al

= University
U IA of Agder

A

Hand Gestures Recognition using Ther-
mal Images

DANIEL SKOMEDAL BRELAND

SUPERVISOR
Linga Reddy Cenkeramaddi

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

I would like to thank Assoc. Prof. Linga Reddy Cenkeramaddi for the help and guidance
through out this project. I would also like to thank Aveen Dayal, for helping me un-
derstand and in development of the CNN model. Lastly, I would thank Sreenivas Reddy
Yeduri for proof reading and tips to a well formulated report.

Abstract

Hand gesture recognition
is important in a variety 160x120
of applications, including

medical systems and assis- Robust Hand
tive technologies, human- Gestures
Recognition

computer interaction, human-

robot interaction, industrial

automation, virtual envi-

ronment control, sign lan-

guage translation, crisis and —| 6— — _ .
disaster management, en- lr___ ‘ T —‘*—-_ _"“ﬂ’ - Li—.
tertainment and computer — . a— - ‘ A] *[
games, and robotics. RGB

cameras are usually used

for most of these applica- '™ Cm com Max Pool Conv2 Conv2 MaxPool Flatten Dense
tions. However, their perfor-

mance is limited especially

in low-light conditions. It is

challenging to accurately classify the hand gestures in dark conditions. In this thesis,
we propose the robust hand gestures recognition based on high resolution thermal imag-
ing. These thermal images are captured using FLIR Lepton 3.5 thermal camera which
is a high resolution thermal camera with a resolution of 160x 120 pixels. Thereafter, we
feed the captured thermal images to a deep CNN model to accurately classify the hand
gestures. We evaluate the performance of the proposed model with the benchmark mod-
els in terms of accuracy as well as the inference time when deployed on edge computing
devices such as Raspberry Pi 4 Model B and NVIDIA JETSON AGX XAVIER. Through
extensive results, we observe that the proposed model achieves an accuracy of 98.81%
that is compared to MobileNetV3 Large model with 99.98% and MobileNetV3 Small model
at 99.72% accuracy. The inference time is 0.075138s on Nvidia Jetson AGX, compared
to the inference time on Raspberry Pi 4 that is 0.140968s. Even though the accuracy
of the proposed model is comparable to the benchmark models, the size of the proposed
model is very less comparable to the benchmark models.

ii

Contents

Acknowledgements

Abstract

Figures

Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5

Organization e
Similar Products e e e e e
Background Lo e e
Limitations e e e e e e e
Structure of the thesis

2 Theory

2.1
2.2
2.3
2.4

2.5
2.6

Raspberry Pi4B e
Ubuntu 18.04 LTS e e e
Nvidia Jetson AGX Xavier DK,
FLIRLepton o e e e e e e e e e e
2.4.1 Lepton USEr APD - - -« « v vt it e e e e e e e e e e e
Purethermal 2 breakoutboard,
Convolutional Neural Network
2.6.1 Convolution Layer
2.6.2 Dilated Convolution Layer
2.6.3 MaxPoolLayer e
2.6.4 Activation Layer
2.6.5 Fully Connected Layers
2.6.6 Softmax Layer e
2.6.7 TensorFlow e e

3 Methods

3.1

3.2

Dataset creation o o e
3.1.1 Camerastand L o e
3.1.2 Plain background image capturing
3.1.3 Complex background image capturing
3.1.4 Thermal imaging in low lighting conditions
Convolutional Neural Network
3.2.1 Convolution Layer
3.2.2 Dilated Convolution Layer
3.2.3 MaxPooling e
3.2.4 Training o o o e e e e e e e
3.2.5 Benchmark Model
3.2.6 FineTuning e

iii

ii

vi

Numerical Results

Discussions

5.1 Project plan

5.2 Process

Conclusion

6.1 Further work

Bibliography

<IN N I N - o B - - B

]

= R OC

Python Code:
Python Code:
Google Colab:
Google Colab:
Google Colab:
Google Colab:
Google Colab:
Google Colab:
Google Colab:
Google Colab:
Google Colab:

Google Colab:

5.3 End product
5.4 Implementation
5.5 Challenges

Plain Background Image Capture
Complex Background Image Capture
Preprocessing Data

Load Data as Arrays

Create Train and Test Dataset
Create Model

Train model

10 Fold Validation

Final Test Accuracy

Save the Model

Convert TensorFlow to TensorFlow Lite

Timing code

28

32
32
33
33
33
34

36
36

37
41
45
49
51
52
53
57
58
60
61
62

63

List of Figures

2.1 Images of Raspberry Pi4B.
2.2 Images of Jetson AGX Xavier. it e
2.3 Screenshot of Lepton UsSer App« v v v v v v v i i it e e e e
2.4 Example of convolution filter calcultaion using a filter. Image from [51] . . .

9

2.5 Kernel map’s field of view for Convolution Layer with dilation rate of 1 and 2. 9

2.6 Max Pooling Layer visually explained.

3.1 3D printed pieces from Ultimaker S5
3.2 Example of hand movement within frame.
3.3 Image example of how the images were taken. By placing hand in front of
camera with a plain background. The hand is also supported by another
barstool to keep the hand as stable as possible.
3.4 Flowchart showing psudo code for capturing the thermal images with Rasp-
berry Pi. With an IF loop to check input, and then choose how many images
totake. e e
3.5 A complete set of fusion colored thermal images.
3.6 A complete set of grayscale thermal images.
3.7 Example of difference between images, with position, gesture and tempera-
ture. e e
3.8 Camera stand and camera stand on a tripod.
3.9 Image of the tripod that was used to capture complex background images. .
3.10Example of hand movement within frame.
3.11 Example of difference between images, with position, gesture and tempera-
ture. Poor positioning is when other parts are hotter than the hand.
3.12 A complete set of fusion colored thermal images with complex background.
3.13A complete set of grayscale thermal images with complex background.
3.14Image of how the reflection is in a low light scenario.
3.15FLIR Lepton 3.5incasing.
3.16Proposed CNN model architecture. Convl and Conv2 corresponds to con-
volution layers with dilation rate of 1 and 2 respectively.

4.1 10 fold cross validation accuracy of the proposed model and the benchmark

models. e e e
4.2 Training and Validation accuracy of the proposed CNN model for fold 10. . .
4.3 Confusion matrix of the proposed model.

10

21
22
22
23
24

26

28
29

List of Tables

1.1
1.2

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

Projectroles L L e
Meetings e e e e e

Number of samples per class in Train, Validation and Test Datasets.
Architecture details of the proposed CNN model. Convl and Conv2 are con-
volutioon layers with dilation rate 1 and 2 respectively.

Test accuracy values of the Proposed CNN model, MobileNetV3 Small and
MobileNetV3 Large models.
Test accuracy values of the Proposed CNN model, MobileNetV3 Small and
MobileNetV3 Large models.
Model’s Size of Tensorflow (TF) and Tensorflow Lite version (TFLite) of the
Proposed CNN model, MobileNetV3 Small and MobileNetV3 Large models.
Model size ismeasuredin MB. Lo 0oL
Precision, Recall and F1 Score values of the Proposed CNN model for each
class. . .. e e
Inference time of all the models on Raspberry Pi 4B. TFLite is the Tensorflow
Lite version of the models.,
Inference time of all the models on Jetson AGX Xavier. TFLite is the Tensor-
flow Lite version of the models.

Chapter 1

Introduction

Gesture is a very important part of our communication language, as it may show the
importance or engagement between communicators. The normal conversation contains
a lot of gestures, either face or hand gestures. Hand gesture recognition is useful for
users who are in the need of physical access to spaces unavailable for humans, to com-
municate with other people or machines. A dynamic gesture recognition named Nintendo
Wii has been on the entertainment market for a long time [5]. To develop a hand ges-
ture application like this, it would require a high resolution camera and still be able to
operate at live timing speeds. As the quality of the system is dependent on the quality
of every part, the introduction of high resolution images with more pixels needs high
computational power to operate at the same speed. This in turn increases the cost of the
system due to the usage of high quality equipment. To find the best cost/benefit solution
the system would need a lot of field testing. This would also discover which areas that
needs improvement [30]. Further, in normal RGB images, the lighting and background
lighting is a big factor. This factor will make image recognition systems more vulnerable
to changes in scenery or time of day. Switching to a thermal camera with Infra Red (IR)
lighting will address this issue, as it does not depends on the visible light. An obstacle
will be clearly visible in an image, if the background temperature is different from the
object. This makes the thermal camera to work even in complete darkness. The thermal
camera is then programmed to process these IR rays into human visible colors, of the
users choice. As image recognition is hard enough itself, thermal cameras have the up-
side of mainly reproduce the hottest objects. Meaning the images are often more simple
and contains less details [49], [48].

Thus, in this thesis, we focus on using thermal images for hand gesture recognition.
The images are taken with separate gestures that are supposed to look somewhat alike.
This is to increase the difficulty and robustness of the system. We created two datasets.
The first dataset is created with a clear background such that the image is as clear
as possible. In these images the hand will be in focus without any dots or noise in
the frame. With this dataset, it will be easier to create a model for solid classification
accuracy. The second dataset is created with background noise as well as by placing the
objects in the background. This gives more texture for an algorithm to be considered for
classification, as the hand gestures may not be clear in all images. We consider lamps,
windows, monitors, and furniture to create the second dataset due to which the hand
may be colder than the background. This will make the algorithm to find the patterns
and not just colors.

