if we are able to preserve the original gender in 10% more images
than using DeepPrivacy alone.

2. H2: We can remove all recognizable features from a face and still generate a new face
with approximately same age. The second hypothesis focuses on preserving age.
This hypothesis is confirmed if, after using the proposed solution, an age estimation
network is able to estimate the original age group in most of the de-identified images.
Again, the hypothesis will be confirmed if we are able to preserve the original age
group in 10% more images than using DeepPrivacy alone.

3. H3: We can change all skin colors to one color in order to avoid bias towards certain
skin tones. The third hypothesis focuses on changing skin tone. This hypothesis is
confirmed if the skin tone of most of the images is closer to the average color than
it is using DeepPrivacy alone. The deviation of the average skin color compared to
the target skin color should not be more than 20% per Red (R), Green (G) and Blue
(B) value.

1.4 Contributions

The main contributions of this thesis are:

• We propose a novel method cascading DeepPrivacy and an attribute-driven GAN in
order to preserve gender and age group in de-identified CCTV footage1

• Using the proposed scheme, we present “DeepPrivacy and AttGAN” (DP-ATT) trained
on “Diverse Faces” with the attributes of gender and multiple age groups. It has the
de-identification rate of 98.47%, and is able to preserve gender with an accuracy of
89.00% and age group with an accuracy of 79.78%2.

• Again using the same proposed scheme, we present “DeepPrivacy and AttGAN with
Skin tone” (DP-ATT-S) trained on “Diverse Faces with Distinct Skin tones” with
the attributes of gender, skin tone and multiple age groups. It also has the de-
identification rate of 98.47%. Gender is preserved with the accuracy of 84.25% and
83.58%, and age group is preserved with the accuracy of 62.42% and 63.50% for
dark and light skin tone respectively3.

• We prepare the dataset “Diverse Faces”, consisting of 180,492 images for training
and 43,119 images for validation. All images have label files with age group and
gender4.

1The code can be found here.
2The pretrained AttGAN model for DP-ATT can be found here.
3The pretrained AttGAN model for DP-ATT-S can be found here.
4Diverse Faces can be found here.
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• We prepare the dataset “Diverse Faces with Distinct Skin tones”, consisting 174,334
images for training and 13,779 images for validation. All images have label files with
skin tone, age group and gender 5.

1.5 Outline of the Thesis

This thesis is organized as stated below:
Chapter 2 contains the technical background and state-of-the-art solutions.
Chapter 3 includes information about the network architecture and training details of
the proposed method, as well as the proposed datasets.
Chapter 4 starts with a de-identification experiment for DeepPrivacy to find the de-
identification rate. Then, a trackability experiment is conducted on de-identified videos.
The next part focuses on preserving the age group and gender when de-identifying faces,
with experiments testing different networks, and how changes to the training dataset
and parameter changes affects the results. Then, we look into some options for changing
skin tone in the de-identified images, and in addition conduct some experiments that
have the goal of improving the results. The chapter ends with an evaluation of our pro-
posed networks and comparison to state-of-the-art.
Chapter 5 contains the conclusions of this thesis and answers the research question.

5Diverse Faces with Distinct Skin tones can be found here.
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Chapter 2

Background

In this chapter the reader will find state-of-the-art solutions to solve similar task to the
stated research question and hypothesis. The mentioned work provides methods to an-
swer questions like how to de-identify faces, how to preserve information like age and
gender, and how one can track people in CCTV footage. Today, these questions are best
solved using neural networks. For image generation in particular, a type of network has
become increasingly popular the last few years, namely a network construction known as
Generative Adversarial Network (GAN). Being a generative network, GAN is able to output
multiple, never-seen-before samples from a training set. It can be used for generating
larger datasets, however, has also been able to fulfill other image-applications like style
transfer, attribute transfer, and realistic image inpainting of missing pixels. The concept
of GAN and variations are described further in section 2.1.

Section 2.2 looks into laws of surveillance, ethics of AI, and the meaning behind de-
identification. This is followed by research on the predecessor of GAN, the k-Same algo-
rithm. The next subsection focuses on state-of-the-art de-identification methods using
GAN and the subsequent subsection on age and gender preservation using GAN. The last
part looks into tracking de-identified people in CCTV footage.

Section 2.3 discusses four different approaches based on state-of-the-art. Each approach
is evaluated before one is chosen for further exploration. Additional information concern-
ing the chosen state-of-the-art is given to help the reader better understand how they
work.

2.1 Generative Adversarial Networks (GANs)

Goodfellow et al. [22] described a network called Generative Adversarial Network in June
2014. Generative models enable multi-model output, where a single output may produce
multiple acceptable results [21]. It is based on a game theoretic scenario where a Gener-
ator (G) competes against an adversary known as a Discriminator (D). The goal of G is to
convince D that the generated samples, in our case images, are real. D receives samples
from both G and a real dataset, and emits a probability indicating whether the sample
is real or fake. If the game goes as planned, D will learn the difference of real and fake
images, however, as G improves, the generated samples will become indistinguishable
from the real data and D emits a probability of 0.5 everywhere. At this stage, the game
comes to a halt. G can now be used to generate data similar to the real input, or for other
application purposes described later in this section.

2.1.1 Vanilla GAN

In original GAN design, also known as Vanilla GAN [65], the generator and discriminator
take part in a zero-sum game where a function v(G,D) determines the payoff of D, and
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−v(G,D) the payoff of G. D will try to maximize v and G minimize as shown in Equation
2.1,

θ∗ = arg min
g

max
d

v(G,D). (2.1)

To make the generated samples indistinguishable from the real data, the generated sam-
ple z should be drawn from a data distribution Pθ similar to the distribution of real data
Pr. The proposed loss function is

v(D,G) := Ex∼Pr [logD(x)] + Ez∼Pθ [log(1−D(G(z)))] , (2.2)

where x is a sample from the real images, z a generated sample, Ex∼Pr and Ez∼Pθ is the
expected value of x and z given distribution Pr and Pθ respectively. D will reject generated
samples by assigning high values to samples from Pr and low values for samples from Pθ.
Since this is a minmax problem, it is not necessary to define the base of the logarithm,
any base will be sufficient. To measure the discrepancy between two probability distri-
butions, it is possible to use f-divergence.

Kullback Leibler (KL) divergence [31] can be viewed as the relative entropy between two
probability density functions f(x) and g(x),

KL(F ||G) def=
∫
f(x) log f(x)

g(x)dx. (2.3)

Jensen-Shannon (JS) divergence [65] is defined for any probability density functions
Pr(x) and Pm(x)

JS(Pr,Pθ) = 1
2KL(Pr,Pm) + 1

2KL(Pθ,Pm),

where Pm = Pr + Pθ
2 .

(2.4)

2.1.2 Wasserstein GAN (WGAN)

Density replication can fail to recreate the dimensional manifolds of the true data. Adding
Gaussian noise with high bandwidth can help to overcome this issue, however, such
method adds noise to the outputted data. Arjovsky et al. [6] introduced the use of
Wasserstein-1, or Earth Mover distance, which enabled more learning stability and is
more resistant to mode collapse, a problem where all input images map to the same out-
put image, disabling progress of the optimization. Instead of estimating the density of
Pr which may not exist, Wasserstein GAN defines a random Gaussian variable Z with a
fixed distribution p(z) and passes it through a parametric function gθ : Z− > X (typically
a neural network) that directly generates samples following a certain distribution Pθ. By
adjusting θ one can derive a distribution close to Pr. Equation 2.5 describes Wasser-
stein 1, where

∏
(Pr,Pθ) is all joint distributions γ(x, y) whose marginals are Pr and Pθ

respectively.

W (Pr,Pθ) = inf
γε
∏

(Pr,Pθ)
E(x,y)∼γ [||x− y||]. (2.5)

The method enforces weight clipping for the discriminator, cutting the weights that does
not comply within the space of 1-Lipschitz functions. Note that the objective of WGAN is
to minimize the adversarial loss as opposed to Vanilla GAN, and is stated as

min
G

max
||D||L≤1

Ex∼Pr [D(x)]− Ez∼Pθ [D(G(z))] (2.6)
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2.1.3 Improved Wasserstein GAN: WGAN with gradient penalty (WGAN-GP)

Gulrajani et al. [26] proposed an alternative way of clipping weights of WGAN by penalizing
the norm of gradient of the discriminator with respect to its input. This method is more
stable for a broader variety of GAN architectures, requiring less hyper-parameter tuning.

2.1.4 Deep Convolutional GAN (DCGAN)

Radford et al. [53] proposed DCGAN to bridge the gap between Convolutional Neural
Networks (CNNs) and GANs in unsupervised learning. The architecture replaces pool
layers with strided convolutions in the discriminator, and fractional-strided convolutions
in the generator. Stride is the distance between two consecutive positions of the pooling
window, where fractional striding add zero-padding between input vaues [17]. The design
uses batch normalization in both the generator and the discriminator and removes fully
connected hidden layers for deeper architectures.

2.1.5 Progressive GAN

Karras et al [41] proposed a GAN model that grows both the generator and the discrimi-
nator progressively from a small resolution, increasing for each layer. The generator and
discriminator grow synchronously, thus mirroring each others structure. The trainable
layers are smoothly faded in to avoid sudden changes to the already trained resolution
layers. Such techniques stabilize as well as speed up the training phase. The incremental
nature of the architecture allows the network to detect large scale structures of the image
distribution early in the process, and then increasingly fine-tune the image as it scales,
instead of learning all scales simultaneously. The progressive architecture is more likely
to converge at the smaller resolutions, so the last rounds of scaling are only tasked with
refining the image representation. By enabling the possibility of scaling the weights dur-
ing training, Karras et al. make sure the learning speed is the same for all weights. The
authors also present some implementation details that discourage competition between
the generator and the discriminator and a higher quality dataset based on CelebA, which
they have named CelebA-HQ.

2.1.6 MSG-GAN

GANs can be difficult to adapt to different datasets and their training phase suffers from
mode collapse and training instability, the latter being a problem that Animesh Karnewar
and Oliver Wang proposes a solution for with a new training technique; Multi-Scale Gra-
dient Generative Adversarial Network (MSG-GAN) [38]. MSG-GAN provides a stable ap-
proach for high resolution image synthesis by allowing the flow of gradients from the
discriminator to the generator at multiple resolutions simultaneously. Meaning that in-
stead of the discriminator only looking at the final output with the highest resolution
from the generator, it can also look at the outputs of the intermediate layers.
It is found that this method is robust to different loss functions, datasets of different
sizes, resolutions and domains, and architectures. It is also shown that MSG-GAN is
able to converge stably using the same set of fixed hyper parameters for all the varia-
tions. This training technique can be used in place of the progressive growing technique,
offering similar training time, fewer hyper parameters, and easier generalizing to different
datasets. Also, the generated images from the experiments conducted by Karnewar et
al., do not show any traces of the phase artifacts that are visible in progressively grown
GANs.
Pidhorskyi and Gianfranco [52] propose a Auto Encoder (AE) network that aims to com-
bine the generative and representational properties training a encoder-generator map.
Opposed to general GAN designs, they believe the AE architecture is able to learn a less
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entangled representation of the latent space. They design two Adversarial Latent Autoen-
coders, one derived from StyleGAN and the other with progressive growing. The design
learns the latent space distribution while the data distribution is learned in adversarial
settings, thus the learning becomes less entangled. The network generates images com-
parable to the quality of StyleGAN generated images, however, it can in addition produce
face reconstructions and manipulations based on real images.

2.1.7 CycleGAN

Image-to-image translation is a concept based upon the assumption that it is possible
to translate an image into another, in the same manner one can translate words from
one language to another. Jun-Yan Zhu et al. proposed an approach for image-to-image
translation without the need of paired examples, named CycleGAN [72]. The approach
uses two separate generators, namely G and F . Given an input domain X and an output
domain Y , G(x) =y, and likewise F (y) = x. They define cycle consistency loss which is
meant to encourage F (G(x)) = x and G(F (y)) = y. In addition of introducing a translation
factor, F provides an inverse mapping that avoids mode collapse.

2.1.8 Data Normalization

Normalization is a technique used to ensure that data has certain statistical properties,
removing magnitudes between different features [33]. In neural networks, normalization
is used to shift and scale activations by using the mean µ and standard deviation σ (see
Equation 2.7), making features more equally represented. The activation x at any layer
exists within four dimensions, the batch size N , the number of channels (filters) C, height
H, and weight W , x ε RN×C×H×W [64]. In this thesis, we describe two techniques using
normalization, namely instance normalization (IN) and batch normalization (BN).

x̂ = x− µ
σ

. (2.7)

Instance Normalization

In instance normalization, mean and variance are calculated for each individual channel
for each individual sample across both H and W (see Equation 2.8). This indicates that
each training sample is reflected in the normalization process.

x̂ = x− µnc√
σnc + ε

, µnc = 1
HW

H∑
j=1

W∑
k=1

xncjk, σ
2
nc = 1

HW

H∑
j=1

W∑
k=1

(xncjk − µnc)2. (2.8)

Batch Normalization

In batch normalization, mean and variance are calculated for each individual channel for
all samples, H, andW (see Equation 2.9). Thus, contrarily to instance normalization, the
mean and variance are a representation of all samples combined, awarding more similar
features throughout the dataset.

x̂ = x− µc√
σ2
c + ε

, µc = 1
NHW

N∑
i=1

H∑
j=1

W∑
k=1

xicjk, σ
2
nc = 1

NHW

N∑
i=1

H∑
j=1

W∑
k=1

(xicjk − µc)2. (2.9)
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2.2 Related Work and the State-of-the-art for De-identification
and Tracking

This section contains information about relevant regulations and ethics, the K-Same al-
gorithm, other approaches of using GAN for de-identification, and attribute-driven GANs.
It also focuses on the state-of-the-art of tracking, presenting Simple Online and Realtime
Tracking (SORT) and You Only Look Once (YOLO).

2.2.1 Regulations of Camera Surveillance

In Norway, multiple laws are regulating the use of surveillance technology.
“Menneskerettsloven” [47], focusing on preserving human rights, entered into force 21th
of May, 1999 and was last changed on the 9th of May, 2014. Protocol 8 protects privacy
and family life, saying that everyone has the right to respect for their privacy and family
life, and that there shall be no interference by public authority in the exercise of this
right, except where this is in accordance with the law and is necessary in a democratic
society for reasons of national security, public security or the economic welfare of the
country, in order to prevent disorder or crime, to protect health or morals, or to protect
the rights and freedoms of others.

“Politiloven” [46] entered into force on the 4th of August 1995, and was last changed
recently, on the 16th of April, 2021. Paragraph 6a focuses specifically on camera surveil-
lance, stating that the police force can use camera surveillance if it is necessary in order
to carry out certain tasks, including protecting person, property and public goods and
legal activities, prevent crime and other violations of public order and security, detect
and stop criminal activity and prosecute criminal offenses, and provide citizens with as-
sistance when the circumstances indicate that it is required.

“Personopplysningsloven” [45] entered into force on 15th of June, 2018, and was last
changed on the 14th of April, 2000. This law focuses on the processing and storage of
personal data. Personal data is defined as any information about an identified or identi-
fiable person. An image of a person can be considered as personal data if it is possible
to recognise people in the image [15].
Protocol 5a states that personal data shall be processed in a lawful, fair and transpar-
ent manner with respect to the data subject, while Protocol 6 elaborates legality of such
data processing. Protocol 6.1 announces different terms, of which at least one should be
fulfilled to accomplish legal processing of personal data. The listed terms include con-
sent from the subject, and the processing being necessary to, amongst others, fulfill legal
obligations, protect the vital interests of the subject or another person, and/or perform
a task in the public interest.
Protocol 25 is about built-in privacy and privacy by default. Protocol 25.1 states that the
responsible for the processing should carry out appropriate technical and organizational
measures, e.g. pseudonymisation, designed accomplish an effective implementation of
the principles of protection of personal data, and to integrate the necessary guarantees
into the processing to meet the requirements of this Regulation and to protect the rights
of subjects. Pseudonymization being the processing of personal data in such a way that
the personal data can no longer be linked to a specific data subject without the use of
additional data, provided that the said additional data is stored separately and covered
by technical and organizational measures that ensure the personal data cannot be linked
to the subject.
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2.2.2 Ethics and Regulations of AI Systems

“Towards Responsible AI Innovation” [48] is a report on AI for law enforcement written
as a collaboration between the international police organization (INTERPOL) and United
Nations Interregional Justice Research Institute (UNICRI), together with partners from
business and academia, to discuss advancements in AI and how such tool can help in the
mission of fighting crime, claiming that it can be a powerful tool with a game-changing
potential. On the other hand, AI is a double-edge-sword that need careful wielding to
avoid infringing of fundamental human rights, such as the presumption of innocence
and protection against self-incrimination. As for most technologies, AI can also be used
for malicious activities. In 2019, the voice of a CEO of an energy company was success-
fully imitated by AI, resulting in a transfer of a substantial sum of money to a private
account [48] .

