
A decentralized Ethereum
platform for smart energy
trading
Designing and implementing an eAuction application for energy

trading on the Ethereum blockchain by using smart contracts.

Written by
Cristina Torp
Even Eilertsen

SUPERVISOR
Harsha Sandaruwan Gardiyawasam Pussewalage

Co-Supervisor
Vladimir Oleshchuk

University of Agder, 2021
Faculty of Engineering and Science
Department of Information and Communication Technology

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler,
retningslinjer for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre stu-
dentene på deres ansvar og hvilke konsekvenser fusk kan medføre. Manglende erklæring
fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at
vi ikke har brukt andre kilder eller har mottatt annen hjelp enn
det som er nevnt i besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdel-
ing/universitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk
og kan medføre annullering av eksamen og utestengelse fra uni-
versiteter og høgskoler i Norge, jf. Universitets- og høgskoleloven
§§4-7 og 4-8 og Forskrift om eksamen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkon-
trollert.

Ja

5. Vi er kjent med at Universitetet i Agder vil behandle alle saker
hvor det forligger mistanke om fusk etter høgskolens retningslin-
jer for behandling av saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og
referanser på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er
merkbart forskjellig og ønsker dermed å vurderes individuelt.
Ordinært vurderes alle deltakere i prosjektet samlet.

Ja

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til opp-
gaven. Det betyr blant annet enerett til å gjøre verket tilgjengelig for allmennheten
(Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli pub-
lisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre opp-
gaven tilgjengelig for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

First and foremost, we would like to express our gratitude to Dr. Harsha S. Gardiyawasam.

Without his guidance, this thesis would not have been written. The continuous meetings

and feedback that we received during the last month of the semester guided our focus

into what we believe resulted in a significant improvement. We would also like to thank

Professor Vladimir A. Oleshchuk for his assistance during the beginning of the project.

Last but not least, we would like to thank our partners for their invaluable support during

this thesis.

i

Abstract

The modern energy grid is constantly improving its efficiency and flexibility by adopting

new technology. Regional energy providers, however, have a monopolistic role in deciding

market prices, and their motives have been criticized for focusing on their own profit.

Microgrids have seen a large adoption partly due to their ability to supplement a local grid

with alternative renewable energy sources. A decentralized auction platform would allow

the users to trade energy within their local microgrids. The platform could also allow

households with energy production means like solar panels to sell their excess energy,

reducing the regional providers’ and intermediaries such as energy brokers’ role in the

current grid system while improving green energy utilization.

This thesis proposes an auction application developed on the blockchain protocol

Ethereum. The proposed solution would allow users to buy and sell energy using the

underlaying Ethereum network, making it a decentralized trading platform. The plat-

form’s security has been addressed by prioritizing security throughout the process; from

the initial design phase to the creation of the solution prototype. Furthermore, quality

assurance of the solution was evaluated with unit tests that addressed the implementa-

tion code, and a security analysis of the solution was conducted with respect to the users’

security requirements.

iii

Contents

Acknowledgements i

Abstract iii

List of Figures ix

List of Code Fragments xii

1 Introduction 1

1.1 Microgrids . 1

1.2 Smart Energy Trading . 2

1.3 Blockchain Technology . 3

1.4 Motivation for Blockchain-based Energy Trading 3

1.5 Thesis Definition . 4

1.5.1 Research Objectives . 4

1.5.2 Research Questions . 4

1.5.3 Scope . 5

1.6 Related Work . 5

1.6.1 Smart Grids . 5

1.6.2 Blockchain-based Trading Systems 6

1.7 Contribution . 7

1.8 Thesis Outline . 8

2 Theoretical Background 11

2.1 Blockchain Technology . 11

2.1.1 Blockchain History . 11

v

2.1.2 Blockchain networks . 12

2.1.3 Features of Blockchain . 14

2.2 Ethereum . 15

2.2.1 Ethereum Whitepaper and Core Ideas 15

2.2.2 Ecosystem of Ethereum . 16

2.2.3 Smart Contracts . 17

2.3 Cryptographic Primitives in the Platform 18

2.3.1 Hash Functions . 18

2.3.2 Digital signatures . 18

2.4 Blockchain Development . 19

2.4.1 Solidity . 19

2.4.2 Truffle . 22

2.4.3 Ganache . 23

3 Blockchain-based eAuction Solution 25

3.1 Case Description . 25

3.2 Solution Overview . 28

3.2.1 Phase 1: Create Auction . 30

3.2.2 Phase 2: Hidden Round . 31

3.2.3 Phase 3: Open Round . 32

3.2.4 Phase 4: Close Auction . 34

3.2.5 Phase 5: Delete Auction . 35

4 Implementation 37

4.1 Platform Architecture . 37

4.1.1 Actors and Platform Components 39

4.2 Code Implementation . 40

4.2.1 Auction Controller State Variables 40

4.2.2 Auction State Variables . 41

4.2.3 Phase 1: Create Auction . 46

4.2.4 Phase 2: Bid in the Hidden Round 49

4.2.5 Phase 3: Bid in the Open Round 52

4.2.6 Phase 4: Close Auction . 55

4.2.7 Phase 5: Delete Auction . 61

5 Implementation Assessment 65

5.1 Setup . 65

5.1.1 Testing Third Party Libraries . 67

5.2 Auction Controller Tests . 67

5.3 Auction Tests . 73

5.3.1 Tests During Hidden Round . 76

5.3.2 Tests During Open Round . 79

5.3.3 Tests For Closing The Auction . 84

5.4 Security Analysis . 88

5.4.1 Attack Vectors . 88

6 Conclusion 91

6.1 Future Work . 93

Appendix A Auction Controller Source Code 95

Appendix B Auction Source Code 97

Appendix C Auction Controller Tests Source Code 106

Appendix D Auction Tests Source Code 113

Bibliography 127

List of Figures

2.1 Simplified blockchain . 12

2.2 Transactions in Bitcoin . 13

2.3 Ganache UI . 23

3.1 Overview of desired system . 26

3.2 Overview of the proposed solution . 29

3.3 Seller creates auction . 30

3.4 Bidder(s) transfer their deposit bid with their hashed bid 31

3.5 Bidder(s) reveal their bid . 33

3.6 The DApp finds the auction winner, and completes the closing logic of the

auction . 34

4.1 System architecture . 38

4.2 UML-symbols of the actors and components included in the Smart Trading

Platform implementation . 39

4.3 Phase 1: No state (creation) . 46

4.4 Model phase 2: Ready for hidden bids 49

4.5 Model phase 3: Ready for open bids . 52

4.6 Model phase 4: Close auction . 55

4.7 Model phase 5: Ready for deletion . 61

5.1 Ganache IDE: displaying the user accounts, their balance and their tx count 66

5.2 Truffle migrate console results . 67

5.3 All auction controller tests passed . 73

ix

.

Code Fragments

4.1 Auction controller state variables . 40

4.2 Auction helpers . 41

4.3 Auction state variables . 43

4.4 Auction controller: deploy a new auction 47

4.5 The constructor of the auction smart contract 48

4.6 Bid in hidden round . 50

4.7 Close hidden round . 51

4.8 Bid in open round; revealing bids . 53

4.9 Close auction . 54

4.10 Find the auction winner . 56

4.11 Transfer back deposits . 58

4.12 Transfer highest bid and remaining deposits to seller 59

4.13 Retrieve token . 60

4.14 Auction controller: delete auction . 62

4.15 Delete auction . 63

5.1 Truffle configuration . 66

5.2 Truffle migration: deploy controller contract 66

5.3 AC test: architecture . 68

5.4 AC test: can deploy new auction . 69

5.5 AC test: can not delete if not admin . 70

5.6 AC test: cannot delete auction prematurely 71

5.7 AC test: admin can delete auction . 72

5.8 Test Auction, a helper contract for testing 74

5.9 Auction test: architecture . 75

5.10 Auction test: initialization . 76

5.11 Auction test: can bid in hidden round . 77

xi

5.12 Auction test: cannot bid if deposit is too low 78

5.13 Auction test: cannot bid in hidden round after hidden bids deadline . . . 78

5.14 Auction test: close auction if no hidden bids were received 79

5.15 Auction test: can bid in open round . 80

5.16 Auction test: cannot bid in open round if bidder did not participate in

hidden round . 81

5.17 Auction test: cannot bid in open round if the open bid does not match the

hidden bid . 81

5.18 Auction test: close open round successfully 82

5.19 Auction test: simulate bidding with different accounts 83

5.20 Auction test: finding the correct winner 84

5.21 Auction test: did not transfer deposit back to invalid bidder 85

5.22 Auction test: sent highest bid to seller, as well as any remaining deposits 86

5.23 Auction test: winner can retrieve token 86

5.24 Auction test: only the auction winner can retrieve the token 87

5.25 Auction test: token is not callable . 88

Chapter 1

Introduction

This chapter presents a brief introduction to the main topics of this thesis: microgrids,

smart energy trading, and blockchain technology. Subsequently, we discuss our motivation

behind creating a solution for blockchain-based energy trading. This is followed by the

thesis definition, which outlines our research objectives. We will then discuss related work

that has been conducted in the area of interest that influenced our work and attempt to

provide our contribution to the field. Finally, we present an outline of the thesis structure

with a brief description of each chapter in the thesis.

1.1 Microgrids

As the world steadily tries to combat the danger of global warming, renewable energy

sources have been a topic discussed widely in the last years. Several countries, such as

Kenya [1], France [2], Haiti [3], and the United States [4] have all successfully developed

microgrid systems in the hopes of providing an alternative power supply to their citizens.

The US Department of Energy [5] defines a microgrid as "a group of interconnected loads

and distributed energy resources within clearly defined electrical boundaries that acts as a

single controllable entity with respect to the grid. A microgrid can connect and disconnect

from the grid to enable it to operate in both grid-connected or island mode.’" It is a self-

sufficient energy system that can either operate in connection with the regional energy

providers (macrogrid) or disconnect from the macrogrid and rely on renewable energy

1

1.2. Smart Energy Trading

sources (RES) to supply a discrete area with energy, such as a hospital, a neighborhood

or a college campus, for instance.

While connected to the macrogrid, microgrids serve as a sustainable and resilient

energy supplier when the national power grid experiences outages in cases of natural

catastrophes or if an electrical wire is simply brought down by a fallen tree. In island

mode, the microgrid is dependent on local energy sources like solar panels or windmills.

The producers of such energy are called prosumers, as they can also be consumers of

said energy. Prosumers will share the excess energy they produce with the rest of the

microgrid network.

1.2 Smart Energy Trading

Modern energy systems are constantly adopting new technology in order to improve effi-

ciency and flexibility [6]. With a global shift towards environmentally friendly technology,

there is a significant amount of innovation in this field that can increase the utilization

of green energy. The emergence of microgrid technology has given consumers an insight

into their energy consumption habits and local energy resources. With access to electric

storage units that can store excess energy, it is natural that prosumers would want to

trade such a surplus of energy with local consumers. While regional energy providers

have had a monopoly on energy distribution, they have had control over the availability

and market price.

Even though energy trading has been available, energy brokers have served as an in-

termediary between producers and consumers. Energy brokers lower the costs of regular

households, but they do charge a fee or commission for their services. Providing energy

trading between local producers and consumers decentralizes the trading by removing the

need for such intermediaries and the regional providers altogether, thereby minimizing

the costs while also reducing the regional grid load. These trading systems are often im-

plemented with auction mechanisms, where a prosumer acts as a seller and the consumers

as bidders. The prosumers and consumers will then together dictate the market price.

2

1.3. Blockchain Technology

1.3 Blockchain Technology

Blockchain technology was first introduced by Satoshi Nakamoto, an anonymous person

or group of persons, in 2008 [7]. His whitepaper on Bitcoin was a revolutionary step

in Information and Communication Technology (ICT). A blockchain is a digital public

ledger where lists of blocks are cryptographically linked. Each block contains several

transactions, its current timestamp, and a cryptographic hash pointer to the previous

block in the chain. The blockchain is distributed to a peer-to-peer (P2P) network, where

each peer is called a node. Each node manages its own local copy of the public ledger.

The decentralized nature of the blockchain makes it immutable, as modifying one block

would make it apparent to all the other nodes in the network that the block had been

tampered with. As modifying a block would also modify its hash, the modified block

would not be accurate according to the other nodes’ ledgers.

This technology has been implemented in many other fields besides cryptocurrency,

and one of these fields is energy trading. The transparency, immutability, decentraliza-

tion, and security of blockchain technology are significant advantages that can improve

the current energy trading solutions. Using smart contracts, which are computer pro-

grams that are transacted to the blockchain, trading systems can be automated and

executed without the need of trusted third parties (TTP). Once deployed to the chain,

the contract cannot be updated. As all transactions are transparent, trading participants

can inspect the contract and all transactions associated with it.

1.4 Motivation for Blockchain-based Energy Trading

Utilizing blockchain technology for energy trading leads to a decentralized network where

the market is controlled by the consumers rather than centralized regional providers. It

can make the market competitive and react to supply and demand rather than forcing

consumers to pay extra fees to energy brokers and energy providers that have a monopoly

on the energy market. Moreover, trading energy in microgrids will lead to a growth in

renewable energy usage. Introducing blockchain technology into the solution will also

make energy trading more efficient as it is autonomous. However, creating such a system

leads to problems with bidding privacy due to the blockchain’s inherent transparency.

Bids cannot be placed in the blockchain in plaintext as every transaction is transparent

in the network logs. Nevertheless, bidders must transfer something to the auction in

3

1.5. Thesis Definition

order to avoid fraudulent attempts to win the auctioned off energy with a high bid that

the bidder does not actually possess. This dilemma creates an interesting problem that

must be solved in order to create a successful blockchain-based energy trading platform.

1.5 Thesis Definition

As discussed in the previous section, a transparent, efficient, and immutable energy trad-

ing platform will lead to lower consumer costs and higher prosumer profits while reducing

the energy footprint. Providing a blockchain-based eAuction system to prosumers and

consumers will eliminate the need for energy brokers and intermediaries and gives control

of the energy market back to the prosumers and consumers. This thesis will focus on

the problem of designing a secure, blind auction system on a transparent blockchain net-

work. Moreover, the designed solution model will also be implemented as a functioning

prototype where technical details of coding the system will be demonstrated. It is crucial

to apply security by design in both the solution model and the code in order to meet the

user’s security requirements in a system that tackles transactions of Ether.

1.5.1 Research Objectives

The following research objectives must be realized in order to fulfill the thesis definition:

RO 1) Model an appropriate, secure blockchain-based eAuction solution that is ca-

pable of fulfilling the abovementioned requirements.

RO 2) Implement a secure prototype of the auction model.

RO 3) Evaluate and analyze the prototype.

1.5.2 Research Questions

In order to satisfy our research objectives, it is necessary to answer the following research

questions.

RQ 1) How can we ensure transparency while hiding the auction bids?

RQ 2) How can we validate that the bidders do indeed have the funds they are offering

when they cannot transfer the bid itself?

4

1.6. Related Work

RQ 3) How can we evaluate the functionality of the implemented solution?

RQ 4) How can we assess the security of the solution?

1.5.3 Scope

The thesis focuses on what technology is most relevant in the creation process of the

platform. We will focus mainly on designing a solution model of the energy trading

platform and its code implementation. It is important to note that the actual transfer of

energy from a prosumer to a consumer is considered out of scope. How the auction winner

will retrieve the energy provided by the seller is a conceptual idea only, and will not be

considered further. We have also made some basic assumptions that enable the thesis to

maintain focus on the aspects that contribute to the field. The main assumptions of the

thesis are:

1. The system’s user interface (UI) is the interface that users use to interact with the

solution. This interface is only conceptual and is assumed to be securely coded.

2. The connection between users and the UI is assumed secure. This assumption en-

sures that we can focus on our blockchain-based eAuction solution and not shift the

focus to human errors and technical attacks that target credential UI pages, input

validation from the UI, and similar attack surfaces.

3. The actual transfer of energy from the seller to the auction winner is considered

out of scope; we will focus on the eAuction system and the Ether payments on the

blockchain.

1.6 Related Work

This section describes research that has been conducted in our area of interest related

to this thesis. The related research has organized into two main topics: smart grids and

blockchain based trading systems.

1.6.1 Smart Grids

Microgrids have traditionally been used in the power sector in order to support existing

grids in events like power failure or to provide another form of energy production if the

5

1.6. Related Work

grid’s primary production is unstable [8]. The ability to operate as a separate grid while

still being connected to an external grid has allowed for several solutions that promote a

more decentralized grid.

"The Future of the Electric Grid" which is an interdisciplinary study from Mas-

sachusetts Institute of Technology, states that "the best way to describe a smart grid

is the expanded use of new communications, sensing and control systems throughout all

levels of the electricity grid." [6] With a global shift towards environmentally friendly

technology, there is a significant amount of innovation in this field that can increase the

utilization of green energy. Some smart grids have implemented energy production into

their systems, often using solar panels to both produce and consume energy, becoming

a prosumer. In a system where some users are prosumers, there should exist trading

platforms that would allow the users to sell their excess energy if they produce more than

they consume.

The International Renewable Energy Agency (IRENA) is an organization that pro-

motes possible solutions that can lead to a more sustainable energy future. In 2019 they

published "Blockchain – Innovation Landscape Brief". The brief is a part of their project

to illustrate the need for synergy between technologies to create solutions to renewable

and sustainable energy problems. The brief promoted blockchain technology as some of

the most promising technology to solve the immediate future’s energy problems [9].

1.6.2 Blockchain-based Trading Systems

Blockchain has been commended for its transparency and integrity without the need

for a trusted third party. The decentralized nature of such a system makes them ideal

for some applications [10]. One such application is auctioning. eAuctions created a

system for buyers and sellers to trade over the internet, removing the need for physical

presence. The blockchain provides transparency and integrity in a mathematically proven

way. However, other problems may occur based on the desired auction type [10]. The

transparency may mitigate corruption, which has been an issue in countries like Ukraine.

However, the auction’s input data should remain confidential in some auctions to provide

a suitable auction type where the bidders have a mutual distrust, which prompts them

to desire that their bid remains confidential towards competitors. Auctions refer to this

as sealed bids. A sealed bid auction keeps the bids confidential until the deadline, where

the bids are revealed [11].

6

1.7. Contribution

The Ethereum blockchain offers new possibilities for trading systems [12] using blockchain-

enabled decentralized applications and smart contracts. Smart contracts enable more

flexible agreements to be made and a significant reduction of complexity to both create

and use decentralized applications. An auction hosted on a system like Ethereum effec-

tively merges the auction mechanism in the application with the blockchain attributes

[13] that is provided by the protocol network. The smart contract determines the auc-

tion winner in a verifiable manner by other users instead of a trusted auctioneer acting

as a third party. In addition to the decentralized nature of such a system, an auction

that performs the transactions in the auction On-Chain will utilize an infrastructure that

provides more predictability in service fees, which can be beneficial when designing, and

later using the system.

The energy sector has in recent years identified the potential of blockchain-based en-

ergy trading systems [9]. Blockchain-based assets are described as being a promising

method to raise capital for projects, meaning that some projects can receive funding

without the need of a larger actor. This results in the potential of more crowdfunded

projects, further promoting the decentralization of these systems. The authors of [13]

proposed a double auction mechanism to facilitate peer-to-peer energy trading. [9] states

that the decentralized model based on blockchain has the potential to bring down prices

through increased competition and grid efficiency. A more decentralized power system

operation could overall lead to better utilization of grid assets, improved green energy

utilization, and allow the consumers to have more influence in the energy market by

reducing some of the current influence that energy brokers possess.

1.7 Contribution

We solved the problem stated in the thesis definition by meticulously designing a secure

eAuction model utilizing the Ethereum blockchain network. This solution model was

implemented by writing smart contracts in Solidity and deployed to Ethereum’s test net-

work Ganache, where thorough unit tests were performed. The security of our solution

has also been analyzed with respect to the user’s security requirements. Although similar

eAuction solutions exist already, most of them propose a possible solution model of a

blockchain-based energy trading platform. This thesis also provides a working prototype

of the auction. This is a contribution to the field of emerging Decentralized Applications

(DApps) on Ethereum. Using a network like Ethereum that has been called the second

7

1.8. Thesis Outline

generation of blockchain, both provide an abstraction of a significant amount of mech-

anisms but also facilitates applications of different complexity and scope than systems

based on Bitcoin and older generations of blockchains.

Other similar works have either had the structure of a whitepaper, proposed a solution

of a new blockchain protocol, or addressed another unrelated problem where their solu-

tions consequently have different functionalities than our proposed solution. Our solution

could, without a significant amount of work, be altered to facilitate the trade of other

objects like Non-Fungible Tokens (NFTs) or other cryptocurrencies, as it also includes

a working minimal viable product (MVP). Moreover, the process could be repeated to

create another system with similar functionalities. If the Proof of Stake (PoS) system is

implemented in Eth 2.0, this solution can be implemented on that new network, or the

logic of the code could also be migrated to another similar system if that would be more

effective.

1.8 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2, Theoretical Background: In this chapter, we have discussed the most rel-

evant theory required to understand the solution. The chapter starts with an introduction

to the history and functionality of blockchain. Subsequently, the Ethereum network is

described. This section focuses on the ecosystem of Ethereum, which introduces the most

important features and ideas behind our trading system. Finally, we discuss smart con-

tracts on Ethereum, both their evolution and their current state, and introduce relevant

development tools and languages for writing smart contracts in Ethereum.

Chapter 3, Blockchain-based eAuction Solution: This chapter introduces our pro-

posed solution. It introduces the case that is the foundation of our thesis, the desired

functionality of a trading system, and the relevant issues within such a system. The

solution is then divided into five phases of an auction life cycle which is described and

illustrated using sequence diagrams, focusing on how the users interact with the platform.

Chapter 4, Implementation: This chapter is dedicated to the implementation of

our solution. It introduces the platform architecture and the system components before

demonstrating how the solution is implemented with the help of detailed code fragments.

8

1.8. Thesis Outline

Chapter 5, Implementation Assessment: In this chapter, we discuss how the imple-

mentation has been tested and analyzed to ensure platform integrity and functionality.

Furthermore, a security analysis of our solution has been conducted that provides insights

into how users’ security requirements have been met.

Chapter 6, Conclusion: This chapter will summarize the main accomplishments of

our thesis, and discuss the research objectives and research questions with respect to the

work. Additionally, we include possible improvements that can be integrated into the

solution as a part of future work.

Appendix A: The complete source code of the Auction Controller contract, written in

Solidity.

Appendix B: The complete source code of the Auction contract, written in Solidity.

Appendix C: The complete source code for the Auction Controller tests, written in

JavaScript.

Appendix D: The complete source code for the Auction tests, written in JavaScript.