In [2], the authors have created a dataset with thermal camera which is available in [43].
Similar to the dataset in [43], our datasets are created on the same basis, with 24 images
per gesture with a total of 10 gestures. The images are captured using FLIR Lepton 3.5
thermal camera module [57] and a Pure-thermal 2 breakout board [23]. All images are
captured with a resolution of 160 x 120 pixels, and about 40cm distance between camera
and hand. The first dataset is created from 30 people, all with 240 color scale and 240
gray scale images which results in a total of 14400 images. The gesture controlled appli-

cations are possible to implement in a lot of settings, to assist humans to communicate
with other humans or machines. This makes the work relevant within entertainment,
health care, gaming and many other possible areas [1], [31], [60].

To be able to do hand gesture recognition, we propose a Convolutional Neural Network
(CNN) model to learn and classify hand gestures from the created datasets. In order to
increase the learning ability and to make the system usable in practice, the most well
known gestures should be used. Then the system should be expandable, either by offline
training or online updates with new gestures. This will make it a more adapted system
to each users gestures, and how they uses it [30].

1.1 Organization

Name Role Company Email
Daniel S. Breland Student UiA danisb15@uia.no
Linga Reddy Cenkeramaddi | Supervisor UiA linga.cenkeramaddi@uia.no

Table 1.1: Project roles

As a weekly support, there was meetings once a week on Teams. This was setup in the
beginning to keep all parties updated, as well as keep working in the correct direction.
Status updates has been given for each week, to evaluate the progress and guide towards
solutions. The meetings has mostly been held online, using Teams. From time to time, it
has been physical meetings at Campus in Grimstad. These physical meetings has mostly
been extra and when there was work to be done on campus.

Meeting place Participants Frequency | Day of week
Online Student and supervisor Weekly Wednesday
Physical Student and Supervisor | Irregular | Any weekday

Table 1.2: Meetings

1.2 Similar Products

Image recognition is a field of research that has gained a lot of attention in resent years
and will be an existing issue for researcher to come. A lot of work has been carried
out in image recognition with RGB images [6]. However, less research has been carried
out in thermal image recognition. A hand gesture recognition sensor that uses reflected
impulses in Ultra-Wideband (UWB) spectrum from a hand [33]. A Convolutional Neu-
ral Network (CNN) that is used to identify six hand gestures, using UWB impulse radar
sensor alongside an 8x8 pixel thermal sensor [52]. A deep learning based hand gesture
recognition approach has been used, where surrounding noise may limit the performance
of such a system [52]. A three-axis accelerometer and gyroscope sensor-based contin-
uous hand gesture recognition technique, in a smart device is proposed in this work
[24]. The usage of simultaneous pressure sensors for hand gesture recognition has been
explored in [4] where these sensors capture the signals related to muscle movement.
Here, it has been proposed a work with an extreme learning method where 11 gestures
were classified [4]. A long short-term memory (LSTM) model has been proposed in [63]
to calssify the different hand gestures, by using data from inertial measurements unit
(IMU), electromyographic (EMG), and finger and palm pressure sensor. As these previous
works are similar, they are however not fitted to use in many practical environments and
applications.

1.3 Background

In medical, entertainment, industrial and many more places, the use for a robust and
reliable image recognition system will have many benefits. As the technology is developing
and the human-robot interactions are increasing, controlling them using gesture control
will be a big assist for many people. For people with certain disabilities, it can be helpful
in daily life to open doors or to control indoor temperature. However, it is inefficient in a
noisy environment where voice control will be unavailable or it is not possible to speak.
If the working environment has changing light, normal RGB images will go from bright
to dark depending on external factors. Thus, thermal images will provide a reliable and
constant flow of data, that is not dependent on external sound or lightning.

1.4 Limitations

The time aspect is a very limiting factor as any new device requires time to learn. Further,
new parts in a device increases the learning time as they need much time for learning.
On the other end, mmWave radar is a complex that was dropped, due to the complexity
of learning and utilizing it. The amount of new components in the proposed system are
already high with a FLIR Lepton module, CNN model creation and using it on the Nvidia
Jetson AGX Xavier. With the local restrictions of Covid-19 rules, the cooperation with
others have also been hampered due to which I had limited possibilities to have physical
meetings, as most people are working from home.

Thermal cameras have some limitations, as they are not perfect in any situation. When
thermal camera acts as a standalone sensor, it will not cover all forms of noise or dis-
turbances. As mentioned earlier, it is not affected by surrounding light and will function
even in complete darkness. However, it will most be affected if pointed straight towards
a light source. Depending on the distance, size, and temperature of the source, the light
sources might be the dominant temperature, making the object in focus harder to get
detected and recognized. Thus, the thermal camera may not be efficient in a fire place
or any heat source.

Similar to the Omron D6T thermal camera used in [6], the resolution of thermal cameras
like FLIR Lepton 3.5, is high compared to other similar devices. However, the thermal
cameras are expensive as compared to RGB cameras.

1.5 Structure of the thesis

1. Chapter 1

¢ At the start of the thesis, introduction to the project is described. How is the
state of the art, what is supposed to be developed and other important factors
for the solution. This chapter will also describe the cooperation and working
environment during this time.

2. Chapter 2

* The theory chapter is used to give a certain knowledge about the used ele-
ments. To give any reader the basic knowledge to understand the technical
terms. It will describe the most important hardware and software components,
to understand how and why they are used.

3. Chapter 3

* In this chapter, the way things have been solved is explained. It explain the way
different parts have been developed, before they were put together with other

3

objects to create a product. With the main focus on data gathering and model
creation.

4. Chapter 4

* The results are found and evaluated. The comparison between models and how
the performance in different aspect is, along with some theoretical alternative
solutions.

5. Chapter 5

¢ This chapter will take on the discussion on how the project has evolved, how
the end product is, challenges and what could be done to further develop the
system.

6. Chapter 6

* The conclusion will summarize the previous mentioned chapters, collect the
key parts and how the end system is. It answers whether if the results is a
solution to the problem statement and if it is a solid results.

Apart from the chapters, the content will be listed as in the table of contents (ToC).
With Acknowledgments, Abstract, Figures and Tables. After all chapters it will be the
appendices and references in the end.

Chapter 2

Theory

In this chapter, we describe the details of the hardware components and software tools
used in this project.

2.1 Raspberry Pi 4B

Raspberry Pi is a powerful minicomputer that is available in affordable price which is
used for development purpose. The Raspberry Pi Foundation has its own operating sys-
tem (OS) called Raspberry Pi operating system, very similar to other Linux based OS. In
RPi software web page [45], it is also mentioned that it is possible to run a RPi with an-
other OS. Thus, as part of this project, in addition to Raspberry Pi operating system [45],
Linux based operating systems that include Ubuntu [12]. These operating systems sup-
port most of the programming languages and software development tools. Thus, it has
many use cases due to its ability of determining the operating system. There are many
versions of the Raspberry Pi with Raspberry Pi 4 Model B as the latest one released from
Raspberry Pi Foundation.

@ (b)

Figure 2.1: Images of Raspberry Pi 4B: (a) Top view of RPi 4B compared to a 1 Euro coin;
(b) Sideways view of the Raspberry Pi 4B

In this project, we used Raspberry Pi 4 Model B as an edge computing device for the
performance evaluation of the proposed model. Raspberry Pi 4 Model B comes with
a 64-bit Quad core Cortex-A72 (ARMv8) System on Chip (SoC) processor, with 1.5GHz
clock speed. This model has a customized LPDDR4-3200 SDRAM memory of 2, 4 or
8GB. It has different wireless connectivity such as Bluetooth 5.0 and BLE (Bluetooth
Low Energy) and IEEE 802.11ac operating at 5GHZ and 2.4GHz connections for better
range and bandwidth. The processor is supported with OpenGL ES 3.0 graphics that
enhances the speed of any graphical interface. As the whole computer is one socket
(SoC), it also has a micro-SD card holder for inserting SD card with operating system.
This micro-SD card can also be used for storage [47].

5

The Raspberry Pi 4 Model B is a small and powerful computer, powered by a USB-C port.
To run its processors and other components, it requires a voltage of 5.1V with 3A current.
It is then able to run two 4K resolution monitors through its micro-HDMI ports. It has
four USB ports among which two ports are USB v2.0 and two are USB v3.0 ports that
gives 10 times transfer rate in comparison to USB v2.0. In addition to wireless network
connectivity, it also comes with a Gigabit Ethernet port [46].

2.2 Ubuntu 18.04 LTS

In order to work with the machine learning models, we installed tensorflow on Ubuntu
18.04, 64-bit version. Ubuntu is a well established OS for use in many cases, from
lightweight computers to more heavy machinery. The adaptability and availability of this
free OS makes it very useful for developers. It is observed in [14] that the Ubuntu can be
deployed directly or can be used on Virtual Machine (VM) for deploying machine learning
models.