To keep up with the growing technology of AI, law enforcement needs to cooperate with
other stakeholders like the public sector, industry, academia, related security entities,
intelligence agencies, counter-terrorism bodies and so on. AI systems created for use of
law enforcement should comply with the principles of human rights, democracy, justice
and rule of law.

In April 2018, 24 members of EU signed “Declaration on Cooperation on Artificial Intel-
ligence” followed by the establishment of High-Level Expert Group on AI (AI-HLEG). This
group has representatives from academia, industry and civil society, and was tasked
with elaborating recommendations on future-related policy development and on ethical,
legal and societal issues related to AI. They worked out seven Ethical Guidelines [5] for
trustworthy AI, which are loosely translated to the following bullet points:

• Human agency and oversight: AI systems should empower people, allowing them
to make informed decisions and foster fundamental rights,

• Technical Robustness and safety: AI systems must be resilient and secure, and
include a fall back plan,

• Privacy and data governance: AI systems must ensure full respect for privacy
protection and adequate data governance,

• Transparency: AI systems and AI businesses models should inform people about
the system’s capabilities and limitations,

• Diversity, non-discriminant and fairness: AI systems should avoid unfair bias,
foster diversity and be accessible to everybody,

• Societal and environmental well-being: AI systems should benefit all human be-
ings, including future generations,

• Accountability: AI systems should have mechanisms that ensure responsibility
and accountability.

Many of these requirements involve non-technical methods like regulations, codes of
conduct, standardization, certification, and participating in terms of accountability. In
February 2020, the European Commission released a White Paper “On Artificial Intelli-
gence - A European Approach to Excellence and Trust” [13] that builds upon the Ethic
Guidelines and also suggests specific legal requirements such as AI systems being trained
on representative data, keeping detailed information on AI development and informing
citizen when they are interacting with an AI system.

There are also other organizations taking effort to assert AI ethics. In May 2018, Organ-
isation for Economic Co-operation and Development established an expert group that
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created “Principles on Artificial Intelligence” [18] which is adapted in 42 states [48]. Some
countries have also established national committees on the ethical dimensions of AI, such
as the Committee on Artificial Intelligence on the House of Lords of the United Kingdom
and the Advisory Council on the Ethical Use of Artificial Intelligence and Data in Singa-
pore. Large industries like Google, IBM and Microsoft have established ethical principles
for exploration of AI. According to Google, AI should be socially beneficial, avoid creation
or re-enforcement of bias, be built and tested for safety, and be accountable to people [18].

2.2.3 De-identification

“Towards Responsible AI Innovation” defines visual processing in technological context
to be the mimicry of the human visual system by a computer system. It involves the
extraction, analysis and understanding of information from images. Law enforcement
has been supported by visual information like pictures, videos, vehicles and locations
for a long time. Surveillance technology, CCTV in particular, allows for quick identifi-
cation of victims, perpetrators, or people of interest. Today, surveillance systems are
often combined with machine learning algorithms, which in the majority of cases are
more efficient and effective than human labour. The integration of machine learning
has revolutionized the areas of image processing and object recognition, making it pos-
sible to detect and track human faces and bodies. It is possible to identify abnormal
behavior and black- or white-listing people into buildings or events such as concerts and
festivals. The Oslo Police District collaborates with partners within the police force and
externally with industry and academia to create a non-intrusive surveillance system. The
non-intrusive part is to be achieved by de-identifying faces of people in videos. It is then,
hopefully, possible to both view real-time CCTV footage to assess situations, and share
the data with police partners that can use pattern recognition to identify acts such as
vandalism, street fighting and other abnormalities without braking any law or regulation.

National Institute of Standards and Technology (NIST) [20] defines de-identification as
a tool that organizations can use to remove personal information from data they collect,
use, archive, and share with other organizations. The term is not restricted to a single
technique but should rather be understood as a collection of approaches, algorithms, and
tools used to protect privacy. Often there is a high correlation between utility and pro-
tection; the more privacy protection the less information can be gathered from the data.
NIST states that the use of de-identification is of special importance for government agen-
cies, businesses, and other organizations that share data to outsiders. Re-identification
of de-identified data removes the protection and makes the de-identification method use-
less. It is difficult to foresee the re-identification risk of a de-identification method, thus
an adaption to new re-identification methods should be a part of the de-identifying pro-
cess. Even if a person is obfuscated to the degree to no recognition, it is possible to link
the person using other information available to find the true identity of the person. Oh
et al. [51] show that it is possible to train a person recognition system that only need a
handful of images in order to threaten a person’s privacy.

For still photographs, consumer videos and surveillance videos, the de-identification pro-
cess should remove identifiable information. ICT Cost Action IC1206 [60] defined three
terms of identifiers of people in multimedia content:

• Biometric identifiers are distinctive, measurable, unique and permanent personal
characteristics like face, iris, ear, fingerprint, voice, gait, gesture, lip motion, and
typing style;

• Soft biometrics are vague physical and behavioral and not necessarily permanent
and distinctive like height, weight, eye color, silhouette, age, gender, race, moles,
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tattoos, birthmarks, and scars;

• Non-biometric identifiers are hairstyle, dressing style, and the context of text,
speech, and social-political activity.

If all biometric identifiers, soft biometric, and non-biometric identifiers are de-identified
one has achieved multimodal de-identification, which should be the goal for multimedia
de-identification.

2.2.4 K-Same algorithm

The earliest use of de-identification in images mostly revolved around ad-hoc techniques
such as blurring, pixelating, or totally removing facial information from images. Newton
et al. [49] showed that pixelation and blurring failed against parrot recognition attacks
where the attacker invokes the same de-identification technique on its own dataset and
match the identified image with the original image. The remaining method, removing all
face information, does provide privacy but little information can be used for information
processing. Thus, the existing techniques were not sufficient for de-identification pur-
poses.

At Carnegie University in Pittsburgh 2005, Newton et al. [49] introduced the k-Same al-
gorithm. This algorithm finds similarity in faces from a collection of faces by measuring
distance and then makes a new face by averaging the image components. Through test-
ing, they found that their method, “total image blackout”, and the process of changing
a huge volume of pixels is equally effective as randomly guessing the identity. Of these
methods, k-Same was the only one preserving information.

The same year, two advancement of this algorithm were proposed, k-Same-Select [24] in
2005 and k-Same-M [25] in 2006. K-Same-Select divides images based on their attributes
onto mutual exclusive subsets before applying the same-K algorithm. k-Same-M use an
Active Appearance Model to better align the faces before averaging the image components
in order to overcome ghosting effects.

In 2009, Gross [23] pointed out that the k-Same algorithm becomes weak in presence
of multiple images from the same person, as they are likely to have less distance which
degrades the level of privacy in the generated image. Since a surveillance video likely
has multiple frames of the same subject, they concluded that the algorithm does not
provide sufficient protection. They instead propose a multifactor model that accounts for
both identity and non-identity factors when constructing new faces. They showed that
this method could preserve expression from the original image, and therefore in practice,
other types of attributes.

Slobodan and Nikola Pavesic [58] are also sceptic to the performance of k-Same based
algorithms, since the approach focus on still frontal images. This has a degrading visual
quality and does not preserve naturalness.

In 2015, Amin Jourabloo et al. [36] looked into de-identification of face images while pre-
serving a large set of attributes. Like the k-Same algorithm, they select k images that
share similar attributes of the input image but use a gradient decent instead of averag-
ing. Their method performs better having lower recognition rate while preserving more
attributes.

Using k-Same for image de-identification significantly improved the prior de-identification
methods, and have throughout the years been improved to overcome initial problems. We
believe it is capable of de-identifying people in certain settings, however, when presented
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with real CCTV footage, the people to be de-ientified are not likely to have a forward
pose or to be closely aligned. Finding the average of the presented faces only gives one
new identity, whereas the video will contain multiple people that should be de-identified
separately from each other. We therefore need another technology or mechanism to de-
identify CCTV footage.

2.2.5 De-Identification using GAN

Compared to the k-Same algorithm, GAN is a more prominent solution, generating new,
unique samples every time and can be less tangled to certain poses or image quality.
There exist multiple types of GANs solving a broad variety of simple and more compli-
cated tasks. In this section we look deeper into GANs that solve de-identification.

In 2018, Wu et al. [68] presented a GAN for face de-identification called Privacy-Protective-
GAN (PPGAN) which focused on keeping the generated face natural and preservation of
the attributes skin color and age group. The person is de-identified but share similar lu-
minance, contrast and structure with the original image. The reported de-identification
rate jumps between 84.7% for white, senior male to 100% for black youth. The generated
sample images in the report look similar to the original images. For these reasons we do
not find this solution suitable to this thesis.

Ren et al [57] use adversarial training with videos as input. The task of the network is
to de-identify faces while maximizing action detection performance. The network does
not focus on age and gender preservation, requiring further research for such purposes.
Their results on binary face verification show that the verification is successful two of
three times, meaning only 1/3 of the images are de-identified enough to not be recog-
nized. This de-identification rate is too low for the problem statement of this thesis.

Hukkelaas et al. [35] designed an architecture called DeepPrivacy that de-identifies faces
by exclusively generating new faces on annotations that keeps the original pose and back-
ground using image inpainting, which is the task of filling in missing areas of an image.
This architecture was further improved to overcome known inpainting issues using im-
puted convolutions and MSG-GAN [34]. This network does not intend to preserve age
or gender. To de-identify a variety of images, they generated a dataset crawling images
from Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M) [63], a dataset
with approximatly 99 million photos which is collected from the online tool Flickr. These
images are of diverse quality and poses, and is therefore more suitable for de-identifying
CCTV footage than traditional image datasets like CelebA.
Li et al [43] designed a network called AnonymousNet which comprises facial attribute
estimation, privacy-metric-oriented face obfuscation, directed natural image synthesis,
and adversarial perturbation. Their method makes it possible to manipulate the facial
privacy in a photo-realistic fashion that can be used in different application scenarios.
The reported results show that their method has less structural similarity than blurring,
pixelation, masking and inpainting, thus higher diversity from the original image. They
focus on 40 different attributes, using random forest fed by deep image features to learn
each attribute and use this attributes to provide a new identity. AnonymousNet is found
to be less suitable to solve the research question because attribute alteration to create a
new identity does not ensure de-identification.

Gafni et al. [19] propose a method for face de-identification that can modify a video at
high frame rates, minimizing the correlation of identity while preserving the pose, illu-
mination, and expression. They do not provide a singular de-identification rate but from
the reported results there seem to be high variety of de-identification in the videos, and
the identities are mostly recognizable after de-identification. Observations of reported
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images and videos 1 confirms this statement.

In 2020, Chen et al. [10] proposed a novel image privacy preservation method to balance
privacy protection and utility by generating realistic faces that matches the key face at-
tributes of the original image. They suggest a model which start by a DCGAN generating
a new image. Then both the original and generated image are labeled using a detection
algorithm. To transfer the original labels to the generated image, they use an attribute-
driven GAN named StarGAN. More about StarGAN is found in the next Section (2.2.6).
The reported results suggest 89.1% accuracy for correct labeling of 13 attributes and
that the de-identified images have a larger distance between original and created images
than blurring and pixelation. Unfortunately, images generated by DCGAN contain a new
background in addition to a new face. For the problem statement of this thesis, it is
simpler if the background stay the same during the de-identification process because it
requires less post-processing.

Croft et al. [14] looked into design and applications meant to preserve privacy, both in
a database-setting and the obfuscation of facial images while preserving some utility
like age and gender. The research suggests that GAN exceeds k-Same algorithm for de-
identification, and implements a model using an attribute-driven GAN named AttGAN,
which they call Differential Privacy. AttGAN is altered to gain more control over each
attribute change. The authors question shortcut connections in encoder-decoder net-
works, stating that shortcut connections can leak sensitive information about images.
They therefore make the encoding stochastic. This compromises the task of generating
realistic images thus noise is injected into the encoding before it is passed to the decoder.
To keep pose information, pose metrics are added to the classification network as a part
of the loss-function. For training they extract the head from the background using Mask
R-CNN [29] so the network only learns images of a head with a white background. To
handle white spots due to image overlaying they implement a GAN based pluralistic im-
age completion using facial inpainting. From the presented results, this method is better
at de-identifying people than DeepPrivacy because it changes the whole head area, not
only the masked part of the head.

All mentioned solutions were evaluated for this thesis, some of them found to be more
relevant than others. Differential Privacy is the closest to what this thesis want to achieve.
The alterations to AttGAN make it safer to use for de-identification as the neural network
does not contain information needed to restore an image. Since the generated images are
based on an attribute-driven GAN, one can build upon the design to include age groups as
well as gender. Due to unavailable source code, this direction was not further investigated
2. DeepPrivacy does provide similar privacy security in the network since the generator
never sees the sensitive face data. It does preserve more information than Differential
Privacy, like hair and ears, and because the inpainting use the remaining pixels within
the face to generate the new image, it most likely will use the same skin tone. The biggest
problem using this network is preserving age and gender, to accomplish this we therefore
suggest using an attribute-driven GAN in addition.

2.2.6 Attribute-Driven GANs

Attribute-driven GAN is a terminology we use to describe GAN architectures which focus
on changing specific attributes within an image. This subsection will contain information
about and rationale of different attribute-driven GANs.

StyleGAN [39] introduced by Karras et al. in December 2018, is created to enable control
1Live Face De-Identification Video Samples by Gafni et al. [19] can be found here.
2We contacted Croft, which declined to share the code due to commercial use
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of the image synthesis process in image generators and can be used to create realistic-
looking faces with the ability to fine-tune facial attributes. Creating such images with
selected facial attributes is accomplished by re-designing the generator architecture in
a way where the generator starts from a learned constant input and adjusts the “style”
or attributes of the image at each convolution layer based on two latent codes entering
before and after a randomly selected cross point. This technique regularizes the net-
work from assuming certain attributes are correlated. Noise is injected into the network
in order to automatically and unsupervised separate attributes from stochastic variation
while simultaneously enable scale-specific mixing of interpolation operations. Such mix-
ing decorrelates neighboring styles and allows for better control of the generated images.
The input is mapped to an intermediate latent space W, which controls the generator
through Adaptive Instance Normalization (AdaIN). Before each AdaIN, Gaussian noise is
added to improve the quality of the generated image.

In 2020, Kerras et al. published a new version of StyleGAN, StyleGAN v2 [40], which
redesigned and improved StyleGAN. The new version improve image quality issues by re-
designing the generator normalization, the progressive growing has been changed, and
the generator has been regularized to encourage good conditioning in the mapping from
latent codes to images. The normalization is redesigned to remove these characteris-
tic artifacts observed in StyleGAN. The new, alternative normalization method bases the
normalization on the expected statistics of the incoming feature maps. By using a skip
generator and a residual discriminator, they achieve the same goals as progressive grow-
ing without changing the topology during training. Also, the synthesis network has been
regularized to favor smooth mappings, improving the image quality.

In 2019, Abdal et al. proposed a technique, Image2StyleGAN [1], for inputting custom
images into the latent space of StyleGAN. They use an embedding algorithm to map a
given image into the extended latent space of StyleGAN, which in this case has been pre-
trained on the FFHQ dataset. Three operations are used on vectors in the latent space:
linear interpolation, crossover, and the addition of a vector and a scaled difference vec-
tor. These operations correspond to the image processing applications of morphing, style
transfer and expression transfer.

In 2020, Abdal et al. proposed Image2StyleGAN++ [2], extending Image2StyleGAN. In this
version, noise space optimization is used to restore high frequency features in images to
increase the quality of reconstructed images. It is found that stable noise optimization
can only be conducted if the optimization is done sequentially with the local latent space,
not jointly. The global latent space embedding algorithm has also been extended in order
to enable local modifications, and embedding has been combined with activation tensor
manipulation in order to perform high quality local and global semantic edits in images.
Image2StyleGAN++ does not appear to be focusing on solving or improving the limitations
stated in Image2StyleGAN, such as time use and inheriting artifacts from StyleGAN.

Image2StyleGAN does have some limitations, including inheriting image artifacts that
are present in the pre-trained StyleGAN and latency which may limit interactive edit-
ing. Although the experiments conducted in Image2StyleGAN do not contain the specific
functionality that is needed for our use case (change of age and gender), it is noted that
it enables control in latent space.

Abdal et al. [3] designed a model, named StyleFlow, that allows attribute-conditioned
semantic edits on real images and StyleGAN generated images. They explore the la-
tent spaces of a pretrained GAN and utilizes normalization flow maps to sample an n-
dimensional distribution conditioned on the target attributes. In addition to the paper,
StyleFlow presents a user interface that allows the user to perform editing on both real
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and generated images.