9

Chapter 2

Theoretical Background

This chapter focuses on introducing the theoretical concepts that provide the required

knowledge to understand the underlying technology that is needed both to develop and

implement the energy trading platform. First, we describe blockchain technology and its

features in detail. Then, we discuss the main topics of Ethereum and its ecosystem while

maintaining focus on the scope of the thesis. Moreover, the cryptographic primitives ap-

plied in the solution will be described. Finally, we present the core development tools used

to implement the solution.

2.1 Blockchain Technology

This thesis is an application of blockchain technology. This subsection provides some

background information and history of blockchain technology and introduces some core

concepts relevant to the subsequent chapters.

2.1.1 Blockchain History

The idea of a decentralized digital currency system has been around since the 80s with

concepts as Chaumian binding, which proposed a method of anonymous payment using

blind signatures [14]. In the late 90s to mid-2000s, concepts like Wei Dai’s "b-money"

[15] and Hal Finney’s "reusable proofs of work" [16] were introduced. However, most of

these concepts were theoretical and struggled with the decentralization of the systems,

and therefore relied on a trusted computing backend. The Bitcoin whitepaper "Bitcoin:

11

2.1. Blockchain Technology

A Peer-to-Peer Electronic Cash System" was published in 2008. The paper introduces

a solution that establishes ownership through public-key cryptography with a consensus

algorithm. This algorithm is known as "proof of work". As a consensus algorithm, it

allows nodes to collectively agree on updates to the states of the Bitcoin ledger. Bitcoin

removed the need for trusted third party computation, and instead, the legitimacy of

transactions was proven cryptographically. The computational power came from partic-

ipants that used peer-to-peer connections to run the Bitcoin network. Bitcoin is today

known as the first practical implementation of a distributed ledger system.

2.1.2 Blockchain networks

In order to design and develop blockchain applications, a basic introduction of some of

the core concepts in blockchains is explained in the following subsection.

Blocks are all linked to the previous block in the chain, and every block contains

some transactions. Their hash value can identify every block in the chain. Every block

also includes the previous block’s hash, in what is called the block header (illustrated

in Figure 2.1). This chain of linked blocks is connected all the way back to the first

block that was created on the chain. This block is known as the genesis block. Due

to the previous block’s hash being included in every block, an attempt to change that

previous block would also affect the current block hash, leading every child’s block hash

to change. This mechanism ensures that if someone tries to tamper with a block, every

subsequent block will also be changed, leading to a whole different hash in every block.

This mechanism ensures that the blockchain’s history is immutable.

Figure 2.1: Simplified blockchain

12

2.1. Blockchain Technology

Transactions is the process where a blockchain account transfer a certain amount that

blockchain’s currency to another owner. The owner adds a signed hash of the previous

transaction and adds the next owner’s public key at the end. This method ensures that

anyone can verify the chain of ownership (see Figure 2.2).

Figure 2.2: Transactions in blockchain

Node: Part of the blockchain network, a full node is a participant that stores a

complete copy of the blockchain. Similar to all participants, a node can leave and reenter

the network at their own will. The cooperation of nodes is a crucial part of the network.

Consensus: All transactions are publicly announced. The nodes need to agree on a

common history of all these transactions. The consensus protocol is how the blockchain

system takes these types of decisions that need a majority of the nodes to agree.

Proof of Work: A cryptographic zero-knowledge proof that is used to incentivizes

the participants in the network. PoW is a consensus algorithm that ensures that the

miners have an incentive to secure the blockchain in the form of currency or a portion of

the payment from fees on the network. The deterrent for dishonest miners comes from

the monetary loss from the energy cost that is spent attempting to mine a fake block.

The most popular blockchains use this consensus algorithm.

Proof of Stake was originally a precursor of the PoW, based on financial stake. PoS

revolves around that owner of the blockchain’s base cryptocurrency can lock up their

currency into a deposit, becoming a validator. The validators purpose and vote for the

next valid block in the block creation. Each validator’s voting power correlates to the

value of the deposit. This is called staking, and validators are incentivized to perform

13

2.1. Blockchain Technology

staking to receive a reward in the currency. The difference in punishment is that the PoS

system punishes the dishonest staker by a loss of their staked amount of currency.

2.1.3 Features of Blockchain

Our thesis revolves around blockchain technology. In order to understand some of the core

functionality of blockchain, this subsection introduces some of the features of blockchain

systems.

1. Decentralization

A decentralized system like blockchain base the security of the network on proof of work,

instead of traditional access control, and allow for full transparency. In comparison, a

centralized system, like a traditional payment network or a bank, relies on access control

schemes to allow certain entities access to resources and make decisions. The decentralized

model ensures that the user retains more of the power. There will be no banks that have

access to private accounts in the form of private keys. However, if the user is the victim

of a hack, there is no third party able to revert transactions.

2. Transparency

This decentralized consensus allows all the nodes in the network to agree on a common

record of ownership. This common record is transparent. Transparency is accomplished

due to the fact that all the transactions are accessible by searching the blockchain; all

the transactions and corresponding data between the public addresses are available. This

transparency comes from the design of the network. Instead of a centralized entity giving

"transparency" by providing data, transparency is built into the system and eliminates

potential bias. Regarding cybersecurity, transparency provides what has lately been an

issue with large companies regarding security disclosures of events. If an attack was made

towards a blockchain, the attack details would be visible and public during the attack

instead of presented to users at a later date.

3. Immutability

Immutability in the blockchain refers to how the data is unchangeable once it has been

posted to the blockchain. Since all records are based on the consensus of the nodes,

every node stores a local copy of the ledger. Once a block is successfully attached to the

ledger, no node can go back and change any property of that block. As mentioned in the

previous subsection, if someone tried to alter data on the block, this would result in a

14

2.2. Ethereum

different hash than what the other blocks have stored. This change would also result in

every preceding block changing its hash, requiring a substantial amount of computational

power, especially in longer blockchains.

2.2 Ethereum

Vitalik Buterin published the Ethereum Whitepaper in 2013, and the Ethereum network

has been active since 2015. This section will describe some of the core concepts of

Ethereum, such as the ideas in the original whitepaper, the ecosystem of Ethereum, and

how smart contracts function on the Ethereum network.[17]

2.2.1 Ethereum Whitepaper and Core Ideas

The main idea of the original whitepaper of Ethereum was to propose an alternative

blockchain protocol that would be better suited than Bitcoin to build decentralized ap-

plications. The goal was a blockchain protocol designed for the primary purpose of

building applications instead of functioning as a decentralized currency. Faster develop-

ment time, security, and enabling of application interaction were key features proposed

in the whitepaper. In order to achieve this goal, the paper proposed that the best so-

lution would be "the ultimate abstract foundation layer"; a built-in Turing-complete

programming language in the blockchain. This language is known today as Solidity. The

philosophy behind the design of Ethereum is stated in the whitepaper to promote the

following principles [17]:

Simplicity: The protocol should ideally be simplified so that the average programmer

would be able to participate. At the center of the protocol is the vision that Ethereum is

a protocol that is open to all. Any addition of complexity should provide a substantial

benefit or be discarded.

Universality: Ethereum does not have "features". Ethereum provides the inter-

nal scripting language, which a programmer can use to construct mathematically defined

smart contracts or transactions. These contracts can interlock and provides more possibil-

ities; ultimately, any functionality should be programmable using the Ethereum protocol.

Modularity: In order to benefit the entire cryptocurrency ecosystem, modularity is

desired. Modularity would allow changes to apply each of their separate modules, and

15

2.2. Ethereum

the application stack would continue to function without any modification. Then some

of the Ethereum features would be accessible in other protocols, even if their features are

not required in Ethereum.

Agility: The Ethereum protocol is flexible. Proposed changes that change the archi-

tecture or high-level constructs will be under heavy scrutiny, but if an opportunity to

promote the core ideas or solve the main problems is found, it may be implemented.

Non-discrimination and non-censorship: All regulatory mechanisms should focus

on security risks and other direct threats, not stopping specific applications.

2.2.2 Ecosystem of Ethereum

In order to get a working grasp of the ecosystem of the Ethereum network, this subsec-

tion introduces some of the features that are most important when using the Ethereum

network as a developer and a user.

Ethereum accounts are objects in the Ethereum protocol that are designed to repre-

sent a typical account function. There are two types of Ethereum accounts: an externally

owned account or a contract account. The externally owned accounts are accounts that

the private key owner controls, while the contract account is controlled by its smart con-

tract code. The Ethereum account is derived from the last 20 bytes of the Keccak-256

hash of the public key[18]. The externally owned accounts are usually managed by an

Ethereum wallet.

An Ethereum wallet is a software application that stores the relevant cryptographic

keys and broadcasts transactions for the user. The wallet functions as the primary user

interface to Ethereum for most users. A wallet manages the keys and addresses, con-

trols access to the cryptocurrency, tracks the balance, and manages transactions. A

wallet abstracts some of the functionality that is considered best practice when utilizing

cryptocurrencies. One of them is the managing of several private keys. Due to pseudo-

anonymity, most Ethereum wallets manage several private keys while using new keys for

some transactions. The wallet itself does not hold any currency. They just store the keys,

which then the user can authorize the wallets to sign the transaction, which then sends

the currency. There are several popular wallets. For this thesis, MetaMask is used.

16

2.2. Ethereum

Ether is the "currency" of Ethereum. It is used as a currency to trade with and to

pay for the transaction fees. An entity needs an ether balance to pay for computation on

the Ethereum network.

Transaction in Ethereum refers to the signed data package that contains a mes-

sage from an externally owned account. The signed data package is transmitted by

the Ethereum network, and the transaction is recorded and stored on the Ethereum

blockchain. These transactions contain, like most cryptocurrencies, the recipient of

the data, a signature from the sender, and the amount of currency sent. In addition,

Ethereum transactions contain an optional data field, STARTGAS, which describes the

maximum number of computational steps the transaction execution is allowed to take,

and GASPRICE, which is the fee for each computational step.

The latter two are a part of Ethereums service model, which attempts to prevent and

reduce unwanted computational wastage, both accidental or malicious. Gas is a unit that

is used as a unit to represent the cost of computation [19]. The gas costs are calculated

based on several factors like computational steps and byte length of the transaction.

The gas system is intended to make users of the network pay fees proportionately to the

number of resources they use, which allows for the incentivization of miners and increases

costs for potential attackers.

2.2.3 Smart Contracts

The term "Smart Contracts" was coined by Nick Szabo in the 1990s [20]. In his paper

from 1994, he states that "A smart contract is a computerized transaction protocol that

executes the terms of a contract.". The smart contract should be designed to satisfy

the common contractual conditions while minimizing the exceptions. These exceptions

could both be accidental or malicious, meaning that the smart contract should align with

economic goals like lowering fraud cost, enforcement cost, and other transaction costs.

In later work, Szabo referred to vending machines as a concept that could be considered

a primitive physical ancestor of smart contracts [21]. In a vending machine, the logic is

preprogrammed, ensuring that a specific input like currency and a choice will result in a

corresponding output. This metaphor has in later years gained popularity and is often

used to give an idea of what a smart contract is.

17

2.3. Cryptographic Primitives in the Platform

Smart contracts in the modern-day most often refer to a similar concept that is in some

way or form deployed using blockchain. Smart contracts in Ethereum is a term used to

refer to immutable computer programs that run on the Ethereum Virtual Machines as

a part of the Ethereum network. The smart contracts are deployed to the blockchain,

making them immutable. There is no way to modify a deployed smart contract if devel-

opers want to modify the contract, they need to deploy a new instance. The contracts

are deterministic meaning that the outcome with a particular input will be the same for

all users, every time given the same context.

2.3 Cryptographic Primitives in the Platform

This section introduces the cryptographic primitives that are utilized on the Ethereum

network. These primitives will be explained in a high-level context to give adequate

background for the coming chapters.

2.3.1 Hash Functions

Ethereum utilizes cryptographic hash functions extensively through the network. Hash

functions transform Ethereum public keys into public addresses, which all users use. The

functions are also used in data verification. A cryptographic hash function maps data of

arbitrary size to a fixed size string of bits. The function only works one way, which means

that the only mathematical way to recreate the output hash is with the same input. If

the hash function is cryptographically secure, the only way to determine a possible input

for a given hash output is to brute-force inputs into the function, searching after the

matching output. However, the possible input does not have to be the original input due

to the hash function’s "many-to-one" nature. This is called a hash collision, and good

hashing algorithms should make hash collisions near infeasible to find. In Ethereum, hash

collisions are so rare that it is practically infeasible [22]. Hashing algorithms are utilized by

many security applications like data fingerprinting, proof of work, message commitments,

and authentication. At the current state of Ethereum in June 2021, Ethereum uses the

Keccak-256 hashing algorithm primarily [23].

2.3.2 Digital signatures

Digital signatures are used to sign messages and ensure integrity and authenticity. In

Ethereum, the digital signature is created by using the Elliptic Curve Digital Signature

18

2.4. Blockchain Development

Algorithm (ECDSA) to combine the message in the transaction with the private key. The

digital signatures are used for transactions in the Ethereum network when an account

wants to transfer Ether. A digital signature corresponding to the Ethereum account must

be created using the private key and send with the transaction. Elliptic Curve is used in

signatures because any party can verify the signatures. The signature creation requires

the private key of the sender’s Ethereum account. However, the verification process

does not. The verification process is used to confirm that the signature in the transaction

corresponds to the private key that is linked with the public key of the sender’s Ethereum

address [24].

2.4 Blockchain Development

This section will describe Smart Contracts from an Ethereum development perspective.

Smart contracts consist of compiled code that is deployed to the blockchain; once trans-

acted to the blockchain, a contract cannot be updated because of the blockchain’s inherent

immutability. Smart contracts can store arbitrary states and execute arbitrary functions

when end users interact with them. Users can use transactions to interact with a con-

tract. Ethereum is the most popular blockchain platform for the development of smart

contracts [23]. Anyone can write and deploy a smart contract to the Ethereum network.

The only requirements needed to deploy a contract are coding knowledge and the gas fee,

which is negligible.

2.4.1 Solidity

As mentioned, Solidity is the Turing-complete programming language that is designed

to create an abstraction of the foundation layer of Ethereum. Influenced by languages

like JavaScript, Python, and C++, Solidity is a high-level language oriented around

implementing smart contracts [25]. At the current time, Solidity is the primary language

on Ethereum [26]. This subsection will describe several main aspects of the Solidity

language that will be used in the implementation in Chapter 4.

State variables

State variables are permanently stored on the blockchain in the contract’s storage and

are declared in the global scope of the contract. Variables must be declared with their

19

2.4. Blockchain Development

intended variable type, as the necessary space will be allocated on the blockchain at

contract creation.

Types

Each variable that is not instantiated with a value will be instantiated with the variable

type’s default value, as null and undefined does not exist in Solidity. The crucial types

used in the implementation and their default values are listed below.

• bool: false

• uint: 0

• address: 0x00

• array: [], empty array

• string: "", empty string

The address type is special to the Solidity language. It holds an Ethereum account

address; either an externally owned account (a user account address) or a contract account

address. The address can also be declared as payable which gives the address two extra

members: transfer and send. This marks the address as an address that can receive

Ether from the contract.

A mapping type in Solidity refers to a variable with the syntax mapping(KeyType =>

ValueType) mappingName. Mappings are initialized in the same way as regular hash

tables, where it is assumed that "every possible key exists and is mapped to a value whose

byte-representation is all zeros, a type’s default value" [27]. Mappings do therefore not

have a member length, and a single key cannot be repeated in the same mapping. To

access the value of a mapping, you have to access it via its key.

Another important Solidity type used in the implementation is struct. Structs are

customizable groups of variables and are tightly packed in the EVM to reduce the storage

space it obtains. Grouping associated variables will therefore reduce the gas price of

storing new variables on the blockchain.

The enum type is used to create a finite group of constant values, which is often used

to define possible states of a state variable or the contract itself.

20

2.4. Blockchain Development

Globally available types in Solidity are used to provide information about the blockchain’s

state. There are also globally available utility types. The two most crucial of these types

are described below.

• block: This variable contains information about the blockchain and the current

block. The one member that is used in the implementation is block.timestamp,

which returns the "current block timestamp as seconds since unix epoch" [28]. This

timestamp cannot be guaranteed to be completely accurate, as each block in the

Ethereum blockchain takes about 13-14 minutes to generate. As the Solidity docs

state: "the only guarantee is that [the current timestamp] will be somewhere between

the timestamps of two consecutive blocks in the canonical chain." [28]

• msg: This variable provides information about a transaction, such as the sender

Ethereum account address (msg.sender) and the Ether transferred (msg.value).

Function types

Function types declare the type of a particular functions. The internal type is assigned

to functions that can only be called from inside the current contract. All functions are

defaulted to internal unless otherwise specified (with a public keyword, for instance).

External functions are the opposite: they can only be called from external entities. Func-

tions can also be marked with the following three function types:

• view: Functions that do not modify state variables can be marked as view functions.

• pure: These functions are even more restrictive than view functions, as they can

neither write or read state variables.

• payable: Functions that contain Ether transactions must be marked as payable.

Without this keyword, the function will reject Ether transactions.

Reference types

Reference types are used to refer to values that can change size, such as structs, arrays,

and mappings. When using these values, one must explicitly declare the storage type to

be used. There are three different data storage locations in Solidity: memory, storage,

and calldata. Storage is the most expensive in terms of gas, then memory, and finally

calldata is the cheapest.

• memory: Values that are stored in memory lives in a function scope. The value only

lives until the code in a specific function has executed.

• storage: Values stored in storage lives until the contract is deleted.

21

2.4. Blockchain Development

• calldata: This data location is allocated for the arguments of a function.

Error handling

While Solidity offers several methods of handling errors, our implementation uses only

one: require. A require statement is used to check for conditions and reverts the trans-

action if the condition returns false. It is used to validate arguments of a function, the

sender of a transaction, or the transaction value. It is possible to return a string that

describes the error if the condition in the statement is not met.

Modifiers

Function modifiers are convenience inheritable properties for repeated require statements.

Functions that use modifiers will check the condition declared in said modifier before

executing the rest of the function. Modifiers are declared in the global scope of the

contract.

Events

Events in Solidity are used as a logging functionality within a contract. Applications such

as user interfaces (UIs) can listen to emitted events through an Ethereum client’s RPC

interface, for instance, Javascript’s web3 library. The logs are stored in the transaction

receipt, which is available on the blockchain.

2.4.2 Truffle

Truffle is a framework designed to make development easier on Ethereum. It is a de-

velopment environment that can be used for testing and as an asset pipeline through

JavaScript. Truffle can be used to compile and deploy contracts to Ethereum’s main

network or one of its test networks. By using the Command Line Interface (CLI), a

Truffle project can be easily initialized by running the command truffle init . That

command sets up default contracts, test files, and configuration files within the current

directory while also providing a local development blockchain server.

truffle compile will compile all contracts within the contracts folder in the

project. If there are any compile-time errors in the code, an error will be thrown and

logged to the console. truffle migrate will run the migration scripts within the

migrations folder. These scripts are where the contracts are deployed to the network.

truffle test is used to run the test files in the test folder. Truffle tests can be

22

2.4. Blockchain Development

written in both Solidity and JavaScript. Note that examples of the migration scripts and

truffle tests are demonstrated in Chapter 5.

2.4.3 Ganache

Ganache is a personal blockchain used for Decentralized Application (DApp) develop-

ment, and is a part of the Truffle Suite. A personal (private) blockchain is a blockchain

network where one person has control of the blockchain network, which is apt for a devel-

opment environment. Ganache can be used as a CLI tool, but also provides a user-friendly

UI where an end-user can view all transactions, generated blocks, and logs emitted from

the development blockchain. Figure 2.3 illustrates an example of the UI. Ganache also

provides ten accounts which are all equipped with 100 Ether each. It is important to

note that this is not real Ether, and cannot be used in the main network. When config-

uring Truffle to use the Ganache network, these accounts can be used in the Truffle tests,

and the balances will be updated in real-time. Ganache can also be used to inspect the

contracts linked in the Truffle configuration.

Figure 2.3: Ganache UI

23

Chapter 3

Blockchain-based eAuction

Solution

This chapter presents the proposed blockchain-based auctioning system for smart energy

trading in detail. It will focus on the functionality of the solution and how the technology

is used. We start the chapter by outlining the case for which the solution is proposed.

Then, we explicate our solution by dividing it into five phases: (1) Create an auction; (2)

Transfer hashed bids; (3) Reveal bids; (4) Find the auction winner and perform closing

logic; and (5) Delete the auction.

3.1 Case Description

Before we discuss the details of the proposed solution, it is quite important to introduce

the case on which the solution is built around.

As it currently stands, regional providers of energy have a sole monopoly on the elec-

trical grid to which all their citizens are connected to. Nevertheless, producing renewable

energy through solar panels, small windmills, i.e., is growing more and more common.

Microgrids are becoming a growing interest, where groups of people in near local vicinity

can trade the excess energy they have produced. Being able to trade energy between

different households without the need for an energy broker would allow the consumers

to regulate the market price instead of the regional providers. A decentralized system

25

3.1. Case Description

Figure 3.1: Overview of desired system

will reduce the power regional providers holds on electricity prices, lower costs of trading

by removing energy brokers from the ecosystem altogether, and also increase the green

energy utilization of local microgrids.

Cryptocurrency and the potential of Decentralized Applications (DApps) can be used

to implement a decentralized trading platform (explicitly an auction system) in order

to utilize the benefits of blockchain technology – transparency, automation, security,

and efficiency. Such a system is illustrated in Figure 3.1. In a Decentralized Trading

Application, users can trust that the auction they participate in will not be fraudulent

as they can see each transaction that has been made in the blockchain logs.

There are two types of users in the network: (1) Prosumers, that produce more energy

than they need and therefore want to sell their excess energy; and (2) Consumers, who

want to buy green energy from those with a surplus instead of (or in addition) from their

regional provider. A prosumer in this context is someone who is both a producer of energy

and a consumer of energy. The prosumer can both buy and sell energy from/to other

prosumers. The auction system should focus on facilitating energy trading that minimizes

each user type’s time consumption and maximizes ease of use. In order to provide market

stability and avoid bidding wars, the bidding process should be hidden. A problem then

arises: if the bids should be hidden, but the blockchain is transparent, how would this be

26

3.1. Case Description

feasible? Furthermore, each bidder must verify that they indeed do have the necessary

funds for the energy transaction to ensure system integrity. The bidders must also trust

that their funds are secure and that these funds will be returned to them at the end of the

auction if they do not win. Moreover, the auction winner must receive a trusted token

which serves as a verification of the energy they will acquire after the auction has closed,

and this token should only be used once and be non-fungible. These requirements are the

foundation of the solution which we will discuss throughout the remainder of this report.