Ubuntu is available in a lot of different versions and is continuously updated and devel-
oped. In Ubuntu version a.b, a represents the year of release and b represents the month.
So Ubuntu 18.04 LTS was released in April 2018 [13]. It has been updated quite a lot
since the release and currently fifth version i.e., Ubuntu 18.04.5 is available. Further,
ubuntu 18.04 LTS version has been released in April 2018 which will be supported and
updated for five years from the time of release. Ubuntu version can be downloaded from
its original website [1 1] or through a google search for Ubuntu downloads. Ubuntu can
be installed in either a PC or other device with 32-bit and 64-bit versions of processor.
Normally, the Raspberry Pi OS will be downloaded at 32-bit, but a 64-bit OS will be faster
and may support the programs and software that a normal PC support.

2.3 Nvidia Jetson AGX Xavier DK

NVIDIA company has developed Jetson AGX Xavier [38] which acts as an edge computing
device for deploying machine learning and power artificial intelligence models. The AGX
Xavier is a high performance module with low power consumption for deep learning and
computer vision [40]. The AGX Xavier works as a Linux machine, when installed with an
SDK, called JetPack. JetPack provides an operating system as well as the most important
software for machine learning. The JetPack bundle installs many packages that include
TensorRT, CUDA toolkit, VisionWorks, and OpenCV [40]. Alternative download options
are available in NVIDIA website [39]. With JetPack installed, the machine could also be
used as a normal Ubuntu machine for other purposes without modifications. By using
the USB-C to USB adapter, it can be connected to a mouse and keyboard. For Internet
connection, it is required to connect using Ethernet port. The HDMI port can be used
to connect this module to monitor and micro-SD card slot is available for inserting a
micro-SD card for storage.

NVIDIA Jetson AGX Xavier is built with a 512-core Volta GPU, with Tensor Cores. The
CPU is an 8-core ARM v8.2, 64-bit with 8MB L2 + 4MB L3 cache. The Al focus requires
a lot of memory and the AGX Xavier has 32GB RAM with 256-bit LPDDR4x that handles
137GB/s. The internal storage is 32GB eMMC 5.1, which can be expanded using a
micro-SD card. To make the AGX Xavier a solid platform for Al, it is installed two NVDLA
Engines to accelerate deep learning and a 7-way VLIW Vision Processor for accelerating
vision tasks. It measures 105mm x 105mm x 65mm in width, length, and height. It
comes with two USB-C ports among which one is used for flashing and one is free to use.
It is also embedded with UART, SPI, I12C, and more technologies [38, 37].

6

(@ (b)

Figure 2.2: Images of Jetson AGX Xavier: (a) Top view of AGX compared with a 1 Euro
coin; (b) Sideview of the different ports compared to a 1 Euro coin;

2.4 FLIR Lepton

FLIR Lepton 3.5 is a thermal camera from FLIR with the highest resolution Long Wave-
length Infrared (LWIR) micro camera. It has a resolution of 160x 120 pixel and a radio-
metric calibrated array of 19200 pixels [55].

Lepton 3.5 requires an external power supply ranging from 2.5V to 3.1V and has a nom-
inal power consumption of 160mW. It can reach a peak power of 650mW for about one
second during shutter events, while the low power mode consumes only 5mW. As a re-
sult it has many applications that includes IoT or small battery-powered objects. The
Field Of View (FOV) is 57° (horizontaly). The thermal sensitivity is 50mK and each pixel
is measured individually with a pixel pitch at 12 ym. Sensing temperature range is be-
tween -10°C to +140°C, while operating temperature is from -10°C to +65°C. To name a
few integrated functions, there is a digital thermal image processing function, automatic
environment compensation, noise filters, and gain control. Images are exported at<9Hz
with video transmitted via SPI and the module is controlled via I12C [56].

Flat-Field Correction (FFC) is used by a camera module to accurately display the heated
areas. The FFC will correct the temperatures that the camera detects in order to produce
a more clear and uniform image. Here, FFC will re-calibrate to provide the best image
quality [56]. When taking photos, the difference in image quality is visible which will
be discussed in later sections. An FFC is performed during the startup sequence, in
automatic mode, at regular intervals of 3 min. When turned on, it has some default
settings such as auto FFC mode with an interval of 180 000 ms, delta temperature of
150°C, gain mode set to high, color Fusion with Raw 14 video output, and radiometry
control enabled in addition to the other settings [55].

2.4.1 Lepton User App

A computer with windows OS will allow the use of the Lepton user app [54]. Developed
by FLIR, to use the Lepton as a webcam with different settings and possibility to capture
images. The Lepton image is displayed in a large area as a live feed, with possibilities to
capture video or screenshots to the top right as shown in Fig. 2.3. In the left side it has
several system configurations, in the current window it could go from colored (plasma)
images, to gray scaled images with other system settings like number of frames, shutter

7

FLIR Lepton Application v1.3.2

a USB VIDEO MODE CONTROLS “

Image

A
PRESETSE. USB Video Enabled

I

USB Video Mode

O rasess @ Raw

TLinear Enabled

Image Orientation Mode

Camera Feed Select

Lepton LINK

Figure 2.3: Screenshot of Lepton User App

mode, FFC, and delta temperature. Then below it is the media settings, which denotes
the video quality, name and save path as well as screenshot name and save path. When
all settings are set, it is fully operable and could be used to capture images. Although it
is manually done, where every image needs to be taken separately.

2.5 Purethermal 2 breakout board

The Purethermal 2 breakout board is a FLIR Lepton smart I/O module with pre-configured
plug-and-play functionality via a USB port. The default settings are compatible with stan-
dard webcam applications running on Linux, Windows, Mac, and Android. If the module
is configured to be used for other purposes, the firmware is open source [32]. For more
information, see Purethermal breakoutboard firmware github [53]. STM32 ST-LINK Util-
ity, a software program for operating STM32 processors, is recommended for flashing the
Purethermal 2 breakout board. A FLIR Lepton device is required to operate the Purether-
mal 2 breakout board [23].

2.6 Convolutional Neural Network

Convolutional neural network (CNN) is popular to use in image classification, as it has
high precision and is more robust than other types of neural networks. A computer
will see an image in the style of an array of numbers, which means it will transform an
image from a matrix shape to an array. It sees the dimensions of the image such as
height, width, and depth (H x W x D). Height and width being the image resolution and
dimension corresponds to the colors of the image (example, grayscale being 1 dimension).
The advantage of CNN is to effectively detect the object in a image irrespective of the
location of the object in the image [3]. Next, we discuss the different layers of the CNN.

2.6.1 Convolution Layer

In a Convolution Layer, the input image will be seen as a matrix with values corresponding
to the pixel colors. These values are then taken through a filter (kernel), which multiply
the input matrix with filter matrix and gives the output as another matrix as shown in
Fig. 2.4. This filter is normally a 3 x 3 matrix, but could be altered to fit in the current

8

model. The new matrix will be filled up with these new values, creating an image with
other pixel values. The size of the output matrix also depends on the values of padding,
dilation and stride. Padding is to add zeros on edges of image in order to effectively
capture the edge values effectively. Padding will also helps in maintaining the output
size in similar to input matrix. Dilation will be described in the Dilated Convolution
Layer section and stride is how many pixels the filter should move when calculating [3].

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

p 1

D\ b%\

o\
RERAr Jawa

A= XLl \ = Yo\ o\

\=\m e\
2

:

Convolution filter
(Sobel Gx)

Destination pixel

WAV VY VAV

AN

AN VAN

ANV VAV

ALV

L
L1
=
|
|
1
L1
L

| —1
1
1
L1
L1
| —

ARAWEANY 4

Figure 2.4: Example of convolution filter calcultaion using a filter. Image from [51]

2.6.2 Dilated Convolution Layer

This layer is a type of Convolution Layer whose kernel map’s field of view is > 1 [62]. This
variable length field of view is parameterised by the variable ‘dilation rate’. The dilation
rate is a filter with “holes” in it as shown in Fig. 2.5. The “holes” will increase its reception
area, while it still maintains the number of parameters. As it is less complex than using
other layers to keep the number of parameters down, it is computationally less expensive
than pooling layers. While it is easier to compute and also covers more area, it will not
reduce the image resolution. This ensures that upsampling will not be necessary for the
image to be further processed, as the input and output image have the same resolution.
In addition, the output from the dilated convolution will contain details from a larger area
of the image [35].

Dilation rate =1 Dilation rate =2

Figure 2.5: Kernel map’s field of view for Convolution Layer with dilation rate of 1 and 2.

2.6.3 Max Pool Layer

Pooling layer is used to reduce the dimensions of the feature map while extracting efficient
representations. There are different variants available for Pooling layer namely Max Pool

9

and Average Pool [61]. In pooling layers, the objective is to reduce the size and parameters
for the model to calculate and thereby reduce file size so as to increase the speed. Max
Pool works based on the size of the input matrix. For example consider an input matrix
of size 4 x 4. It will then take the maximum value of the top left 2 x 2 matrix from this
input matrix and put it as first element of 2 x 2 output matrix. In the pooling layer, the
preferable stride value is greater than 1, but not necessary if there are many filters. It
will then perform the same calculation for all 2 x 2 matrices in the 4 x 4 matrix, until it
has a new 2 x 2 matrix with all maximum values as shown in Fig. 2.6.

6 4 6 5 Max Pool
e —_— G
1 5 5 8 Filter size: 2x2 9 8
] 8 3 4 Stride = 2

Figure 2.6: Max Pooling Layer visually explained.

Average Pooling layer will take the average of the 2 x 2 matrix as output, while Sum
Pooling will take the sum of the 2 x 2 matrix as output.