In 2020, Härkönen et al. described a technique, named GANSpace [28], to analyze GANs
and, in an unsupervised manner, create controls for image synthesis. GANSpace can be
applied to existing, trained GANs and consists of applying Principal Component Analy-
sis in either latent or feature space to identify important latent directions. By layer-wise
perturbation along the principal directions, a large number of controls can be defined.
GANSpace is applied to both BigGAN [8] and StyleGAN [39] to demonstrate control over
elements such as viewpoint, lighting, time of day and aging. GANSpace contains a user
interface where it is possible to select layers and change different components to create
changes in the image. These can be labeled and saved. This makes it possible to control
existing general-purpose image representations rather than train a new model for each
different task. For this thesis, adding GANSpace to the existing image generation method
in DeepPrivacy may allow change of age and gender inside the process, instead of using
a separate tool after the de-identification process.

Existing image-to-image translation has limited scalability in handling more than two
image domains, making it necessary to build different models independently for every
pair of domains. Choi et al. propose StarGAN [12], which is a new approach enabling
image-to-image translations for multiple domains using a single model. The generator
takes both image and domain information as inputs and generates a fake image as output
according to the chosen domain. The fake image is then inputted into the discriminator,
which, in addition to deciding whether the image is real or fake, also classifies the targeted
domain. In addition, domain classification loss is used to make sure that the output im-
age is classified to its target domain. Reconstruction loss is also used, which focuses on
preserving the content of the input image while only the domain-related part is changed.
StarGAN learns the mappings between multiple domains using a single generator, but it
does not capture the multi-modal nature of the data distribution because each domain is
indicated by a label. In 2020, Choi et al. released version 2 of StarGAN [11] which focuses
on generating diverse images across multiple domains. In the new version, the domain
label is replaced with a domain specific style code representing diverse styles of a specific
domain. Their results show that StarGAN v2 give move diversity and better visual quality.

He et.al. designed AttGAN [30] in order to manipulate single or multiple attributes of faces
while preserving the original face. They share some similar objective functions of Star-
GAN [12], which was developed independently in parallel, releasing their report five days
ahead. Their method is based on unsupervised learning, strengthening the weakness of
finding a training set containing faces correctly labeled for the combination of attributes
of interest. Their model consists of a generator with an encoder-decoder structure, an
attribute classifier, and a discriminator. The model utilizes two decoders, one decodes
an image with a classification constraint using a desired label while the other does re-
construction learning using the original label. The first process ensures attribute change
while the other ensures identity preservation. The classifier estimates the attributes, and
the decoder classifies real and fake images. The network has three trainable components,
namely attribute classification, reconstruction learning, and adversarial learning.

For our use, adding GANSpace to the existing image generation method in DeepPrivacy
may provide the possibility of choosing a specific age and gender when generating the
image. Although the experiments conducted in Image2StyleGAN do not contain the spe-
cific functionality that is needed for our use case, it seems like it has the potential. Both
GANSpace and StyleFlow are methods that can provide control of attribute changes in
StyleGAN. Using either GANSpace or StyleFLow together with Image2StyleGAN may re-
sult in the ability of using a custom input image as well as controlling the changes that
are applied in latent space. The simplicity of using only one single model, puts Star-
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GAN and AttGAN at advantage compared to be an easier alternative for changing age and
gender than combining Image2StyleGAN with StyleFlow/GANSpace. As StarGAN v1 and
AttGAN preserve background, these seem to be the two solutions that deliver better at
what we are requesting in our application.

2.2.7 Tracking People in CCTV Footage

Some of the utility that should be preserved, is the ability to track people and follow their
actions. In order to preserve information about the people’s actions and whereabouts it
is necessary to preserve or generate some information that makes re-identification pos-
sible. This contradicts the goal of de-identification but can be hold to the multimodel
de-identification standard as long as biometric, soft biometrics, and non-biometric iden-
tifiers are removed.

There exist different methods for tracking people, one example is face tracking, while an-
other is whole-body-tracking. For whole-body-tracking one can use a neural network that
is capable of re-identifying a person based on it its whole body from bottom to head, both
front and back. Such an algorithm could be more suitable on CCTV footage because the
faces can be unclear, have too low resolution, and also work on people that is not facing
the camera. Ahmed et. al [4] studied person re-identification and found it to be a difficult
task because the changeability of pose, lighting, and camera view cause a broad set of
images. A re-identification network is often presented two images, and should, based on
the content, be able to guess if it is the same person (true) or two different people (false).

Simple Online and Realtime Tracking (SORT)

Alex Bewley et al. proposed a new, minimalistic approach to multiple object tracking
(MOT) in 2017 called SORT [7]. This approach focuses on providing both accuracy and
speed for online and real-time applications where the tracker is only presented with de-
tections from the current and previous frame, ignoring re-identification and issues re-
garding occlusion as this introduces undesired complexity. SORT consists of four parts:
a detection part, an estimation part, a data association part, and a creation/destruction
of track identity part. The detection part uses the Faster Region CNN detection frame-
work with two stages; the first stage extracts features and proposes regions, whereas the
second stage classifies the object in the proposed regions. Only person detection results
with output probabilities greater than 50% are passed to the tracking framework. The
estimation part consists of propagating the detections from the current frame to the next
using a linear constant velocity model. A Kalman filter framework is used to solve the
velocity components to update target state when a detection is associated to a target.
In cases where no detections are associated to the target, the state is predicted without
correction using the linear velocity model.

The data association part of SORT uses the intersection-over-union (IOU) distance be-
tween each detection and all predicted bounding boxes from the existing targets in order
to assign detections to existing targets. The assignment is solved using the Hungarian
algorithm. In situations where the overlap is less than IOUmin, the assignment is re-
jected. The last part of SORT is track identity creation and deletion for when objects enter
and leave the image. In situations where a detection has an overlap less than IOUmin,
the existence of an untracked object is signified, and a new track identity is created. If
a track identity is not detected for TLost frames, it gets terminated in order to prevent
an unbounded growth of track identities. The performance of SORT has been evaluated
using a set of testing sequences set by the MOT benchmark database, containing both
moving and static camera sequences. FrRCNN(VGG16) is used for detection, and the
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experiments are run on a single core of an Intel i7 2.5GHz computer with 16 GB RAM.
Results show that the tracker runs at 260Hz and achieves best in class performance,
balancing speed and accuracy.

In 2017, Alex Bewley et al. published a second tracking report, introducing SORT with
Deep association metric, namely DeepSORT [67]. DeepSORT replaces the association
metric from SORT with a new metric that combines motion and appearance information.
This is done by implementing a CNN that is trained on a large person re-identification
dataset. Their results show that the number of identity switches is reduced by 45% com-
pared to the original SORT, showing that it is more robust against occlusion. As occlu-
sion can be expected in CCTV footage, it is probably more suitable for video surveillance
footage.

You Only Look Once (YOLO)

In 2016, Joseph Redmon et al. presented a real-time object detector named YOLO [56].
YOLO works by dividing an input image into an SxS grid. For each grid cell, bounding
boxes, confidence of the bounding boxes, and class probabilities are predicted. The con-
fidence score reflects how confident YOLO is that the bounding box contains an object
and how accurate the box is. The grid cell that contains the center of an object is re-
sponsible for detecting that object. Regardless of how many bounding boxes there are
in a grid cell, one grid cell only predicts one set of class probabilities. For evaluation,
YOLO is pretrained on the ImageNet 1000-class competition dataset and evaluated on
the PASCAL VOC detection dataset. It is shown that YOLOs processing time is 45 frames
per second using a Titan X GPU, enabling real-time detection with low latency. It is also
able to achieve more than twice the mean average precision compared to other (at that
time) state-of-the-art real-time systems.

YOLOs limitations include spatial constraints on bounding box predictions because each
grid cell only predicts two boxes and is limited to one class, limiting the detection of mul-
tiple objects in a small space. It also struggles to generalize to objects in new aspect
ratios or configurations, and the loss function creates limitations by treating errors in
small bounding boxes and large bounding boxes in the same way, despite a small error
in a small box having a larger impact than a small error in a large box. Also, compared
to the 2016 state-of-the-art detectors, YOLO struggles with small objects.

In the end of 2016, Joseph Redmon et al. introduced YOLOv2 and YOLO9000 [54]. The
focus of the goal was to improve the recall and localization for YOLO, while maintain-
ing the classification accuracy. YOLOv2 improved the architecture, introducing batch
normalization in order to improve convergence and eliminate the need of other regular-
ization methods, increasing mAP more than 2%, and increasing the classifier resolution.
The changes resulted in almost 4% increase in mAP. Instead of predicting the coordi-
nates of bounding boxes directly using fully connected layers as done in YOLOv1, the
fully connected layers are removed and replaced with anchor boxes to predict bounding
boxes. Following this, instead of predicting the class from the spatial location, class is
predicted for every anchor box. This change lowers the mAP by 0.3, but increases the
recall from 81% to 88%. YOLO is also tested using dimension clusters with directly pre-
dicting the bounding box center location, which is shown to improve YOLO by almost 5%
more than the version using the anchor boxes. The detector has access to finer-grained
features to improve the localization of smaller objects, increasing the performance by 1%.

The original YOLO used a custom network based on the Googlenet architecture as a
base feature extractor, which in YOLOv2 has been replaced by Darknet-19, improving
the accuracy. The authors also propose a method to jointly train on object detection
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and classification, and use this to train YOLO9000, which consists of the YOLOv2 archi-
tecture but limits the output size by using 3 priors instead of 5, on the COCO detection
dataset and the top 9000 classes from the ImageNet classification dataset. The new train-
ing method allows for prediction of detections for object classes that are lacking labeled
data. YOLO9000 is evaluated on the ImageNet detection task and is able to achieve 19.7
mAP overall and 16.0 mAP on the unlabeled data.

In 2018, Joseph Redmon et al. released a paper for YOLOv3 [55], containing several
improvements to the previous YOLOv2/YOLO9000 architecture. Changes in the YOLOv3
include that the objectness score is now predicted for each bounding box using logistic
regression, prediction across three different scales has been implemented, and softmax
has been replaced by independent logistic classifiers in order to support multiple classes
in a bounding box. Also, the Darknet-19 network for feature extraction has been replaced
by Darknet-53, consisting of 53 convolutional layers. YOLOv3 struggles with medium to
large objects.

2.3 Potential Approaches for this Thesis

Here we evaluate the possibilities of answering the research question. There exist dif-
ferent approaches that will solve the problem, some already mentioned in the previous
section. For solutions similar to our own application, like PP-GAN, AnonymousNet, and
“Design and Applications of Differentially Private mechanisms”, we were not able to find
or receive code.

We discussedmultiple approaches for preserving age and gender group when de-identifying
footage, including the following four approaches. For all approaches, age and gender must
be detected before the de-identification, and when the new face is ready it needs to re-
place the original face in the frame. Note that the following approaches are theoretical
approaches that we evaluated after researching the field. Only one of the approaches will
be used in this thesis.

2.3.1 Only StarGAN/AttGAN

The first approach would be using only StarGAN or AttGAN to both de-identify and pre-
serve age and gender, where one would choose the domain/attribute corresponding to
the original age and gender.

As this is the simplest approach, it is also the easiest to implement and test. However, the
face may not get de-identified enough as it seems like StarGAN/AttGAN does not always
apply enough changes. Also, the changes that the GAN networks apply are reversible,
which is not at all optimal for de-identification.

2.3.2 Tracker, DeepPrivacy and StarGAN v2

The second approach consists of using a person tracking network, DeepPrivacy, and Star-
GAN v2. The method would first be using a tracker to link an ID to a person throughout
the video clip and assigning a reference face to the ID, which contains the original age
and gender. Then, a new face would be generated using DeepPrivacy, which afterwards
would be merged with the assigned reference photo using StarGAN v2. The reason why
the reference face is merged with the face generated from DeepPrivacy, is to keep the
original pose of the face (which DeepPrivacy preserves when de-identifying).

This approach would minimize potential flickering when de-identifying a video, as well as
ensure trackability, as one person would always keep the same face. It also ensures de-
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identification. A limitation of this approach is de-identifying crowds, as this would require
a big database of reference faces with different combinations of ages and genders. Also,
a crowd may complicate the tracking process.

2.3.3 DeepPrivacy and StarGAN/AttGAN

The third approach consists of generating a new face using DeepPrivacy and use Star-
GAN/AttGAN on the generated face with a domain/attribute that corresponds to the
original age and gender.

This approach seems fairly simple and ensures de-identification. However, it does not in-
clude tracking and will therefore not ensure that a person keeps the same face throughout
the video clip.

2.3.4 DeepPrivacy - Changes in latent space

The fourth approach consists of applying the method used in StyleFlow/GANSpace to
DeepPrivacy v1, in order to enable control of age and gender during the generation of an
image (in latent space).

The first version of DeepPrivacy and first version of StyleGAN is built upon the same
generator structure (progressive GAN), so it is possible that some of the changes may
be convertible. This would be a very interesting approach and should be investigated
further. However, as we have little to none experience in latent space changes, and the
time period for this thesis is limited, this approach may not be optimal now.

2.3.5 Architectural description of DeepPrivacy, StarGAN and AttGAN

In this subsection we will present the architectures for the chosen approach; DeepPrivacy,
StarGAN, and AttGAN.

DeepPrivacy

We incorporate the newest version of DeepPrivacy [34] illustrated in Figure 2.1. The archi-
tecture builds upon a MSG-GAN design but differentiates from the traditional MSG-GAN
by summarizing RGB outputs from each resolution instead of matching each resolution
to the discriminator. z is a latent variable. Empty circles indicate a encoder-decoder con-
nection (U-net connection), while circles with a plus sign indicate a residual connection.
The pose information is pre-processed into a feature bank using two Fully-Connected
Neural Network (FCNN)layers and concatenated to the features from the encoder.

Instead of using traditional convolution layers, they use Imputed Convolution (IConv)
which replace uncertain values with an estimate from spatially close features. This en-
sures proper handling of the masked area and generates images that are visually pleas-
ing. They combine multiple feature maps from different layers in order to only propagate
features with a high certainty from shallow layers3.

The authors have also incorporated a way of de-identificating videos which follows the
pipeline process illustrated in Figure 2.2. Each frame is individually processed, starting
with a face detection network that detects all faces that are present in each particular
frame. The faces are then annotated with face location and pose information. Before
further processing, each face is rotated and scaled to fit the generator size, which in this

3If the reader is interested in more details on this architecture, please take a look at “Image Inpainting
with Learnable Feature Imputation” [34].
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Figure 2.1: DeepPrivacy architecture inspired by figure found in [34, p.7].

case is 128×128. The faces are masked before inpainting. It is possible to do different
types of masking, the default being a black rectangle over the whole face. After inpaint-
ing, the generated face is pasted upon the previous face, and then rotated and scaled
back to its original parameters. When each face is given a new identity, the next frame is
processed. If no faces are detected in a frame, the process goes directly to the next frame.

Figure 2.2: Inpainting process of DeepPrivacy retrieved from reading DeepPrivacy’s
source code.
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StarGAN v1

Figure 2.3 shows the architecture of the StarGAN V1 [12]. The architecture consists of
an discriminator and a generator, where the generator takes image and target domain
as input and generates a fake image, and then tries to reconstruct the image based on
the fake image and its original domain. This process ensures that the new target domain
is learned while the background information is kept. The generator network of StarGAN
uses instance normalization for data normalization.

Figure 2.3: The architecture of StarGAN v1 inspired by the figure found in [12, p.8791].

The figure illustrates two additional losses to the adversarial loss, namely classification
loss to ensure that the face has the right attributes and a reconstruction loss to keep as
much as possible true to the original image. Each loss is defined below.

The adversarial loss uses the maximum-likelihood method from adversarial training,

Ladv = Ex[logDr(x)] + Ex[log(1−Dr(G(x, b))], (2.10)

where G generates an image G(x,b) conditioned on both input image x and target domain
label b.
An auxiliary classifier is used on top of the discriminator to ensure the generated image
have the correct target domain. The classification process should optimize both the dis-
criminator and generator. The discriminator receives classification penalty based upon
how well real images are classified Lrcls. The generator is penalized based on the classifi-
cation loss of fake images Lfcls.

Lrcls = Ex,a[− logDcls(a|x)], (2.11)

where Dcls(a|x) denotes a probability distribution over the original domain label a.

Lfcls = Ex,b̂[− logDcls(b|G(x, b))], (2.12)

where Dcls(b|G(x, b)) denotes a probability distribution over the target domain label a.
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The last loss, is the reconstruction loss Lrec, which is computed by the following formula

Lrec = Ex,b,a[||x−G(G(x, b), a)||1], (2.13)

where G(G(x, b), a) should translate the image back with the original target domain. The
reconstruction loss is found using the L1 norm.
The training objective for StareGAN is

Dloss = −Ladv + λclsL
r
cls,

Gloss = Ladv + λclsL
f
cls + λrecLrec,

(2.14)

where λcls and λrecLrec are hyper-parameters that control the importance of the corre-
sponding losses. The default value of λcls is 1 and λrec is 10.

AttGAN

Figure 2.4: AttGAN Architecture inspired by the figure found in [30, p.5467].