The physical aspects of connectivity and components that could facilitate energy trading

are considered out of scope.

27

3.2 Solution Overview

Figure 3.2 illustrates the overview of our proposed solution. We have two different actors:

the seller and the bidder(s). These interact with a Decentralized Application (DApp)

which functions as our auction system. The DApp is located in the Ethereum network.

The overview is split into five different phases, which are represented by different colors in

the figure (the same color code is used throughout this report). The five phases comprise

creating a new auction, two different bidding rounds, closing the auction and performing

closing logic, and finally deleting the auction when it is finished. Each phase will be

discussed independently from Subsections 3.2.1 to 3.2.5. Table 3.1 displays the overview

of every abbreviation and notation that is used throughout this chapter.

Notation Description

e The energy amount that will be auctioned off by the seller.

bv The minimum bid value that the seller selects when creating an auction.
All bids that are lower than this value will be discarded.

dv The deposit value that the seller selects when creating an auction. Every
bidder must transfer at least this deposit amount when bidding in order
to participate in the auction.

bi, bw The bid corresponding to the ith bidder (bidder i) and the bid of the
auction winner respectively.

zi The salt used to hash bi.

di, dw The deposit chosen by the ith bidder and the auction winner respectively.

t∗ The token created for the auction winner.

SkS , PkS Secret and public key of the seller.

Ski, Pki Secret and public key of the corresponding ith bidder.

PIS Ethereum account address of the seller, called PI for Pseudo Identity.

PIi Ethereum account address corresponding to the ith bidder.

PIw Ethereum account address of the auction winner.

PIA Ethereum account address of the auction.

DT PIA
PIi

Deposit Transaction from PIi to PIA.

DRT PI?
PIA

Deposit Return Transaction from PIA to the relevant user.

PT PIS
PIA

Payment Transaction from PIA to PIS .

ETC PIw
PIA

Energy Token Commission from PIA to PIw.

Table 3.1: Abbreviations and notations used in the solution chapter

3.2. Solution Overview

Figure 3.2: Overview of the proposed solution 29

3.2. Solution Overview

3.2.1 Phase 1: Create Auction

Figure 3.3 presents the first stage in the auction process: the seller creates a new auction

through the DApp. This is implicitly done by a four-way handshake. The seller accesses

the platform and lets the DApp know about the user and its public key, and the DApp

returns an acknowledgment that it has received the seller’s access request. The seller

can then send the necessary auction information with a Create auction request, which

includes the amount of energy to be auctioned off (e), the minimum value for each bid

(bv), and the deposit value (dv) each bidder must transfer with their hidden bid in order

to be allowed to participate in the auction. This information is signed with the seller’s

private key (SkS) to ensure authenticity and integrity. As explained in Chapter 2, the

user’s Ethereum account is created with a cryptographic pair of keys: the user’s public

key (Pk) and secret key (Sk). When creating a new Ethereum account, the user will

select a private key (can be a password, a passphrase, etc.). This key is then encrypted

and used as the account’s secret key. The user’s public key is then generated from this

secret key using the ECDS algorithm. The user’s Ethereum account address (PI) is the

last 20 bytes of the SHA3 hash of the user’s public key. The DApp can therefore validate

the seller by verifying the seller’s signature with the help of the seller’s public key, and

will then create a new auction. Finally, it will send another acknowledgment to the seller

to let the seller know that the auction was created successfully.

Figure 3.3: Seller creates auction

30

3.2. Solution Overview

3.2.2 Phase 2: Hidden Round

During the next 24 hours after an auction has been created, it will be ready to receive

hidden bids. The bid logic in this round is demonstrated in Figure 3.4 with respect

to the ith bidder in the auction. As in the previous phase, the bidder will request ac-

cess to the platform and let the DApp register his public key. In return, the bidder

will receive the auction information along with the auction’s Ethereum account address

(e ‖ bv ‖ dv ‖PIA).

The bidder will then post his bid by sending a transaction from his Ethereum account

address (PIi) to the auction’s Ethereum account address (PIA). Every transaction is

denoted by its respective abbreviated name, a subscript representing who sent the trans-

action, and a superscript representing the entity that receives the transaction. Hence,

this Deposit Transaction is denoted by: DT PIA
PIi

(
di ‖H(bi‖zi)

)
.

Figure 3.4: Bidder(s) transfer their deposit bid with their hashed bid

31

3.2. Solution Overview

The transaction is sent from the Ethereum account address of bidder i (PIi) to the

Ethereum account address of the auction (PIA). The transacted value is the bidder’s de-

posit (di) paid in Eth, and the transaction message is the Keccak-256 hash of the bidder’s

bid (bi) and salt value (zi). Note that each transaction contains more information than

what is noted here, but that information is omitted for brevity and clarity. The DApp will

validate that the transaction was sent from the bidder that signed the transaction and

that the deposit value transferred from the bidder is equal to or higher than the deposit

value specified by the seller. If these requirements are not met, the transaction will be

reverted, and the deposit will be returned to the bidder with a Deposit Return Transac-

tion (to the ith bidder’s Ethereum account address (PIi), from the auction’s Ethereum

account address (PIA)). However, if all validation checks are passed, the bid will be

stored on the blockchain along with the bidder’s account address and the deposit value

that was transferred.

This bidding round is designed in such a way that every bidder verifies that he has

the necessary funds to bid on the auction without actually revealing the value of the bid.

Note that deposits will be returned to the bidders in phase 4, except for the winner. The

winner will receive his deposit subtracted by his bid. More information is given in phase 4

of the solution.

3.2.3 Phase 3: Open Round

When the hidden round is over, the auction advances to the open round, which will

be open for another 24 hours. This is the phase where each bidder i will reveal the

bid he submitted in the hidden round. Phase 3 is illustrated in Figure 3.5. The DApp

initiates the round by sending a broadcast message to every bidder that participated in

the auction, reminding them to reveal their bids. The bidder answers by sending the bid

value and the salt used to hash the bid in the previous round in plaintext. These values

are signed by the bidder’s private key to ensure authenticity.

The DApp will first validate that the bidder is valid: that is, by checking that the

incoming bidder’s account address is one of the account addresses that were stored in

the hidden round (in other words: this bidder participated in the hidden round). It

is designed this way to ensure that users cannot hijack auctions in later rounds without

transferring a deposit. If the bidder is deemed invalid, the bid will be discarded. However,

if the bidder is verified, the DApp will investigate the bid. In order to validate the bid,

32

3.2. Solution Overview

Figure 3.5: Bidder(s) reveal their bid

the auction will hash the plaintext bid with the salt given by the bidder by using the

Keccak-256 hashing algorithm. It will then find the hashed bid that was stored along with

the bidder’s account address in the previous phase and compare the two hash strings. If

they are equal, the bid is deemed to be valid. If not, the user has somehow tampered

with his bid (i.e., tried to lower their bid), and his deposit will instead be transferred to

the seller with a Deposit Return Transaction. This logic is implemented in order to deter

bidders from fraudulent behavior. If both the bidder and bid are approved, the DApp

stores the plaintext bid on the blockchain along with the hashed bid and deposit value

belonging to the bidder’s Ethereum account address.

33

3.2. Solution Overview

3.2.4 Phase 4: Close Auction

When the two bidding rounds are over, the DApp will close the auction (presented in

Figure 3.6). It first broadcasts a message to all users in the auction to let them know that

the auction has ended and is no longer receiving bids. Next, it will loop through every

stored open bid to find the highest value. The Ethereum account address associated with

this bid is the auction winner. If there are several winner bids with the same value, the

winner will be the bidder whose bid was first recorded on the blockchain. A token will

then be created for the winner; it will contain the auction’s Ethereum account address

(for traceability), the winner’s Ethereum account address, the energy amount the winner

can retrieve, and the timestamp for how long it is valid (12 weeks from token creation)

Figure 3.6: The DApp finds the auction winner, and completes the closing logic of the
auction

34

3.2. Solution Overview

and will be signed by the auction’s secret key (SkA). It will also contain a boolean value

that says if it has been spent or not to avoid double-spending. This value can only be

changed once: when it is set to true, it cannot be changed back to false.

When the winner has been found, and the winner token has been created, the DApp

will transfer the highest bid to the seller (Payment Transaction). Then it will loop

through each bidder who has a stored open bid (those who did not forfeit their deposit)

and transfer back their deposit with a Deposit Return Transaction. The bidder who won

the auction will receive his remaining deposit after the bid has been subtracted from

it (dw − bw). The winner will also receive the winner token with an Energy Transfer

Commission.

3.2.5 Phase 5: Delete Auction

Finally, when the auction is finished, it will be deleted by the DApp. This, and all the

other phases, will be more carefully explained in Chapter 4: Implementation.

35

Chapter 4

Implementation

This chapter will provide detailed information about the implementation of the solution.

We will start the chapter by introducing the platform architecture, the actors, and the

system components: the DApp User Interface, the Auction Controller, and the Auction

entity. The latter two are smart contracts located in the Ethereum network. We will

then describe the state variables of both contracts. As storing state variables is expensive

in terms of gas, we will justify why they are included, why they are of a certain type

and visibility, and explain their functionality. Finally, we will present the code of the

two contracts step by step through the auction phases introduced in Chapter 3. The

complete source code of the Auction Controller and Auction can be found in Appendix A

and Appendix B respectively, and is also published to GitHub: https: // github. com/

cristinatorp/ master-thesis

4.1 Platform Architecture

In the previous chapter, the auction system was introduced simply as a Decentralized

Application. In reality, the platform is divided into three core components: the DApp

UI, an Auction controller, and the Auction entity. The architecture of our system imple-

mentation is demonstrated in Figure 4.1.

The DApp UI is what the users of the system (namely, the sellers and the bidders)

interact with. The Auction Controller and Auction entity are two separate smart con-

tracts located in the Ethereum blockchain. The UI can communicate with these contracts

37

https://github.com/cristinatorp/master-thesis
https://github.com/cristinatorp/master-thesis

4.1. Platform Architecture

Figure 4.1: System architecture

through web3.js, which is "a collection of libraries which allow you to interact with a local

or remote Ethereum node" [29]. The users will be able to transfer money to the contracts

by using MetaMask [30], a cryptocurrency wallet that is available as a browser extension

and that is integrated within the DApp UI.

The Auction Controller contract lives on the Ethereum blockchain and is responsible

for deploying instances of the Auction contract to the network, and for deleting them when

the individual auctions are finished. The Auction contract is responsible for controlling

one specific auction. Several of these contracts can be deployed at any one point in

time, each controlling its own auction entity. These three components together form the

Decentralized Application for the Smart Energy Trading Platform.

38

4.1. Platform Architecture

4.1.1 Actors and Platform Components

In order to explain how the users interact with the DApp in detail, we have created several

sequence diagrams where the two user types (bidder and seller) are denoted as actors,

the DApp UI as a boundary, the Auction Controller as a controller and the Auction as an

entity. These are represented at the top of each diagram and are displayed in Figure 4.2.

Figure 4.2: UML-symbols of the actors and components included in the Smart
Trading Platform implementation

Seller: The seller represents the user (actor) that opens a new auction. He owns an

excess amount of renewable energy that needs to be auctioned off.

Bidder: The bidder represents a user (actor) who bids on an auction. All interactions

which stems from this user can be repeated from several different bidding accounts, as

shown in Figure 3.4 and Figure 3.5.

DApp UI: The DApp UI is a system boundary that represents the frontend website with

which the actors interact. It is included in the platform to make the platform user-friendly

and abstracts away the complicated blockchain technology behind the application. The

UI can listen to events emitted from the contracts and use the logged information in the

events to display changes to the users.

Auction Controller: The Auction Controller is the auction manager. A controlling

entity "organizes and schedules the interactions between the boundaries and entities and

serves as the mediator between them" [31]. It is a smart contract that deploys new auction

contracts, keeps a list of all active auctions, and deletes completed auctions. Because the

DApp UI can listen to events emitted from both the controller and each auction instance,

it will only interact with the controller to create or delete an auction; after an auction

has been deployed, the DApp UI can interact directly with the Auction Entity for the

intermediary steps. It is not possible, however, to create auctions without the controller.

Moreover, the controller cannot be deleted and will live on the Ethereum Network forever.

39

4.2. Code Implementation

Auction: The Auction is an entity that represents system data. It handles all the data

for one individual auction. These contracts will be deployed from the Auction Controller

and will only live throughout the duration of the auction.

4.2 Code Implementation

The implementation comprises the Auction Controller contract and the Auction contract.

The DApp UI is only conceptual, and its implementation is therefore out of scope. This

section will first introduce all state variables in the aforementioned contracts, and then

demonstrate how the solution has been translated to code using the Solidity language,

advancing through the five phases.

4.2.1 Auction Controller State Variables

The Auction Controller does not need many variables in order to manage the auction

instances. In fact, there are only two state variables in the code and two events that will

be logged. As they are expensive to store, most of the information is only stored in the

auction instance to avoid redundancy and reduce cost. The variables are presented in

Code Fragment 4.1 and described below.

1 address private admin;
2 // auction address => seller address
3 mapping(address => address) public sellerAddresses;
4
5 event AddedNewAuction(address auction);
6 event DeletedAuction(address auction);

Code Fragment 4.1: Auction controller state variables

State variables

• admin: This is the Ethereum account address of the account that deploys the Auction

Controller. It is set to private, because it is not relevant to the users of the system

to see which account is the admin account. This variable is included in the contract

so the admin can delete auction contracts if the seller forgets or simply does not care

to do so; everyone should not have permission to delete auction instances.

• sellerAddresses: This variable is a mapping and takes a key and a value. The

key is the Ethereum account address of an auction (address of a contract), while

40

4.2. Code Implementation

the value is the Ethereum account address of that auction’s seller. The mapping is

public, which means that everyone can see the ongoing auctions. It is included so

the controller can keep track of all deployed auctions.

Events

• AddedNewAuction: Logs the Ethereum address of the new auction contract.

• DeletedAuction: Logs the Ethereum address of the deleted auction contract.

4.2.2 Auction State Variables

Contrary to the auction controller, the auction instance has many helpers and variables

to control all aspects of an auction. The helpers are listed in Code Fragment 4.2 and

the state variables are listed in Code Fragment 4.3. Most of the information about the

auction is bundled into structs. Because structs are packed tightly [32], this layout will

consequently save a significant amount of gas compared to storing each field by itself.

1 enum State {
2 ReadyForHiddenBids ,
3 ReadyForOpenBids ,
4 Closed ,
5 ReadyForDeletion
6 }
7
8 modifier inState(State expectedState) {
9 require(auctionInfo.currentState == expectedState , "Invalid ...

state");
10 _;
11 }
12
13 modifier isBeforeDeadline(uint deadline) {
14 require(block.timestamp < deadline , "Cannot bid after ...

deadline");
15 _;
16 }
17
18 modifier isAfterDeadline(uint deadline) {
19 require(block.timestamp > deadline , "Cannot perform this ...

action before the deadline");
20 _;
21 }

41

4.2. Code Implementation

22
23 event CreatedNewAuction(AuctionInfo auctionInfo , uint ...

currentTime);
24 event ReceivedHiddenBid(address bidder , uint deposit , uint ...

currentTime);
25 event ReceivedOpenBid(address bidder , uint bid , uint currentTime);
26 event ClosedRound(string whichRound , State state , uint ...

currentTime);
27 event ClosedAuctionWithNoBids(string whichRound);
28 event FoundHighestBid(Winner winner , uint currentTime);
29 event AuctionEnded(Winner winner , uint contractBalance , uint ...

currentTime);
30 event TransferEvent(string context , address to, uint value , ...

uint currentTime);
31 event RetrievedToken(address retrievedBy , uint currentTime);

Code Fragment 4.2: Auction helpers

Enums

• State: Enums in Solidity are explicitly convertible to an integer. As this enum

has four members, the integers are in the range of 0–3. State’s members are the

four different states the auction can be in: (1) Ready For Hidden Bids; (2) Ready

For Open Bids; (3) Closed; and (4) Ready For Deletion. It will default to its first

member when initiated.

Modifiers

• inState: This modifier will receive a State argument that represents the expected

state, and will check that the current state is the expected state. If the states are

unequal, the modifier will revert the function call.

• isBeforeDeadline: This modifier verifies that the current timestamp is before the

deadline specified in the argument. It is used on the bid functions during the bidding

process.

• isAfterDeadline: This is the opposite; it verifies that the current blockstamp is

after the given deadline. This modifier is used when closing bidding rounds and

when retrieving the token. These two timing modifiers are included to restrict when

different functions can be called to ensure that they are only called at legitimate

moments.

42

4.2. Code Implementation

Events

• CreatedNewAuction: Emitted in the Auction’s constructor, logs all the information

in the AuctionInfo struct and the timestamp of creation.

• ReceivedHiddenBid: Emitted each time a hidden bid is received, logs the account

address of the bidder, the deposit value, and the timestamp of the bid.

• ReceivedOpenBid: Emitted each time an open bid is received, logs the account

address of the bidder, the open bid value, and the timestamp of the bid.

• ClosedRound: Emitted when any of the two bidding rounds close. Logs a string

describing either "Hidden round" or "Open round", the current state of the auction,

and the current timestamp.

• ClosedAuctionWithNoBids: Emitted if the auction closes without bids (hidden

round: no bids received, open round: no valid bids received). Logs which round

the auction closed and the current timestamp.

• FoundHighestBid: Emitted when the auction winner is declared. Logs the Winner

struct and the current timestamp.

• AuctionEnded: Emitted when the auction is completely finished. Logs the Winner

struct again, the contract’s balance, and the current timestamp.

• TransferEvent: Emitted for each transfer event: transferring back deposits, trans-

ferring the highest bid to the seller, and transferring remaining deposits to the seller.

Logs the context of the transfer, which address is receiving Ether, the value that is

transferred, and the current timestamp.

• RetrievedToken: Emitted when the winner retrieves their token. Logs the address

that retrieved it and the current timestamp.

1 struct AuctionInfo {
2 State currentState;
3 address payable seller;
4 uint energyAmount;
5 uint minBidValue;
6 uint depositValue;
7 uint hiddenBidsDeadline;
8 uint openBidsDeadline;
9 }

10
11 struct Bid {
12 bool existsHiddenBid;
13 bytes32 hiddenBid;

43

4.2. Code Implementation

14 uint openBid;
15 bool isOpenBidValid;
16 uint deposit;
17 }
18
19 struct Winner {
20 address accountAddress;
21 uint bid;
22 }
23
24 struct Token {
25 address winner;
26 address auctionContract;
27 uint energyAmount;
28 uint validUntil;
29 bool isSpent;
30 }
31
32 address private controller;
33 AuctionInfo public auctionInfo;
34 Winner public winner;
35 mapping(address => Bid) public bids;
36 mapping(address => Token) private token;
37 address [] public hiddenBidsAddresses;

Code Fragment 4.3: Auction state variables

Structs

• AuctionInfo: This struct bundles up all the information about the auction. Every

field except for its state is static and will be set in the Auction’s constructor.

– currentState: Is of type State (an enum) and will be updated throughout

the Auction’s lifecycle. Necessary for verifying function access and for emitting

events which the DApp UI can listen for.

– seller: Stores the seller’s account address. This is a payable address because

it must be possible to transfer ether to the seller.

– energyAmount: The amount of energy that is auctioned off by the seller. The

field is a plain uint. Must be stored for the token information.

– minBidValue: The minimimum bid value that the seller will accept for this

amount of energy. Will be stored as wei, which is implicitly a uint.

44

4.2. Code Implementation

– depositValue: The minimum deposit value which every bidder must transfer

to the contract in order to participate in the auction. Will also be stored as wei.

– hiddenBidsDeadline: A uint that defines when the hidden bid round closes.

Stated as seconds.

– openBidsDeadline: A uint that defines when the open bid round closes. Stated

as seconds.

• Bid: Bundles up all information about a single bid.

– existsHiddenBid: A bool that states if a hidden bid exists. This field is nec-

essary because the Bid struct will be given as a value to a mapping and will

always return a value, even if the key does not exist. If called on an invalid key,

the struct will contain every field with default values. Therefore, this value will

return as false for all invalid keys; for valid keys, however, this will return true.

– hiddenBid: Will contain a hashed bid, and is therefore of type bytes32.

– openBid: Contains the open, revealed bid in uint (as wei).

– isOpenBidValid: A bool that defines if the open bid is valid or not. Necessary

for verifying whether the bidder should receive their deposit back or not.

– deposit: Contains the deposit amount of a bidder given as a uint (in wei).

• Winner: Bundles up information about the winner of the auction.

– accountAddress: Stores the account address of the auction winner.

– bid: Stores the highest open bid received throughout the auction.

• Token: The token that can be retrieved by the winner at the end of the auction.

This can be used as the verification for the winner when obtaining his/her energy

(how the winner retrieves energy is out of scope).

– winner: Stores the auction winner’s account address.

– auctionContract: Stores the auction contract’s address.

– energyAmount: This contains the amount of energy that the winner won in the

auction as a uint.

– validUntil: The timestamp when the token is no longer valid, given in seconds

since Unix epoch (uint).

– isSpent: A bool value that declares if the token has been spent or not. This is

included to avoid double spending. When the value is changed to true, it cannot

be changed back to false.

45

4.2. Code Implementation

State variables

• controller: The contract address of the auction controller. Set to private, as it is

only used for restricting who should be able to delete the auction instance.

• auctionInfo: The auction information bundled up in the struct AuctionInfo.

• winner: The information about the winner, of struct Winner.

• bids: A mapping of all bids received throughout the bidding process. Key: the

bidder’s account address, value: Bid struct.

• token: A mapping of the token information. Key: the winner’s account address,

value: Token struct. This mapping is set to private; no one except for the winner

should be able to get this information. A getter is given for retrieving the token

with appropriate verification (see subsection 4.2.6).

• hiddenBidsAddresses: An array of all account addresses that have bid in the

hidden round. This is necessary to loop through the bids in later functions, as it is

not possible to find the length of a mapping in Solidity.

4.2.3 Phase 1: Create Auction

Figure 4.3 provides an overview of the interactions that take place in the system when a

new auction is created. The seller initiates the process by using the DApp UI to create an

auction. He will enter the amount of energy to be auctioned off, the minimum bid value,

and the deposit value each bidder must transfer in order to participate in the auction

(both values will be given as ETH). The deposit value should be significantly higher than

what the seller expects to receive as the highest bid because the winner’s bid will be

subtracted from his deposit amount at the end of the auction. If the highest bid turns

Figure 4.3: Phase 1: No state (creation)

46

4.2. Code Implementation

out to be higher than the deposit amount in the reveal phase, the seller will still only

receive the winner’s deposit, as there will not be any excess ETH on the contract. The

UI will show the average value of earlier auctions’ winning bids for similar amounts of

energy to make this decision easier for the seller.