2.6.4 Activation Layer

Activation layers are used to give the input a definition for a neuron in the CNN. The
output of an activation layer depends on the type of activation function. Some of the
activation functions are explained with examples in [20]. Below, we describe some of the
activation functions.

Sigmoid function is a nonlinear activation function which is defined as

1

= 2.1
14+e® (2.1)

)

This activation function results an output between 0 and 1 depending on the level of
activation. The disadvantage with Sigmoid activation function is that the output is not
zero centered as well as the augment values are zero for saturated values of input [16].

Rectified Linear Unit (ReLU) function is a non linear function whose output is defined as

y = max(0, x) (2.2)

where, x denotes the input. Here, y = 0 for negative values of x and y = z for positive
values of x [20]. The output argument value is zero for negative values of input. To
address the problems with ReLU, Leaky ReLU, Parametric ReLU, and Exponential ReLU
activation functions are proposed in [17].

2.6.5 Fully Connected Layers

The fully connected layers are placed towards the last part in the CNN models. The
Flatten layer transforms the 3D output from a previous layer to a one dimension vector.
By adding the output with multiple dimensions, it will create a vector based on the input
it gets and remove the other dimensions and feeding it into a fully connected layer. An
example of Flatten layer has been described in [19]. The Dense layer is often referred to
as a fully connected layer, depending on the form [41]. It is the last layer that converts
all inputs to the desired output. It gives the output in one dimension, that is adapted to
the desired classes for it to classify. An example of dense layer has been described in [18]
where, developers often switches between the activation layers.

10

2.6.6 Softmax Layer

As explained in [20], the Softmax layer will convert a vector to a probability distribution,
to make classification easier to understand. The input belongs to a class that results in
highest probability with Softmax Layer [20].

2.6.7 TensorFlow

TensorFlow is a free to use platform for developing and deploying machine learning mod-
els. TensorFlow has some large add-on libraries to further develop machine learning
possibilities, as it is designed to be usable for both novice and experienced developers. It
allows it to use with other application Programming Interfaces (APIs), helping to ease the
development of machine learning models. One example of an API would be Keras that
helps in building and training machine learning models. It comes in different versions
and is possible to use with a full or light version, called TensorFlow Lite (TFLite) [36].

11

Chapter 3

Methods

In this chapter, we describe thermal image capturing in different environments. We also
discuss the proposed CNN model and benchmark models.

3.1 Dataset creation

A big part of this project is to collect data for processing. Then, we created two datasets
from captured images. One with plain background and the other in the presence of
background noise and different light conditions. The datasets are then fed into a CNN
model for image recognition.

3.1.1 Camera stand

As the camera is only a breakout board and camera lens, it is easier to collect and capture
data in a controlled environment using a stand. Fig. 3.1 shows the components required
for the stand. The virtual image corresponds to these components will be obtained using
Ultimaker Cura that creates a ‘.ufp’ file from the virtual component data which will be
processed further using 3D printer namely Ultimaker S5 to print the physical compo-
nents to be mounted to create the stand for the camera.

Ultimaker Cura is a free software program to prepare drawings to be printed in 3D. The
way it works is by importing the desired files, in STL, OBJ, X3D, 3MF, BMP, GIF, JPG,
or PNG format. Then select the desired precision, material, and quality before slicing
the object. Here, slicing creates a .ufp file that the Ultimaker S5 can read. It contains
the drawing and how the machine will print it. When the slicing is done, it will tell the
amount of time it takes to print and a preview of the printed objects [9]. Ultimaker Cura
works with Windows, MacOS and Linux which makes it easily integrated on most of the
computers. To enhance the possibilities in creating objects, it is also possible with plugins
such as Solidworks, Autodesk Inventor or other plugin programs [8] that are designed
for 2D /3D printing.

The operating screen on Ultimaker S5 is a 4.7" touch screen where, it can be controlled
to the desired 3D print file and draw it. The Ultimaker S5 could draw objects in the size
of 330 mm x 240 mm x 300 mm, with adjustable layer and XYZ resolution. The nozzle
could also be changed to create more details or a larger nozzle to draw faster and thicker
objects [10].

The printed parts are found on a website called Thingiverse.com, which have a lot of
print ready files to use with Ultimaker Cura. The camera stand is not printed in one
solid piece but created by several objects. These objects are created by two or more items
that are attached to each other. The printed camera stand consists of 3 pieces including
a container for the Lepton camera. The pieces are then attached as follow. To create the
stand, the "L" shaped object is attached with bolts and nuts to the ground piece (middle
top object in Fig. 3.1). As an extender or for more mobility, "I" shaped object, the left top

12

Jol
B8

Figure 3.1: 3D printed pieces from Ultimaker S5

object in Fig. 3.1, can be mounted either on "L" shaped object or between the "L" shaped
object and the object in top middle in Fig. 3.1 to adjust the height of the stand.

The details of the upper row objects in Fig. 3.1 can be found in [22]. While the camera
housing is found here [28]. Mounted together they are measured to be 12cm height,
around 7.5cm width, and about 6.5cm in depth when mounted as in Fig. 3.8b. A small
tripod that is mobile and can easily be mounted on other surfaces or tripods.

The infill within the structures will provide better stability and more robustness when
handled. Using infill will also help to carry any weight and have some structural re-
sistance when tightening the bolts that keeps the different parts together. They were
also printed with supporting structures, meaning all overhangs in a vertical direction
would have infill. The infill is easy to remove afterwards but ensures structural stability
when printing. The precision of the PLA is set to 0.15mm and 20% grade of infill in the
structures.

3.1.2 Plain background image capturing

Lepton can be accessed with either an application from FLIR [54] or by programming. It
can be accessed with Windows PC using SDK and python script can be used to access
with Raspberry Pi. We consider Raspberry Pi 4 in this work as it will make the capturing
of images easier due to the portability of camera module and Raspberry Pi. The dataset
was captured in both fusion colors as well as grayscale to double the size of the dataset.
Even though both types capture the same gesture, characteristics are different.

(@) (b) (c)

Figure 3.2: Example of hand movement within frame: (a) Hand position 1; (b) Hand
position 2; (c) Hand position 3;

When collecting images, it was very important to have a stable and clear image which

can be obtained from a setup as shown in Fig. 3.3. While capturing the images, people
were told to move their hands slightly in order to capture the different variations in the

13

dataset. Some moved their hands willingly, while others moved naturally down as seen
in Fig. 3.2. Fig. 3.2a shows the starting position, Fig. 3.2b is captured when the hand is
moving naturally downwards, and Fig. 3.2c is captured when the hand is forced towards
the body, in an angle that is not as natural.

The python script is modified to capture the images for a certain time or loops. This eases
operation and will not require as much handling between each image. The downside is
the speed and reliability of the Lepton module and breakout board when operated with
software that is not constructed by an official source. The Raspberry Pi will not have the
same processing speed and computational power of a full computer which makes it run
slower when the dataset is starting to grow, and with 14 400 images the loading speed is
slow and the quality control will be more demanding.

Figure 3.3: Image example of how the images were taken. By placing hand in front of
camera with a plain background. The hand is also supported by another barstool to keep
the hand as stable as possible.

For the custom Python code, it was used a pre made library. The library used is flirpy, a
Python library, to control and interact with FLIR Lepton thermal images [59]. flirpy is a all
in one software library even though we use capturing software functions. As the Python
software is very helpful to convert raw data into arrays which can be further converted

14

FLIR Lepton 3.5

0

Purethermal
breakoutboard

Raspberry USB port

Pi 4

yd Imports N

-': ¥ -"-
Variables

X

/",?n;m“{?\

/ Defenitions /

Print "Input
needs to be
between 1-5"

Y

Input to take image

Figure 3.4: Flowchart showing psudo code for capturing the thermal images with Rasp-
berry Pi. With an IF loop to check input, and then choose how many images to take.

into images.

When connected to the Raspberry Pi, the flowchart in Fig. 3.4 describes the python
script used to capture images for the dataset. It is a simple program that makes use of
the Lepton library for Python programming from flirpy [59]. This library enables Lepton
3.5 to capture images, which are then stored on the Raspberry Pi using the OpenCV (cv2)
[42] and matplotlib [29] libraries. The main program is a loop that awaits input in the
form of numbers ranging from one to five. When input is equal to two, it takes a new
input. This second input is the number of rounds or images it will take before asking for

15

the first input again.

“ n
~
(h) (@)

@

()

Figure 3.5: A complete set of fusion colored thermal images: (a) Fusion image a; (b)
Fusion image b; (c) Fusion image c; (d) Fusion image d; (e) Fusion image e; (f) Fusion
image f; (g) Fusion image g; (h) Fusion image h; (i) Fusion image i; and, (j) Fusion image
j.

The dataset is created with uniform background. The uniform background will draw
attention to the hand and emphasize the unique characteristics of each hand. People
are naturally warmer than the inside room where the images were captured, though the
quality of the images may vary depending on the circumstances. Fig. 3.7 shows char-
acteristics of hand gestures when captured it as cold. Figures 3.7d, 3.7e, and 3.7f show
the problem when the camera is reading the hand as cold. In fact, their hands/fingers
are not cold. The blue fingers may come from several things, as the images were taken
from January to March and the outside temperatures were lower than in the spring/-
summer time. If people would have walked outside prior to taking images, their skin
might have been colder than the reference wall behind. Some people might also have a
lower body temperatures depending on location in the world. Although this should not
have any consequences, a few °C will be shown clearly in thermal images. Personal fea-
tures may also play its part as wet hands will more likely be colder or closer to the room

16

)

(b
(c) @ ()
] @ (h)

Figure 3.6: A complete set of grayscale thermal images: (a) Grayscale image a; (b)
Grayscale image b; (c) Grayscale image c; (d) Grayscale image d; (e) Grayscale image
e; (f) Grayscale image f; (g) Grayscale image g; (h) Grayscale image h; (i) Grayscale image
i; and, (j) Grayscale image j.