The architecture of AttGAN [30] is quite similar to StarGAN, however, uses a encoder-
decoder with latent space z instead of a cycle-dependency (see Figure 2.4). Instead of
two generators it has two decoders, one for generating a new image with target label and
one for reconstructing the image using the original label. The network uses WGAN-GP
as adversarial loss, where the discriminator has the following loss

min
||D||L≤1

Ladvd = −ExaDr(xa) + ExaDr,b(xb̂), (2.15)
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where xa denotes original image x with original label a, Dr,b is the distribution over the
real images and label b, and xb̂ is Gdec(Genc(xa), b). The generator network of StarGAN uses
batch normalization for data normalization.
The generator should minimize Ladvg for the encoder and both decoders:

min
Genc,Gdec

Ladvg = −ExaDr,b(xb̂). (2.16)

Like StarGAN v1, the architecture has an auxiliary classifier, however, in this architecture
both discriminator and generator are penalized with Lrcls and Lfcls respectively.

Lrcls = Ex,a

[
n∑
i=1
−ai log Ci(xa)− (1− ai) (1− Ci(xa))

]
,

Lfcls = Ex,b

[
n∑
i=1
−bi log Ci(xb̂)− (1− bi) (1− Ci(xb))

]
,

(2.17)

where Ci(xa) indicates the prediction of the ith attribute.
L1 norm is used for reconstruction loss Lrec,

Ex,b,a[||xa − xâ||1]. (2.18)

The full training objective is then

Dloss = Ladv + λclsdL
r
cls,

Gloss = Ladv + λclsgL
f
cls + λrecLrec,

(2.19)

where λclsd, λclsg , and λrec are hyper-parameters for balancing losses. Their default values
are 1, 10, and 100 respectively.
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Chapter 3

Proposed Method and Datasets

This chapter contains information about the proposed method, including its network
architecture and training details, as well as the datasets proposed in this thesis together
with labeling details.

3.1 Proposed Method

The proposed method uses the data sets, attributes, network, and other settings that are
found to be best for the use case of this thesis. Details and results of testing different
approaches can be found in Chapter 4.

The first step of the proposed method uses a separate age and gender estimation net-
work to find the original age and gender, which is used to create target labels. These
labels will later be used to inform the attribute-driven GAN of the original attributes, so
that it makes sure that the de-identified face contains the same attributes. In this the-
sis, the existing Age-gender-estimation network has been used1, which is a CNN trained
on IMDB-WIKI2. Another step in the pre-prosessing is to erase the face in the original
image. This is done so that the neural networks that are to de-identify the face and pre-
serve attributes are unaware of the original face, creating a new face independently of
the original face.
DeepPrivacy is used for de-identification, as it is robust against occlusions, different
poses, lighting and image quality, and is found to have a de-identification rate of 97.40%
(found in 4.1). AttGAN is used for preservation of age and gender, and change of skin
color. After researching different attribute-driven GANs, StarGAN and AttGAN was seen
as the most prominent alternatives for the purpose of changing age and gender. Results
in 4.4.1 and 4.5.2 show that AttGAN is most suitable.
The attribute preservation is done by inputting the de-identified image into AttGAN to-
gether with the target labels reflecting the original age and gender, as well as the desired
skin tone. AttGAN then changes the attributes in the image to the target attributes,
meaning if the target gender is male, AttGAN will try to change the gender of the person
in the image to male. The resulting image is a de-identified image with original gender
and age group, and desired skin color.

We propose two versions of the network, one without skin tone, “DeepPrivacy and AttGAN”
(DP-ATT), and one with skin tone, “DeepPrivacy and AttGAN with Skin tone” (DP-ATT-S).
Figure 3.1 shows a simplified illustration of the versions. The black arrows shows steps
that are used in both versions, while the blue arrow shows steps specifically for DP-ATT
and the red arrow shows the steps specifically for DP-ATT-S. x is the original image, xm
is the original image with a masked face, xd is the the identified image, xda is the original

1The code for Age-gender-estimation can be found here.
2The IMDB-WIKI dataset can be found here.
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image with preserved age group and gender, and xdb is the original image with preserved
age group and gender, and skin tone changed to light.
The same mechanisms as DeepPrivacy are utilized for image pre-processing, but here age
and gender information are also detected and sent into the proposed network together
with the erased face. In the version with skin tone, information about the desired skin
tone is also included. After being de-identified by DeepPrivacy, AttGAN uses the target
labels to reconstruct the de-identified image with original gender, age group and, if using
the version with skin tone, a chosen target skin tone. The de-identified image on top of
the figure is the result after DeepPrivacy alone, and the right-most image is the overall
result. The right-most top image being the output using the version without skin tone
and the right-most bottom image being the output using the version with skin tone.

Figure 3.1: Illustration of the proposed method.

3.1.1 Network Architecture

Table 3.1 shows the network architecture of the AttGAN encoder and decoder for DP-ATT-
S, while table 3.2 shows the network architecture of the AttGAN encoder and decoder for
DP-ATT. Table 3.3 shows the architecture of the AttGAN discriminator and classifier, and
is identical for both the implementation with skin tone and the implementation without
skin tone.
The network architectures are very similar to the architecture of the original AttGAN [30].
The only difference is that Instance Normalization (IN) is used instead of Batch Normal-
ization (BN) for the version that includes skin tone (see 4.5.5 for the experiment where
the use of IN instead of BN is tested).

Table 3.1: Network architecture of the encoder and decoder for the DP-ATT-S.
Encoder Decoder

Conv(64,4,2), IN, Leaky ReLU DeConv(1024,4,2), IN, ReLU
Conv(128,4,2), IN, Leaky ReLU DeConv(512,4,2), IN, ReLU
Conv(256,4,2), IN, Leaky ReLU DeConv(256,4,2), IN, ReLU
Conv(512,4,2), IN, Leaky ReLU DeConv(128,4,2), IN, ReLU
Conv(1024,4,2), IN, Leaky ReLU DeConv(3,4,2), Tanh
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Table 3.2: Network architecture of the encoder and decoder for DP-ATT.
Encoder Decoder

Conv(64,4,2), BN, Leaky ReLU DeConv(1024,4,2), BN, ReLU
Conv(128,4,2), BN, Leaky ReLU DeConv(512,4,2), BN, ReLU
Conv(256,4,2), BN, Leaky ReLU DeConv(256,4,2), BN, ReLU
Conv(512,4,2), BN, Leaky ReLU DeConv(128,4,2), BN, ReLU
Conv(1024,4,2), BN, Leaky ReLU DeConv(3,4,2), Tanh

Table 3.3: Network architecture of the discriminator and classifier for the proposed
network.

Discriminator Classifier
Conv(64,4,2), LN/IN, Leaky ReLU
Conv(128,4,2), LN/IN, Leaky ReLU
Conv(256,4,2), LN/IN, Leaky ReLU
Conv(512,4,2), LN/IN, Leaky ReLU
Conv(1024,4,2), LN/IN, Leaky ReLU

FC(1024), LN/IN, Leaky ReLU FC(1024), LN/IN, Leaky ReLU
FC(1) FC(13), Sigmoid

3.1.2 Training Details

In this subsection, the training details of the two versions of the proposed network are
presented. For simplicity, the details that are the same as for the original AttGAN are not
mentioned.

DP-ATT-S

The version with skin tone is trained using “Diverse Faces with Distinct Skin tones” with
the gray light skin tone and the attributes female, dark_skin, 0-19, 20-29, 30-39 and
40+. Related to the change from BN to IN, the number of discriminator updates per
generator update has been changed to 1 (instead of 5 which the original AttGAN use).
A combination of MS-SSIM and L1 is used for reconstruction loss instead of L1 alone (see
4.5.6 for experiment). The alpha value of this loss is set to 0.84 and compensation is set
to 0.2 (see 4.6 for more details).

DP-ATT

The version without skin tone is trained using the extended version of “Diverse Faces”
with the attributes female, 0-19, 20-29, 30-39 and 40+.
Similar to the version with skin tone, the combination of MS-SSIM and L1 is adopted
instead of L1. The same compensation and alpha values are employed here as in the
version with skin tone.

3.2 Datasets

To our knowledge, there are no datasets of same size as CelebA containing single-face
images with a variety of image quality and pose together with labels on age and gender,
and a good representation of all age groups. Therefore, to train the proposed schemes,
two different datasets are created. One contains only original skin tones, namely “Di-
verse Faces”, and the other one contains two distinct skin tones, i.e., “Diverse Faces with
Distinct Skin tones”. In what follows, we will present in detail the two created data sets.
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3.2.1 Diverse Faces

Both AttGAN and StarGAN v1 use CelebA or versions of CelebA for training - training
sets that do not represent the diversity of CCTV-footage as these images are normally
frontal images of good quality. There were several reasons to believe that AttGAN and
StarGAN v1 would perform quite well on images of more diversity, because both focus
on preserving as much of the original image as possible. We had a theory that a more
diverse dataset would complement the diverse images generated by DeepPrivacy, being
more robust against small abnormalities in these images (e.g., pose, how close the face
is, and lighting).
CelebA has a training set of size 202,599 [44], thus we decided to acquire the same
amount of data. We looked for datasets with the same diversity as DeepPrivacy’s Flickr
Diverse Faces (FDF) dataset. FDF, as is, does not contain gender and age labeling, so
we looked for other datasets that might have such information and found FairFace. Due
to its diversity and size, we labeled some of the images from FDF so they could be used
for training as well.
The FairFace dataset [37] focuses on balancing the distribution of different races (specif-
ically White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino). It
consists of 108,501 labelled images that are collected from the YFCC-100M Flickr dataset,
and is divided into validation and training sets. The labels for each image include gender,
age-group, and race. Each image contains only one face.
The FDF dataset [35] focuses on variety in poses, occlusions, backgrounds, and people.
It consists of 1.47M images with bounding box and key point annotation for each face in
the image.

Original Version

The original version of our proposed dataset, Diverse Faces, consists of 158,635 images
for training and 10,954 images for validation. The FairFace validation set is used for
validation, while the FairFace training set is combined with images from FDF to form a
larger training set.

Expanded Version

The expanded version is Diverse Faces expanded with additional FDF images. Previously,
the validation set consisted of only Fairface images, while in this version the previous
Fairface images have been added to the training set and the validation set has been
replaced by new FDF images. The validation set consists of 43,119 images, and the
training set consists of 180,492 images.

Test Dataset

The test dataset consists of FDF images that have been de-identified using DeepPrivacy.
Age-gender-estimation, a network that estimates the age and gender of faces in images,
is used to find the age and gender on the images both before and after de-identification.
There are several attribute target files created for the test dataset, reflecting the attribute
label files created for the different datasets. The age and gender that were detected before
de-identification are configured as the target age and gender.
The target files are made with the restriction of maximum 150 images per the age groups
of 0-19, 20-29, 30-39 and 40+ in order to balance the distribution, which consists of
1200 images in total.
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3.2.2 Diverse Faces with Distinct Skin tones

This subsection will describe how the Diverse Faces dataset was prepared in order to
include skin tone.

Beige Light Skin Tone

It was created two copies of the Diverse Faces dataset, one for dark skin tone and one for
light skin tone. “Skin detection” was used to change the skin color, with RGB 227,208,202
for the light skin color and 111,55,55 for the dark skin color.
As the skin color changing network was unable to process some of the images, such
images were removed from the dataset. In total, the validation set ended up with 12,363
images while the training set ended up with 163,252 images.

Grey Light Skin Tone

Random sampling during training showed that the beige light skin tone removed facial
details, making the face look less natural. In some samples the skin color was seen on
parts of the background as well. With some testing and random sampling, it seems like
150, 150, 150 is better for preserving the facial details and changing only the skin.
It was therefore created a different version of Diverse Faces with Distinct Skin tones with
RGB 150, 150, 150 for the light skin tone. The validation set ended up with 13,779
images, and the training set with 174,334 images. It can be observed that a higher
number of images survived the data preparation process for the new skin tone compared
to the beige one, which presumably is due to better preservation of facial details, making
more faces detectable.

Test Dataset

The only difference for this test dataset compared to the test set of “Diverse faces”, is that
there are two copies of the target files with one where the target for all the images is light
skin, and one where the target for all the images is dark skin.

3.2.3 Labeling the Datasets

The Diverse Faces and Diverse Faces with Distinct Skin Tones datasets are labelled us-
ing the same network that is used to detect the age and gender of the original image
in our proposed scheme, namely Age-gender-estimation. For images where multiple
ages/genders are detected, it is assumed that the image contains multiple people. Such
images are removed from the datasets. Also, the Age-gender-estimation network did have
some trouble detecting faces in some of the images. To make sure we only kept the images
that have detectable facial landmarks, we removed the images where the landmarks were
not detected. For Diverse Faces with Distinct Skin tones, binary labels for dark/light
skin tone are also added.
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Chapter 4

Evaluation and Discussion

This chapter starts by looking at DeepPrivacy and how well it performs de-identification
(Section 4.1).

Section 4.2 contains a traceability experiment that is conducted in order to determine
how much the de-identification affects traceability and whether the observed flickering
affect after de-identification using DeepPrivacy has any effect on it.

Section 4.3 introduces the methods used for evaluation of age, gender, skin color and
image quality in the following experiments.

Section 4.4 focuses on the first two hypotheses, H1 and H2, and contains experiments
with the main goal of preserving gender and age in de-identified CCTV footage. First, two
different attribute-driven GAN networks are compared, then some changes is applied to
the training dataset in order to improve the training, and at the end some parameter
changes are made, also with the goal of improving training.

Section 4.5 contains experiments conducted with the additional focus of changing skin
tone (H3). First a sequential run of GAN to preserve age and gender and a network to
change skin tone, is tested. Then skin tone is added as an attribute to GAN. Again, ex-
periments where changes are applied to the training dataset in order to improve training,
is conducted. Towards the end of this section, the focus shifts to minimizing background
noise and improving image quality. In relation, experiments are conducted where the
reconstruction loss and normalization function are changed.

The last section (Section 4.6) evaluates the final, proposed solution. There are two ver-
sions of the solution, one that focuses on preserving gender and age as well as changing
skin color (H1, H2 and H3), while the other version does not change the skin color (only
H1 and H2).

4.1 DeepPrivacy on the matter of De-Identification

If we are to use DeepPrivacy in combination with AttGAN or StarGAN, it is important
that DeepPrivacy has a good de-identification rate, because both AttGAN and StarGAN
are potentially reversible given the nature of their architecture. To find the identification
rate, we use a combination of a face detector, MTCNN [69], and a face verification model,
LResNet100E-IR [27], trained on the MS1M-Arcface dataset [16]. We evaluate a threshold
based on the samples with low distances and conclude that 0.3 should be sufficient for
de-identification. Note that images with distances right below 0.3 seem to be de-identified
as well, but the in-painted faces are too similar to the person that is to be de-identified.
There are also some images where DeepPrivacy is unable to detect the face and the face
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is therefore never de-identified.

We use in total 41,094 de-identified images generated by DeepPrivacy and verify them
against the corresponding original images and find the de-identification rate to be 97,40%.

4.2 Traceability in De-Identified CCTV Footage

A tracking experiment was conducted in order to determine whether and to which degree
the de-identification affects traceability. Recall that in order to detect anomaly situations
and maximize the utility of the de-identified CCTV video, person traceability is important.
By taking a closer look at the de-identified videos, it seems like the flickering phenomenon
in DeepPrivacy does not change the whole face; a person seems to keep the same facial
characteristics consistent in multiple frames. It looks like the flickering is a result of
rapid change of lighting. It has to be noted that under inferior conditions (such as a lot
of occlusion), the facial characteristics can be inconsistent. This makes sense due to the
inpainting technique of DeepPrivacy, which uses nearby pixels in order to reconstruct/in
paint a face. If such neighbor pixels are changed, the in painted face may change as well.
The flickering effect may be visually unpleasing, but as the de-identified videos are to
be further processed by computers for the incident detection, not humans, we conclude
that it is unnecessary to work on methods to prevent the effect in this thesis.

An existing, pre-trained object tracking network was used, with YOLOv3 for object detec-
tion and classification, and DeepSORT for tracking over multiple frames1.
The dataset used for this experiment is Anomaly-Detection-Dataset, released by Waquas
Sultani et al. in conjunction with their paper “Real-world Anomaly Detection in Surveil-
lance Videos” [61]. The dataset consists of 1900 real-world surveillance videos, and con-
tains both videos of normal events and unwanted incidents, including fighting, road ac-
cidents and burglary 2.

We used 50 videos of normal events and 50 videos of anomaly events, were the anomaly
events where an even mix of abuse, arrest, arson, and assault. Note that not all videos
contain visible faces. Each video is processed by the object tracking network with the
class to be tracked being “person”, and the number of different people found in the video
is noted. The videos are then de-identified by using DeepPrivacy, and again processed
by the object tracker network in order to note the number of different people in the de-
identified video. The number of people in an original video is compared to the number of
people in the same video after de-identification.