When the UI contacts the Auction Controller to create a new auction, it is the con-

troller’s deployNewAuction() function that is called. The UI relays the seller’s account

address and the energy amount, the minimum bid value, and the minimum deposit value

that the seller entered. This function is presented in Code Fragment 4.4. By using new

Auction(), the constructor of the Auction smart contract will be called and thus be

deployed to the Ethereum network. The controller will save the address returned from

the call as a new entry in the mapping sellerAddresses with the auction address as its

key and the seller address as its value. Finally, it will fire the AddedNewAuction event

that will be visible in the transaction receipt on the Ethereum blockchain.

1 function deployNewAuction(
2 address payable _seller ,
3 uint _energyAmount ,
4 uint _minBidValue ,
5 uint _depositValue
6) public {
7 // Deploy new auction contract
8 Auction newAuction = new Auction(
9 _seller ,

10 _energyAmount ,
11 _minBidValue ,
12 _depositValue
13);
14
15 // Save seller address
16 sellerAddresses[address(newAuction)] = _seller;
17 emit AddedNewAuction(address(newAuction));
18 }

Code Fragment 4.4: Auction controller: deploy a new auction

The constructor of the Auction contract will save the initial information about the

auction (see Code Fragment 4.5). It gets the current time from block.timestamp and

saves it as a local variable (will be stored in memory until the function is complete, then

47

4.2. Code Implementation

discarded) and stores the address of the controller in its state variable. The information

about the auction is stored as an AuctionInfo struct. The state will be initialized to

ReadyForHiddenBids, and the values received as arguments will be saved to their respec-

tive fields (notice that the two value fields are given the suffix wei). The two deadlines,

hiddenBidsDeadline and openBidsDeadline will be set to 24 hours from now and 48

hours from now, respectively. block.timestamp returns the "current block timestamp as

seconds since unix epoch" [28]. Solidity offers convenience properties for converting time

units based in seconds to numbers. Adding 1 days and 2 days to block.timestamp

will thus give us the deadlines in seconds. Finally, the auction will fire an event with the

aforementioned information and the timestamp. The DApp UI will catch this event and

use the information in the event log to update its list of active auctions and subsequently

display it to its users.

1 constructor(
2 address payable _seller ,
3 uint _energyAmount ,
4 uint _minBidValue ,
5 uint _depositValue
6) {
7 uint currentTime = block.timestamp;
8 controller = msg.sender;
9 auctionInfo = AuctionInfo ({

10 currentState: State.ReadyForHiddenBids ,
11 seller: _seller ,
12 energyAmount: _energyAmount ,
13 minBidValue: _minBidValue * 1 wei ,
14 depositValue: _depositValue * 1 wei ,
15 hiddenBidsDeadline: currentTime + 1 days ,
16 openBidsDeadline: currentTime + 2 days
17 });
18
19 emit CreatedNewAuction(auctionInfo , currentTime);
20 }

Code Fragment 4.5: The constructor of the auction smart contract

48

4.2. Code Implementation

4.2.4 Phase 2: Bid in the Hidden Round

The auction entity will wait for hidden bids for 24 hours (see Figure 4.4). Potential

bidders will use the DApp UI to find the auction they want to bid on, and will select

bids appropriately. As an incentive to not bid lower than what the minimum bid value

is stated as, there will be a clear warning for the bidders that if the bid is revealed to be

invalid in the open round, the deposit will be transferred to the seller instead of returned

back to the bidder upon closing the auction. The same is true if the hashed bid is not

equal to the open bid in the reveal. Upon submitting the bid, the UI will hash the bid

value along with a salt value chosen by the bidder (a mnemonic phrase, for instance) and

transfer the hashed bid and the deposit directly to the auction contract. The bidders’

Ethereum wallets will be connected to the UI by using the MetaMask browser extension,

and the deposit will be withdrawn from the account connected to MetaMask.

The auction contract receives a hidden bid from the UI when the UI calls the

bidInHiddenRound() function (presented in Code Fragment 4.6). The single argu-

ment bid is hashed from the frontend with the soliditySha3 function of the web3

library, which is the recommended library for creating JS applications that connect to the

Ethereum blockchain. The function has two modifiers: inState and isBeforeDeadline.

Figure 4.4: Model phase 2: Ready for hidden bids

49

4.2. Code Implementation

It is required that the state is ReadyForHiddenBids and that the function is called before

the deadline for the hidden round is over (approximately 24 hours from creation). As

the function is public and can be called at any time, these are added as safeguards to

ensure that the function will revert if a bidder tries to bid on the auction after it has

proceeded to the next round. Additionally, another verification check is called at the

beginning of the function that validates that the transferred deposit amount is equal to

or more than the minimum deposit amount required. This require statement will revert

the transaction if the condition yields false.

1 function bidInHiddenRound(bytes32 bid) public payable
2 inState(State.ReadyForHiddenBids)
3 isBeforeDeadline(auctionInfo.hiddenBidsDeadline)
4 {
5 require(msg.value >= auctionInfo.depositValue ,
6 "Deposit value is too low");
7
8 bids[msg.sender] = Bid({
9 existsHiddenBid: true ,

10 hiddenBid: bid ,
11 openBid: 0,
12 isOpenBidValid: false ,
13 deposit: msg.value * 1 wei
14 });
15
16 hiddenBidsAddresses.push(msg.sender);
17 emit ReceivedHiddenBid(
18 msg.sender ,
19 msg.value ,
20 block.timestamp
21);
22 }

Code Fragment 4.6: Bid in hidden round

If all checks are passed, the bid will be stored as an entry in the mapping bids with

the bidder’s Ethereum account address as the key and a Bid struct as the value. When

this struct is initialized, we set existsHiddenBid to true, hiddenBid to the hashed bid

received from the UI, and deposit to the message value received converted to wei. The

last two fields are set to their default values as they are not yet relevant. The bidder’s

50

4.2. Code Implementation

account address will also be saved in the array hiddenBidsAddresses. Finally, the

ReceivedHiddenBid event will be fired, which logs the account address of the bidder, the

deposit value, and the current timestamp.

Considering that keys in mappings cannot be repeated, one single bidder cannot bid

several times; however, if the bidder wishes to bid again, he may use another account in

his Ethereum wallet to do so. When the 24 hours have elapsed, the DApp UI will call

the auction’s closeHiddenRound() function (Code Fragment 4.7).

1 function closeHiddenRound () public
2 inState(State.ReadyForHiddenBids)
3 isAfterDeadline(auctionInfo.hiddenBidsDeadline)
4 {
5 if (hiddenBidsAddresses.length == 0) {
6 auctionInfo.currentState = State.ReadyForDeletion;
7 emit ClosedAuctionWithNoBids("Hidden round", ...

block.timestamp);
8 } else {
9 auctionInfo.currentState = State.ReadyForOpenBids;

10 emit ClosedRound(
11 "Hidden round",
12 auctionInfo.currentState ,
13 block.timestamp
14);
15 }
16 }

Code Fragment 4.7: Close hidden round

Closing the hidden round requires that the auction is still in the state

ReadyForHiddenBids. It also requires that the function is called after the hidden bids

deadline. If these two tests are passed, the function checks how many bids were received

in the hidden round by checking the length of the array hiddenBidsAddresses. The

auction closes if none were received; the state will be changed to ReadyForDeletion and

the ClosedAuctionWithNoBids event will fire. It will then proceed to phase 5. If the

length is above zero, however, the auction state will be changed to ReadyForOpenBids

and will proceed to the next phase. The event ClosedRound will fire and log the current

round, state, and timestamp. Some could assume that if there were only one bidder,

this bidder would automatically become the winner; however, because the bid is hashed,

51

4.2. Code Implementation

there is no way of knowing if the bid is actually valid or not. The auction must therefore

proceed to the next round, and thus the bidder must re-enter his bid in plaintext in the

open round in order to reveal it.

4.2.5 Phase 3: Bid in the Open Round

The auction will wait for open bids for 24 hours (see Figure 4.5). When the open round

begins, the UI will push a notification to all bidders who participated in this particular

auction’s hidden round to remind them to also bid in the open round. They will lose

their deposit if they forget to do so. As the UI keeps track of which auctions the signed-in

user has already bid on, the auction will be easy to find in the bidder’s auction list. The

bidder can now choose this auction and re-enter their bid to reveal it. To incentivize the

bidders to not alter their bid, it will again be stated clearly in the UI that the bidders

will lose their deposit when the contract detects an invalid bid or a fraudulent attempt.

Figure 4.5: Model phase 3: Ready for open bids

52

4.2. Code Implementation

When bidders reveal their bid value by sending their open bid through the UI, the UI

calls the auction’s bidInHiddenRound() function (Code Fragment 4.8). It is only allowed

to call this function when the auction is in the ReadyForOpenBids state and before the

open bids deadline. The UI passes the open bid and the salt which this bid was hashed

with during the hidden bid round as arguments to the function.

Several require statements are then called inside the function body: it verifies that the

boolean value existsHiddenBid is true in the struct returned from the mapping bids

with this bidder’s account address and that the open bid received is higher than the

minimum bid value set as a requirement by the seller. The last check is to validate that

the bidder’s open bid is equal to his hidden bid. This is done by hashing the open bid

with the given salt and comparing this hash value with the hidden bid (which is also a

hash value). The keccak256(abi.encodePacked(<bid>, <salt>) will return the same

hash as web3.utils.soliditySha3(<bid>, <salt>) that is used in the JS code, as they

are aliases of the same hashing function. If either of these three require statements fails

(in addition to the two modifiers), the function will revert, and the rest of the function

will be skipped.

1 function bidInOpenRound(uint openBid , string memory salt) public
2 inState(State.ReadyForOpenBids)
3 isBeforeDeadline(auctionInfo.openBidsDeadline)
4 {
5 require(bids[msg.sender]. existsHiddenBid ,
6 "This account has not bidden in the hidden round");
7 require(openBid >= auctionInfo.minBidValue , "Bid value is ...

too low");
8
9 bytes32 hashedBid = keccak256(abi.encodePacked(openBid , ...

salt));
10 require(bids[msg.sender]. hiddenBid == hashedBid ,
11 "Open bid and hidden bid do not match");
12
13 bids[msg.sender]. isOpenBidValid = true;
14 bids[msg.sender]. openBid = openBid;
15 emit ReceivedOpenBid(msg.sender , openBid , block.timestamp);
16 }

Code Fragment 4.8: Bid in open round; revealing bids

53

4.2. Code Implementation

After ensuring that the bid is valid, the rest of the Bid struct will be updated.

isOpenBidValid is set to true and openBid receives the openBid as a uint value. This

implicitly means that if the bid is invalid, isOpenBidValid will still yield false. Finally,

as in the other functions, an appropriate event will be fired: ReceivedOpenBid, which

logs the bidder address, the bid, and the current timestamp.

1 function closeAuction () public
2 isAfterDeadline(auctionInfo.openBidsDeadline)
3 inState(State.ReadyForOpenBids)
4 {
5 uint validOpenBids = 0;
6 for (uint i = 0; i < hiddenBidsAddresses.length; i++) {
7 if (bids[hiddenBidsAddresses[i]]. isOpenBidValid) {
8 validOpenBids += 1;
9 }

10 }
11
12 if (validOpenBids == 0) {
13 auctionInfo.currentState = State.ReadyForDeletion;
14 emit ClosedAuctionWithNoBids(
15 "Open round , no valid bids",
16 block.timestamp
17);
18 } else {
19 auctionInfo.currentState = State.Closed;
20 emit ClosedRound(
21 "Open round",
22 auctionInfo.currentState ,
23 block.timestamp
24);
25
26 findWinner ();
27 }
28 }

Code Fragment 4.9: Close auction

After the 24 hours of the open round has expired the DApp UI will call the auc-

tion contract’s closeAuction() function (Code Fragment 4.9). This function cannot

be called unless the open bids deadline has expired or if the auction’s state is not

54

4.2. Code Implementation

ReadyForOpenBids. If the auction did not receive any valid bids during the open round,

there is no winner; the auction will proceed to its ReadyForDeletion state and will

fire a ClosedAuctionWithNoBids event, which the UI will catch and subsequentially

proceed to delete the auction contract. To calculate the number of valid open bids,

we will loop through each bid in the bids mapping by using the index of the array

hiddenBidsAddresses. If any of the bids has a true value of isOpenBidValid, the local

uint variable validOpenBids will increment by one. If it is equal to 0 when the loop

finishes, there are no valid bids. If it is above 0, valid bids exist, and a winner must be

found. The auction state is updated to Closed, and the ClosedAuction event is fired,

which logs the current round, the current state of the auction, and the current timestamp.

It then calls findWinner() to proceed with the closing logic.

4.2.6 Phase 4: Close Auction

When the auction closes, the auction entity will loop through the stored open bids to

find the highest value (see Figure 4.6). The findWinner() function presented in Code

Figure 4.6: Model phase 4: Close auction

55

4.2. Code Implementation

Fragment 4.10 is internal, which means that it can only be called by the auction con-

tract. It still has a modifier however, simply to rigidly uphold the contract’s security and

integrity; the function can only be called if the auction is in the Closed state. In the

function body, two local variables are declared: winnerAddress (defaults to 0x00) and

highestBid (defaults to 0). These are updated while we loop through all the bids.

1 function findWinner () internal inState(State.Closed) {
2 address winnerAddress;
3 uint highestBid;
4
5 for(uint i = 0; i < hiddenBidsAddresses.length; i++) {
6 address bidder = hiddenBidsAddresses[i];
7 if (!bids[bidder]. isOpenBidValid) continue;
8 uint bid = bids[bidder]. openBid;
9

10 if (bid > highestBid) {
11 winnerAddress = bidder;
12 highestBid = bid;
13 }
14 }
15
16 winner = Winner ({
17 accountAddress: winnerAddress ,
18 bid: highestBid
19 });
20 emit FoundHighestBid(winner , block.timestamp);
21
22 token[winnerAddress] = Token({
23 winner: winnerAddress ,
24 auctionContract: address(this),
25 energyAmount: auctionInfo.energyAmount ,
26 validUntil: block.timestamp + 12 weeks ,
27 isSpent: false
28 });
29
30 transferBackDeposits ();
31 }

Code Fragment 4.10: Find the auction winner

56

4.2. Code Implementation

We loop through the bids by using the index of the array hiddenBidsAddresses and

extract each open bid from the Bid struct. If the bid is above the current highest bid,

we update the variables with the current bid’s account address and open bid. When the

loop is complete, we have consequently found the highest bid and its correlated account

address. The state variable winner is then stored as a Winner struct with the winner’s

address and bid, and the FoundHighestBid event is fired which logs the winner struct

and the current timestamp.

As Solidity does not support sending anything other than ETH to an account address,

we must create and store the token in the contract state so the winner can retrieve it. We,

therefore, create an entry in the token mapping: the key is set to the winner’s account

address, and the value is set to a new instance of the Token struct. The struct receives

the winner’s address, the address of the contract (for traceability), the amount of energy

that the bidder won, and the timestamp when the token becomes invalid (approximately

12 weeks from its creation). Additionally, we will set the bool value isSpent to false.

The function will then call the function transferBackDeposits() (presented in Code

Fragment 4.11).

The transferBackDeposits() function is also internal and has the modifier

inState(State.Closed). Inside its function body it has another requirement: the ac-

count address of the winner struct must be initialized before continuing (checked by

verifying that the address is not its default value).

If these tests are passed, the function loops through all the bids in the same manner

as in earlier functions. If the bid’s isOpenBidValid field is set to false, we skip to the

next bid; this bidder will not regain his deposit. However, if the bid was valid, we check

if the bidder is the auction winner; the winner will only receive the remaining value after

subtracting his bid from his deposit. If the bid was higher or equal to his deposit, the

remaining deposit is 0, and we skip to the next bidder. All bidders that lost the auction

will receive their full deposit back. The TransferEvent will fire for each transfer and log

the current context: "Transfer back deposit to bidder", the bidder’s account address, the

deposit value, and the current timestamp. When the loop is completed and all deposits

transferred, we will proceed to the transferHighestBidToSeller() function.

57

4.2. Code Implementation

1 function transferBackDeposits () internal inState(State.Closed) {
2 require(winner.accountAddress != address (0), "Must find a ...

winner before sending back deposits");
3
4 for (uint i = 0; i < hiddenBidsAddresses.length; i++) {
5 address payable bidderAddress = ...

payable(hiddenBidsAddresses[i]);
6 Bid memory bid = bids[bidderAddress];
7
8 // Do not send back deposit to invalid bidders
9 if (!bid.isOpenBidValid) continue;

10
11 bool isWinner = bidderAddress == winner.accountAddress;
12 if (isWinner && bid.openBid >= bid.deposit) continue;
13 uint deposit = isWinner ? bid.deposit - bid.openBid : ...

bid.deposit;
14
15 emit TransferEvent(
16 "Transfer back deposit to bidder",
17 bidderAddress ,
18 deposit ,
19 block.timestamp
20);
21
22 bidderAddress.transfer(deposit);
23 }
24
25 transferHighestBidToSeller ();
26 }

Code Fragment 4.11: Transfer back deposits

The function transferHighestBidToSeller() (Code Fragment 4.12) will transfer the

highest bid to the seller, but also the remaining deposits (if any). It extracts the highest

bid and the seller address from the state variables. If the highest bid is higher than

the deposit value given by the seller, the seller will only receive the deposit (remember

that this information is given to the seller as a UI warning upon auction creation). A

TransferEvent is fired and logs the correct context (if the seller receives the highest bid,

it will be "Transfer highest bid to seller", if not it will be "The highest bid was higher

58

4.2. Code Implementation

than the deposit value. Transferring the deposit to seller instead"), the seller account

address as the to field, the transfer value, and the current timestamp.

1 function transferHighestBidToSeller () internal ...

inState(State.Closed) {
2 uint highestBid = winner.bid;
3 address payable seller = auctionInfo.seller;
4 string memory eventMsg = "Transfer highest bid to seller";
5
6 if (highestBid > auctionInfo.depositValue) {
7 highestBid = auctionInfo.depositValue;
8 eventMsg = "The highest bid was higher than the deposit ...

value. Transferring the deposit to seller instead";
9 }

10
11 emit TransferEvent(
12 eventMsg ,
13 seller ,
14 highestBid ,
15 block.timestamp
16);
17
18 seller.transfer(highestBid);
19
20 // Transfer deposits of invalid bidders to seller
21 uint contractBalance = address(this).balance;
22 if (contractBalance > 0) {
23 emit TransferEvent(
24 "Transfer contract balance to seller",
25 seller ,
26 contractBalance ,
27 block.timestamp
28);
29
30 seller.transfer(contractBalance);
31 }
32
33 emit AuctionEnded(winner , address(this).balance , ...

block.timestamp);
34 }

Code Fragment 4.12: Transfer highest bid and remaining deposits to seller

59

4.2. Code Implementation

After transferring the highest bid, we check the remaining contract balance. If this

balance is higher than 0, there are still some deposits on the contract that did not get

returned to bidders who sent an invalid bid during the bidding process. These deposits are

transferred to the seller by simply transferring the remaining contract balance. Another

TransferEvent is fired which logs the "Transfer contract balance to seller" context, the

seller address, the value contractBalance, and the current timestamp. This action

concludes all auction closing logic, and the event AuctionEnded fires and logs the winner

struct, the remaining contract balance (should be 0), and the current timestamp. This

event will be caught by the UI and used to push a notification to the winner’s account

that a token has been created for the winner and is ready to be retrieved.

When the winner account retrieves its token through the UI, the UI calls the auction’s

retrieveToken() function (presented in Code Fragment 4.13). Considering that this

function is public (because the token state variable is private) there are rigid security

checks that protects it. Two modifiers are present: inState that verifies that the auction

is closed, and isAfterDeadline that verifies that the current timestamp is after the open

bids deadline. Another require condition is included, which is the most important: the

caller of the function must be the winner’s account address. Without this check, everyone

on the Ethereum network could access the winner’s token.

1 function retrieveToken () public
2 inState(State.Closed)
3 isAfterDeadline(auctionInfo.openBidsDeadline)
4 returns(Token memory)
5 {
6 require(msg.sender == winner.accountAddress ,
7 "You are not the winner of the auction!");
8
9 auctionInfo.currentState = State.ReadyForDeletion;

10 emit RetrievedToken(msg.sender , block.timestamp);
11
12 return token[msg.sender];
13 }

Code Fragment 4.13: Retrieve token

The state of the auction is set to ReadyForDeletion at this point as there is no logic

left to be conducted. The RetrievedToken event is also fired, which logs the winner’s

60

4.2. Code Implementation

account address and the current timestamp. Finally, the function returns the Token

struct to the winner.

4.2.7 Phase 5: Delete Auction

An auction can be deleted upon four occations:

1. Auction has closed with no hidden bids

2. Auction has closed with no valid open bids

3. Token has been retrieved

4. Token has expired

The first three occasions are catched by the UI by listening for the events

ClosedAuctionWithNoBids and RetrievedToken. The fourth occasion is exposed when

the UI performs a daily cleanup where it loops through all the auctions and checks the

timestamp of the validUntil field of the token stored in the auction’s state variables

and checks if the token has expired yet. This is illustrated in Figure 4.7.

If any of these four cases occur, then the UI will call the Auction Controller’s

deleteAuction() function in Code Fragment 4.14. The function takes the auction ad-

dress as its single argument. It retrieves the auction instance that resides at this address

and then verifies the caller of the function: only the admin or the seller of the auction is

allowed to delete the auction instance. It checks if the token has expired by looking up

the validUntil field of the token: if it is 0 it has not been set yet, and the auction is still

ongoing (token has not expired). If the current timestamp is more than the validUntil

field, the token has expired. If it has expired, the controller proceeds to delete the auc-

tion. If it has not expired yet, the controller checks the other conditions by checking the

Figure 4.7: Model phase 5: Ready for deletion

61

4.2. Code Implementation

state of the auction. If it is ReadyForDeletion, the auction has closed with no (valid)

bids, and the deletion can proceed.

The controller calls the auction’s deleteAuction() function (Code Fragment 4.15)

and deletes the entry from its mapping sellerAddresses by its key (the auction address).

Finally, it fires the event DeletedAuction which logs the address of the auction contract

that was deleted.

1 /// Auction can only be deleted by admin or by the auction seller
2 function deleteAuction(address auctionAddress) public {
3 Auction auction = Auction(auctionAddress);
4
5 require(msg.sender == sellerAddresses[auctionAddress]
6 || msg.sender == admin ,
7 "Can only be deleted by admin or the auction seller");
8
9 bool tokenExpired = block.timestamp > ...

auction.getTokenValidUntil ()
10 && auction.getTokenValidUntil () != 0;
11 if (! tokenExpired) {
12 require(auction.getCurrentState () == ...