(a)
-
(i)

)

temperature. Other factors may also have an influence but it will all create a variation
in the dataset which makes it harder for computers to learn. That also makes it better
for testing, to check the quality and performance of the algorithms proposed using such
diverse dataset.

While taking the thermal images, people had to hold their arms to their sides directly in
front of the camera in order to capture hands properly. Ideally, the people photographed
had their arms to the side with a 90° angle upwards. The position in which people
have been holding their arms is depicted in Fig. 3.3. Because the camera tripod is not
very tall, it must be placed at a different height than the elbows. In some cases, the
tripod has been placed on top of other objects or it has been raised by placing it on a
variable-height object. Keeping their arms in such static positions may be too difficult
for the person. As a result, a table or stool was placed for the people to support their
elbows. It was sometimes necessary to change angles completely and turn their bodies
the same direction as their hand was pointing with gestures h, i, and j. The Lepton 3.5’s

17

(@) o) ©
(d) (e) ® |

Figure 3.7: Example of difference between images, with position, gesture and temper-
ature differences: (a) Good temperature difference, good hand position; (b) Good tem-
perature difference, good hand gesture; (c) Good temperature difference, medium hand
gesture; (d) Poor temperature difference, good hand gesture; (e) Poor temperature differ-
ence, medium hand gesture; (f) Poor temperature difference, poor hand gesture;

Horizontal FOV (HFOV) is 57° indicating that it was designed to capture more details in
images rather than objects.

All images are taken from the same distance and angle from the camera. The distance
maintained between the camera and the hand is 40 to 60 cm. It can capture images with
a high level of detail at that distance. However, it is technically possible to capture images
at greater distances as well. Fig. 3.7a shows an example of a high-detail image in which
different skin temperatures are clearly visible and all fingers are visible. Images will
begin to lose details as they are moved further away as shown in Fig. 3.7c. The camera
tripod can be adjusted up and down as well as sideways to point the camera straight at
the hands as can be seen in Fig. 3.8b. Because the tripod is so small, adjusting to a
different setting is simple because the setup is mobile and portable. Making it easier to
meet people close to them and not being confined to a single location.

The dataset is made up of 14 400 images that are divided into two color tones, which are
then divided into 10 gestures of 24 images per person. Figures 3.5 and 3.6 show a set
of ten gestures from a person. All images should look similar to these gestures with only
the natural/personal differences for each person. When sorted by gesture, the dataset
contains 720 images corresponds to each gesture in both fusion and grayscale. The size
of the images vary from fusion to grayscale. Fusion colors will be of larger size with
each image taking up 25kB with a total of around 18MB. Grayscale images are smaller,
weighing in at 17kB per image and totaling 12.2MB isze for a single gesture. With a
total of 30 people, the total size of the dataset is around 300MB of data resulting in
some detailed thermal images suitable for image recognition. The algorithm will be more
accurate with a larger dataset and more data but, it may slow down in terms of how long
it takes to train. The thermal images of less size is advantageous because it will make
integration into any machine learning algorithm and computing platform easier.
Because the images do not represent any numbers or letters, the gestures are thought to
be similar. Here, the gestures use some of the same fingers but in different positions and
placement as shown in the first four images of Figures 3.5 and 3.6. The palm of the hand

18

(a) (b)

Figure 3.8: Camera stand and camera stand on a tripod: (a) FLIR Lepton in the 3D
printed stand; (b) Thermal camera stand on tripod to gain height when taking images;

is in the center for all these images but, the fingers are in various positions. Depending
on the image’s quality and temperature, a small change in position can be difficult to
detect. As a result, having a large number of images reduces the likelihood of selecting
the incorrect label for the image. The dataset is doubled when images are taken in two
different colors and could also be increased further by changing the rotation of images if
needed.

3.1.3 Complex background image capturing

In the complex background images are different from normal images in terms of back-
ground and hardware used.

As the Raspberry Pi 4 Model B was starting to run slower with many images due to higher
folder size. It was easier to install and run a virtual machine such as VMware workstation.
Thus, we consider a virtual machine installed with Ubuntu 18.04 LTS [11] which is the
same operating system as in Raspberry Pi 4 Model B. Using a virtual machine on a full PC
will also be more practical and it is computational powerful. Further, switching between
PC and virtual machine is smooth and fast. When dealing with a PC it can also be more
portable than a Raspberry Pi that requires a monitor. The stability of a PC is also helping,
as the loading of images and interruptions are less frequent. A folder with many files will
be heavier to load for any computer, which will make quality control of images much
easier. For this dataset, the Lepton user app was also considered, but not chosen as it
would be less configurable and need more time to do the same work.

Capturing the actual images was done using the same libraries, but with some modifica-
tions to the python code. After moving from Raspberry Pi to a PC, the path to folders need
to be updated to make the capturing smoother. Sorting of images was made more auto-
matic by choosing a gesture based folder in addition to the main folder which contains
all images. These folders were named from a to j and they corresponds to the gesture
order shown in Figures 3.5 and 3.6. Also, the way to check the number of images in a
folder was coded. This in turn reduces the amount of time needed to open folders and
manually count images in sets of 24. The Python code was written to return a modulus
of 24, which tells how many images from modulo 24 that were taken.

19

Figure 3.9: Image of the tripod that was used to capture complex background images.

The tripod to mount the camera on is also, a camera tripod shown in Fig. 3.9. This makes
capturing images with different backgrounds easier, as the tripod is light and compact
to move around. The possible height adjustments will also increase the possibility of
making more differences in images. These differences are randomly captured in images,
as the goal is to have many backgrounds with a varied style.

Moving the tripod is critical to capture backgrounds with different lighting and reflec-
tions. As this movement and variation will prevent overstimulating the machine learning
model, where it will only be able to correctly read the training images. Here, the plain
background needed a uniform background, to take good images, the complex background
will have differences in both hand placement and background as seen in Fig. 3.10.

The movement of camera and tripod is vital when trying to capture various and complex
backgrounds in a thermal image as the lens will be reacting to background temperature
in regards of the hand in front. Thus, there will be some images where the background is
more plain and some with dots/areas of color. The variation of these are also contributing
to increase the difficulty to learn that requires a large database in order to capture all
the different variations, and to learn about the important parts in the image. Placing
light sources and heated things in front of the images will increases the difficulty as the
machine learning model will not only have shapes of one color. The hands may be colder
than the background, which will be reflected in the images with the opposite colors of
the normal hands. Fig. 3.11 shows an example figure for the same. Especially the two
on the bottom center in Fig. 3.11e and left in Fig. 3.11f will be hard to find the correct
gesture.

This dataset contains much more details in the images where, it might be needed to
perform object detection before doing image recognition. This will require more samples
to make a working model. With more images, it might be possible to use image recognition
only depending on the content of the second dataset. While some images like Figures
3.11b and 3.11f, it will be harder to detect. As the example dataset in Figures 3.12 and
3.13, the background is not as dominating and has no bright spots. This is however not
consistent through the dataset, meaning it will be beneficial to perform object detection
before doing image recognition to get a valid result.

20

(&) (b) () @

Figure 3.10: Example of hand movement within frame: (a) Hand position 1, Starting
point; (b) Hand position 2, Camera directed to the left; (c) Hand position 3, Starting
point; (d) Hand position 4, Hand is moved closer;

il

) (e) ®

Figure 3.11: Example of difference between images, with position, gesture and tempera-
ture differences. Poor positioning is when other parts are hotter than the hand: (a) Good
temperature difference, good hand position; (b) Good temperature difference, good hand
position; (c) Good temperature difference, medium hand position; (d) Poor temperature
difference, good hand position; (e) Poor temperature difference, medium hand position;
(f) Poor temperature difference, poor hand position;

3.1.4 Thermal imaging in low lighting conditions

Images are captured in various lighting conditions to demonstrate the robustness of the
FLIR Lepton 3.5 thermal camera. This section shows images of how the camera works in
various lighting conditions, ranging from dim to completely dark. The Fig. 3.14 depicts
three different light shades in the room. The images were taken in the same session,
and the lighting was reduced from normal, as shown in Figures 3.3. The hand was kept
in the same position to see any differences as shown in the Lepton image at the bottom
right of Figures 3.14. During this test, the camera was setup as a web camera from a
virtual machine and was live streaming the images.