Before conducting the experiment, we had the following theories:

• If more people are detected in the original video than the de-identified video, it could
mean that the de-identifier creates distorted faces that are untraceable.

• If the same number of people are detected in the original and de-identified video, it
can mean that the de-identification did not affect the traceability at all.

• If a higher number of people are detected in the de-identified video than the original
video, it could be an indication that the flickering affects the tracking process and
multiple people are detected instead of one.

Table 4.1 displays the number of people found in original and de-identified videos con-
taining normal behavior, while table 4.2 shows the same comparison for videos containing

1The object tracking network together with a link to the used YoloV3 weights can be found here.
2The Anomaly-Detection-Dataset can be found here.
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abnormal behavior. The sum shows that, in both types of videos, a slightly higher num-
ber of people are found in the original videos. Looking at individual videos alone, we do
not observe a prominent pattern indicating any direct conclusion about our theories.
Also, after manually checking the videos that have the largest deviation, it can be seen
that the network has trouble re-identifying people when filmed straight from above. For
instance, the video “365.mp4” contains a total of 3 people that almost constantly are in
frame, filmed straight from above. The tracking network detected as many as 49 people
in the original video, and 28 in the de-identified video.

After some suspicion, we found that the de-identification done by DeepPrivacy drasti-
cally decreases the bitrate of the video. With the video “Abuse001.mp4” as an example,
the original total bitrate is 1882kbps, while the total bitrate of the de-identified version
is 56 kbps. This change in video quality is likely the reason for the difference in number
of people found in the original and de-identified videos. From observations, it seems like
some people at further distance become more unclear. These are people that originally
appear unclear or so far away from the camera that they do not have to be de-identified
by DeepPrivacy. The lowered bitrate is not optimal for the further processing of the de-
identified videos and it should therefore be increased after de-identification in order to
restore the original quality of the video.

Table 4.1: Comparing the traceability of people in original and de-identified videos con-
taining normal behaviour.

Filename Original De-identified Original minus De-Identified
003.mp4 1 1 0
006.mp4 1 1 0
010.mp4 8 7 1
014.mp4 5 5 0
015.mp4 5 5 0
018.mp4 30 28 2
019.mp4 13 12 1
024.mp4 41 42 -1
025.mp4 11 9 2
027.mp4 33 33 0

... ... ... ...
312.mp4 7 5 2
317.mp4 6 6 0
345.mp4 4 3 1
352.mp4 14 17 -3
360.mp4 17 16 1
365.mp4 49 28 21
401.mp4 24 23 1
417.mp4 3 3 0
439.mp4 72 74 -2
452.mp4 40 35 5
SUM 1562 1406 156

Standard deviation 8.83
Average 3.12

4.3 Evaluation Methods

The generated images are evaluated on their capability of preserving gender and age
group, changing skin color and retaining image quality. This section will present the
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Table 4.2: Comparing the traceability of people in original and de-identified videos con-
taining abnormal behaviour.

Filename Original De-identified Original minus de-identified
Abuse001.mp4 17 16 1
Abuse002.mp4 25 22 3
Abuse003.mp4 18 14 4
Abuse004.mp4 72 74 -2
Abuse005.mp4 14 10 4
Abuse006.mp4 39 33 6
Abuse007.mp4 7 7 0
Abuse008.mp4 37 45 -8
Abuse009.mp4 11 11 0
Abuse010.mp4 11 9 2

... ... ... ...
Assault004.mp4 32 30 2
Assault005.mp4 22 23 -1
Assault006.mp4 153 164 -11
Assault007.mp4 12 12 0
Assault008.mp4 175 175 0
Assault009.mp4 60 61 -1
Assault010.mp4 149 124 25
Assault011.mp4 90 84 6
Assault012.mp4 31 32 -1
Assault013.mp4 45 37 8

SUM 2439 2300 139
Standard deviation 10.75

Average 2.78
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evaluation methods used for the following experiments in this thesis.

Evaluating Gender

To evaluate the preservation of gender, the following steps were used:
1. The trained GAN model was used to change the gender of the test dataset, with the

target gender being the gender detected by age-gender-estimation before DeepPri-
vacy de-identification of the test dataset.

2. Age-gender-estimation is then used to find the new gender of the images in the test
dataset.

3. The total estimated is found by summarizing the number of images where a new
gender is found. The percentage of total estimated is found by dividing total esti-
mated by total test images and multiplying by 100. A face may not be estimated
if it is missing facial landmarks, making the face undetectable for the age-gender-
estimation network.

4. The new gender is checked against the target gender. For the percentage of correct
gender, we divide the number of correct genders by the number of estimated images
and multiply the result with 100.

Evaluating Age

To evaluate the preservation of age group, the following steps were used:
1. The trained GAN model was used to change the age of the test dataset, with the

target age group being the group that the age detected by age-gender-estimation
before DeepPrivacy de-identification of the test dataset belongs to.

2. Age-gender-estimation is then used to find the new age of the images in the test
dataset.

3. The total estimated is found by summarizing the number of images where a new age
is found. The percentage of total estimated is found by dividing total estimated by
total test images and multiplying by 100.

4. The new age is checked against the target age group. Percentage of correct age group
is found by dividing the number of images where the target group contains the new
age by the number of estimated images, then multiplying by 100.
For the Mean Square Error (MSE), if the new age is within the original age group,
the result is 0. Else, the result is calculated by squaring the distance from the new
age to the nearest age in the target age group. The penalty is exponential resulting
in higher penalty for larger deviations. As an example, a 10-year deviation equals
a penalty of 100, while a 20-year deviation are equal to 400. Figure 4.1 illustrates
this method, with the red dashed lines being the distance from the new age to the
nearest age in the targeted age group, age groups being the colored blocks.

Evaluating Skin Color

To evaluate the change of skin color, the following steps were used:
1. The trained GAN model was used to change the skin color of the test dataset. This

is done in two batches, one where the skin color is changed to light and the other
to dark.

2. Skin-detection is then used to find the RGB values of the new skin colors of the
images in the test dataset 3. The skin-detection code is run three times for each test

3The code for Skin-detection can be found here.
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Figure 4.1: Illustration of the age metric.

dataset in order to accommodate irregularities.

3. The total estimated is found by summarizing the number of images where the skin-
detection network is able to find a new RGB value. The percentage of total estimated
is found by dividing total estimated by total test images and multiplying by 100.

4. The average skin color is found from the new skin colors. The new skin colors are
compared to the average color in order to evaluate how close the colors are. This
is done by finding the MSE between average and the estimated colors. Figure 4.2
illustrates this method for the R value, with the target value being the average value,
the gray line being the correct skin tone and the dashed lines being the distance
from the new skin tone to the target skin tone. The same is done to the G and B
values.

Evaluating Image Quality

There are several methods of both objectively and subjectively determining image quality.
A common objective method is measuring the difference, or more precise the distance
between the original and the generated image. To capture a broad variety of measure-
ments, we have used six different methods of measuring distance: L1, L2, SSIM, PSNR,
FID, and LPIPS. For all mentioned distance methods, the original images and generated
images are denoted A and B respectively.

L1, L2, and Smooth L1
In L1, also called Absolute-value norm, the distance is found by calculating the distance
between each point from one vector to another, and then summarized. L2, also called
Euclidean norm, differentiate from L1 in that distance is powered by two and then the
root of the summation of the distances is found. Both distances, and other norms can be
found by Equation 4.1, where p denotes the norm, ai is a singular vector point in A, and
bi singular vector point in B. Both summarize the pixel-wise distance per image, however

35



Figure 4.2: Illustration of the skin tone metric for the R value.

the L2 norm penalizes bigger distances harder.

‖x‖p =
(

n∑
i=1
|ai − bi|p

) 1
p

(4.1)

In Smooth L1 also called Huber Loss [62], it is possible to set a threshold β, where pixels
below β are more penalized than those above (see Equation 4.2).

loss(A,B) = 1
n

∑
zi, zi =

{ (ai−bi)2

2β , if |ai − bi| < β,

|ai − bi| − β
2 , otherwise.

(4.2)

Peak Signal-to-Noise Ratio (PSNR)
PSNR measures in general the ratio between the maximum power of signal and the power
of corrupting noise. A low ratio is an indication of high noise, thus the higher ratio the
better image quality. The ratio can be found following Equation 4.3, where ai is a singular
vector point in A, bi singular vector point in B, and MAXi is the maximum pixel value of
the image which in our case is 255.

PSNR = 10× log10

(
MAX2

I

MSE

)
, MSE = 1

n

n∑
i=1

(ai − bi)2 . (4.3)

Structural Similarity Index Measure (SSIM)
SSIM measures the similarity between to images, using one of the images as the refer-
ence [50]. The image degradation is understood as the perceived change in structural
information, and is found using three components, luminance l masking for image dis-
tortions in bright regions (Equation 4.4), contrast c masking for areas of texture (Equa-
tion 4.5), and structure s (Equation 4.6). µA and σA is the mean and variance of image
A respectively, C1, C2, and C3 are constants that can be altered based on image range
and individual component evaluation. SSIM is the multiplication of each component as
shown in Equation 4.7, where α, β, and γ make it possible to adjust how much of each
component should be present.

l = 2µAµB + C1
µ2
A + µ2

B + C1
. (4.4)
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c = 2σAσB + C2
σ2
A + σ2

B + C2
. (4.5)

s = 2σAB + C3
σAσB + C3

. (4.6)

SSIM(A,B) = [l(A,B)]α [c(A,B)]β [s(A,B)]γ . (4.7)

Multiscale SSIM (MS-SSIM)
MS-SSIM [66] adds more flexibility to the SSIM, making it possible to scale the contrast
and structure (see Equation 4.8).

MS-SSIM(A,B) = [lM (A,B)]αM
M∏
j=1

([cj(A,B)]βj [sj(A,B)]γj). (4.8)

MS-SSIM + L1
MS-SSIM + L1 [71] is a combination of MS-SSIM and L1, evaluating both measures in
order to find a distance as shown in Equation 4.9. α decides which one of MS-SSIM and
Gaussian L1, Ĺ1, should have the most impact, if alpha is larger than 0.5, MS-SSIM has
the greatest impact on the measured distance.

MS-SSIM + L1 = αMS-SSIM + (1− α)Ĺ1. (4.9)

Learned Perceptual Image Patch Similarity (LPIPS)
Zhang et al [70] found that the deep features of a trained network can be used to find a
distance metric that correlates to what the human eye find to be realistic. The distance
is found using a network that first computes deep embeddings, then normalizes the
activations in the Channel dimension, scale each channel with vector w and finds the L2
distance which is averaged across all the layers (see Figure 4.3).

Figure 4.3: Computing distance from a network.

Fréchet Inception Distance (FID)
Heusel et al. [32] introduce a distance measure that could portray how well generative
images fit to the observed data, involving the distribution of real data Pr and the distri-
bution of the generated data Pθ. FID can be found using Equation 4.10, µr, µθ and Cr, Cθ
is the mean and covariance-matrices of Pr and Pθ respectively. The lower the score, the
more similar the generated distribution is to the distribution of real images.

FID = ||µθ − µr||22 + tr
(
Cθ + Cr − 2(CθCr)

1
2
)
, (4.10)

where tr is the trace of the squared matrix summing the diagonal from upper left do lower
right.

Visual comparison of image quality metrics
Figure 4.4 visually compares the different metrics for evaluation of image quality. It can
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be seen that low L1 and L2 values reflect subtle changes in the image, while high L1 and
L2 values reflects more aggressive changes. There can also be seen a correlation between
L1 & L2 and PSNR, as images with low L1 & L2 seem to have a high PSNR value and
vice versa. A low PSNR value shows that the new image has more noise compared to
the original image, while a high PSNR value shows that the new image has less noise.
For SSIM, it can be seen that a low value reflects low similarity for luminance, contrast
and structure, and vice versa for a high value. Recall that LPIPS and FID values are the
lower the better. This is also reflected in the figure, as the images with low values have
considerably more natural changes than the images with high values.

Figure 4.4: Visually comparing the different evaluation metrics.

4.4 Preserving Age and Gender in De-Identified CCTV Footage

Recall the different approaches in rationale. Ensuring that one person has the same
face throughout the video is not in the scope anymore, the third approach using only
DeepPrivacy and StarGAN/AttGAN will be used in this thesis.

This section focuses on preserving age group and gender in footage that have been de-
identified by DeepPrivacy. It should be noted that some of the experiments in the next
section, “Removing Skin tone Information in De-Identified CCTV Footage”, have been con-
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ducted simultaneously as some experiments in this section. The experiments have been
divided into two separate direction because of their different goals. Because of this, some
of the lessons learned in the two sections were learned at the same time.

StarGAN and AttGAN do not focus on de-identification, in fact their processes are de-
signed to be reversible. Recall from Subsection 2.3.5, StarGAN has two generators, one
for generating new images based on target attributes, and one for reconstructing original
images using generated images and original attributes. AttGAN has a similar property
for one of the decoders. For these reasons the de-identification rate of DeepPrivacy is
considered to be the maximum rate when combined with an attribute-driven GAN, even
if the combination results in a higher de-identification rate.

4.4.1 AttGAN vs StarGAN

For the first round, the goal was to find whether StarGAN v1 or AttGAN is the best al-
ternative for our purpose. The results of StarGAN v1 are from iteration 200000, which
is the default stopping point, while the results of AttGAN are from epoch 60. The default
stopping point for the used AttGAN implementation is 200 epochs. However, it was ob-
served that the model did not get better after 60 epochs. Omitting 140 epochs was also
significantly timesaving.

Distinct age groups with balanced dataset

In this experiment, the original version of Diverse Faces is used, with the FDF images
labeled by age-gender-estimation. The images where the facial landmarks were unde-
tectable or that contained multiple people are not used.

Label files with the attributes female, 0-9, 20-29 and 50+ were used in order to have
visually distinct age groups. To balance the distribution of the different age groups in
the training part of the dataset, each combination of age and gender is limited to have no
more than 5000 images. Table 4.3 and Table 4.4 show the distribution of the training and
validation datasets. It can be seen that females that are 50 years and older are slightly
underrepresented.

Table 4.3: Distribution of the training images for “Distinct age groups with balanced
dataset”.

Age group Female Male Summary
0-9 5000 5000 10000

20-29 5000 5000 10000
50+ 4635 5000 9635

Table 4.4: Distribution of the validation images for “Distinct age groups with balanced
dataset”.

Age group Female Male Summary
0-9 1323 1413 2736

20-29 1832 1468 3300
50+ 472 763 1235

Table 4.5 shows the evaluation of “Distinct age groups with balanced dataset”. It can
be seen that StarGAN has trouble preserving facial landmarks when reconstructing the
image, resulting in a lower number of estimated images. Overall gender results show that
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AttGAN performs better than using DeepPrivacy alone. The percentage of estimated and
correct age group is nearly the same whether DeepPrivacy is used alone or together with
AttGAN. However, MSE is considerably lower using AttGAN, meaning that AttGAN less
frequently has large deviations from the correct age groups. The image quality evalua-
tion shows that StarGAN combined with DeepPrivacy alters multiple pixels compared to
DeepPrivacy alone, while DeepPrivacy + AttGAN only seem to change the required pixels.
One can observe that much of the image quality is lost when using AttGAN together with
DeepPrivacy. Note that image quality is evaluated for all images, not only the estimated
images.

Table 4.5: Evaluation results for “Distinct age groups with balanced dataset”.
Evaluation criteria DeepPrivacy DeepPrivacy

+StarGAN
DeepPrivacy
+AttGAN

Total estimated (%) 92.92 50.75 88.17
Gender
Correct gender (%) 83.41 54.19 90.26
Estimated & Correct (%) 77.50 27.50 79.58
Age group
Correct age group (%) 45.47 19.38 48.30
Estimated & Correct (%) 42.25 9.83 42.58
MSE 75.49 290.83 55.65
Image quality
L1 0.0294 0.3562 0.04865
L2 0.0601 0.4256 0.0753
PSNR 25.0227 7.6371 22.8402
SSIM 0.7411 0.0043 0.5327
LPIPS 0.0677 0.5267 0.1466
FID 29.5835 267.4002 89.4002

Figure 4.5 reflects the results in terms of noise, similarity, and visual perception. It is
impressive that some evaluation can be done on images by StarGAN at all. We do not
have a theory to why the images have become so dark, other than that StarGAN, as it
is learning the attributes through cycle-loss, believes that the dark color is a part of the
style. Other observations are that the boy at the bottom row is in painted as an older
person by DeepPrivacy. Nor AttGAN or StarGAN is really capable of doing anything about
this.

Distinct age and gender groups with balanced dataset

This experiment used Diverse Faces with the FDF images labeled by age-gender-estimation.
The images where the facial landmarks were undetectable or that contained multiple peo-
ple, were removed.

Label files with the attributes female_0-9, female_20-29, female_50+, male_0-9, male_20-
29, andmale_50+ were used, with the same distribution and limitation as for the previous
experiment.