Auction.State.ReadyForDeletion ,
13 "Cannot delete auction before the token has expired or ...

been retrieved");
14 }
15
16 auction.deleteAuction ();
17 delete sellerAddresses[auctionAddress];
18
19 emit DeletedAuction(auctionAddress);
20 }

Code Fragment 4.14: Auction controller: delete auction

The auction instance’s deleteAuction function is external which means that the

auction contract cannot delete itself. It must be called from the controller contract. If

someone else tries to delete the auction, the function will revert with the error message

"You are not allowed to delete this auction!". When the controller deletes the auction,

it will selfdestruct and return the remaining contract balance (which should be 0, as

we transferred this in transferHighestBidToSeller()) to the seller address. Note that

62

4.2. Code Implementation

selfdestruct does not actually delete the contract from the blockchain: it resets all

the state variables to their default values and makes all functions uncallable. All calls

and transactions, as well as the contract state, will be available in the blockchain history

and thus further ensures transparency. The contract will only be "deleted" from the

blockchain future. Finally, the UI will move the auction from its list of active auctions to

its archive.

1 function deleteAuction () external {
2 require(msg.sender == controller ,
3 "You are not allowed to delete this auction!");
4 selfdestruct(auctionInfo.seller);
5 }

Code Fragment 4.15: Delete auction

63

Chapter 5

Implementation Assessment

This chapter will demonstrate how the implemented code is tested in order to verify that

the system works as expected. The setup and configuration of the test environment is

also included. The source code for the Auction Controller tests and the Auction tests can

be found in Appendix C and Appendix D respectively, and is also published to Github:

https: // github. com/ cristinatorp/ master-thesis . Finally, we will conduct a se-

curity analysis of the solution with respect to the users’ security requirements.

5.1 Setup

Our Solidity tests are written in the Truffle test framework. Truffle offers support for writ-

ing tests in both Solidity and Javascript. We decided to write Javascript tests to simulate

contacting the contracts like we would do in reality; from a DApp user interface written

in JS. This also gives us the possibility to test and verify UI functionality that has not

yet been developed. For testing, we use the Ganache network in order to use Ganache’s

IDE to inspect the blockchain’s transactions, logs, events, and accounts (see Figure 5.1).

We configure Truffle to use the Ganache network in the truffle-config.js file. This

is shown in Code Fragment 5.1. In Figure 5.1, you can see the "RPC SERVER" subti-

tle that denotes "HTTP://127.0.0.1:7545". This means that Ganache runs on localhost

(127.0.0.1) on port 7545. The Ganache IDE also lists the network ID: 5777. By listing this

information in Truffle’s configuration file, running commands such as truffle test in

the command line will compile and run the test files in the project.

65

https://github.com/cristinatorp/master-thesis

5.1. Setup

Figure 5.1: Ganache IDE: displaying the user accounts, their balance and their tx
count

1 module.exports = {
2 development: {
3 host: "127.0.0.1", // Localhost (default: none)
4 port: 7545, // Ganache port
5 network_id: 5777, // Ganache network (default: none)
6 },
7 }

Code Fragment 5.1: Truffle configuration

Truffle also uses something called migrations that deploys contracts to the Ethereum

network. As the development continues and the system evolves, new migration scripts

can be added. Truffle will only run the migration scripts that have not yet been run.

In Code Fragment 5.2 you see an example of how easy it is to deploy a contract to the

network with Truffle. Running truffle migrate in your console will then give you a

result as shown in Figure 5.2.

1 let AuctionController = ...

artifacts.require("./ AuctionController.sol");
2
3 module.exports = async (deployer) => {
4 await deployer.deploy(AuctionController);
5 }

Code Fragment 5.2: Truffle migration: deploy controller contract

66

5.2. Auction Controller Tests

Figure 5.2: Truffle migrate console results

5.1.1 Testing Third Party Libraries

In addition to Truffle, we have also implemented a couple of third party libraries that

makes testing the contracts easier. Truffle-assertions [33] include convenience functions

for asserting that events are fired when calling contract functions, and to verify the

arguments in said events. It also includes functions that assert that a function reverts

with the correct error message. This is useful for asserting that the require statements

will revert functions when their conditions fail. The openzeppelin/test-helpers library

[34] includes a handy time member that can be used to increase block.timestamp with

a concrete duration.

5.2 Auction Controller Tests

Unit tests are performed by developers and penetration testers to verify that some part,

function, or codeblock of a system behaves as expected. We prepare prerequisite infor-

mation the unit needs to perform its task, and then inspect the unit’s return value with

respect to the initial information. Take a function that summarizes two numbers, for

67

5.2. Auction Controller Tests

instance. We prepare two variables, a = 5 and b = 10 and send them in as arguments to

the function. The returned value should then be 15, as we know that 5 + 10 = 15.

Truffle tests require that the contracts’ Solidity code files must be imported.

let AuctionController = artifacts.require("./TestAuctionController.sol")

gives us the contract as an object AuctionController that can be used in the tests.

Code Fragment 5.3 demonstrates how the architecture of the Auction Controller test is

set up. The test is injected with the accounts belonging to the configuration, which in

our case is the accounts from Ganache. Several global variables are then instantiated,

which are constants that will be used throughout the tests. Note that the values of energy

amount, minimum bid, and deposit do not reflect what we expect to be real user values,

only the variable type. beforeEach is a function from Truffle, which will be run before

each test. This is where we create the Auction Controller contract which will run the

controller’s constructor. It is initialized from the owner (admin) account and requires an

amount of gas in order for the contract to be deployed.

1 contract("AuctionController", accounts => {
2 let contract;
3 const owner = accounts [0];
4 const seller = accounts [1];
5 const energyAmount = 200;
6 const minBid = 5000000;
7 const deposit = 1000000000;
8 const ONE_DAY = 86400;
9

10 beforeEach(async () => {
11 contract = await AuctionController.new(
12 { from: owner , gas: 6700000 }
13);
14 });
15
16 // Tests here
17 }

Code Fragment 5.3: AC test: architecture

The tests for the auction controller comprises verifying that the contract is initialized

in the expected fashion, that the controller can deploy new auction contracts, that only

the admin can delete auctions, and that the auction’s cannot be deleted prematurely.

68

5.2. Auction Controller Tests

Each truffle test is denoted with the syntax it("test name"). Code Fragment 5.4

presents the test for deploying new auctions through the Auction Controller (AC). It calls

the controller’s deployNewAuction function with the seller, energy amount, minimum bid

value, and deposit as arguments. The auction address can be found in that transaction’s

logs. If the function works as expected, the seller’s address should be saved in the AC’s

sellerAddresses mapping, and we can access this by calling said mapping with the

auction address as the key. We then verify that the seller address stored on the contract

is the same seller address that we passed as an argument in deployment. This is done

with Truffle’s expect function: expect(<expectedValue>).to.equal(actualValue).

1 it("can deploy new auction contract", async () => {
2 const tx = await contract.deployNewAuction(
3 seller ,
4 energyAmount ,
5 minBid ,
6 deposit ,
7);
8
9 const newAuctionAddress = tx.logs [0]. args.auction;

10 const sellerAddress = await ...

contract.sellerAddresses.call(newAuctionAddress);
11 expect(sellerAddress).to.equal(seller);
12
13 const auction = await Auction.at(newAuctionAddress);
14 const {1: aSeller , 2: aEnergyAmount , 3: aMinBid , 4: ...

aDeposit} = await auction.getAuctionInfo ();
15 expect(aSeller).to.equal(seller);
16 expect(Number(aEnergyAmount)).to.equal(energyAmount);
17 expect(Number(aMinBid)).to.equal(minBid);
18 expect(Number(aDeposit)).to.equal(deposit);
19
20 truffleAssert.eventEmitted(tx, "AddedNewAuction");
21 });

Code Fragment 5.4: AC test: can deploy new auction

We can retrieve the auction contract instance by importing the Auction code with

artifacts.require("TestAuction.sol"). The auction instance can then be accessed

with Auction.at(<address>), and we retrieve the auction info stored in the AuctionInfo

69

5.2. Auction Controller Tests

struct. Again, we verify that the seller’s Ethereum account address, energy amount,

minimum bid value, and deposit value that we passed as arguments when deploying the

auction has been stored correctly in the auction contract with expect statements. Note

that we convert the uint256 values retrieved from the auction to a regular number, as

these are stored as Big Numbers and will not pass equality checks when compared to the

global variables set in the tests. Finally, we verify that the AddedNewAuction event was

emitted from the AC with the help of the truffle-assertions library. If any of the

expect or eventEmitted functions fail during the test, so will the test.

The next test verifies that an Ethereum account that is not admin or the seller of the

specific auction cannot delete the auction (Code Fragment 5.5). We deploy the auction

and obtain the auction address in the same fashion as in the last test. Then, we use

the reverts function of the Truffle Assertions library to verify that the AC’s function

deleteAuction() fails when we call it from the third Ganache account (recall that the

first account is the admin, and the second account is the seller). The function should

revert with the error message "Can only be deleted by admin or the auction seller". This

test passes if the function reverts, and fails if the account is allowed to delete the auction.

1 it("cannot delete auction if not admin or auction seller", ...

async () => {
2 const tx = await contract.deployNewAuction(
3 seller ,
4 energyAmount ,
5 minBid ,
6 deposit ,
7);
8
9 await truffleAssert.reverts(

10 contract.deleteAuction(tx.logs [0]. args.auction ,
11 { from: accounts [2] }),
12 "Can only be deleted by admin or the auction seller"
13);
14 });

Code Fragment 5.5: AC test: can not delete if not admin

70

5.2. Auction Controller Tests

In Code Fragment 5.6, we verify that even the admin is not allowed to delete an

auction if the auction is not finished. This test specifically tests that the auction cannot

be deleted while in the hidden round. In Appendix C we have included similar tests for

validating that the auction cannot be deleted in any other states as well. The auction

must be in the state ReadyForDeletion, and the token must either be retrieved already,

or be outdated. The test tries to delete the auction right after it has been created from

the admin account, and it expects the function to revert with the error message "Cannot

delete auction before the token has expired or been retrieved".

1 it("cannot delete auction if in the hidden round", async () => {
2 const tx = await contract.deployNewAuction(
3 seller ,
4 energyAmount ,
5 minBid ,
6 deposit ,
7);
8
9 await truffleAssert.reverts(

10 contract.deleteAuction(tx.logs [0]. args.auction ,
11 { from: owner }),
12 "Cannot delete auction before the token has expired or ...

been retrieved"
13);
14 });

Code Fragment 5.6: AC test: cannot delete auction prematurely

The last test we will present in this section is to verify that the admin can delete the

auction if the auction has been completed. In Appendix C we have also included a test

that verifies that the seller can delete his own auction, and another that verifies that

the seller cannot delete another seller’s auction. In Code Fragment 5.7, we deploy a new

auction and obtains its address which we use to access the auction instance. We then bid

in the hidden round (note that we use web3’s soliditySha3 hashing function to hash the

bid with a salt), speed time up by a day, close the hidden round, bid in the open round

(where the bid and salt used is sent in clear text), speed time up by another day, close

the auction, and finally retrieve the token from the winner account address. We know

that the third account is the winner account, as this is the only account we submitted

a bid from in the test. Finally, we delete the auction from the admin account (owner)

71

5.2. Auction Controller Tests

and verify that the event DeletedAuction was emitted, and logged the correct auction

address.

1 it("admin can delete auction", async () => {
2 const tx = await contract.deployNewAuction(
3 seller ,
4 energyAmount ,
5 minBid ,
6 deposit ,
7);
8
9 const newAuctionAddress = tx.logs [0]. args.auction;

10 const auction = await Auction.at(newAuctionAddress);
11
12 await auction.bidInHiddenRound(
13 web3.utils.soliditySha3(minBid , "some_salt"),
14 { from: accounts [2], value: deposit }
15);
16 await time.increase(ONE_DAY + 1);
17 await auction.closeHiddenRound ();
18 await auction.bidInOpenRound(minBid , "some_salt", { from: ...

accounts [2] });
19 await time.increase(ONE_DAY + 1);
20 await auction.closeAuction ();
21 await auction.retrieveToken ({ from: accounts [2] });
22
23 const deleteTx = await ...

contract.deleteAuction(newAuctionAddress , { from: owner });
24 truffleAssert.eventEmitted(deleteTx , "DeletedAuction",
25 (ev) => ev.auction == newAuctionAddress);
26 });

Code Fragment 5.7: AC test: admin can delete auction

When using truffle test to run test files, it is possible to specify a single test file

to only run the tests in said file. In Figure 5.3, we present the log that will be outputted

in the console when only running the tests for the Auction Controller. It outputs the

name of the tests, a green tick mark for all passed tests, and the time spent for each test.

If any of the tests failed during testing, it would log all events that were emitted during

72

5.3. Auction Tests

the failed function(s) and print the error message(s). In our case, all nine tests passed.

The complete source code of this file is found in Appendix C.

Figure 5.3: All auction controller tests passed

5.3 Auction Tests

Due to the fact that the Auction contract handles more functionality than the Auction

Controller contract, there are a significant amount of tests for this contract. We will verify

that the contract is initialized as expected, that a bidder can bid in the hidden round and

in the open round, that the auction closes the bidding rounds at the appropriate times,

that the auction finds the correct winner and creates a token for that account, that the

auction transfers back deposits to all valid bidders and the highest bid to the seller, and

that the winner (and only the winner) can retrieve its token. These are structured into

three categories: (1) Tests During Hidden Round; (2) Test During Open Round; and (3)

Tests For Closing The Auction.

In order to test aspects of our auction, we must create another contract TestAuction

(Code Fragment 5.8). Although we can modify the current time with OpenZeppelin’s test-

helper library, we cannot modify the current state of the Auction with such a third party

library. The TestAuction contract (child) is set to inherit the Auction contract (parent),

73

5.3. Auction Tests

which means that the child can access all non-private members of the parent. It can also

access internal functions in the parent. In TestAuction, we can therefore modify the

current state through setCurrentState(State newState), and call the internal func-

tions findWinner(), transferBackDeposits(), and transferHighestBidToSeller()

which normally cannot be accessed externally.

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.1;
3 import "./ Auction.sol";
4
5 contract TestAuction is Auction {
6 constructor(
7 address payable _seller ,
8 uint _energyAmount ,
9 uint _minBidValue ,

10 uint _depositValue
11) Auction (
12 _seller ,
13 _energyAmount ,
14 _minBidValue ,
15 _depositValue
16) {}
17
18 function setCurrentState(State newState) public {
19 auctionInfo.currentState = newState;
20 }
21
22 function testFindWinner () public {
23 findWinner ();
24 }
25
26 function testTransferBackDeposits () public {
27 transferBackDeposits ();
28 }
29
30 function testTransferHighestBidToSeller () public {
31 transferHighestBidToSeller ();
32 }
33 }

Code Fragment 5.8: Test Auction, a helper contract for testing

74

5.3. Auction Tests

Code Fragment 5.9 presents the global constant variables used throughout the auction

tests. We set the first Ganache account to be the seller, declare the four states that the

auction can be in with integers from 0 to 3, and a constant variable for one day in seconds

(86000). The test values for the energy amount, minimum bid value, and deposit value

for the auction is set to arbitrary values. Then we create an array MOCK_BIDS which

contains five different values that will be used to simulate bids, and finally, create an

auction instance in Truffle’s beforeEach() function.

1 contract("Auction", accounts => {
2 let contract;
3 const sellerAccount = accounts [0];
4
5 const READY_FOR_HIDDEN_BIDS_STATE = 0;
6 const READY_FOR_OPEN_BIDS_STATE = 1;
7 const CLOSED_STATE = 2;
8 const READY_FOR_DELETION_STATE = 3;
9

10 const ONE_DAY = 86400;
11 const ENERGY_AMOUNT = 200;
12 const MIN_BID_VALUE = 50000;
13 const DEPOSIT_VALUE = 100000;
14
15 const MOCK_BIDS = [MIN_BID_VALUE + 2, MIN_BID_VALUE + 4, ...

MIN_BID_VALUE + 1, MIN_BID_VALUE + 3, MIN_BID_VALUE];
16
17 beforeEach(async () => {
18 contract = await Auction.new(
19 sellerAccount ,
20 ENERGY_AMOUNT ,
21 MIN_BID_VALUE ,
22 DEPOSIT_VALUE ,
23 { gas: 4000000 }
24);
25 });
26
27 // Tests here
28 }

Code Fragment 5.9: Auction test: architecture

75

5.3. Auction Tests

5.3.1 Tests During Hidden Round

The first test we run is to verify that the auction was initialized correctly (Code Frag-

ment 5.10). We call the getAuctionInfo() function from the Auction contract, store

the returned information in the object variable a and compare each value to the constant

global variables. The current state should be initialized to 0 (ReadyForHiddenBids), the

seller’s account address, energy amount, minimum bid value, and deposit should be ini-

tialized to the variables passed as arguments in deployment, and the two deadlines should

be initialized to one day (86400 seconds) and two days (172800 seconds) respectively.

1 it("contract is initialized", async () => {
2 let a = await getAuctionInfo ();
3 const latestTime = await time.latest ();
4
5 expect(a.currentState).to.equal(READY_FOR_HIDDEN_BIDS_STATE);
6 expect(a.seller).to.equal(sellerAccount);
7 expect(a.energyAmount).to.equal(ENERGY_AMOUNT);
8 expect(a.minBidValue).to.equal(MIN_BID_VALUE);
9 expect(a.depositValue).to.equal(DEPOSIT_VALUE);

10 expect(a.hiddenBidsDeadline).to.equal(latestTime.toNumber () ...

+ ONE_DAY);
11 expect(a.openBidsDeadline).to.equal(latestTime.toNumber () + ...

(ONE_DAY * 2));
12 });
13
14 getAuctionInfo = async () => {
15 let info = await contract.getAuctionInfo.call();
16 return {
17 "currentState": Number(info [0]),
18 "seller": info[1],
19 "energyAmount": Number(info [2]),
20 "minBidValue": Number(info [3]),
21 "depositValue": Number(info [4]),
22 "hiddenBidsDeadline": Number(info [5]),
23 "openBidsDeadline": Number(info [6]),
24 };
25 };

Code Fragment 5.10: Auction test: initialization

76

5.3. Auction Tests

In Code Fragment 5.11, we assert that a bidder can bid in the hidden round. We

call the contract’s bidInHiddenRound() function and pass the bid value hashed with

soliditySha3 along with the salt "some_salt" as the function’s single argument. We

set the transaction value to be the deposit value and send it from the second Ganache

account. Now, we can retrieve the stored bid by accessing it from the mapping bids

with the seller’s account address as the key. This will return a Bid struct, which will be

converted to an object in JavaScript. The test will pass if the bid’s existsHiddenBid

bool is equal to true, and if its deposit value is equal to the actual deposit value we

transferred with the bid transaction.

1 it("can bid in hidden round", async () => {
2 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
3 const bid = await contract.bids.call(accounts [1]);
4
5 expect(bid.existsHiddenBid).to.equal(true);
6 expect(Number(bid.deposit)).to.equal(DEPOSIT_VALUE);
7 });
8
9 bidInHiddenRound = async (bidValue , bidderAddress , ...

depositValue) => {
10 let tx = await ...

contract.bidInHiddenRound(web3.utils.soliditySha3(bidValue , ...

"some_salt"), {
11 value: depositValue ,
12 from: bidderAddress
13 });
14
15 truffleAssert.eventEmitted(tx, "ReceivedHiddenBid", (ev) => {
16 return ev.bidder == bidderAddress && ev.deposit == ...

depositValue;
17 });
18 };

Code Fragment 5.11: Auction test: can bid in hidden round

Several tests are included to verify possible situations where the bidder is not allowed

to bid in the hidden round. All of them can be found in Appendix D. Code Fragment 5.12

presents a test that asserts that bids should not be accepted if the deposit value is lower

77

5.3. Auction Tests

than the minimum deposit value selected by the seller. It uses the reverts() function of

the truffle-assertions library and verifies that the function reverts with the error message

"Deposit value is too low". Code Fragment 5.13 presents another test where the deposit

value is valid, but the bid is attempted to be submitted after the hidden bids deadline

has expired. This case is simulated by increasing the time by one day + 1 second (86001

seconds) with the help of OpenZeppelin’s test-helper library. This test will pass if the

function reverts with the error message "Cannot bid after deadline".

1 it("cannot bid in hidden round if deposit is too low", async () ...

=> {
2 await truffleAssert.reverts(
3 bidInHiddenRound(
4 MIN_BID_VALUE ,
5 accounts [1],
6 DEPOSIT_VALUE - 1
7),
8 "Deposit value is too low"
9);

10 });

Code Fragment 5.12: Auction test: cannot bid if deposit is too low

1 it("cannot bid in hidden round if after deadline", async () => {
2 await time.increase(ONE_DAY + 1);
3 await truffleAssert.reverts(
4 bidInHiddenRound(
5 MIN_BID_VALUE ,
6 accounts [1],
7 DEPOSIT_VALUE
8),
9 "Cannot bid after deadline"

10);
11 });

Code Fragment 5.13: Auction test: cannot bid in hidden round after hidden bids

deadline

Another case that is important to test is that the auction closes when no bids were

transferred during the hidden round. This test is presented in Code Fragment 5.14. We

prepare the test by increasing the time to after the hidden bids deadline and then close

78

5.3. Auction Tests

the hidden round. We assert that the hidden round was closed by verifying that the

event ClosedAuctionWithNoBids was emitted with the log argument whichRound equal

to "Hidden round". As we have not simulated any bids during this test, the length of the

contract’s array hiddenBidsAddresses should be equal to 0. The final test is to verify

that the current state of the auction has advanced to ReadyForDeletion when no bids

were received during the hidden round.

1 it("auction should close if no hidden bids were recevied", ...

async () => {
2 await time.increase(ONE_DAY + 1);
3
4 const tx = await contract.closeHiddenRound ();
5 truffleAssert.eventEmitted(tx, "ClosedAuctionWithNoBids", ...

(ev) => {
6 return ev.whichRound == "Hidden round";
7 });
8
9 const hiddenBidsLength = Number(await ...

contract.getHiddenBidsLength ());
10 expect(hiddenBidsLength).to.equal (0);
11
12 const state = Number(await contract.getCurrentState ());
13 expect(state).to.equal(READY_FOR_DELETION_STATE);
14 });

Code Fragment 5.14: Auction test: close auction if no hidden bids were received

There are also tests that assert that the auction advances to the open bid round when

valid bids were received and that the closeHiddenRound() function cannot be called if

the current state is not ReadyForHiddenBids or if the hidden bids deadline has not yet

expired. These are included in Appendix C.