It can be seen in Figures 3.14a that this scenario has less thermal leakage than oth-
ers, which can occur when the camera is live streaming and constantly calculating the
temperature within the frame. This could be due to a number of factors, such as a new
temperature sensor calibration or a bias calculation of the background temperature when
the light went off. The last image taken in Fig. 3.14c has much higher temperature differ-
ence to the right of the hand. This could be explained by the body moving more towards
the hand, heating the area around or the hand heating up the area around. Another rea-

21

(@ (b) (©) (@

(€ ® @ (h)
n “

(i))

Figure 3.12: A complete set of fusion colored thermal images with complex background:
(@) Fusion image a; (b) Fusion image b; (c) Fusion image c; (d) Fusion image d; (e) Fusion
image e; (f) Fusion image f; (g) Fusion image g; (h) Fusion image h; (i) Fusion image i;

and, (j) Fusion image j.
(@) (b)
(0) (d) (e) ®
Y
-
© (h) o))

Figure 3.13: A complete set of grayscale thermal images with complex background: (a)
Grayscale image a; (b) Grayscale image b; (c) Grayscale image c; (d) Grayscale image d;
(e) Grayscale image e; (f) Grayscale image f; (g) Grayscale image g; (h) Grayscale image h;
(i) Grayscale image i; and, (j) Grayscale image j.

22

(b) (c)

Figure 3.14: Image of how the reflection is in a low light scenario: (a) Lower light than
normal; (b) Almost completely dark; (c) Without light;

son for this temperature variation would be the presence of the people around the area.
The darkest blue part is calculated to be the coldest and the temperature difference is
more as the hand is placed at larger distances within the same area.

The fact that all images are captured using the 3D printed casing as shown in Fig. 3.15.
It also demonstrates that the camera is unaffected by external or surrounding light.

23

Figure 3.15: FLIR Lepton 3.5 in casing.

Because all other sensors are covered by the casing in this image, only the lens will be
able to detect any surrounding light. The casing will provide more stable conditions that
will not be affected by small external and rapid variations in temperature, like wind gusts.

3.2 Convolutional Neural Network

We divide the available dataset into two parts such as Train dataset and Test dataset. The
test dataset consists of 20% of the entire dataset. We further divide the training dataset
into two parts namely Train dataset and Validation dataset. The division of the dataset
is done in a manner such that equal number of samples are taken from each class so as
to avoid an imbalance distribution. Table 3.1 shows the details of the three datasets.

Table 3.1: Number of samples per class in Train, Validation and Test Datasets.

Class | Train Dataset | Validation Dataset | Test Dataset
0 519 57 144
1 519 57 144
2 519 57 144
3 519 57 144
4 519 57 144
5 519 57 144
6 519 57 144
7 519 57 144
8 519 57 144
9 519 57 144

3.2.1 Convolution Layer

In this layer the kernel maps ('k’) performs the convolution operation on the input feature
map. These layers consist of some of the main parameters such as dimensions of the

24

kernel map (H x W x D). Here, ‘H’ is the height of kernel map, ‘W’ is the width of the
kernel map, ‘D’ is the depth of the kernel map, and ‘N’ number of kernel maps. In this
work H # W i.e., a rectangular kernel map. We also use a stride of 1 for each convolution
layer. The convolution operation is done as follows [61]

H W D

l
yiz+17jz+17n = Z Z Z ki,j,d,n X T il it g d (31)
1=0 j=0d=0

In (3.1), 2! is the output of the previous layer (I — 1) which becomes the input feature
map to the current layer (/). ‘y;+1 1, is the intermediate output after performing the
convolution operation. We repeat this for for all ‘N’ maps to obtain Y. We then input this
‘Y’ to an non linear activation function, Residual Linear Unit (ReLU). The expression for
ReLU function is obtained as [61].

f(z) = max(0, z) (3.2)

The ReLu function is an activation function that gives the gradient outputs for each
inputs. The ReLu function is a variant much used in CNN, as it uses the equation (3.2).
It gives the maximum value of the input or O depending on how the input is activated.
Thus, the final output from the Convolution Layer is obtained as [61].

X = £(v) (3.3)

3.2.2 Dilated Convolution Layer

In this work, we use 4 convolution layers, 2 with dilation rate of 1 and 2 with dilation
rate of 2. Each of the convolution layer is followed by a batch normalization operation to
improve training speed and decrease overfitting [27]. We also use 1 Max Pooling layer. The
entire model architecture is shown in Table 3.2 and Fig. 3.16. This Dilated Convolution
will not decrease the input resolution as much as Pooling layers. The reason for some
decrease are the fact that Zero Padding is not used, and the filter will not reach the outer
edges of the image.

Table 3.2: Architecture details of the proposed CNN model. Convl and Conv2 are convo-
lutioon layers with dilation rate 1 and 2 respectively.

Layer Output Shape
Input (None,120,160,1)
Convl (None, 118,159,16)
Convl (None, 116,158,32)
Max Pool (None, 38,79,32)
Conv2 (None, 30, 73, 64)
Conv2 (None, 22, 67,128)
Max Pool | (None, 7, 33, 128)
Flatten (None, 29568)
Dense (None, 10)

3.2.3 Max Pooling

In this work we use Max Pool Layer, whose operation is shown in the equation (3.4) [61].
The Max Pool Layer is decreasing the parameters between the first and second part of
convolution layers. The big cut in parameters is a big step in cutting size, as the filter
size is a 3 x 2 matrix. It will then reduce the amount of parameters by 3 in height and
2 times in width. This gives us the output from Max Pool layer one in table 3.2. This is

25

N)

1

Input Convl Convl Max Pool Conv2 Conv2 Max Pool Flatten Dense

Figure 3.16: Proposed CNN model architecture. Convl and Conv2 corresponds to con-
volution layers with dilation rate of 1 and 2 respectively.

then repeated for a second time before input into the flatten layer. This Max Pooling will
make the model look at larger areas of input as the resolution is decreased. This saves
computation power and helps avoid overfitting in the model.

_ !
Yittjt+iin = 0<z’<rgll%}<(j<w T Hopd jlH L x Wt d (3.4)

3.2.4 Training

We train the proposed CNN model using ‘Adam Optimizer’ with a learning rate of 0.001
[34] and a batch size of 32. All the weights were initialized using ‘Kaiming initializer’
[25]. The model was trained using 10 fold cross validation i.e the entire train dataset
was divided into 10 parts and for each iteration 9 parts were used for training and one
part was used as validation dataset. This procedure was repeated for 10 times hence the
name 10 fold cross validation. The training of each individual fold took about 10 minutes,
which is affected by the size of each fold and the computational power available. After
training the folds, they were all tested on their corresponding part of test dataset. Before
they were combined and the folds were tested on the whole test dataset, as this minimizes
the chances of the result to be a lucky strike and that the model has actually learned.

3.2.5 Benchmark Model

We compare the proposed CNN model with MobileNetV3 model as benchmark. Mo-
bileNetV3 is the ‘3"? version among the MobileNet family of architectures. MobileNet
models are designed for optimised performance on mobile and edge computing devices.
These models are specifically trained to have low latency while maintaining the accu-
racy of the model. There are two variants of MobileNetV3 that was proposed in [26],
MobileNetV3 Small and MobileNetV3 Large. The difference between the two is the total
number of parameters used to train the model. In this work we use both the variants
of the model pre trained on ImageNet dataset. Before training the model we first have to
slightly modify the benchmark models to adapt for the given task. We remove the clas-
sification layer (output layer) of the benchmark model and add a new classification layer
with 10 classes for the given task. We also use a global average operator layer to flatten
the output of the benchmark model. This layer is then to the new classification layer.
We train the benchmark model using transfer learning technique called as ‘Fine Tuning’
method.

26

3.2.6 Fine Tuning

In this method few layers of the benchmark model along with the new classification
layer are trained on the given task. This methodology of training can be very useful as
compared to training from scratch. This is because the benchmark model’s pre-trained
weights act as a good parameter initializer and can optimize better on the given task.
We train both the benchmark models via 10 fold cross validation method. We also use
an RMS Prop optimiser [58] with a batch size of 32 for training. All the models including
the proposed model are trained on Google Colab i.e on Nvidia’s T4 GPU with 12 GB GPU
RAM, using Keras Deep Learning Library [15].

27

Chapter 4

Numerical Results

The project is mainly divided into two parts, one is to gather images for a dataset, while
the second is to create a CNN model for hand recognition. Collecting a dataset of thermal
images, was done with each participant taking 24 images of all 10 gesture and in total 240
for each person in both color and grayscale. For the model to be able to learn correctly,
it was collected 30 people. Enough to make the model learn without overfitting.

The 10 fold cross validation results of all the models in Fig. 4.1. The average 10 fold
validation accuracy for the proposed model, MobileNetV3 Large and MobileNetV3 Small
is 98.42%, 99.42%, 99.86% respectively. The learning rate of the proposed CNN model
is shown in the accuracy plot, where it shows the convergence after 50 epoch in Fig. 4.2.

BN MBV3 Large
. MBV3I Small
BN Proposed
100 4
B0
==
")
]
=
§
m -
m -
n -

Foldl Fold2 Fold3 Fold4 Fold5 Foldé Fold7 Fold8 Fold9 Foldl0

Figure 4.1: 10 fold cross validation accuracy of the proposed model and the benchmark
models.

Next the models were compared based on their test accuracy. After 10 fold cross vali-
dation it is 10 models available for each model, as each fold will be its own model. We
can get the test accuracy by either combining the results from all the 10 models [50] [7]
or obtain a single model by training the model on the entire train dataset with optimal
hyperparamter values obtained during 10 fold cross validation [44]. It was choosen to

28

Proposed model accuracy

10 -

accuracy
=] (=]
) oo

=2
o
i

=2
LN
i

= ftrain
val

T T T T T T

0 5 10 15 20 2% 30 3% 40 &
epoch

Figure 4.2: Training and Validation accuracy of the proposed CNN model for fold 10.