Table 4.6 shows the evaluation of “Distinct age and gender groups with balanced dataset”.
It can be observed that the new attributes combining age and gender do not have a pos-
itive effect on gender, as the overall gender results show that DeepPrivacy gets better
results used alone than with any of the GANs. Similarly to the age evaluation of the
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Figure 4.5: Comparing (from left) original, DeepPrivacy, StarGAN and AttGAN.

previous experiment, the percent of total estimated and correct age group shows that
DeepPrivacy and AttGAN are very similar, while MSE indicates that the ages that AttGAN
got wrong are closer to their target age group than the ages that DeepPrivacy got wrong.
The image quality evaluation values are similar to those of Table 4.5. However, the FID
score is marginally better for “Distinct age groups with balanced dataset” implying less
natural changes in the images for this experiment.

Discussion: Does AttGAN or StarGAN preserve gender and age best?

Generally, it can be seen that the image quality of the reconstructed images from both of
the GANs are significantly worse than image quality of the input images. It is also found
that separate attributes for gender age groups provide better results than the combination
of gender and age groups.
From both experiments we can see that DeepPrivacy in general produce samples with
around 83% correct gender and 40-45% correct age group. Overall, as AttGAN provides
better than or equal results to DeepPrivacy, AttGAN will be used for future experiments
in this section.

Additional findings

After the previous experiments, we gained a suspicion about whether combining labels
from two different sources was optimal. Recall that the FairFace images already had la-
bels while the FDF images were labelled using age-gender-estimation. Therefore, in the
rest of the experiments in this section, the FairFace images were relabeled by age-gender-
estimation.

We also observed that as many as 60 epochs were unnecessary for AttGAN in most of
the previous experiments and will therefore in upcoming experiments compare the epoch
that has the lowest generator loss. Although GANs normally do not have a clear conver-
gence and one have to observe the sample images in order to find the best epoch, the
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Table 4.6: Evaluation results for “Distinct age and gender groups with balanced dataset”.
Evaluation criteria DeepPrivacy DeepPrivacy

+StarGAN
DeepPrivacy
+AttGAN

Total estimated (%) 80.33 49.25 77.00
Gender
Correct gender (%) 83.20 55.50 85.28
Estimated & Correct (%) 66.83 27.33 65.67
Age group
Correct age group(%) 43.57 14.38 45.35
Estimated & Correct (%) 35.00 7.08 34.92
MSE 156.23 157.53 77.43
Image quality
L1 0.02897 0.3570 0.0479
L2 0.0589 0.4263 0.0739
PSNR 25.1385 7.6252 22.9742
SSIM 0.7452 0.0037 0.5354
LPIPS 0.0660 0.5274 0.1396
FID 31.2932 269.0175 91.6393

generator loss of Wasserstein GAN, which is used in this thesis, does show properties of
convergence [6].
Also, in order to save time, early stopping was implemented for all upcoming experiments.
The implementation makes sure that if the generator loss does not improve during the
next 20 epochs after last improvement, the training stops.

4.4.2 Improving Training by Changes to the Dataset

This subsection focuses on improving the results of AttGAN by testing different changes
to the dataset and labelling used for training.

Using the existing dataset without balance restrictions

This experiment uses Diverse Faces with the attributes female, 0-19, 20-29, 30-39 and
40+. The new age groups are selected based on observations in the previous experiments
in this section and the first experiment in the next section. Recall that some of the ex-
periments in both sections were conducted simultaneously.
Both the images from the FDF dataset and the Fairface dataset have been labeled using
age-gender-estimation. As some images were lost due to undetectable facial landmarks
and/or multiple people in an image, the validation set consists of 7,969 images and the
training set consists of 135,283 images.
Table 4.7 and Table 4.8 show the distribution of the training and validation datasets. It
can be seen that without the restriction of maximum 5000 images per combination of
age and gender, the datasets are imbalanced. However, removing the restriction enables
the use of a significantly larger dataset.

Table 4.9 shows the evaluation of “Using the existing dataset without balance restric-
tions”. As AttGAN gained better results in “Distinct age groups with balanced dataset”
than in “Distinct age and gender groups with balanced dataset”, this experiment is com-
pared to the formal results. It can be seen that removing the restriction of the dataset
results in a higher number of images being estimated, and also a higher number of im-
ages with the correct gender. It can also be seen that the results for age group have been
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Table 4.7: Distribution of the training images for “Using the existing dataset without
balance restrictions”.

Age group Female Male Summary
0-19 7443 7861 15304
20-29 20031 16313 36344
30-39 20695 35777 56472
40+ 5431 21732 27163

Table 4.8: Distribution of the validation images for “Using the existing dataset without
balance restrictions”.

Age group Female Male Summary
0-19 280 270 550
20-29 1120 658 1778
30-39 1608 2416 4024
40+ 318 1299 1617

improved significantly, as the network that have been trained without the data restriction
is more than 30% better at preserving the correct age group, as well as having a tremen-
dously lower MSE. The PSNR, SSIM, LPIPS and FID results have increased, indicating
that the model without the balance restrictions produces images that are both in higher
quality and look more natural for the human eye.

Table 4.9: Evaluation results for “Using the existing dataset without balance restric-
tions”.

Evaluation criteria DeepPrivacy +AttGAN
(Epoch 60): Distinct
age groups with bal-
anced datset

DeepPrivacy +AttGAN
(Epoch 25): No bal-
ance restrictions

Total estimated (%) 88.17 90.58
Gender
Correct gender (%) 90.27 93.56
Estimated & Correct
(%)

79.58 84.75

Age group
Correct age group (%) 48.30 80.50
Estimated & Correct
(%)

42.58 72.92

MSE 55.65 6.81
Image quality
L1 0.0487 0.0427
L2 0.0753 0.0693
PSNR 22.8402 23.5994
SSIM 0.5327 0.5917
LPIPS 0.1466 0.1214
FID 89.4002 68.5411

Extended dataset

This experiment uses the expanded version of Diverse Faces with all images labeled by
age-gender-estimation. The images where the facial landmarks were undetectable or that
contained multiple people, were removed. The attributes female, 0-19, 20-29, 30-39 and
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40+ were used.
Table 4.10 and Table 4.11 show the distribution of the training and validation datasets. It
is observed that the distribution is largely imbalanced. However, as seen in the previous
experiment, it seems like the size of the dataset is more important than the distribution
being balanced.

Table 4.10: Distribution of the training images for “Extended dataset”.
Age group Female Male Summary

0-19 10585 11308 21893
20-29 27063 22876 49939
30-39 25970 46703 72673
40+ 7248 28739 35987

Table 4.11: Distribution of the validation images for “Extended dataset”.
Age group Female Male Summary

0-19 2973 3343 6316
20-29 6692 6616 13308
30-39 4843 10291 15134
40+ 1816 6545 8361

Table 4.12 shows the evaluation of this experiment compared to the previous one. It can
be seen that even though the “best epoch” in this experiment only is 1/5 of the epochs for
the previous experiment, both the gender and age results are slightly better. It can also be
seen that “Extended dataset” does not have as good image quality results as the previous
experiment, which may be related to the low number of epochs. Improving the training
in order to increase the number of epochs may be the way to go in order to produce better
quality images. Overall, for the use case of this thesis, the focus on preservation of age
group and gender is higher than the quality.

Introducing more age groups

This experiment uses the expanded version of Diverse Faces with all images labeled by
age-gender-estimation. The images where the facial landmarks were undetectable or that
contained multiple people, were removed. The attributes female, 0-9, 10-19, 20-29, 30-
39, 40-49, 50-59, 60-69 and 70+ were used.
Table 4.13 and Table 4.14 show the distribution of the training and validation datasets.
As previously, the distribution is very uneven. However, using the entire dataset is pri-
oritized rather than restricting age groups to a maximum number of images in order to
create a balanced distribution.

Table 4.15 shows the evaluation for “Introducingmore age groups”. It can be seen that the
percentage of correct gender and age group has decreased, while the number of estimated
images have increased slightly. The latter, however, may be related to the number of
epochs. It can also be seen that the image quality has increased slightly, which again
may be more related to the number of epochs rather than the age groups.

Discussion: Did the changes done to the training set improve the results?

The experiments in this subsection shows that the size of the dataset used to train
AttGAN is of higher importance than the balance of the distribution for the different
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Table 4.12: Evaluation results for “Extended dataset”.
Evaluation criteria DeepPrivacy +AttGAN

(Epoch 25): No bal-
ance restrictions

DeepPrivacy +AttGAN
(Epoch 5): Extended
Dataset

Total estimated (%) 90.58 89.08
Gender
Correct gender (%) 93.56 95.60
Estimated & Correct
(%)

84.75 85.17

Age group
Correct age group (%) 80.50 81.95
Estimated & Correct
(%)

72.92 73.00

MSE 6.81 5.75
Image quality
L1 0.0427 0.0486
L2 0.0693 0.0750
PSNR 23.5994 22.8722
SSIM 0.5917 0.5427
LPIPS 0.1214 0.1363
FID 68.5411 88.2059

Table 4.13: Distribution of the training images for “Introducing more age groups”.
Age group Female Male Summary

0-9 934 365 1299
10-19 9651 10943 20594
20-29 27063 22876 49939
30-39 25970 46703 72673
40-49 5228 20595 25823
50-59 1467 5886 7353
60-69 399 1910 2309
70+ 154 348 502

Table 4.14: Distribution of the validation images for “Introducing more age groups”.
Age group Female Male Summary

0-9 310 125 435
10-19 2663 3218 5881
20-29 6692 6616 13308
30-39 4843 10291 15134
40-49 1265 4497 5762
50-59 407 1452 1859
60-69 111 496 607
70+ 33 100 133
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Table 4.15: Evaluation results for “Introducing more age groups”.
Evaluation criteria DeepPrivacy +AttGAN

(Epoch 5): Extended
Dataset, 4 age groups

DeepPrivacy +AttGAN
(Epoch 8): Extended
Dataset, 7 age groups

Total estimated (%) 89.08 90.83
Gender
Correct gender (%) 95.60 94.95
Estimated & Correct
(%)

85.17 86.25

Age group
Correct age group (%) 81.95 79.63
Estimated & Correct
(%)

73.00 72.33

MSE 5.75 7.17
Image quality
L1 0.0486 0.0424
L2 0.0750 0.0701
PSNR 22.8722 23.5104
SSIM 0.5427 0.5887
LPIPS 0.1363 0.1212
FID 88.2059 72.2156

attributes. Also, it is observed that introducing more age groups did not increase the
results in regard to preserving age groups and gender.
Another observation is that it seems like the quality of the generated images as well as
the percentage of estimated images are correlated to the number of epochs.

In conclusion, the increase of the dataset did improve the results. However, as the AttGAN
seems to converge very early when using the expanded dataset, it may be worth looking
into improvement of training.

4.4.3 Improving Training by Parameter Changes

To stabilize the training, we tried to change the number of discriminator updates per
generator update (n_d). The default value in the AttGAN implementation used for this
thesis is 5. This experiment uses the same dataset and attributes as the experiment
“Extended dataset”.

Table 4.16 shows the evaluation of “Improving training by parameter changes”. It can
be seen that the overall results for both gender and age groups are slightly improved, as
well as MSE for age groups. It can also be seen that the image quality has increased,
thus fine tuning the number of discriminator updates per generator update seem to have
the potential to increase the stability of training.

Although, the number of epochs did not increase too much in this scenario, one can
view a better trend from the training summary (see Figure 4.6). This figure compares the
total generator loss and the total discriminator loss for 4 and 5 discriminator updates per
generator update. Thus, for future training it is probably wise to increase the number of
generator updates compared to discriminator updates.
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Table 4.16: Evaluation results for “Improving training by parameter changes”.
Evaluation criteria DeepPrivacy +AttGAN

(Epoch 5): Extended
Dataset n_d 5

DeepPrivacy +AttGAN
(Epoch 7): Extended
Dataset, n_d 4

Total estimated (%) 89.08 90.01
Gender
Correct gender (%) 95.60 95.10
Estimated & Correct
(%)

85.17 85.67

Age group
Correct age group (%) 81.95 81.12
Estimated & Correct
(%)

73.00 73.08

MSE 5.75 5.02
Image quality
L1 0.0486 0.0452
L2 0.0750 0.0718
PSNR 22.8722 23.2639
SSIM 0.5427 0.5836
LPIPS 0.1363 0.1280
FID 88.2059 75.9000

Figure 4.6: Training details from the different generator updates, where n_d is the num-
ber of discriminator updates compared to generator updates.
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4.5 Changing Skin Color to Avoid Bias in De-Identified CCTV
Footage

Recall that we wish to provide the option to change the skin colors of all people into one
skin tone in order for the de-identified CCTV footage to bypass any potential ethnicity
biases that an anomaly detection network may have. As DeepPrivacy seems to remove
other ethnicity factors than the skin tone, we will only focus on changing the skin tone
(not other factors such as eye color, eye shape, nose shape etc).
In this section, the focus is on not only preserving the age group and gender, but also
changing the skin tone to either a light tone or a dark tone.

4.5.1 Using a Separate Network to Change Skin Tone after Image Genera-
tion by AttGAN

An experiment was conducted in order to check what the results look like when using
AttGAN for preserving age group and gender, and skin-detection for changing the skin
tone.
As the model for “Extended dataset” with 4 discriminator updates per generator update
provided the best results in the previous section, that model was chosen for this experi-
ment. The test dataset was first changed to the target gender and age groups by AttGAN,
then the images went through skin-detection in order to change the skin tone. RGB val-
ues 111,55,55 was chosen for this experiment.

Table 4.17 shows the evaluation for “Using a separate network to change skin tone after
image generation by AttGAN”. The table compares the results before and after using the
skin-detection network for changing the skin tone. It can be seen that the gender and
age group results decrease tremendously. As a much lower percentage of images are es-
timated, it seems like facial landmarks have become less detectable. In the skin color
results it can be seen that of all the 1200 test images, only 54.41 % could be detected by
the same skin-detection code after the color was changed. The code is supposed to give
all images the same skin color which is reflected in the low MSE-value. DeepPrivacy has
a high MSE value, which shows that DeepPrivacy does not try to change all skin colors to
one color. The average RGB values after the use of AttGAN and skin-detection are 157,86
and 79, all within 20% of the original target value. It can also be seen that the quality
has decreased considerably, with the resulting images being less natural to human eyes
and containing more noise.

These observations are confirmed by the last column of Figure 4.7. AttGAN seems to
have added some noise to the image, and then the skin-detection code adds even more
blurriness and the face almost disappears in the background as the background becomes
more disrupted.
The boxes in the top left corner of the images show the age and gender found by Age-
gender-estimation. It can be seen that DeepPrivacy changes the age significantly, and
that AttGAN is able to restore the age close to the original. Also note that DeepPrivacy
seems to have given the man in the last row some feminine characteristics and that
AttGAN has made the person more masculine, proving that it to some degree is able to
change gender.
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Table 4.17: Evaluation results for “Using a separate network to change skin tone after
image generation by AttGAN”.

Evaluation criteria DeepPrivacy +AttGAN
(Epoch 7): Extended
Dataset, n_d 4

DeepPrivacy +AttGAN
(Epoch 7): Extended
Dataset, n_d 4, RGB
[111,55,55]

Total estimated (%) 90.01 67.33
Gender
Correct gender (%) 95.10 91.71
Estimated & Correct
(%)

85.67 61.75

Age group
Correct age group (%) 81.12 78.59
Estimated & Correct
(%)

73.08 52.92

MSE 5.75 7.68
Skin color
Total estimated4 (%) 76.17 54.41
MSE 19768 5728
Image quality
L1 0.0452 0.0947
L2 0.0718 0.1307
PSNR 23.2639 18.5502
SSIM 0.5836 0.4749
LPIPS 0.1280 0.2034
FID 75.9000 105.6964
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Figure 4.7: Comparing (from left) original, DeepPrivacy, AttGAN and AttGAN+Skin-
detection.

Discussion: How does the skin tone affect the results?

It can be seen that using AttGAN and skin-detection sequentially in order to preserve
age group and gender, as well as change skin tone, decreases image quality considerably.
This may also be the reason why the percentage of estimated images decreased, as lower
image quality likely results in less detectable facial landmarks.

Because of the decrease in quality and the assumption that using only one network
rather than two increases usability, we decided to rather look at the skin tone as an at-
tribute, thus the attribute-driven GAN will change gender, age, and the skin tone all in
one process.

4.5.2 Changing Skin Tone as an Attribute: AttGAN vs StarGAN

This experiment focuses on whether AttGAN or StarGAN is better at changing the skin
tone. The results of StarGAN v1 are from iteration 200000, which is the default stopping
point, while the results of AttGAN are from epoch 60.