5.3.2 Tests During Open Round

Similar to the test that verifies that a bidder can bid in the hidden round, a test is

also written that verifies that a bidder can bid in the open round. This is presented

in Code Fragment 5.15. We prepare the test by simulating a bid in the hidden round,

increasing the time by one day, and closing the hidden round. Then we call the auction’s

bidInOpenRound() function and pass the same bid value and salt which we gave during

79

5.3. Auction Tests

the hidden round, this time as open arguments in plaintext. It is also important to bid

from the same account as was simulated in the hidden round. We then retrieve the bid

from the Bid struct by accessing it with the bidder’s account address as the key. The

test passes if the bid’s isOpenBidValid member equals true and openBid equals the bid

value we passed as an argument in bidInOpenRound().

1 it("can bid in open round", async () => {
2 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeHiddenRound ();
5 await contract.bidInOpenRound(MIN_BID_VALUE , "some_salt", { ...

from: accounts [1] });
6
7 let bid = await contract.bids.call(accounts [1]);
8
9 expect(bid.isOpenBidValid).to.equal(true);

10 expect(Number(bid.openBid)).to.equal(MIN_BID_VALUE);
11 });

Code Fragment 5.15: Auction test: can bid in open round

There are also tests that verify that a bidder cannot bid in the open round if the

auction’s current state is not ReadyForOpenBids, if the open bids deadline has expired,

or if the bid value is below the minimum bid value set by the seller. These are omitted

for brevity.

The next test we will present is verifying that a bidder is not allowed to bid in the

open round if he did not participate in the hidden round (Code Fragment 5.16). We

begin by simulating a hidden bid from the second Ganache account, increase the time

by one day and then close the hidden round. Note that we must simulate a hidden bid

here to prevent that the auction closes with no bids. We then try to bid in the open

round from the third Ganache account. We expect that the function should revert with

the error message "This account has not bidden in the hidden round". If the attempt to

bid in the open round from the third account does not fail, so does the test.

80

5.3. Auction Tests

1 it("cannot bid in open round if not already bidden in hidden ...

round", async () => {
2 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeHiddenRound ();
5
6 await truffleAssert.reverts(
7 contract.bidInOpenRound(MIN_BID_VALUE , "some_salt", { ...

from: accounts [2] }),
8 "This account has not bidden in the hidden round"
9);

10 });

Code Fragment 5.16: Auction test: cannot bid in open round if bidder did not

participate in hidden round

Another case that is important to test is that the hidden bid should match the open

bid. This is presented in Code Fragment 5.17. We prepare the test in the same way as in

the previous case, except that we send both bids from the same account. Additionally, we

alter the bid sent in the open round (MIN_BID_VALUE + 1 instead of MIN_BID_VALUE).

1 it("cannot bid in open round if bid does not match hidden bid", ...

async () => {
2 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeHiddenRound ();
5
6 await truffleAssert.reverts(
7 contract.bidInOpenRound(MIN_BID_VALUE + 1, "some_salt", ...

{ from: accounts [1] }),
8 "Open bid and hidden bid do not match"
9);

10 });

Code Fragment 5.17: Auction test: cannot bid in open round if the open bid does

not match the hidden bid

81

5.3. Auction Tests

Recall that in the auction’s bidInOpenRound() function, the bid passed as its argument

will be hashed along with the given salt and compared with the bidder’s hidden bid.

Because the hidden bid and the open bid differ, this will result in two different hash

strings, and the function will revert with the error message "Open bid and hidden bid do

not match".

The last test we will include in this subsection is closing the open round success-

fully (Code Fragment 5.18). We simulate the bidding process by bidding in the hidden

and open round with four different Ganache accounts. This simulation is represented

by Code Fragment 5.19. We pass the array MOCK_BIDS which contains five values:

MIN_BID_VALUE + 2, MIN_BID_VALUE + 4, MIN_BID_VALUE + 1, MIN_BID_VALUE + 3,

and MIN_BID_VALUE. For each bid i, we simulate a hidden bid from different Ganache

accounts (second to sixth account, specifically). Simply by inspecting these bids, we can

see that the second bid is the highest (MIN_BID_VALUE + 4). This is sent from the third

Ganache account. We validate that the contract has received and stored five different

bids by checking the length of its hiddenBidsAddresses array. We then increase the

time by one day, close the hidden round, and bid once more in the open round. We use

the same bids from the same accounts, and these should all be valid. The highest bid and

the account that submitted this bid will be returned from the mockBidding() function.

1 it("closed open round", async () => {
2 await mockBidding(MOCK_BIDS);
3 await time.increase(ONE_DAY + 1);
4 const tx = await contract.closeOpenRound ();
5
6 let a = await getAuctionInfo ();
7 expect(a.currentState).to.equal(CLOSED_STATE);
8 truffleAssert.eventEmitted(tx, "ClosedRound", (ev) => ...

ev.whichRound == "Open round");
9 });

Code Fragment 5.18: Auction test: close open round successfully

When all bids are simulated, we increase the time again by one day and close the

open round. This is a function that is added only for testing purposes, as we usually

call closeAuction(), not closeOpenRound(). The difference is that the former finds the

winner and performs all the closing logic as described in detail in subsection 4.2.6. The

latter closes the open round and advances to the next phase if it did receive valid open

82

5.3. Auction Tests

bids during the open round. Considering that we submitted five valid bids, we assert

that the auction’s current state is Closed, and that the event ClosedRound was emitted

with the argument whichRound equal to "Open round".

1 mockBidding = async (bids , includeInvalidBid = false) => {
2 for (let i = 0; i < bids.length; i++) {
3 await bidInHiddenRound(
4 bids[i],
5 accounts[i + 1],
6 DEPOSIT_VALUE
7);
8 }
9 let hiddenBidsNum = Number(await ...

contract.getHiddenBidsLength.call());
10 expect(hiddenBidsNum).to.equal(bids.length);
11
12 await time.increase(ONE_DAY + 1);
13 await contract.closeHiddenRound ();
14
15 for (let i = 0; i < bids.length; i++) {
16 if (includeInvalidBid && i == 0) {
17 await truffleAssert.reverts(
18 bidInOpenRound(
19 bids[i] - 1,
20 "some_salt",
21 accounts[i + 1]
22),
23 "Open bid and hidden bid do not match"
24);
25 continue;
26 }
27 await bidInOpenRound(bids[i], "some_salt",
28 accounts[i + 1]);
29 }
30
31 let highestBid = Math.max (... bids);
32 let highestBidder = accounts[bids.indexOf(highestBid) + 1];
33 return { "bid": highestBid , "bidder": highestBidder };
34 };

Code Fragment 5.19: Auction test: simulate bidding with different accounts

83

5.3. Auction Tests

The remaining tests for the open round comprises verifying that the auction should

close and advance to ReadyForDeletion if it did not receive any valid open bids, and

that we cannot close the open round if the current state is not ReadyForOpenBids or if

the open bids deadline has not expired yet. These are omitted for brevity.

5.3.3 Tests For Closing The Auction

The first test we will present in this phase is finding the correct winner of an auction (Code

Fragment 5.20). As we described in the previous subsection, the convenience function

mockBidding() returns an object that consists of the bid and the account address of the

highest bid of the simulated bids in MOCK_BIDS. We increase the time by one day and

close the open round. We then call the findWinner() function independently. Recall

that this function is internal, and we implemented the Test Auction contract to access

the internal functions in the Auction contract. We then retrieve the stored winner by

calling the contract’s Winner struct. Now we can compare the winner’s account address

with the account address we know submitted the highest bid and the winner’s bid with

the highest bid in MOCK_BIDS. If these two tests pass, and the FoundHighestBid event

was emitted, the correct winner has been found.

1 it("found auction winner", async () => {
2 const actualHighestBid = await mockBidding(MOCK_BIDS);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeOpenRound ();
5 const tx = await contract.testFindWinner ();
6
7 const winner = await contract.winner.call();
8
9 truffleAssert.eventEmitted(tx, "FoundHighestBid");

10 expect(winner.accountAddress).to.equal(actualHighestBid.bidder);
11 expect(Number(winner.bid)).to.equal(actualHighestBid.bid);
12 });

Code Fragment 5.20: Auction test: finding the correct winner

We will also demonstrate that deposits will not be transferred back to bidders that

made a fraudulent bid attempt (Code Fragment 5.21). We simulate this test case by

declaring a variable invalidBidder which stores the second Ganache account. We then

run mockBidding() again, but this time we set the optional parameter includeInvalidBid

84

5.3. Auction Tests

to true. When this parameter is set to true, the bid for the invalid bidder account

will be modified during the open bid round (see Code Fragment 5.19). We expect the

bidInOpenRound() function to revert with the error message "Open bid and hidden bid

do not match", and then continue with the rest of the bids. Then, we prepare the test

further by setting the auction’s state to Closed and find the auction winner. We will

now retrieve the balance of the invalid bidder’s account. This will be our balanceBefore

variable. Then, we call the contract’s transferBackDeposits() function and verify that

a TransferEvent was emitted. When that is finished, we again retrieve the invalid bid-

der’s account balance and store it in balanceAfter. If the contract did not transfer

Ether to the invalid bidder’s account during this function, the difference between these

two balances should be 0.

1 it("did not send deposit back to invalid bidder", async () => {
2 const invalidBidder = accounts [1];
3 await mockBidding(MOCK_BIDS , true); // Include invalid ...

first bid
4 await contract.setCurrentState(CLOSED_STATE);
5 await contract.testFindWinner ();
6
7 let balanceBefore = await getBalance(invalidBidder);
8 let tx = await contract.testTransferBackDeposits ();
9 truffleAssert.eventEmitted(tx, "TransferEvent");

10 let balanceAfter = await getBalance(invalidBidder);
11
12 expect(Number(balanceAfter - balanceBefore)).to.equal (0);
13 });

Code Fragment 5.21: Auction test: did not transfer deposit back to invalid bidder

Next, we will assert that the seller receives his payment as well as any extra deposits

that may remain on the contract from invalid bidders. This is shown in Code Frag-

ment 5.22. We prepare the test in a similar manner to the previous test, including an

invalid bid in mockBidding(), closing the open round, finding the winner, and transfer-

ring back the deposits to all valid bidders. Then we retrieve the seller’s account balance in

balanceBefore and run the contract’s transferHighestBidToSeller() function. We

verify that a TransferEvent was emitted, and then retrieve the seller’s account balance

again after the payment should be transferred. Subtracting the balanceBefore value

85

5.3. Auction Tests

from the balanceAfter value should be equal to the highest bid + one deposit, as we

only included one invalid bid.

1 it("sent highest bid to seller , one extra deposit", async () => {
2 const highestBid = await mockBidding(MOCK_BIDS , true); // ...

Include invalid first bid
3 await time.increase(ONE_DAY + 1);
4 await contract.closeOpenRound ();
5 await contract.testFindWinner ();
6 await contract.testTransferBackDeposits ();
7
8 const balanceBefore = BigInt(await ...

web3.eth.getBalance(sellerAccount));
9 const tx = await contract.testTransferHighestBidToSeller ({ ...

gasPrice: 0});
10 truffleAssert.eventEmitted(tx, "TransferEvent");
11 const balanceAfter = BigInt(await ...

web3.eth.getBalance(sellerAccount));
12
13 expect(Number(balanceAfter - ...

balanceBefore)).to.equal(highestBid.bid + DEPOSIT_VALUE);
14 });

Code Fragment 5.22: Auction test: sent highest bid to seller, as well as any

remaining deposits

1 it("winner retrieved token", async() => {
2 await mockBidding(MOCK_BIDS);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeAuction ();
5 const winner = await contract.winner.call();
6
7 const tx = await contract.retrieveToken(
8 { from: winner.accountAddress }
9);

10 truffleAssert.eventEmitted(tx, "RetrievedToken");
11 });

Code Fragment 5.23: Auction test: winner can retrieve token

86

5.3. Auction Tests

Code Fragment 5.23 presents a test that demonstrates that the auction winner is

allowed to retrieve the token generated by the auction. We simulate the bidding rounds

without invalid bids this time, increase the time by one day, close the auction, and retrieve

the winner by calling the Winner struct. Then, we call the contract’s retrieveToken()

function from the winner’s Ganache account. If the event RetrievedToken is emitted,

the function was run without errors.

It is, however, also important to verify that an arbitrary account that is not the

auction winner is not allowed to retrieve the auction token. This is demonstrated in

Code Fragment 5.24. Here, we call the contract’s retrieveToken() function again, but

from the second Ganache account (recall that the winner is the third Ganache account).

This test will pass if the function reverts with the error message "You are not the winner

of the auction!".

1 it("non -winner is not allowed to retrieve token", async() => {
2 await mockBidding(MOCK_BIDS);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeAuction ();
5
6 await truffleAssert.reverts(
7 contract.retrieveToken ({ from: accounts [1] }),
8 "You are not the winner of the auction!"
9);

10 });

Code Fragment 5.24: Auction test: only the auction winner can retrieve the token

The last test we will include in this chapter is to assert that the auction contract’s pri-

vate variable token is not available to the public, and is presented in Code Fragment 5.25.

The test is prepared by simulating the bidding rounds, increasing the time by one day,

and closing the auction. Then, we try to call the token variable directly. We wrap this

statement in a try/catch statement, as we expect it to fail. When the function throws

the error, we catch it and verify its error message. This should be "Cannot read property

’call’ of undefined", as the token variable is hidden on the blockchain and will not be

listed in the auction contract’s state variables.

87

5.4. Security Analysis

1 it("token should not be callable", async() => {
2 await mockBidding(MOCK_BIDS);
3 await time.increase(ONE_DAY + 1);
4 await contract.closeAuction ();
5
6 try {
7 await contract.token.call();
8 expect.fail();
9 } catch(error) {

10 expect(error.message).to.equal("Cannot read property ...

'call' of undefined");
11 }
12 });

Code Fragment 5.25: Auction test: token is not callable

5.4 Security Analysis

As a part of the assessment of our solution, some security aspects should be addressed.

In this subsection, we will discuss how our design utilizes some of the core functionality

of blockchain to provide security for our smart contracts by identifying plausible attacks

against the solution and how they can be addressed. Security has been a high priority

during the thesis and has been a priority under the entire process.

5.4.1 Attack Vectors

In this section, we have provided evidence for the security of the solution via discussing

how the system can withstand denial of service attacks, replay attacks, man-in-the middle

attacks as well as brute-force attacks. Some of these attacks may be combined or chained

together. This would, however, not increase the potential threat given that the proposed

solution is resistant against each of the aforementioned threats.

Denial of Service Denial of service (DoS) is an attack that targets availability. Two

attack vectors are relevant for the proposed solution: attacks that target the Ethereum

network and attacks against the libraries and wallet applications. The Ethereum network

is very resilient to denial of service attacks [19], and prolonged attacking with any degree

of denial of service will cost the attacker a large amount of Ether. The attacker would

88

5.4. Security Analysis

need to spend a large amount of Ether to make the auction last a small amount of

time longer, and normal users would barely notice a difference. An attack against wallet

applications or libraries would, however, be a more realistic scenario. Similar attacks have

previously led to a financial loss for users [35]. The smart contracts do not utilize wallets

or libraries. Therefore the auction would function as designed if these were targeted and

brought down. The only consequence for the users would be that they will be unable to

join a new auction.

Replay attack Replay attacks against the solution would attempt to target either

the deposit transaction or the energy token. The auction contract is created and deleted

in each auction, and the entire auction transpires on the smart auction contract. This

means that our solution is not vulnerable to replay attacks that target design faults in

solutions that utilize proxy contracts [35]. A replay attack that attempts to replay the

deposit transaction can choose two timeframes for the attack: while the transaction is

sent but not yet on the blockchain, and when the transaction is completed and is on the

blockchain. If the attacker replays the deposit message before it is on the blockchain, the

contract will only deposit once because the other request will be invalid. If the attacker

attempts to replay the attack after it is on the chain, the request would be invalid, and it

would be futile either way due to the fact that the auction only allows each bidder to bid

once. The energy token could use a similar security measure that states that the token

is linked to a particular user when the token is sent to the winner. When the winner

spends their token, it is no longer valid. A replay attack targeting the token retrieval or

the token spending would then be invalid.

Man-in-the-Middle attacks are most often used for information gathering or to

further facilitate other attacks. If the attacker manages to perform a man-in-the-middle

attack on our solution, they would be stationed between the users and the platform.

The information-gathering the attacker has access to there would not be a threat due

to the assumed secure connection between the user and the DApp User Interface, and

replay attacks were addressed in the previous paragraph. Another possible attack vector

mounted from the man-in-the-middle connection would be an attempt to manipulate the

data in transit. The data in transit between the users and the platform is the transactions.

These transactions will be rejected without the matching signature. The attacker could

attempt to perform a digital signature forgery to forge a valid signature. If they

managed to forge the valid signature of the user, then the attack could be used to break

89

5.4. Security Analysis

the security that is provided by a digital signature scheme. A digital signature forgery

attack against our solution would consist of a known signatures attack, due to the public

key and signature of the legal signer would be accessible to the attacker. Existential

Forgery is when the adversary successfully manages to forge the signature of one message;

this message could be any message from the target [24]. Ethereum signatures use ECDSA

digital signature scheme. Given that ECDSA algorithms are secure against existential

forgery [24], it makes it practically infeasible to create a valid ECDSA signature without

having access to the relevant user’s private key.

Brute-force In the proposed solution, the bids are sent as hashed messages. This

means that if an attacker wants to reveal a bid in an auction, they would have to break

the hash. This would make such an attempt a brute-force attack since the only way to

break this hash is through brute force. The hashing algorithm in the solution is Keccak-

256. Keccak-256 is a one-way collision-resistant hash function [24], combined with the

timeline of the hidden round being 24 hours, making a brute-force attack on our solution

practically infeasible.

90

Chapter 6

Conclusion

This chapter concludes the thesis by outlining the case we addressed, summarizing our

main findings, and discussing how we have achieved the research objectives presented in

Chapter 1. Finally, we have discussed some possible improvements that can be integrated

into the solution as a part of future work.

The energy trading market has largely been a monopoly of regional energy providers.

Utilizing blockchain technology on the smart grid leads to the decentralization of said mar-

ket and gives the market control back to the consumers and prosumers. The blockchain

also offers benefits such as automation, security, transparency, and immutability, which

are properties we appreciate in an eAuction platform. The case we addressed was trad-

ing energy in a microgrid where prosumers in a specific neighborhood can auction off

excess energy obtained through renewable energy sources (i.e. solar panels). Consumers

can then submit bids for this energy in an auction. Due to mutual distrust between

bidders, we had to design a secure model for a blind auction, where bids are hidden. In

order to decentralize the trading platform and thus removing the need for regional energy

providers and intermediaries, we designed this platform with the help of the Ethereum

blockchain. As the blockchain is inherently transparent, creating a blind auction where

the bids must be hidden created an interesting problem. We also had to consider how the

bidders could validate that they had enough funds to transfer the payment transaction

without revealing their actual bids in order to avoid fraudulent bid attempts.

91

In our proposed solution, we have implemented a Decentralized Application (DApp)

that resides in the blockchain. Our two user types, the seller and the bidder(s) interact

with the DApp throughout an auction life cycle. In order to solve the two main problems

described above, we designed our solution to include two separate bidding rounds. The

first round is the hidden round, where the bids are hashed along with a salt and sent

as data in a deposit transaction to the DApp. Requiring that bidders transfer a deposit

during the first round will ensure that the seller receives his payment when the auction

closes, as the auction winner’s bid will be subtracted from the winner’s deposit. The

second round is where the bidders reveal their bids. They send their bid along with the

salt in plaintext to the DApp, which will compare the bid with the bidders’ respective

hidden bid. The DApp is responsible for authenticating the bidders via their Ethereum

account address and their transaction signatures, validating bid and deposit values, and

performing the logic of closing an auction. As this solution model is capable of satisfying

the transparency and bidder’s balance verification problem, this suggests that we have

fulfilled Research Objective RO 1.

Our implementation of the solution separated the DApp into three entities: the DApp

user interface (UI) that the users interact with, the smart contract AuctionController

that manages all auction instances, and the smart contract Auction that manages a

specific auction instance. These contracts were deployed to Ethereum’s test network

Ganache, while the UI was considered out of scope. The implementation describes how

our solution was translated to code using Solidity, which is the primary language for

writing smart contracts for Ethereum. We demonstrated how we used Solidity’s require

statements to enforce security rules in our code, such as verifying auction state, deadlines,

user authenticity, and data validity. The implementation comprises a functional prototype

of the auction model; hence, this fulfills Research Objective RO 2.

In order to evaluate the prototype, we wrote a total of 37 unit tests combined for the

smart contracts. These verify that the seller and the bidders of an auction can use the

eAuction platform as intended, i.e. that all bidders receive their deposits back at the

end of an auction, that the winner can retrieve his token, and that bids are stored on

the contract as state variables when submitted. However, the tests also assert that the

security rules work as expected, i.e. that bidders that make a fraudulent bid attempt do

not receive their deposits back at the end of the auction, that a user that did not win the

auction is not allowed to retrieve the winner token, that the respective rounds cannot be

92

6.1. Future Work

closed before the deadlines expire, and so on. It was also necessary to conduct a security

analysis of the solution. This analysis address several of the most known attacks relevant

to our implementation, such as replay attacks, denial of service attacks, and man-in-

the-middle attacks, with respect to the user’s security requirements. Hence, Research

Objective RO 3 is fulfilled, as the unit tests evaluate the functionality and security of

the prototype, and the security analysis assesses possible attacks toward the solution and

discusses the risks and consequences for the system’s users.

Our contribution with this thesis provides a deeper insight into how a blind auction

can be implemented on a transparent blockchain, benefiting from the security, autonomy,

immutability, and decentralization of blockchain technology. This decentralized eAuction

platform removes the need for intermediaries such as energy brokers and gives the pro-

sumers and consumers in a microgrid the possibility to gain significant finincial benefits;

the prosumers by selling their excess renewable energy, and the consumers by obtaining

energy from another source than their regional provider, which will significantly lower

their monthly energy bills. Furthermore, from our implementation assessment, we con-

clude that our solution will ensure the eAuction users’ security requirements and that

the prototype provides an effective blockchain-based energy trading platform within a

microgrid.

6.1 Future Work

At the time when we designed our solution, we considered the construction of the winner’s

token out of scope as this relates to the physical aspects of retrieving energy. The token

was therefore not carefully designed to be secure within our platform. Since then, we

have thought about this problem and come to the conclusion that the token could be

generated as a separate smart contract instead of as a state variable in the Auction

contract. The token contract would include the winner’s Ethereum account address and

the energy amount he won. The contract could then include a function spendToken()

which would require that the function is called with the winner’s Ethereum account for

authenticity, and delete the contract at the end of the function with selfdestruct. This

would prevent the possibility of double-spending the winner’s token.