_,
—
=

use the latter method for simplicity sake, by obtaining 3 models corresponding to the
Proposed CNN model, MobileNetV3 Small and MobileNetV3 Large respectively. We then
evaluate these models on the test dataset to get the test accuracy values. These values
are summarised in Table 4.1.

Table 4.1: Test accuracy values of the Proposed CNN model, MobileNetV3 Small and
MobileNetV3 Large models.

Model Test Accuracy
MobileNetV3 Small 99.72%
MobileNetV3 Large 99.98%

Proposed CNN model 98.81%

After this we compare the proposed CNN model with the benchmark models in terms
of model’s size both TensorFlow and TensorFlow Lite (TFLite) versions and also compare
them in terms of the number of parameters. These results are summarized in Table 4.2
and 4.3. As seen from Table 4.3, the Proposed CNN model’'s TFLite version is 3 times
smaller than the MobileNetV3 Small model and 8 times smaller than the MobileNetV3
Large model.

We next see a plot for the various performance metrics such as ‘Precision’, ‘Recall’, ‘F1
score’ for the proposed CNN model [21]. The confusion matrix of the proposed CNN model
is shown in the Fig. 4.3. The performance metric values are shown in the Table 4.4.

We lastly show the inference time of the TFLite version models deployed on Raspberry Pi
4 Model B and Nvidia Jetson AGX Xavier. These values are summarized in Table 4.5 and
4.6. Showing the average time after 100 iterations, of recognizing a gesture on the two
platforms.

The timing tables 4.5 and 4.6, shows that the hardware is a big factor when looking at

29

Table 4.2: Test accuracy values of the Proposed CNN model, MobileNetV3 Small and
MobileNetV3 Large models.

MobileNetV3 Small 1,540,218 1,430,058
MobileNetV3 Large 4,239,242 3,725,818
Proposed CNN model 504,858 504,378

Table 4.3: Model's Size of Tensorflow (TF) and Tensorflow Lite version (TFLite) of the
Proposed CNN model, MobileNetV3 Small and MobileNetV3 Large models. Model size is
measured in MB.

MobileNetV3 Small 12 6
MobileNetV3 Large 31 16
Proposed CNN model 6 2

o 0 0 0.01 0 0.01 0 0 0 0

m 0 0 001 089 0 0 0 0 0 0

-FE <« (0.01 O 0 0 097 O |001 001/ 0 0

=

Tw| 0 0 0 0 001 099 0 0 0 | 0.01

o

0wl 9 0 0 0 0.01 0 0 0 0
~ | 0 0 0 0 0 0 0 0 | 0.01
w | 0 001 0 0 0 0 0 0 0.01

o 0 0 0 0 0 0 0 0 0

0 1 2 3 4] [7 g 9
Prediction

Figure 4.3: Confusion matrix of the proposed model.

30

Table 4.4: Precision, Recall and F1 Score values of the Proposed CNN model for each
class.

Class | Precision | Recall | F1 Score
0 0.99 0.98 0.99
1 0.99 1.0 0.99
2 0.99 0.99 0.99
3 0.98 0.99 0.98
4 0.99 0.97 0.98
5 0.99 0.99 0.99
6 0.99 0.99 0.99
7 0.99 0.99 0.99
8 1.0 0.99 0.99
9 0.98 1.0 0.99

Table 4.5: Inference time of all the models on Raspberry Pi 4B. TFLite is the Tensorflow
Lite version of the models.

TFLite model Inference Timing
MobileNetV3 Small 0.033844s
MobileNetV3 Large 0.079605s

Proposed CNN Model 0.140968s

Table 4.6: Inference time of all the models on Jetson AGX Xavier. TFLite is the Tensorflow
Lite version of the models.

TFLite model Inference time

MobileNetV3 Small 0.013664s
MobileNetV3 Large 0.035300s
Proposed CNN model 0.075138s

the inference time. As the more general Raspberry Pi 4B will have less power, compared
to the deep learning machine Jetson AGX Xavier platform.

31

Chapter 5

Discussions

5.1 Project plan

As part of the master thesis and project, I created an article based on the same work
that I have presented in this thesis. At first, the plan was to create two articles which
were based on the two datasets. After careful consideration of the time it takes to develop
and gather data the second article was put on ice. Therefore will the article, using the
thermal images with a plain background be completed. As the dataset with a complex or
noisy background is not completed, the article and models could be completed at a later
stage.

From the start of planning the project for a thesis, it was proposed some different tasks.
Among the tasks it was to create an image recognition and a collision avoidance system,
using thermal cameras and mmWave radar. The applications were both aimed at im-
age recognition using mmWave radar and thermal cameras. The first application was
aimed towards recognition of different walls in order to recognize different materials of
walls. This helps in identifying the wall type such as brick, wood, cement, or other types.
This will be applicable for both outdoor and indoor walls. Then, it should be combined
with the mmWave radar that collects range data. Combining the data from both, we
can identify the wall type and its distance. For the second application, the goal was to
create a classification system. This system was supposed to have two parts, both in-
cluding mmWave radar and thermal camera. First part is using images in an outdoor
environment then, moving it forward to a moving vehicle while still performing the same
classification. Which creates a new challenge of using live video and not still images,
while also do classification at live speed.

If the mmWave radar were added as part of the thesis, it would require a lot more work.
As that would be an even higher level of knowledge and expertise to solve. The mmWave
radar is a completely new concept for myself and would claim a substantial amount of
time to understand and function. The thermal images were always in our focus and the
mmWave radar was dropped from the project after realising the difficulty of implementing
it. As further work or a higher degree proposal it would be more fitting.

All different challenges and time consuming tasks, made it obvious that completing one
article was possible and not two. For the second article, the dataset is not fully completed
and it needs a machine learning algorithm for classification. The self created machine
learning and dataset creation will however be sufficient work for a complete thesis, which
also includes the creation of the second dataset with complex backgrounds. For this
second dataset with complex background, the model would need to be created with the
possibility to detect objects. If not, the images might have some background noise the
model believes to be a hand gesture making classifying fail.

32

5.2 Process

The working process has been altered a bit as the changes in plan has been moved to-
wards the finished end product. The initial focus was to develop thermal camera appli-
cation for gathering images for the datset. It was cruical that it worked and was able to
grab images from FLIR’s Lepton thermal camera. Programming this was not the hardest
part, with the option to use an SDK which works out of the box [54]. The Python code in
the SDK is similar but was not used directly in the actual image capturing.

As the task of developing the range profile was dropped, the focus on the mmWave Radar
was dropped. Further development of range profile will be a big step up in complexity.
Such that this thesis will not be covering this. The fact that the mmWave radars were
not used, shifted more focus to the image capturing and machine learning parts.

In the image capturing phase, there was another problem as we needed lots of people.
The global pandemic was preventing large groups of people meeting to collect images. In
the public room, as on campus Grimstad, it was advised with online lessons to prevent
people gathering in big groups. The other was at home visitors, as it was advised to
reduce the numbers of social contacts. All these rules and guidelines introduced in the
beginning of the year, made the gathering of images a lot more time consuming.

When the final formulation of the project was made, it was time to start developing the
machine learning algorithm. As the machine learning model design is dependent on
what parameters it will be provided. With everything in place, the shaping of layers and
parameters were decided. There was no real issues until the deployment phase, where the
installation of TensorFlow for certain hardware was proving difficult. When this problem
was solved, the product was ready to be tested and finalized. As for time, it was now
too late starting on another model with the complex background. Therefore the dataset
collection of images were also stopped some time before. Making this the logical step to
further develop this project.

5.3 End product

The end product is a combination of the proposed model and the dataset capturing cam-
era. The camera module was supported by a plastic tripod, which was 3D printed and
then again supported by another camera tripod. As the first tripod is of fixed height, it
was only used to keep the camera module still. The second tripod was adjustable, as
most cameras require some movement. It could be adjusted from its legs or by lengthen
its neck, as seen in Fig. 3.9. The camera module was then attached to a computer, for
both power supply and data transfer.

The proposed model is deviating some from the original idea, as it does not include the
mmWave radar and is classifying hand gestures instead of different walls. While the ther-
mal camera and images were kept. With the current solution, the end product is a CNN
model with hand gesture recognition using thermal images. It is a very small size model,
which funciotn very good for edge computing on computers with low memory capacity.
this makes it more fitted to be used with the likes of Raspberry Pi and other low powered
computers. The system is a robust and accurate system with an accuracy of 98.81%,
which is a good result looking at the parameters and model size. The development of a
small size model allows for some more flexibility, as further development could be to add
features or speed, depending on use area.

5.4 Implementation

First task was to create a dataset to process using a machine learning algorithm. The
datasets were collected at various locations, both for plain background and complex back-

33

ground. Initially, we created first dataset with plain background to understand the pos-
sibility of working of the model.

The dataset and proposed CNN model were developed independently on separate comput-
ers. Then, we merged them together after both parts were complete, when it was ready to
train on the given dataset. The dataset was divided into the separate gestures and labeled
each from “a” to “j” to the numbers O to 9. As the CNN model is trained using supervised
training, it requires labeled data in order to validate and correct the weights. As men-
tioned earlier in Chapter 4, the dataset was divided into 10 folds containing the colored
images from gestures“a” to “j” as in Fig. 3.5. Here, the colored image data is enough to
get the desired performance. Adding more grayscale images would not increase accuracy
further, as the colors are not treated differently.