This experiment used Diverse Faces with Distinct Skin tones with the beige light skin
tone. The attributes female, dark_skin, 0-19, 20-29, 30-39 and 40+ were used. The FDF
images were labelled by age-gender-estimation, and the images where the facial land-
marks were undetectable or that contained multiple people, were removed.
Table 4.18 and Table 4.19 show the distribution of the training and validation images.
From Table 4.18 one can observe that the elderly females have the lowest representation,
almost half of elderly male which is the category having the most data representation.
This may confuse the GANs to believe that elderly people tend to be male. In general, one
can see that females are less representative in all combinations except in the age 20-29.
This results in an unequal distribution of gender, resulting in a 22,572 image difference
of genders. This may affect the gender attribute, making male distribution more domi-
nant that female.
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Table 4.18: Distribution of the training images.
Group FDF dark/light Fairface dark/light Total dark/light Summary

Male 0-19 3012/3000 8131/8141 11143/11141 22284
Male 20-29 4951/4924 8457/8457 13408/13381 26789
Male 30-39 6648/6611 8131/8131 14779/14742 29521
Male 40+ 5370/5351 10062/10059 15432/15410 30842

Female 0-19 2596/2579 7799/7818 10395/10397 20792
Female 20-29 5040/4999 10692/10681 15732/15680 31412
Female 30-39 3312/3294 6401/6398 9713/9692 19405
Female 40+ 1602/1584 6043/6041 7645/7625 15270
Total male 19981/19886 34781/34803 54762/54674 109451
Total female 12550/12456 30935/30938 43485/43394 86879

In Fairface, the distribution between light and dark is minimal, having a few representa-
tives more for the light attribute, whereas in FDF it is the opposite and about 100 images
in difference. This yields that the darker color is slightly more represented, however, not
in a marginal scale. We observed that the data is not equally represented but believed
that each domain is represented sufficient.

Table 4.19: Distribution of the validation images.
Group Fairface dark Fairface light Summary

Male 0-19 1061 1061 2122
Male 20-29 1138 1132 2270
Male 30-39 997 993 1990
Male 40+ 1253 1249 2502

Female 0-19 1006 999 2005
Female 20-29 1352 1342 2694
Female 30-39 764 761 1525
Female 40+ 746 740 1486
Total male 4449 4434 8883
Total female 3868 3842 7710

The validation images, all gathered from Fairface, represent each attribute in a variation
from 740 images for light elderly females to 1352 images of young, dark females. These
data imply somewhat the same distribution as the training set, the exception being adult
male which has a higher, relative representation in the training set.

Table 4.20 shows the results of the evaluation for “Changing Skin tone as an Attribute:
AttGAN vs StarGAN”. It is observed that age-gender-estimation is only able to detect very
few faces in the images in the dataset that have been changed to dark skin tone by
StarGAN. This may be because StarGAN is more aggressive when making the attribute
changes, possibly meaning that it adds too much dark color to the face and therefore
makes the facial landmarks less visible. Using the light skin tone, a higher number of
images retains a detectable face for both GAN types. Overall, StarGAN does not pro-
vide good gender results, and it is better to use DeepPrivacy alone than together with
StarGAN. However, AttGAN with the light skin color provides significantly better gender
results than DeepPrivacy alone, despite having a lower percentage of total estimated im-
ages. It can be observed that using AttGAN there is a relatively small difference between
the age group results for light skin tone and dark skin tone, but using the light skin tone
does seem to preserve the facial landmarks better, resulting in fewer images with unde-
tectable faces. It can also be seen that AttGAN, in both skin tone situations, provides
significantly better age group results than DeepPrivacy alone. Using MSE, the results of
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DeepPrivacy together with AttGAN seem to be three times better than with DeepPrivacy.
Note that the average RGB values that are in bold are the ones within 20% deviation
of the target RGB values. It can be observed that the light skin tone results in better
preserved facial landmarks due to the number of detected faces. However, the dark skin
tone seems to come closer to the average skin tone. Looking at the average RGB values
for each experiment, the darker color is closer to the target color. The dark average color
generated by AttGAN almost hits target where the R value is 21% off target. It can also be
seen that using DeepPrivacy alone achieves a lower MSE than using StarGAN in order to
make the skin color light. If the goal is a dark skin color, adding StarGAN to DeepPrivacy
does provide a lower MSE but makes the facial landmarks in most images undetectable.
From the image quality results we observe that L1 and L2 are higher in both DeepPrivacy
combined StarGAN and AttGAN, thus changing more of the images compared to DeepPri-
vacy alone. Because DeepPrivacy only has altered the face-part of the image, a very high
score is not necessarily better in this case. StarGAN with dark skin color has the most
altered pixels, thus probably provide more de-identification but at the same time has
changed the most from the original image. DeepPrivacy has the images with less noise,
followed by DeepPrivacy combined with AttGAN. StarGAN combined with DeepPrivacy is
inferior. The results follow the same order as before, where StarGAN is at the bottom,
with a terrible FID score. Images with dark skin do in general perform worse than those
of light skin color.

Looking at Figure 4.8, it is not hard to understand why a face detection algorithm would
fail to find face contours in the StarGAN dataset with dark skin tone. Although some
of the errors probably are related to the black frames around the images, they do not
look promising for further exploration. AttGAN does perform better, which is confirmed
by the images. However, it has not restricted the color change to the face alone, and it
seems like much of the background has changed color as well. Since the skin-detection
code also changes parts of the background sometimes, it is not that strange that AttGAN
performs color change in most of the image.

Figure 4.8: Comparing (from left) original, DeepPrivacy, StarGAN Dark, StarGAN Light,
AttGAN Dark and AttGAN light.
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Table 4.20: Evaluation results for “Changing Skin tone as an Attribute: AttGAN vs
StarGAN”.
Evaluation
criteria

DeepPrivacy DeepPrivacy
+StarGAN
Dark

DeepPrivacy
+StarGAN
Light

DeepPrivacy
+AttGAN
Dark

DeepPrivacy
+AttGAN
Light

Total es-
timated
(%)

93.08 11.67 84.17 88.42 91.67

Gender
Correct
gender
(%)

85.32 55.00 54.46 87.28 91.73

Estimated
& Correct
(%)

79.42 06.42 45.83 77.17 84.08

Age group
Correct
age
group
(%)

54.16 20.00 27.43 71.54 71.64

Estimated
& Correct
(%)

50.42 2.33 23.08 63.25 65.67

MSE 36.99 81.04 123.62 12.80 10.97
Skin color
Total es-
timated
(%)

76.17 3.25 64.42 66.42 76.58

MSE 19768 9038 49001 7622 16763
Target
RGB

- [111,55,55] [227,208,202] [111,55,55] [227,208,202]

Average
RGB

[222,166,145] [20,11,13] [175,141,124] [165,94,84] [302,275,259]

Image quality
L1 0.02933 0.3731 0.3226 0.1004 0.1208
L2 0.0606 0.4390 0.3980 0.1342 0.1610
PSNR 24.9555 7.3851 8.2324 17.9679 16.2332
SSIM 0.7423 0.0009 0.0066 0.5072 0.5176
LPIPS 0.0690 0.5865 0.4740 0.1910 0.1737
FID 30.7108 270.1649 251.0998 90.5100 80.6915
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Discussion: Which is better of AttGAN and StarGAN?

When we observed sample images during training, it was noticed that when changing
skin tone, StarGAN seemed to be preserving the background of the original image. This
sparked an idea that perhaps some combination of the two networks could be able to
make the necessary changes without changing the background.
As AttGAN comes closer to the target skin tone as well as having best results preserving
the gender and age group, AttGAN will be used in the upcoming experiments in this
section. Also, the following experiments will be compared by “best epoch”, being the
epoch with lowest generator loss, rather than epoch 60.

4.5.3 Relabeling Data for Training Consistency

This experiment used Diverse Faces with Distinct Skin tones with the beige light skin
tone. The attributes female, dark_skin, 0-19, 20-29, 30-39 and 40+ were used. The Fair-
Face and the FDF images were labelled by age-gender-estimation, and the images where
the facial landmarks were undetectable or that contained multiple people, were removed.
Since the only difference from the data used in the previous experiment is that the Fair-
Face images are labeled by age-gender-estimation, the distributions are very similar to
the previous experiment.

Table 4.21 shows the evaluation for “Relabeling Data for Training Consistency”. It can
be seen that the results of the gender preservation have increased considerably. For the
age group preservation, the results for the dark skin tone have increased, while the re-
sults for the light skin tone have decreased slightly. However, overall age group results
have gotten better, as the gap between the results for the light skin tone and the dark
skin tone has decreased significantly. It can be seen that even though the average RGB
value is further from the target RGB value than before the relabelling of data, the MSE is
considerably lower. As the goal is to have all skin colors as close to one color as possible,
the version using the relabelled data has the leading skin color results. Also, if the goal
is changing to a dark skin tone, using DeepPrivacy alone gives a slightly lower MSE than
together with the previous AttGAN model. However, the new AttGAN with relabelled data
provides lower MSE than DeepPrivacy alone. The image quality results suggests a give
and take scenario between the two colors, as the PSNR has become better, SSIM worse,
LPIPS better, and FID worse.

4.5.4 Improving Data Quality: Changing Light Color

This experiment used Diverse Faces with Distinct Skin tones with the gray light skin
tone. The attributes female, dark_skin, 0-19, 20-29, 30-39 and 40+ were used. The Fair-
Face and the FDF images were labelled by age-gender-estimation, and the images where
the facial landmarks were undetectable or that contained multiple people, were removed.
Since the only difference from the data used in “Changing Skin tone as an Attribute:
AttGAN vs StarGAN” is that the FairFace images are labeled by age-gender-estimation
and the light skin tone has been changed to a different color, the distributions are very
similar.

Table 4.22 shows the evaluation for “Improving Data Quality: Changing Light Color”.
It can be seen that the new color has increased the correctness of gender preservation.
Since we only have changed the light color, this suggests that the overall training has
become better with the new training images. Interestingly, the age-gender-estimation
network was not able to estimate a higher number of images. The new average RGB val-
ues are further away from the target values. It can also be seen that MSE for the dark
and new light color deviates considerably less, as previously the MSE for the dark color
was less than half of the MSE for the light color. It seems like the new light color makes
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Table 4.21: Evaluation results for “Relabeling Data for Training Consistency”.
Evaluation
criteria

DeepPrivacy
+AttGAN
(Epoch 21)
D

DeepPrivacy
+AttGAN
(Epoch 21)
L

DeepPrivacy
+AttGAN
(Epoch 36)
D Relabelled

DeepPrivacy
+AttGAN
(Epoch 36)
L Relabelled

Total es-
timated
(%)

86.25 89.67 88.75 91.83

Gender
Correct
gender
(%)

84.64 90.99 88.54 91.29

Estimated
& Correct
(%)

73.00 81.58 78.58 83.83

Age group
Correct
age
group
(%)

70.43 75.65 71.08 73.32

Estimated
& Correct
(%)

60.75 67.83 63.08 67.33

MSE 16.37 8.50 12.90 10.60
Skin color
Total es-
timated
(%)

76.33 78.00 69.17 76.41

MSE 7540 19903 6521 14989
Target
RGB

[111,55,55] [227,208,202] [111,55,55] [227,208,202]

Average
RGB

[161,91,80] [294,208,245] [170,93,83] [305,271,251]

Image quality
L1 0.1073 0.1249 0.1012 0.1288
L2 0.1421 0.1676 0.1357 0.1676
PSNR 17.3745 15.7996 17.7669 15.9127
SSIM 0.4756 0.4948 0.4928 0.4855
LPIPS 0.2136 0.1924 0.1945 0.1886
FID 97.9805 85.3047 92.7679 91.2781
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the skin color change more stable. The overall larger MSE for this experiment may be
due to the lower number of epochs. The image quality results show that the new color
have incorporated less noise into the test samples, and overall improved the visual data
to human eyes.

Table 4.22: Evaluation results for “Improving Data Quality: Changing Light Color”.
Evaluation
criteria

DeepPrivacy
+AttGAN
Epoch(36)
Dark

DeepPrivacy
+AttGAN
Epoch(36)
OLD Light

DeepPrivacy
+AttGAN
Epoch(18)
Dark

DeepPrivacy
+AttGAN
Epoch(18)
NEW Light

Total es-
timated
(%)

88.75 91.83 87.83 91.08

Gender
Correct
gender
(%)

88.54 91.29 90.89 91.87

Estimated
& Correct
(%)

78.58 79.83 81.33 83.83

Age group
Correct
age
group
(%)

71.08 73.32 79.70 75.16

Estimated
& Correct
(%)

63.08 67.33 70.00 68.58

MSE 12.90 10.60 10.32 7.61
Skin color
Total es-
timated
(%)

69.17 76.42 78.42 79.67

MSE 6521 14989 13096 16107
Target
RGB

[111,55,55] [227,208,202] [111,55,55] [150,150,150]

Average
RGB

[170,93,83] [305,271,251] [182,103, 87] [261,235,220]

Image quality
L1 0.1012 0.1288 0.0821 0.0877
L2 0.1357 0.1676 0.1123 0.1214
PSNR 17.7669 15.9127 19.2900 18.5915
SSIM 0.4928 0.4855 0.5169 0.5376
LPIPS 0.1945 0.1886 0.1719 0.1766
FID 92.7679 91.2781 84.4071 83.2994

Discussion: Did the new color improve the results?

Overall, the new color seems to have increased light results and decreased the dark
results. For the gender classification, the new color gives better results for both colors.
For age, the new results are more even between the colors, which is why we choose to go
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further with the new light color. It should be noted that a more detailed study of different
colors may have improved the overall results further, however, due to time limitation, it
is not further explored in this thesis.

4.5.5 Removing Background Noise from Skin tone Change

For this experiment, the same setup is used as for “Improving Data Quality: Changing
Light Color”. The only difference is that batch normalization for the generator encoder
and decoder has been replaced with instance normalization. This was done because
of the observation that StarGAN was better at preserving the background than AttGAN
when changing skin tone, and when comparing the two networks, the type of normaliza-
tion was one of few differences.

The training was quite unstable, and we ended up updating the generator as often as
the discriminator, although in separate iterations.

For the following experiments, we focus only on the image metrics as the task at first
hand is to see if we are able to only change the skin tone. Table 4.23 compares the dis-
tance metrics of the model design with Batch Normalization (BN) to the model design
with Instance Normalization (IN), and Table 4.24 compares the same metrics, however,
only for everything that is not skin. This is accomplished by using the skin-detection
code to extract everything from an image that is not skin, resulting in the image being
black where the skin was, and one should therefore be careful to put too much attention
of the PSNR, SSIM, LPIPS, and FID score, as the images certainly have some noise and
are not meant to be pleasant to the human eye.

What can be observed from Table 4.23, is that instance normalization has decreased
noise levels, is more structurally similar to the original image and more pleasant to the
human eye. Table 4.24 shows that instance normalization alters less background than
the batch normalization, but the difference is minor. Both L1 and L2 are larger for the
lighter color independently of BN and IN.

Table 4.23: Image quality evaluation results for “Removing Background Noise from Skin
tone Change”.

Evaluation
criteria

DeepPrivacy
+AttGAN
Epoch(18)
Dark BN

DeepPrivacy
+AttGAN
Epoch(18)
NEW Light
BN

DeepPrivacy
+AttGAN
Epoch(18)
Dark IN

DeepPrivacy
+AttGAN
Epoch(18)
NEW Light
IN

L1 0.0821 0.0877 0.0570 0.0820
L2 0.1123 0.1214 0.0826 0.1129
PSNR 19.2900 18.5915 22.0893 19.5913
SSIM 0.5169 0.5376 0.5892 0.5604
LPIPS 0.1719 0.1766 0.1208 0.1507
FID 84.4071 83.2994 71.5074 75.6025

Figure 4.9 confirms the objective measurements, perhaps to a more satisfying degree
than the numbers indicate as one can easily observe that the color change is more re-
stricted to the skin area.
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Table 4.24: Image quality evaluation results for “Removing Background Noise from Skin
tone Change, comparing background only”.

Evaluation
criteria

DeepPrivacy
+AttGAN
Epoch(18)
Dark BN

DeepPrivacy
+AttGAN
Epoch(18)
NEW Light
BN

DeepPrivacy
+AttGAN
Epoch(18)
Dark IN

DeepPrivacy
+AttGAN
Epoch(18)
NEW Light
IN

L1 0.0714 0.1129 0.0636 0.0989
L2 0.1533 0.2146 0.1441 0.1957
PSNR 17.0695 14.1961 17.8068 15.1294
SSIM 0.3380 0.3048 0.3739 0.3140
LPIPS 0.2954 0.3376 0.2636 0.3245
FID 87.3035 139.2901 77.6610 116.1191

Figure 4.9: Comparing (from left) original, DeepPrivacy, AttGAN BN Dark, AttGAN BN
Light, AttGAN IN Dark and AttGAN IN Light.

Discussion: How did instance normalization affect the images?