Furthermore, the contracts of our solution should be optimized with respect to gas use.

Gas price has been considered to a point during the implementation phase of this thesis,

93

6.1. Future Work

but calculating the optimized bytecode is yet to be executed. This includes utilizing

bitwise operations or simple things as structuring the order of variables in a struct. As

each struct is tightly packed, this can be calculated on the byte sizes of each variable.

94

Appendix A

Auction Controller Source Code

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.1;
3
4 import "./ Auction.sol";
5
6 contract AuctionController {
7 address private admin;
8 mapping(address => address) public sellerAddresses; // ...

auction addr => seller addr
9

10 event AddedNewAuction(address auction);
11 event DeletedAuction(address auction);
12
13 constructor () {
14 admin = msg.sender;
15 }
16
17 function deployNewAuction(
18 address payable _seller ,
19 uint _energyAmount ,
20 uint _minBidValue ,
21 uint _depositValue
22) public {
23 // Deploy new auction contract
24 Auction newAuction = new Auction(
25 _seller ,

95

26 _energyAmount ,
27 _minBidValue ,
28 _depositValue
29);
30
31 // Save seller address
32 sellerAddresses[address(newAuction)] = _seller;
33 emit AddedNewAuction(address(newAuction));
34 }
35
36 /// Auction cannot be deleted until either:
37 /// (1) Token has been retrieved
38 /// (2) Token has expired
39 /// (3) Auction has closed with no bids
40 /// Auction can only be deleted by admin or by the auction ...

seller
41 function deleteAuction(address auctionAddress) public {
42 Auction auction = Auction(auctionAddress);
43
44 require(msg.sender == sellerAddresses[auctionAddress] ...

|| msg.sender == admin , "Can only be deleted by ...

admin or the auction seller");
45
46 bool tokenExpired = block.timestamp > ...

auction.getTokenValidUntil () && ...

auction.getTokenValidUntil () != 0;
47 if (! tokenExpired) {
48 require(auction.getCurrentState () == ...

Auction.State.ReadyForDeletion , "Cannot delete ...

auction before the token has expired or been ...

retrieved");
49 }
50
51 auction.deleteAuction ();
52 delete sellerAddresses[auctionAddress];
53
54 emit DeletedAuction(auctionAddress);
55 }
56 }

96

Appendix B

Auction Source Code

1 // SPDX -License -Identifier: MIT
2 pragma solidity ^0.8.1;
3
4 contract Auction {
5 enum State {
6 ReadyForHiddenBids ,
7 ReadyForOpenBids ,
8 Closed ,
9 ReadyForDeletion

10 }
11
12 modifier inState(State expectedState) {
13 require(auctionInfo.currentState == expectedState , ...

"Invalid state");
14 _;
15 }
16
17 modifier isBeforeDeadline(uint deadline) {
18 require(block.timestamp < deadline , "Cannot bid after ...

deadline");
19 _;
20 }
21
22 modifier isAfterDeadline(uint deadline) {
23 require(block.timestamp > deadline , "Cannot perform ...

this action before the deadline");

97

24 _;
25 }
26
27 struct AuctionInfo {
28 State currentState;
29 address payable seller;
30 uint energyAmount;
31 uint minBidValue;
32 uint depositValue;
33 uint hiddenBidsDeadline;
34 uint openBidsDeadline;
35 }
36
37 struct Bid {
38 bool existsHiddenBid;
39 bytes32 hiddenBid;
40 uint openBid;
41 bool isOpenBidValid;
42 uint deposit;
43 }
44
45 struct Winner {
46 address accountAddress;
47 uint bid;
48 }
49
50 struct Token {
51 address winner;
52 address auctionContract;
53 uint energyAmount;
54 uint createdAt;
55 uint validUntil;
56 }
57
58 address private controller;
59 AuctionInfo public auctionInfo;
60 Winner public winner;
61 mapping(address => Bid) public bids;
62 mapping(address => Token) private token;
63 address [] public hiddenBidsAddresses;
64

98

65 event CreatedNewAuction(AuctionInfo auctionInfo , uint ...

currentTime);
66 event ReceivedHiddenBid(address bidder , uint deposit , uint ...

currentTime);
67 event ReceivedOpenBid(address bidder , uint bid , uint ...

currentTime);
68 event ClosedRound(string whichRound , State state , uint ...

currentTime);
69 event ClosedAuctionWithNoBids(string whichRound , uint ...

currentTime);
70 event FoundHighestBid(Winner winner , uint currentTime);
71 event AuctionEnded(Winner winner , uint contractBalance , ...

uint currentTime);
72 event TransferEvent(string context , address to, uint value , ...

uint currentTime);
73 event RetrievedToken(address retrievedBy , uint currentTime);
74
75 // msg.sender is the controller controller and not the ...

seller address
76 // Seller address must therefore be specified as a parameter
77 constructor(
78 address payable _seller ,
79 uint _energyAmount ,
80 uint _minBidValue ,
81 uint _depositValue
82) {
83 uint currentTime = block.timestamp;
84 controller = msg.sender;
85 auctionInfo = AuctionInfo ({
86 currentState: State.ReadyForHiddenBids ,
87 seller: _seller ,
88 energyAmount: _energyAmount ,
89 minBidValue: _minBidValue * 1 wei ,
90 depositValue: _depositValue * 1 wei ,
91 hiddenBidsDeadline: currentTime + 1 days ,
92 openBidsDeadline: currentTime + 2 days
93 });
94
95 emit CreatedNewAuction(auctionInfo , currentTime);
96 }
97

99

98 /// Place a hidden bid by hashing it with keccak256 ().
99 /// The deposit is only refunded if the bid is above the ...

minimum bid value ,
100 /// and if the open bid equals the hashed bid during the ...

open round
101 function bidInHiddenRound(bytes32 bid) public payable
102 inState(State.ReadyForHiddenBids)
103 isBeforeDeadline(auctionInfo.hiddenBidsDeadline)
104 {
105 require(msg.value >= auctionInfo.depositValue , "Deposit ...

value is too low");
106
107 bids[msg.sender] = Bid({
108 existsHiddenBid: true ,
109 hiddenBid: bid ,
110 openBid: 0,
111 isOpenBidValid: false ,
112 deposit: msg.value * 1 wei
113 });
114
115 hiddenBidsAddresses.push(msg.sender);
116 emit ReceivedHiddenBid(msg.sender , msg.value , ...

block.timestamp);
117 }
118
119 function closeHiddenRound () public ...

inState(State.ReadyForHiddenBids) ...

isAfterDeadline(auctionInfo.hiddenBidsDeadline) {
120 if (hiddenBidsAddresses.length == 0) {
121 auctionInfo.currentState = State.ReadyForDeletion;
122 emit ClosedAuctionWithNoBids("Hidden round", ...

block.timestamp);
123 } else {
124 auctionInfo.currentState = State.ReadyForOpenBids;
125 emit ClosedRound("Hidden round", ...

auctionInfo.currentState , block.timestamp);
126 }
127 }
128

100

129 function bidInOpenRound(uint openBid , string memory salt) ...

public inState(State.ReadyForOpenBids) ...

isBeforeDeadline(auctionInfo.openBidsDeadline) {
130 require(bids[msg.sender]. existsHiddenBid , "This account ...

has not bidden in the hidden round");
131 require(openBid >= auctionInfo.minBidValue , "Bid value ...

is too low");
132
133 bytes32 hashedBid = keccak256(abi.encodePacked(openBid , ...

salt));
134 require(bids[msg.sender]. hiddenBid == hashedBid , "Open ...

bid and hidden bid do not match");
135
136 bids[msg.sender]. isOpenBidValid = true;
137 bids[msg.sender]. openBid = openBid;
138 emit ReceivedOpenBid(msg.sender , openBid , ...

block.timestamp);
139 }
140
141 function closeAuction () public ...

isAfterDeadline(auctionInfo.openBidsDeadline) ...

inState(State.ReadyForOpenBids) {
142 uint validOpenBids = 0;
143 for (uint i = 0; i < hiddenBidsAddresses.length; i++) {
144 if (bids[hiddenBidsAddresses[i]]. isOpenBidValid) {
145 validOpenBids += 1;
146 }
147 }
148
149 if (validOpenBids == 0) {
150 auctionInfo.currentState = State.ReadyForDeletion;
151 emit ClosedAuctionWithNoBids("Open round , no valid ...

bids", block.timestamp);
152 } else {
153 auctionInfo.currentState = State.Closed;
154 emit ClosedRound("Open round", ...

auctionInfo.currentState , block.timestamp);
155
156 findWinner ();
157 }
158 }

101

159
160 function findWinner () internal inState(State.Closed) {
161 address winnerAddress;
162 uint highestBid;
163
164 for(uint i = 0; i < hiddenBidsAddresses.length; i++) {
165 address bidder = hiddenBidsAddresses[i];
166 if (!bids[bidder]. isOpenBidValid) continue;
167 uint bid = bids[bidder]. openBid;
168
169 if (bid > highestBid) {
170 winnerAddress = bidder;
171 highestBid = bid;
172 }
173 }
174
175 winner = Winner ({
176 accountAddress: winnerAddress ,
177 bid: highestBid
178 });
179 emit FoundHighestBid(winner , block.timestamp);
180
181 token[winnerAddress] = Token({
182 winner: winnerAddress ,
183 auctionContract: address(this),
184 energyAmount: auctionInfo.energyAmount ,
185 createdAt: block.timestamp ,
186 validUntil: block.timestamp + 12 weeks
187 });
188
189 transferBackDeposits ();
190 }
191
192 function transferBackDeposits () internal ...

inState(State.Closed) {
193 require(winner.accountAddress != address (0), "Must find ...

a winner before sending back deposits");
194
195 for (uint i = 0; i < hiddenBidsAddresses.length; i++) {
196 address payable bidderAddress = ...

payable(hiddenBidsAddresses[i]);

102

197 Bid memory bid = bids[bidderAddress];
198
199 // Do not send back deposit to invalid bidders
200 if (!bid.isOpenBidValid) continue;
201
202 bool isWinner = bidderAddress == ...

winner.accountAddress;
203 if (isWinner && bid.openBid >= bid.deposit) continue;
204 uint deposit = isWinner ? bid.deposit - ...

bid.openBid : bid.deposit;
205
206 emit TransferEvent(
207 "Transfer back deposit to bidder",
208 bidderAddress ,
209 deposit ,
210 block.timestamp
211);
212
213 bidderAddress.transfer(deposit);
214 }
215
216 transferHighestBidToSeller ();
217 }
218
219 function transferHighestBidToSeller () internal ...

inState(State.Closed) {
220 uint highestBid = winner.bid;
221 address payable seller = auctionInfo.seller;
222 string memory eventMsg = "Transfer highest bid to seller";
223
224 if (highestBid > auctionInfo.depositValue) {
225 highestBid = auctionInfo.depositValue;
226 eventMsg = "The highest bid was higher than the ...

deposit value. Transferring the deposit to ...

seller instead";
227 }
228
229 emit TransferEvent(
230 eventMsg ,
231 seller ,
232 highestBid ,

103

233 block.timestamp
234);
235
236 seller.transfer(highestBid);
237
238 // Transfer deposits of invalid bidders to seller
239 uint contractBalance = address(this).balance;
240 if (contractBalance > 0) {
241 emit TransferEvent(
242 "Transfer contract balance to seller",
243 seller ,
244 contractBalance ,
245 block.timestamp
246);
247
248 seller.transfer(contractBalance);
249 }
250
251 emit AuctionEnded(winner , address(this).balance , ...

block.timestamp);
252 }
253
254 function retrieveToken () public inState(State.Closed) ...

isAfterDeadline(auctionInfo.openBidsDeadline) ...

returns(Token memory) {
255 require(msg.sender == winner.accountAddress , "You are ...

not the winner of the auction!");
256
257 auctionInfo.currentState = State.ReadyForDeletion;
258 emit RetrievedToken(msg.sender , block.timestamp);
259
260 return token[msg.sender];
261 }
262
263 function getCurrentState () public view returns(State) {
264 return auctionInfo.currentState;
265 }
266
267 function getTokenValidUntil () public view returns(uint) {
268 return token[winner.accountAddress]. validUntil;
269 }

104

270
271 function deleteAuction () external {
272 require(msg.sender == controller , "You are not allowed ...

to delete this auction!");
273 selfdestruct(auctionInfo.seller);
274 }
275 }

105

Appendix C

Auction Controller Tests Source

Code

1 let AuctionController = ...

artifacts.require("./ TestAuctionController.sol");
2 let Auction = artifacts.require("./ TestAuction.sol");
3 const truffleAssert = require("truffle -assertions");
4 const { time } = require("@openzeppelin/test -helpers");
5
6 contract("AuctionController", accounts => {
7 let contract;
8 const owner = accounts [0];
9 const seller = accounts [1];

10 const energyAmount = 200;
11 const minBid = 5000000;
12 const deposit = 1000000000;
13 const ONE_DAY = 86400;
14
15 beforeEach(async () => {
16 contract = await AuctionController.new(
17 { from: owner , gas: 6700000 }
18);
19 });
20
21 it("contract is initialized", async () => {
22 const admin = await contract.testGetAdmin ();

106

23 expect(admin).to.equal(owner);
24 });
25
26 it("can deploy new auction contract", async () => {
27 const tx = await contract.deployNewAuction(
28 seller ,
29 energyAmount ,
30 minBid ,
31 deposit ,
32);
33
34 const newAuctionAddress = tx.logs [0]. args.auction;
35 const sellerAddress = await ...

contract.sellerAddresses.call(newAuctionAddress);
36 expect(sellerAddress).to.equal(seller);
37
38 const auction = await Auction.at(newAuctionAddress);
39 const {1: aSeller , 2: aEnergyAmount , 3: aMinBid , 4: ...

aDeposit} = await auction.getAuctionInfo ();
40 expect(aSeller).to.equal(seller);
41 expect(Number(aEnergyAmount)).to.equal(energyAmount);
42 expect(Number(aMinBid)).to.equal(minBid);
43 expect(Number(aDeposit)).to.equal(deposit);
44
45 truffleAssert.eventEmitted(tx, "AddedNewAuction");
46 });
47
48 it("cannot delete auction if not admin or auction seller", ...

async () => {
49 const tx = await contract.deployNewAuction(
50 seller ,
51 energyAmount ,
52 minBid ,
53 deposit ,
54);
55
56 const newAuctionAddress = tx.logs [0]. args.auction;
57
58 await truffleAssert.reverts(
59 contract.deleteAuction(newAuctionAddress , { from: ...

accounts [2] }),

107

60 "Can only be deleted by admin or the auction seller"
61);
62 });
63
64 it("cannot delete auction if in the hidden round", async () ...

=> {
65 const tx = await contract.deployNewAuction(
66 seller ,
67 energyAmount ,
68 minBid ,
69 deposit ,
70);
71
72 const newAuctionAddress = tx.logs [0]. args.auction;
73
74 await truffleAssert.reverts(
75 contract.deleteAuction(newAuctionAddress , { from: ...

owner }),
76 "Cannot delete auction before the token has expired ...

or been retrieved"
77);
78 });
79
80 it("cannot delete auction if in the open round", async () ...

=> {
81 const tx = await contract.deployNewAuction(
82 seller ,
83 energyAmount ,
84 minBid ,
85 deposit ,
86);
87
88 const newAuctionAddress = tx.logs [0]. args.auction;
89 const auction = await Auction.at(newAuctionAddress);
90 await ...

auction.bidInHiddenRound(web3.utils.soliditySha3(minBid , ...

"some_salt"), { from: accounts [2], value: deposit });
91 await time.increase(ONE_DAY + 1);
92 await auction.closeHiddenRound ();
93
94 await truffleAssert.reverts(

108

95 contract.deleteAuction(newAuctionAddress , { from: ...

owner }),
96 "Cannot delete auction before the token has expired ...

or been retrieved"
97);
98 });
99

100 it("cannot delete auction if the token has not yet expired ...

or been retrieved", async () => {
101 const tx = await contract.deployNewAuction(
102 seller ,
103 energyAmount ,
104 minBid ,
105 deposit ,
106);
107
108 const newAuctionAddress = tx.logs [0]. args.auction;
109 const auction = await Auction.at(newAuctionAddress);
110 await ...

auction.bidInHiddenRound(web3.utils.soliditySha3(minBid , ...

"some_salt"), { from: accounts [2], value: deposit });
111 await time.increase(ONE_DAY + 1);
112 await auction.closeHiddenRound ();
113 await auction.bidInOpenRound(minBid , "some_salt", { ...

from: accounts [2] });
114 await time.increase(ONE_DAY + 1);
115 await auction.closeAuction ();
116
117 await truffleAssert.reverts(
118 contract.deleteAuction(newAuctionAddress , { from: ...

owner }),
119 "Cannot delete auction before the token has expired ...

or been retrieved"
120);
121 });
122
123 it("admin can delete auction", async () => {
124 const auctionAddress = await mockAuction(seller);
125

109

126 const deleteTx = await ...

contract.deleteAuction(auctionAddress , { from: owner ...

});
127 truffleAssert.eventEmitted(deleteTx , "DeletedAuction", ...

(ev) => ev.auction == auctionAddress);
128 });
129
130 it("seller can delete auction", async () => {
131 const auctionAddress = await mockAuction(seller);
132
133 const deleteTx = await ...

contract.deleteAuction(auctionAddress , { from: ...

seller });
134 truffleAssert.eventEmitted(deleteTx , "DeletedAuction", ...

(ev) => ev.auction == auctionAddress);
135 });
136
137 it("seller can delete his own auction , but not one from ...

another seller", async () => {
138 const sellersAuction = await mockAuction(seller);
139 const anotherAuction = await mockAuction(accounts [2]);
140
141 const deleteTx = await ...

contract.deleteAuction(sellersAuction , { from: ...

seller });
142 truffleAssert.eventEmitted(deleteTx , "DeletedAuction", ...

(ev) => ev.auction == sellersAuction);
143
144 await truffleAssert.reverts(
145 contract.deleteAuction(anotherAuction , { from: ...

seller }),
146 "Can only be deleted by admin or the auction seller"
147);
148 });
149
150 mockAuction = async (sellerAddress) => {
151 const tx = await contract.deployNewAuction(
152 sellerAddress ,
153 energyAmount ,
154 minBid ,
155 deposit ,

110

156);
157
158 const newAuctionAddress = tx.logs [0]. args.auction;
159 const auction = await Auction.at(newAuctionAddress);
160
161 await ...

auction.bidInHiddenRound(web3.utils.soliditySha3(minBid , ...

"some_salt"), { from: accounts [2], value: deposit });
162 await time.increase(ONE_DAY + 1);
163 await auction.closeHiddenRound ();
164 await auction.bidInOpenRound(minBid , "some_salt", { ...

from: accounts [2] });
165 await time.increase(ONE_DAY + 1);
166 await auction.closeAuction ();
167 await auction.retrieveToken ({ from: accounts [2] });
168
169 return newAuctionAddress;
170 };
171 });

111

Figure C.1: All 9 auction controller tests pass

112

Appendix D

Auction Tests Source Code

1 let Auction = artifacts.require("./ TestAuction.sol");
2 const truffleAssert = require("truffle -assertions");
3 const { time } = require("@openzeppelin/test -helpers");
4
5 contract("Auction", accounts => {
6 let contract;
7 const sellerAccount = accounts [9];
8
9 const READY_FOR_HIDDEN_BIDS_STATE = 0;

10 const READY_FOR_OPEN_BIDS_STATE = 1;
11 const CLOSED_STATE = 2;
12 const READY_FOR_DELETION_STATE = 3;
13
14 const ONE_DAY = 86400;
15 const ENERGY_AMOUNT = 200;
16 const MIN_BID_VALUE = 50000;
17 const DEPOSIT_VALUE = 100000;
18
19 const MOCK_BIDS = [MIN_BID_VALUE + 2, MIN_BID_VALUE + 4, ...

MIN_BID_VALUE + 1, MIN_BID_VALUE + 3, MIN_BID_VALUE];
20
21 beforeEach(async () => {
22 contract = await Auction.new(
23 sellerAccount ,
24 ENERGY_AMOUNT ,
25 MIN_BID_VALUE ,

113

26 DEPOSIT_VALUE ,
27 {
28 gas: 4000000
29 }
30);
31 });
32
33 it("contract is initialized", async () => {
34 let a = await getAuctionInfo ();
35 const latestTime = await time.latest ();
36
37 expect(a.currentState).to.equal(READY_FOR_HIDDEN_BIDS_STATE);
38 expect(a.seller).to.equal(sellerAccount);
39 expect(a.energyAmount).to.equal(ENERGY_AMOUNT);
40 expect(a.minBidValue).to.equal(MIN_BID_VALUE);
41 expect(a.depositValue).to.equal(DEPOSIT_VALUE);
42 expect(a.hiddenBidsDeadline).to.equal(latestTime.toNumber () ...

+ ONE_DAY);
43 expect(a.openBidsDeadline).to.equal(latestTime.toNumber () ...

+ (ONE_DAY * 2));
44 });
45
46 // TESTS DURING HIDDEN ROUND
47
48 it("can bid in hidden round", async () => {
49 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
50 const bid = await contract.bids.call(accounts [1]);
51
52 expect(bid.existsHiddenBid).to.equal(true);
53 expect(Number(bid.deposit)).to.equal(DEPOSIT_VALUE);
54 });
55
56 it("cannot bid in hidden round if in the wrong state", ...

async () => {
57 await contract.setCurrentState(READY_FOR_OPEN_BIDS_STATE);
58 await truffleAssert.reverts(
59 bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE),
60 "Invalid state"
61);

114

62 });
63
64 it("cannot bid in hidden round if after deadline", async () ...

=> {
65 await time.increase(ONE_DAY + 1);
66 await truffleAssert.reverts(
67 bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE),
68 "Cannot bid after deadline"
69);
70 });
71
72 it("cannot bid in hidden round if deposit is too low", ...

async () => {
73 await truffleAssert.reverts(
74 bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE - 1),
75 "Deposit value is too low"
76);
77 });
78
79 it("auction should close if no hidden bids were recevied", ...

async () => {
80 await time.increase(ONE_DAY + 1);
81
82 const tx = await contract.closeHiddenRound ();
83 truffleAssert.eventEmitted(tx, ...

"ClosedAuctionWithNoBids", (ev) => {
84 return ev.whichRound == "Hidden round";
85 });
86
87 const hiddenBidsLength = Number(await ...

contract.getHiddenBidsLength ());
88 expect(hiddenBidsLength).to.equal (0);
89
90 const state = Number(await contract.getCurrentState ());
91 expect(state).to.equal(READY_FOR_DELETION_STATE);
92 });
93
94 it("closed hidden round and started open round", async () ...

=> {

115

95 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
96 await time.increase(ONE_DAY + 1);
97 const tx = await contract.closeHiddenRound ();
98
99 truffleAssert.eventEmitted(tx, "ClosedRound", (ev) => ...

ev.whichRound == "Hidden round");
100
101 let a = await getAuctionInfo ();
102 expect(a.currentState).to.equal(READY_FOR_OPEN_BIDS_STATE);
103 });
104
105 it("cannot close hidden round if in the wrong state", async ...

() => {
106 await contract.setCurrentState(READY_FOR_OPEN_BIDS_STATE);
107 await truffleAssert.reverts(
108 contract.closeHiddenRound (),
109 "Invalid state"
110);
111 });
112
113 it("cannot close hidden round before deadline", async () => {
114 await time.increase(ONE_DAY - 1);
115 await truffleAssert.reverts(
116 contract.closeHiddenRound (),
117 "Cannot perform this action before the deadline"
118);
119 });
120
121 // TESTS DURING OPEN ROUND
122
123 it("can bid in open round", async () => {
124 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
125 await time.increase(ONE_DAY + 1);
126 await contract.closeHiddenRound ();
127 await contract.bidInOpenRound(MIN_BID_VALUE , ...

"some_salt", { from: accounts [1] });
128
129 let bid = await contract.bids.call(accounts [1]);
130

116

131 expect(bid.isOpenBidValid).to.equal(true);
132 expect(Number(bid.openBid)).to.equal(MIN_BID_VALUE);
133 });
134
135 it("cannot bid in open round if in the wrong state", async ...

() => {
136 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
137 await time.increase(ONE_DAY + 1);
138
139 await truffleAssert.reverts(
140 contract.bidInOpenRound(MIN_BID_VALUE , { from: ...

accounts [1] }),
141 "Invalid state"
142);
143 });
144
145 it("cannot bid in open round if after deadline", async () ...

=> {
146 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
147 await time.increase(ONE_DAY + 1);
148 await contract.closeHiddenRound ();
149 await time.increase(ONE_DAY + 1);
150
151 await truffleAssert.reverts(
152 contract.bidInOpenRound(MIN_BID_VALUE , { from: ...

accounts [1] }),
153 "Cannot bid after deadline"
154);
155 });
156
157 it("cannot bid in open round if not already bidden in ...

hidden round", async () => {
158 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
159 await time.increase(ONE_DAY + 1);
160 await contract.closeHiddenRound ();
161
162 await truffleAssert.reverts(

117

163 contract.bidInOpenRound(MIN_BID_VALUE , "some_salt", ...

{ from: accounts [2] }),
164 "This account has not bidden in the hidden round"
165);
166 });
167
168 it("cannot bid in open round if bid is too low", async () ...

=> {
169 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
170 await time.increase(ONE_DAY + 1);
171 await contract.closeHiddenRound ();
172
173 await truffleAssert.reverts(
174 contract.bidInOpenRound(MIN_BID_VALUE - 1, ...

"some_salt", { from: accounts [1] }),
175 "Bid value is too low"
176);
177 });
178
179 it("cannot bid in open round if bid does not match hidden ...

bid", async () => {
180 await bidInHiddenRound(MIN_BID_VALUE , accounts [1], ...

DEPOSIT_VALUE);
181 await time.increase(ONE_DAY + 1);
182 await contract.closeHiddenRound ();
183
184 await truffleAssert.reverts(
185 contract.bidInOpenRound(MIN_BID_VALUE + 1, ...

"some_salt", { from: accounts [1] }),
186 "Open bid and hidden bid do not match"
187);
188 });
189
190 it("auction should close if no valid open bids were ...

recevied", async () => {
191 await bidInHiddenRound(MIN_BID_VALUE + 1, accounts [1], ...

DEPOSIT_VALUE);
192 await time.increase(ONE_DAY + 1);
193 await contract.closeHiddenRound ();
194

118

195 await truffleAssert.reverts(
196 contract.bidInOpenRound(MIN_BID_VALUE , "some_salt", ...

{ from: accounts [1]}),
197 "Open bid and hidden bid do not match"
198);
199
200 await time.increase(ONE_DAY + 1);
201 const tx = await contract.closeOpenRound ();
202 truffleAssert.eventEmitted(tx, ...

"ClosedAuctionWithNoBids", (ev) => {
203 return ev.whichRound == "Open round , no valid bids";
204 });
205
206 const state = Number(await contract.getCurrentState ());
207 expect(state).to.equal(READY_FOR_DELETION_STATE);
208
209 truffleAssert.eventEmitted(tx, ...

"ClosedAuctionWithNoBids", (ev) => ev.whichRound == ...

"Open round , no valid bids");
210 });
211
212 it("closed open round", async () => {
213 await mockBidding(MOCK_BIDS);
214 await time.increase(ONE_DAY + 1);
215 // await ...

contract.setCurrentState(READY_FOR_OPEN_BIDS_STATE);
216 const tx = await contract.closeOpenRound ();
217
218 let a = await getAuctionInfo ();
219 expect(a.currentState).to.equal(CLOSED_STATE);
220 truffleAssert.eventEmitted(tx, "ClosedRound", (ev) => ...

ev.whichRound == "Open round");
221 });
222
223 it("cannot close open round if in the wrong state", async ...

() => {
224 await time.increase ((ONE_DAY * 2) + 1);
225 await truffleAssert.reverts(
226 contract.closeOpenRound (),
227 "Invalid state"
228)

119

229 });
230
231 it("cannot close open round before deadline", async () => {
232 await contract.setCurrentState(READY_FOR_OPEN_BIDS_STATE);
233 await truffleAssert.reverts(
234 contract.closeOpenRound (),
235 "Cannot perform this action before the deadline"
236)
237 });
238
239 // TESTS FOR CLOSING THE AUCTION
240
241 it("found auction winner", async () => {
242 const actualHighestBid = await mockBidding(MOCK_BIDS);
243 await time.increase(ONE_DAY + 1);
244 await contract.closeOpenRound ();
245 const tx = await contract.testFindWinner ();
246
247 const winner = await contract.winner.call();
248
249 truffleAssert.eventEmitted(tx, "FoundHighestBid");
250 expect(winner.accountAddress).to.equal(actualHighestBid.bidder);
251 expect(Number(winner.bid)).to.equal(actualHighestBid.bid);
252 });
253
254 it("cannot find auction winner if in wrong state", async () ...

=> {
255 await mockBidding(MOCK_BIDS);
256 await time.increase(ONE_DAY + 1);
257
258 await truffleAssert.reverts(
259 contract.testFindWinner (),
260 "Invalid state"
261);
262 });
263
264 it("sent deposits back to bidders (all bids valid)", async ...

() => {
265 const highestBid = await mockBidding(MOCK_BIDS);
266 await time.increase(ONE_DAY + 1);
267 await contract.closeOpenRound ();

120

268 await contract.testFindWinner ();
269
270 const winner = await contract.winner.call();
271 expect(winner.accountAddress).to.equal(highestBid.bidder);
272 expect(Number(winner.bid)).to.equal(highestBid.bid);
273
274 let balancesBefore = [];
275 for (let i = 0; i < MOCK_BIDS.length; i++) {
276 balancesBefore.push(await getBalance(accounts[i + ...

1]));
277 }
278
279 const tx = await contract.testTransferBackDeposits ();
280 truffleAssert.eventEmitted(tx, "TransferEvent");
281
282 for (let i = 0; i < MOCK_BIDS.length; i++) {
283 const isWinner = accounts[i + 1] === ...

winner.accountAddress;
284 const currentBalance = await getBalance(accounts[i ...

+ 1]);
285
286 const refundedValue = isWinner ? DEPOSIT_VALUE - ...

MOCK_BIDS[i] : DEPOSIT_VALUE;
287 expect(Number(currentBalance - ...

balancesBefore[i])).to.equal(refundedValue);
288 }
289 });
290
291 it("did not send deposit back to invalid bidder", async () ...

=> {
292 const invalidBidder = accounts [1];
293 await mockBidding(MOCK_BIDS , true); // Include invalid ...

first bid
294 await contract.setCurrentState(CLOSED_STATE);
295 await contract.testFindWinner ();
296
297 let balanceBefore = await getBalance(invalidBidder);
298 let tx = await contract.testTransferBackDeposits ();
299 truffleAssert.eventEmitted(tx, "TransferEvent");
300 let balanceAfter = await getBalance(invalidBidder);
301

121

302 expect(Number(balanceAfter - balanceBefore)).to.equal (0);
303 });
304
305 it("sent highest bid to seller , no extra deposits", async ...

() => {
306 const highestBid = await mockBidding(MOCK_BIDS);
307 await time.increase(ONE_DAY + 1);
308 await contract.closeOpenRound ();
309 await contract.testFindWinner ();
310 await contract.testTransferBackDeposits ();
311
312 const balanceBefore = await getBalance(sellerAccount);
313 const tx = await ...

contract.testTransferHighestBidToSeller ();
314 truffleAssert.eventEmitted(tx, "TransferEvent");
315 const balanceAfter = await getBalance(sellerAccount);
316
317 expect(Number(balanceAfter - ...

balanceBefore)).to.equal(highestBid.bid);
318 });
319
320 it("sent highest bid to seller , one extra deposit", async ...

() => {
321 const highestBid = await mockBidding(MOCK_BIDS , true); ...

// Include invalid first bid
322 await time.increase(ONE_DAY + 1);
323 await contract.closeOpenRound ();
324 await contract.testFindWinner ();
325 await contract.testTransferBackDeposits ();
326
327 const balanceBefore = BigInt(await ...

web3.eth.getBalance(sellerAccount));
328 const tx = await ...

contract.testTransferHighestBidToSeller ({ gasPrice: ...

0});
329 truffleAssert.eventEmitted(tx, "TransferEvent");
330 const balanceAfter = BigInt(await ...

web3.eth.getBalance(sellerAccount));
331

122

332 expect(Number(balanceAfter - ...

balanceBefore)).to.equal(highestBid.bid + ...

DEPOSIT_VALUE);
333 });
334
335 it("winner retrieved token", async() => {
336 await mockBidding(MOCK_BIDS);
337 await time.increase(ONE_DAY + 1);
338 await contract.closeAuction ();
339 const winner = await contract.winner.call();
340
341 const tx = await contract.retrieveToken ({ from: ...

winner.accountAddress });
342 truffleAssert.eventEmitted(tx, "RetrievedToken");
343 });
344
345 it("non -winner is not allowed to retrieve token", async() ...

=> {
346 await mockBidding(MOCK_BIDS);
347 await time.increase(ONE_DAY + 1);
348 await contract.closeAuction ();
349
350 await truffleAssert.reverts(
351 contract.retrieveToken ({ from: accounts [1] }),
352 "You are not the winner of the auction!"
353);
354 });
355
356 it("token should not be callable", async() => {
357 await mockBidding(MOCK_BIDS);
358 await time.increase(ONE_DAY + 1);
359 await contract.closeAuction ();
360
361 try {
362 await contract.token.call();
363 expect.fail();
364 } catch(error) {
365 expect(error.message).to.equal("Cannot read ...

property 'call' of undefined");
366 }
367 });

123

368
369 // CONVENIENCE FUNCTIONS
370
371 getAuctionInfo = async () => {
372 let info = await contract.getAuctionInfo.call();
373 return {
374 "currentState": Number(info [0]),
375 "seller": info[1],
376 "energyAmount": Number(info [2]),
377 "minBidValue": Number(info [3]),
378 "depositValue": Number(info [4]),
379 "hiddenBidsDeadline": Number(info [5]),
380 "openBidsDeadline": Number(info [6]),
381 };
382 }
383
384 bidInHiddenRound = async (bidValue , bidderAddress , ...

depositValue) => {
385 let tx = await ...

contract.bidInHiddenRound(web3.utils.soliditySha3(bidValue , ...

"some_salt"), {
386 value: depositValue ,
387 from: bidderAddress
388 });
389
390 truffleAssert.eventEmitted(tx, "ReceivedHiddenBid", ...

(ev) => {
391 return ev.bidder == bidderAddress && ev.deposit == ...

depositValue;
392 });
393 };
394
395 bidInOpenRound = async (bidValue , salt , bidderAddress) => {
396 let tx = await contract.bidInOpenRound(bidValue , salt , {
397 from: bidderAddress
398 });
399
400 truffleAssert.eventEmitted(tx, "ReceivedOpenBid", (ev) ...

=> {
401 return ev.bidder == bidderAddress && ev.bid == ...

bidValue;

124

402 });
403 };
404
405 mockBidding = async (bids , includeInvalidBid = false) => {
406 for (let i = 0; i < bids.length; i++) {
407 await bidInHiddenRound(bids[i], accounts[i + 1], ...

DEPOSIT_VALUE);
408 }
409 let hiddenBidsNum = Number(await ...

contract.getHiddenBidsLength.call());
410 expect(hiddenBidsNum).to.equal(bids.length);
411
412 await time.increase(ONE_DAY + 1);
413 await contract.closeHiddenRound ();
414
415 for (let i = 0; i < bids.length; i++) {
416 if (includeInvalidBid && i == 0) {
417 await truffleAssert.reverts(
418 bidInOpenRound(bids[i] - 1, "some_salt", ...

accounts[i + 1]),
419 "Open bid and hidden bid do not match"
420);
421 continue;
422 }
423 await bidInOpenRound(bids[i], "some_salt", ...

accounts[i + 1]);
424 }
425
426 let highestBid = Math.max (... bids);
427 let highestBidder = accounts[bids.indexOf(highestBid) + ...

1];
428 return { "bid": highestBid , "bidder": highestBidder };
429 };
430
431 getBalance = async (account) => {
432 return BigInt(await web3.eth.getBalance(account));
433 };
434 });

125

Figure D.1: All 28 auction tests pass

126

Bibliography

[1] Charles Kirubi et al. “Community-Based Electric Micro-Grids Can Contribute to

Rural Development: Evidence from Kenya.” In: World Development 37.7 (2009),

pp. 1208–1221. issn: 0305-750X. doi: https://doi.org/10.1016/j.worlddev.

2008.11.005. url: https://www.sciencedirect.com/science/article/pii/

S0305750X08003288.

[2] Joel Spaes. “Harmon’Yeu, the first energy community on Île d’Yeu, signed by Engie.”

In: (2020). url: https : / / www . pv - magazine . fr / 2020 / 07 / 03 / harmonyeu -

premiere-communaute-energetique-a-lile-dyeu-signee-engie/.

[3] Maxim Buevich et al. “Fine-grained remote monitoring, control and pre-paid elec-

trical service in rural microgrids.” In: (2014), pp. 1–11. doi: 10.1109/IPSN.2014.

6846736.

[4] Alireza Aram. “Microgrid Market in the USA.” In: (2017). url: https://www.

hitachi.com/rev/archive/2017/r2017_05/Global/index.html.

[5] Dan T. Ton and Merrill A. Smith. “The U.S. Department of Energy’s Microgrid

Initiative.” In: (2012). doi: 10.1016/j.tej.2012.09.013.

[6] JOHN G. KASSAKIAN et al. “The Future of the Electrisity Grid.” In: (2011).

[7] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: Cryptog-

raphy Mailing list at https://metzdowd.com (2008).

[8] Martin Onyeka Okoye et al. “A Blockchain-Enhanced Transaction Model for Micro-

grid Energy Trading.” In: (2019).

[9] IEA-ETSAP IRENA. “Renewable Energy Integration in Power Grids.” In: IRENA

(2015).

127

https://doi.org/https://doi.org/10.1016/j.worlddev.2008.11.005
https://doi.org/https://doi.org/10.1016/j.worlddev.2008.11.005
https://www.sciencedirect.com/science/article/pii/S0305750X08003288
https://www.sciencedirect.com/science/article/pii/S0305750X08003288
https://www.pv-magazine.fr/2020/07/03/harmonyeu-premiere-communaute-energetique-a-lile-dyeu-signee-engie/
https://www.pv-magazine.fr/2020/07/03/harmonyeu-premiere-communaute-energetique-a-lile-dyeu-signee-engie/
https://doi.org/10.1109/IPSN.2014.6846736
https://doi.org/10.1109/IPSN.2014.6846736
https://www.hitachi.com/rev/archive/2017/r2017_05/Global/index.html
https://www.hitachi.com/rev/archive/2017/r2017_05/Global/index.html
https://doi.org/10.1016/j.tej.2012.09.013

Bibliography

[10] Erik-Oliver Blass and Florian Kerschbaum. “Strain: A Secure Auction for Blockchains.”

In: IACR Cryptol. ePrint Arch. (2017).

[11] S. Chen Y. Chen and I. Lin. “Blockchain based smart contract for bidding system.”

In: (2018).

[12] Maha Kadadha et al. “ABCrowd: An Auction Mechanism on Blockchain for Spatial

Crowdsourcing.” In: (2020).

[13] B. P. Hayes S. Thakur and J. G. Breslin. “Distributed Double Auction for Peer to

Peer Energy Trade using Blockchains.” In: (2018).

[14] Chaum D. “Blind Signatures for Untraceable Payments.” In: Advances in Cryptology

Proceedings of Crypto (1982).

[15] Wei Dai. “b-money.” In: (1998).

[16] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: Cryptog-

raphy Mailing list at https://metzdowd.com (2008).

[17] Ethereum foundation. Ethereum Whitepaper.

[18] Ethereum. Ethereum accounts. url: https://ethereum.org/en/developers/

docs/accounts/.

[19] GAVIN WOOD. “ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER.” In: ETHEREUM & PARITY (2021).

[20] Nick Szabo. “Smart Contracts.” In: (1994).

[21] Nick Szabo. “The Idea of Smart Contracts.” In: (1997).

[22] Yang Lu. “The blockchain: State-of-the-art and research challenges.” In: (2019).

[23] Maher Alharby and Aad van Moorsel. “Blockchain-based smart contracts: a sys-

tematic mapping study.” In: (2017), pp. 125–140. doi: 10.5121/csit.2017.71011.

[24] Shafi Goldwasser and Mihir Bellare. “Lecture Notes on Cryptography.” In: (2008).

[25] Solidity. Solidity. url: https://docs.soliditylang.org/en/v0.8.4/.

[26] Ting Chen et al. “Under-optimized smart contracts devour your money.” In: (2017),

pp. 442–446. doi: 10.1109/SANER.2017.7884650.

[27] Solidity. Mapping Types. url: https://docs.soliditylang.org/en/v0.8.4/

types.html#mapping-types.

128

https://ethereum.org/en/developers/docs/accounts/
https://ethereum.org/en/developers/docs/accounts/
https://doi.org/10.5121/csit.2017.71011
https://docs.soliditylang.org/en/v0.8.4/
https://doi.org/10.1109/SANER.2017.7884650
https://docs.soliditylang.org/en/v0.8.4/types.html#mapping-types
https://docs.soliditylang.org/en/v0.8.4/types.html#mapping-types

Bibliography

[28] Solidity. Units and Globally Available Variables. url: https://docs.soliditylang.

org/en/latest/units-and-global-variables.html?highlight=block#block-

and-transaction-properties.

[29] Web3.js. web3.js - Ethereum JavaScript API. url: https://web3js.readthedocs.

io/en/v1.2.6/.

[30] MetaMask. MetaMask - A crypto wallet & gateway to blockchain apps. url: https:

//metamask.io.

[31] Creately. What is Sequence Diagram? Complete Guide with Examples. url: https:

//creately.com/blog/diagrams/sequence-diagram-tutorial/.

[32] Solidity. Layout of State Variables in Storage. url: https://docs.soliditylang.

org/en/v0.8.4/internals/layout_in_storage.html.

[33] Rosco Kalis. Truffle Assertions. url: https://www.npmjs.com/package/truffle-

assertions.

[34] Rosco Kalis.OpenZeppelin Test Helpers. url: https://github.com/OpenZeppelin/

openzeppelin-test-helpers.

[35] Huashan Chen et al. “A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks and Defenses.” In: (2019). eprint: 1908.04507.

129

https://docs.soliditylang.org/en/latest/units-and-global-variables.html?highlight=block#block-and-transaction-properties
https://docs.soliditylang.org/en/latest/units-and-global-variables.html?highlight=block#block-and-transaction-properties
https://docs.soliditylang.org/en/latest/units-and-global-variables.html?highlight=block#block-and-transaction-properties
https://web3js.readthedocs.io/en/v1.2.6/
https://web3js.readthedocs.io/en/v1.2.6/
https://metamask.io
https://metamask.io
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://docs.soliditylang.org/en/v0.8.4/internals/layout_in_storage.html
https://docs.soliditylang.org/en/v0.8.4/internals/layout_in_storage.html
https://www.npmjs.com/package/truffle-assertions
https://www.npmjs.com/package/truffle-assertions
https://github.com/OpenZeppelin/openzeppelin-test-helpers
https://github.com/OpenZeppelin/openzeppelin-test-helpers
1908.04507

	Acknowledgements
	Abstract
	List of Figures
	List of Code Fragments
	Introduction
	Microgrids
	Smart Energy Trading
	Blockchain Technology
	Motivation for Blockchain-based Energy Trading
	Thesis Definition
	Research Objectives
	Research Questions
	Scope

	Related Work
	Smart Grids
	Blockchain-based Trading Systems

	Contribution
	Thesis Outline

	Theoretical Background
	Blockchain Technology
	Blockchain History
	Blockchain networks
	Features of Blockchain

	Ethereum
	Ethereum Whitepaper and Core Ideas
	Ecosystem of Ethereum
	Smart Contracts

	Cryptographic Primitives in the Platform
	Hash Functions
	Digital signatures

	Blockchain Development
	Solidity
	Truffle
	Ganache

	Blockchain-based eAuction Solution
	Case Description
	Solution Overview
	Phase 1: Create Auction
	Phase 2: Hidden Round
	Phase 3: Open Round
	Phase 4: Close Auction
	Phase 5: Delete Auction

	Implementation
	Platform Architecture
	Actors and Platform Components

	Code Implementation
	Auction Controller State Variables
	Auction State Variables
	Phase 1: Create Auction
	Phase 2: Bid in the Hidden Round
	Phase 3: Bid in the Open Round
	Phase 4: Close Auction
	Phase 5: Delete Auction

	Implementation Assessment
	Setup
	Testing Third Party Libraries

	Auction Controller Tests
	Auction Tests
	Tests During Hidden Round
	Tests During Open Round
	Tests For Closing The Auction

	Security Analysis
	Attack Vectors

	Conclusion
	Future Work

	Appendix Auction Controller Source Code
	Appendix Auction Source Code
	Appendix Auction Controller Tests Source Code
	Appendix Auction Tests Source Code
	Bibliography