From the quantitative and visual clues, instance normalization seems to have kept more
of the background from the original image. Since IN focuses more on each individual
image, it is more likely to learn the skin tone change in each image, while in BN it is
more likely to learn a summation of several images put together. As the presence of skin
appears at different x and y positions in the images the summary is likely to have a
representation of the skin tone in more places than where skin is present. The quality of
images is better; thus, it is perhaps better at image reconstruction, but could also simply
be related to how often the generator is updated, which is way more often that the one
using BN.

4.5.6 Improving Image Quality: Reconstruction Loss

The following experiments use the same setup as for “Improving Data Quality: Changing
Light Color”, only changing one loss related detail at a time with the goal of improving
the image quality. As this subsection focuses solely on the image quality, only the image
quality results will be evaluated.
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Increasing and decreasing λrec

The “Increasing and decreasing λrec” experiment tests different values for λrec. In the
used AttGAN implementation, the λrec value is multiplied by the reconstruction loss value
when forming the total generator loss. It is therefore assumed that a larger value equals
an increased focus on the reconstruction. The default value for λrec is 100.

Table 4.25 compares the quality of the result images produced using different λrec val-
ues. In order to be able to compare all the results side by side, DeepPrivacy has been
shortened to “DP”, and AttGAN has been shortened to “A”. It can be observed that the
image quality remains best using the default λrec, as that is when PSNR and SSIM are
best.

Table 4.25: This table shows the image quality of “Increasing and decreasing λrec”. Each
measurement is found by measuring the distance between the original test images, D
stands for dark and L for light.

Evaluation
criteria

DP DP +A
L50 D

DP +A
L50 L

DP +A
L100 D

DP +A
L100 L

DP +A
L150 D

DP +A
L150 L

L1 0.0293 0.0736 0.0833 0.0711 0.0727 0.0809 0.0797
L2 0.0606 0.1010 0.1139 0.0928 0.0956 0.1101 0.1125
PSNR 24.9555 20.1996 19.1312 20.9463 20.7326 19.4587 19.2823
SSIM 0.7423 0.5433 0.5576 0.6693 0.6892 0.5302 0.5504
LPIPS 0.0690 0.1630 0.1761 0.1226 0.1250 0.1609 0.1784
FID 30.7108 79.2361 78.7052 44.7957 45.1745 79.7804 78.1779

L1 Smooth

“L1 Smooth” changes the reconstruction loss from L1 to L1 Smooth.

Table 4.26 shows the image quality results of using L1 compared to using L1 Smooth.
It can be seen that more pixels are changed using L1 Smooth. Changing from using L1
to L1 Smooth did not seem to improve the quality, as the PSNR and SSIM results have
worsened.

Table 4.26: This table shows the image quality of “L1 Smooth”. Each measurement is
found by measuring the distance between the original test images, D stands for dark and
L for light.

Evaluation
criteria

DeepPrivacy DeepPrivacy
+AttGAN
L1 D

DeepPrivacy
+AttGAN
L1 L

DeepPrivacy
+AttGAN
L1 Smooth
D

DeepPrivacy
+AttGAN
L1 Smooth
L

L1 0.0293 0.0711 0.0727 0.0936 0.0913
L2 0.0606 0.0928 0.0956 0.1244 0.1243
PSNR 24.9555 20.9463 20.7326 18.3730 18.3124
SSIM 0.7423 0.6693 0.6892 0.4653 0.4997
LPIPS 0.0690 0.1226 0.1250 0.1987 0.2064
FID 30.7108 44.7957 45.1745 87.4730 90.3135
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MS-SSIM + L1

“MS-SSIM + L1” changes the reconstruction loss from L1 to a combination of MS-SSIM
and L15. Recall from Chapter 2 that it is found that combining MS-SSIM and L1 in-
creases the reconstruction quality.

Table 4.27 shows the image quality evaluation of using L1 compared to the combina-
tion of MS-SSIM and L1. One can observe that the pixel distance is lower using the new
reconstruction loss. Also, PSNR has increased, although SSIM has decreased.

Table 4.27: This table shows the de-identificaton and image quality of “MS-SSIM + L1”.
Each measurement is found by measuring the distance between the original test images,
D stands for dark and L for light.

Evaluation
criteria

DeepPrivacy DeepPrivacy
+AttGAN
L1 D

DeepPrivacy
+AttGAN
L1 L

DeepPrivacy
+AttGAN
MS-
SSIM+L1
D

DeepPrivacy
+AttGAN
MS-
SSIM+L1
L

L1 0.0293 0.0711 0.0727 0.0646 0.0622
L2 0.0606 0.0928 0.0956 0.0929 0.0949
PSNR 24.9555 20.9463 20.7326 20.9501 20.8414
SSIM 0.7423 0.6693 0.6892 0.6113 0.6359
LPIPS 0.0690 0.1226 0.1250 0.1288 0.1405
FID 30.7108 44.7957 45.1745 64.3933 63.3115

Discussion: How did the changes in reconstruction loss affect the quality of the
images?

It was found that testing the values 50 and 150 for λrec did not increase the quality of
the image. Although it may be worth fine-tuning the value using minimal changes to see
whether a different value than the default value of 100 may provide better results, as it
is visible that changing the λrec value does affect the image quality.
It was also found that L1 Smooth did not increase the image quality for the use case of
this thesis.
Changing from L1 to a combination of MS-SSIM and L1 did, however, result in changes
of interest. Recall that the PSNR increased, while SSIM decreased. As PSNR focuses on
comparing the noise, while SSIM compares luminance, contrast and structure, we chose
to focus on as high PSNR as possible to increase the image quality for the use case of
this thesis. Therefore, MS-SSIM+L1 will be used as the reconstruction loss function for
the final solution.

4.6 Final Solution

We have chosen to create two versions of the final solution, one with skin tone, “DeepPri-
vacy and AttGAN with Skin tone” (DP-ATT-S), and one without, “DeepPrivacy and AttGAN”
(DP-ATT). The reason is that we observed that the age group and gender preservation re-
sults were better in the experiments without skin tone. Making both alternatives of the
solution available, the Oslo Police and others can make a choice on whether they prefer as
good age group and gender preservation results as possible, or to have skin tone included.

DP-ATT-S is trained using “Diverse Faces with Distinct Skin tones” with the gray light
5The implementation of MS-SSIM+L1 used in this thesis can be found here.
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skin tone and the attributes female, dark_skin, 0-19, 20-29, 30-39 and 40+, and the λrec
value set to 100. Instance normalization is used instead of batch normalization for the
generator encoder and decoder in order to reduce noise in the background and preserve
the colors of the background when changing skin tone. The number of discriminator
updates per generator update is set to 1, as we found that this seemed to improve learn-
ing when using instance normalization. The combination of MS-SSIM and L1 is used for
reconstruction loss instead of L1 alone, in order to reduce noise in the generated image,
increasing the image quality. The alpha value 0.84 is used, as suggested by the paper
proposing this loss function. Compensation is set to 0.2, as the implementation default
of 200 made the reconstruction loss out of proportion compared to the other losses in
AttGAN. The compensation value is only used for multiplying with the reconstruction
loss in order to adjust the loss value in proportion to the other losses used.

DP-ATT is trained using the extended version of “Diverse Faces” with the attributes fe-
male, 0-19, 20-29, 30-39 and 40+, and the λrec value set to 100. The number of discrimi-
nator updates per generator update is set to 5, which is the default for the AttGAN imple-
mentation used in this thesis. Similarly as for DP-ATT-S, the combination of MS-SSIM
and L1 is used instead of L1 in order to increase image quality. The same compensation
and alpha values are used here as in DP-ATT-S.

For the final round we also changed the base for finding the best epoch, testing some
other variants based on different loss parameters in the generator. Since the adversar-
ial loss can be negative and the reconstruction loss and classification loss always are
positive, it can be difficult to say if the total loss is high because the adversarial loss is
very low or because the other loss functions are large. As the adversarial loss eventually
should converge it is not bad if it falls below zero, however, large deviations of either pos-
itive or negative values do not imply good adversarial training. It is therefore beneficial if
all of the loss distances are as close to zero as possible, so instead of using the total loss
of the generator, we decided to use the epoch that had the lowest sum for abs(gadvloss) +
λrec grloss + λclsg gcloss.

NVIDIA Tesla V100 SXM3 32 GB was used for the training. The version with skin tone
used approximately 21 minutes per epoch, while the version without skin tone used ap-
proximately 22 minutes.

Table 4.28 shows the evaluation of gender, age group and image quality for the final
solutions. As expected, DP-ATT is able to achieve considerably higher accuracy in both
gender and age group. It can also be seen that DP-ATT is both better at preserving lumi-
nance, contrast and structure, and minimizing noise in the generated image.

Table 4.29 shows the results from the skin detection for DP-ATT-S. It can be seen that
the number of total images estimated after the use of AttGAN are similar to the number
after only using DeepPrivacy. The MSE results are not as low as achieved in some pre-
vious experiments. However, one of the focuses for DP-ATT-S has been preserving the
background, which seems to have resulted in less change in skin color. It can also be
seen that regardless of the target color, using AttGAN to change the skin color results in
lower MSE than DeepPrivacy alone.

Figure 4.10 shows a comparison of original images, de-identified by DeepPrivacy, changed
to dark skin tone, and target age group and gender by DP-ATT-S, changed to light skin
tone, and target age group and gender by DP-ATT-S, and changed to target age group and
gender by DP-ATT.
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Table 4.28: Evaluation results for the final solutions.
Evaluation
criteria

DP-ATT-S
Epoch(147)
Dark IN MS-
SSIM+L1

DP-ATT-S
Epoch(147)
Light IN MS-
SSIM+L1

DP-ATT
Epoch(40)
MS-SSIM+L1

Total es-
timated
(%)

91.33 91.67 92.33

Gender
Correct
gender
(%)

92.24 91.18 96.39

Estimated
& Correct

84.25 83.58 89.00

Age group
Correct
age
group
(%)

68.34 69.27 79.78

Estimated
& Correct

62.42 63.50 73.67

MSE 13.82 14.65 6.70
Image quality
L1 0.0614 0.0805 0.0413
L2 0.0853 0.1098 0.0683
PSNR 21.7285 19.5064 23.7440
SSIM 0.6038 0.5866 0.6353
LPIPS 0.1213 0.1433 0.0960
FID 64.3426 65.6125 60.4838

Table 4.29: Skin evaluation for DP-ATT-S.
Evaluation criteria DeepPrivacy DP-ATT-S

+AttGAN
Epoch(147)
Dark IN
MS-SSIM+L1

DP-ATT-S
Epoch(147)
Light IN
MS-SSIM+L1

Total estimated (%) 76.17 70.33 77.33
MSE 19768 14765 15559
Target RGB - [111,55,55] [150,150,150]
Average RGB [222,166,145] [210,131,119] [253,229,208]
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It can be seen that the final solutions are not perfect, as DP-ATT-S still does affect the
background, and the image quality does still get reduced when the image is reconstructed
by AttGAN. It is also seen that achieving a specific skin color is difficult as the original
skin tone highly affects the outcome of the new skin color.

Figure 4.10: Comparing (from left) original, DeepPrivacy, DP-ATT-S dark, DP-ATT-S light
and DP-ATT.

DP-ATT and DP-ATT-S were also tested on an image containing a large group of people,
as CCTV footage can often contain multiple people in one frame. Figure 4.11 shows the
original image, found using Google Images. Figure 4.12 shows the same image using
DP-ATT, Figure 4.13 shows the same image using DP-ATT-S with dark skin tone and
Figure 4.14 shows the same image using DP-ATT-S with light skin tone. It can be seen
that using DP-ATT-S dark results in more smoother, natural appearing faces than using
DP-ATT. DP-ATT-S with light skin is visually better at providing a similar skin color for
all the faces in the image. However, as the previous results indicated, it does produce
less natural images. Noise can be seen in the faces, as well as a dark color in the mouth
region. This can possibly make the faces less detectable.

4.6.1 Discussion: Comparing the final solutions to state-of-the-art

Privacy-Protective-GAN for Face De-identification [68] achieves the age group classifica-
tion accuracy of 86.9% for black skin tone and 87.3% for white skin tone. Note that this
solution does not change the skin tone, they preserve it. Compared to our best age group
classification result of 73.67%, their solution may be better at preserving age. They also
convey some gender results, but it is difficult to extract the classification information
from the de-identification information, especially as it is combined with ethnicity as well.
It is debatable whether the results are comparable, as “Privacy-Protective-GAN for Face
De-identification” has trained separate classifiers for each attribute that they use to find
the classification accuracy for the generated images. Also, different datasets are used as
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Figure 4.11: Original image of a large group of people.

they use the MORPH dataset. Since the solution that is proposed in “Privacy-Protective-
GAN for Face De-identification” is not publicly available, and they do not provide more
details on the network for finding classification accuracy, we are not able to either test
their solution with our test set and age-gender-estimation for finding classification accu-
racy, nor are we able to use the same network for finding classification accuracy as they
use.

’AnonymousNet: Natural Face De-Identification with Measurable Privacy’ [43] achieves
PSNR value of 20.079 and SSIM value of 0.7894. Compared to our best values of 23.7440
for PSNR and 0.6353 for SSIM, it can be assumed that their solution is better at preserv-
ing luminance, contrast and structure, while our solution is better at minimizing noise
in the generated image.
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Figure 4.12: Image of a large group of people de-identified using DP-ATT.

Figure 4.13: Image of a large group of people de-identified using DP-ATT-S dark.
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Figure 4.14: Image of a large group of people de-identified using DP-ATT-S light.
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Chapter 5

Conclusions and Future Work

Section 5.1 contains the findings and conclusions of this thesis, while Section 5.2 con-
tains some suggestions on how to take this research further.

5.1 Conclusions

In this thesis, DeepPrivacy is combined with AttGAN in order to preserve gender and age
group in de-identified CCTV footage. Another GAN is also tested, namely StarGAN, which
falls short to AttGAN given our chosen evaluation methods. It is found that AttGAN is
able to achieve considerably better results in preservation of both attributes, as well as
producing visually better images. In our experimental testing, we found that MS-SSIM
and L1 offer less noise in GAN generated images than using L1 or smooth L1. It is also
found that replacing batch normalization with instance normalization for the generator
encoder and decoder resulted in less changes in the image background.

The first hypothesis of this thesis, “We can remove all recognizable features from a face
and still generate a new face with same gender”, is shown to be correct. We are able to
de-identify a face with the accuracy of 97.40%, and preserve the gender with our best
accuracy of 89.00%. Compared to the gender preservation results of DeepPrivacy alone,
being 77.50%, we manage to increase gender preservation with 11.50%.
The second hypothesis, “We can remove all recognizable features from a face and still
generate a new face with approximately same age”, is also shown to be correct, as we are
able to preserve the age group with our best accuracy of 73.67%. Comparing to Deep-
Privacy’s age preservation accuracy of 42.25%, we manage to increase age preservation
with 31.42%.
The correctness of the third hypothesis, “We can change all skin colors to one color in
order to avoid bias towards certain skin tones”, is however debatable for the proposed
algorithm. DP-ATT-S does provide images where the skin color is closer to the average
color than it is using DeepPrivacy alone. However, the deviation of the average skin color
compared to the target skin color is more than 20% for each of R, G and B. We are able
to change the skin tone, but the underlying original skin tone does have a major effect
on the final, achieved skin tone. The proposed scheme is therefore not optimal for the
purpose of changing skin tone in order to avoid bias in the anomaly detector towards
certain skin tones.

Overall, we show through comprehensive testing that our proposed method is able to
remove all recognizable features from a face and still generate a new face with same gen-
der and approximately same age.
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5.2 Future Work

Mentioned below are some tasks that we would have looked further into if we had more
time on this thesis.

• Implement a new generator loss where the face is masked and the combination of
MS-SSIM and L1 is used on the input image versus the reconstructed image where
skin tone is changed, in order to penalize change of the background. A different
solution to the issue may be to, after de-identifying the face and using AttGAN to
change to original age group and gender, crop out only the face and place it back in
the original frame instead of the rectangular face image which contains parts of the
background.

• Train DP-ATT with IN for the AttGAN generator encoder and decoder instead of BN,
as the group images indicate that this could result in visually smoother faces.

• Fine-tune alpha for the MS-SSIM and L1 combination, as well as fine-tuning the
number of discriminator updates per generator update.

• Work on increasing image quality further, with the goal for the quality being the
same as after only using DeepPrivacy.

• It has been noticed that the dataset got a different age distribution after relabeling
the FairFace images using Age-gender-estimation. The new age distribution is closer
to the distribution of the dataset that Age-gender-estimation is trained on (IMDB-
WIKI). Thus, it can be beneficial to use a different network to detect age and gender
if one wish a broader age distribution. This was not an issue for the final proposed
networks in this thesis due to an even distribution in the chosen age groups.

• As the Oslo Police want to de-identify in real-time, the proposed algorithm should
be tested in regard to time and optimized to lower delay.

• Restoring bitrate of videoes after using DeepPrivacy for de-identification.
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