The weights used to train the model are randomly initialized using the Kaiming He which
is a probability distribution function. As you want most weights to be within a certain
range. It was trained through 50 epochs, as this is a level of epochs in which the model
should have improved if possible. If the accuracy of the validation set still is not increasing
after 50 epochs, the model will need some adjustments.

When the proposed model was complete, it was tested against other CNN models such
as MobilNet in both small and large models. As these models are already trained, they
were only optimized with our dataset for the models to correctly recognize thermal hand
gestures. The MobileNet models were slightly modified, by removing the dense layer with
the original output by another dense layer trained on our dataset. This fine-tuning of an
already existing model makes the accuracy even better, with weights being adapted to a
similar dataset.

To create the model, it was used Keras Deep learning library and TensorFlow 2, which has
functions to do the hard calculations automatic. This makes the creation of the model
more streamlined, by using functions, not reinventing the same layers. The functionality
of Keras and TensorFlow is very wide and is used for doing most of the mathematics. From
calculating layers to number of parameters, making our work easier. This makes creation
of a deep CNN model easier, faster, and more performance focused. Keras utilizes Python,
which has many features and possible add-ons for even further development, which is
ideal for developers to create custom networks.

For any practical use, in a small memory computer, it is very helpful for the model to run
on TFLite. Which is a way for TensorFlow to decrease the size of the model, while it still
keeps the accuracy. This way the proposed model has its size decreased from 6MB to
2MB, but still with the same accuracy. This was also done to the MobileNet models. This
enables the usage of low power edge computers such as Raspberry Pi to run advanced
CNN models with limited memory.

5.5 Challenges

The main challenge that was encountered with the process, hardware, software, or other
issues during the project is mentioned here.

As a lasting problem with the FLIR Lepton camera module, it had some timing issues.
These issues made it disconnect for a brief moment, stopped capturing at random inter-
vals. This error could be in the library, breakout board or within the module communi-
cation, as the problem only appeared when being used with a custom Python program.
We realized that the problem is not with the camera module after checking it with Lep-
top user application in Windows. Thus, we updated the python module and fixed the
problem.

Originally the model size was 9MB, which was too large for a low memory edge comput-
ing device. The challenge was then to reduce the size while maintaining the accuracy.
For this it would need to be tested a lot and made some sacrifices to one side of the
performance. As the smaller sized model would decrease the accuracy, but with a good

34

starting accuracy it was possible to sacrifice 1% to reduce the model size. With it, it is
very accurate with a reduced size.

In the deployment phase there were some troubles with TensorFlow versions as the Ten-
sorFlow version should be same for both training and testing. Thus, the edge computing
devices should also have TensorFlow 2.4 which was used for training. The Raspberry Pi
module needs to run a 64-bit operating system to run on the TensorFlow v2.4, 32-bit
operating system works till TensorFlow 2.2. In a small computer as the Raspberry Pi,
installation of these big libraries increases the usage of the processor which heats it up
and could slow it down due to overheating. Other times the process of installing would
just be really slow which even takes hours for installation of big libraries.

To test the proposed CNN model in more than one computer, it was desired to test it on
a Sitara AM572X from Texas Instruments (TI). The problem with this machine was to
install another operating system (OS). TI supports a range of OS for the Sitara machine,
which are Linux based, but they do not provide any solution on how to install custom
software. Thus, it was very difficult to install desired software or use in a test of the
proposed model and benchmark models. It was not possible to install a general Linux
machine like Ubuntu 18.04 LTS, as the machine would not boot this OS.

35

Chapter 6

Conclusion

A complete end-to-end system with a robust hand recognition model has been presented
in this thesis. The system is designed to be highly portable, and a thermal dataset is
created. The dataset includes 30 people and 14,400 thermal images of hand gestures,
with 7200 in fusion color and 7200 in grayscale. The images were then classified into ten
different categories. It was tested with three different machine learning models in this
work. The size of the proposed CNN model is 6MB with just above 500000 parameters,
and a TFLite verions of 2MB in size. Compared to the MobileNet small model with a size
of 12MB and TFLite version of 6MB, the MobileNet large model is 31MB and 16MB in the
TFLite version. The model also achieves an accuracy of 98.81%, compared to benchmark
models with accuracy of 99.72% and 99.98% for small and large models, respectively. The
inference time of the proposed model is 0.075138s on Nvidias Jetson AGX, compared to
the benchmark models which results in 0.013664s for small and 0.0353s for large model.
When tested on Raspberry Pi 4B, the inference time of the proposed model was 0.140968s
compared to small and large benchmark models that result in 0.033844s and 0.079605s,
respectively. Because of reliable thermal imaging, the proposed hand gesture recognition
is robust and unaffected by external light sources. In addition, a dataset has also been
created with complex background.

6.1 Further work

The inference time for the proposed model can be reduced on any edge computing device
by improving the model. It can be observed from the MobileNetV3 models that it is
possible to decrease the inference time, without being significantly increased in model
size.

Adding more features is also a possible way to develop further without any complexity in
the system. It requires a dataset with good quality and enough samples, depending on
the features and image resolution. Similar features as presented and with same image
resolution, would require about the same amount of data.

Dataset 2 is collected in the presence of background noise or other objects. Having more
number of samples in this dataset may increase the accuracy of any classification model.
This can be achieved by collecting the data from 10 to 20 more people in a similar fashion.
We will collect the data from more people and propose new CNN model that fits with this
dataset as part of future work. Another possible work lies in the direction of processing
the live stream data. This can be achieved by designing a CNN model with less inference
time. Moving it towards the faster MobileNet V3 models, which are bigger but also faster.
This model may also require some sort of object detection, depending on the amount of
background noise and objects present, in order to detect and recognize the correct part
of the image.

36

Bibliography

[1] Zhwan Ahmed and Jamal Hussein. “An Interactive and Predictive Pre-diagnostic
Model for Healthcare based on Data Provenance.” In: UHD Journal of Science and
Technology 3 (Oct. 2019), p. 59. pot: 10.21928/uhdjst.v3n2y2019.pp59-73.

[2] Pramod Kumar et al. “Hand posture and face recognition using a fuzzy-rough ap-
proach.” In: International Journal of Humanoid Robotics 07.03 (2010), pp. 331-356.
DOL: https://doi.org/10.1142/50219843610002180.

[8] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a con-
volutional neural network.” In: 2017 International Conference on Engineering and
Technology (ICET). 2017, pp. 1-6. por: 10.1109/ICEngTechnol.2017.8308186.

[4] Bilel Ben Atitallah et al. “Simultaneous Pressure Sensors Monitoring System for
Hand Gestures Recognition.” In: 2020 IEEE SENSORS. 2020, pp. 1-4. po1: 10.1109/
SENSORS47125.2020.9278884.

[5] Bergsala AB. Wii: spilliconsollen som endret verdens syn pA¥ tv-spill. URL: https :
//www.nintendo.no/support/146-om-wii. (accessed: 18.05.2021).

[6] Daniel S. Breland et al. “Deep Learning-Based Sign Language Digits Recognition
From Thermal Images With Edge Computing System.” In: IEEE Sensors Journal
21.9 (2021), pp. 10445-10453. por: 10.1109/JSEN.2021.3061608.

[7] Lauran Brewster et al. “Development and application of a machine learning algo-
rithm for classifcation of elasmobranch behaviour from accelerometry data.” In:
Marine Biology 165 (Mar. 2018). po1: 10.1007/s00227-018-3318~-7.

[8] Ultimaker BV. Plugins. URL: https://marketplace.ultimaker.com/app/cura/plugins.
(accessed: 25.01.2021).

[9] Ultimaker BV. Ultimaker Cura. URL: https://ultimaker .com/software/ultimaker-
cura. (accessed: 26.01.2021).

[10] Ultimaker BV. Ultimaker S5 Powerful, reliable, versatile 3D printing. URL: https :
//ultimaker.com/3d-printers/ultimaker-sb. (accessed: 25.01.2021).

[11] Canonical Ltd. Alternative downloads. URL: https://ubuntu.com/download/alternative-
downloads. (accessed: 12.05.2021).

[12] Canonical Ltd. Download Ubuntu Desktop. URL: https ://ubuntu . com/download /
desktop. (accessed: 12.05.2021).

[13] Canonical Ltd. List of releases. URL: https://wiki.ubuntu.com/Releases. (accessed:
12.05.2021).

[14] Canonical Ltd. Ubuntu Desktop for Developers. URL: https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/. (accessed: 12.05.2021).

[15] Francois Chollet et al. “Keras: The python deep learning library.” In: ascl (2018),
ascl-1806.

37

https://doi.org/10.21928/uhdjst.v3n2y2019.pp59-73
https://doi.org/https://doi.org/10.1142/S0219843610002180
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/SENSORS47125.2020.9278884
https://doi.org/10.1109/SENSORS47125.2020.9278884
https://www.nintendo.no/support/146-om-wii
https://www.nintendo.no/support/146-om-wii
https://doi.org/10.1109/JSEN.2021.3061608
https://doi.org/10.1007/s00227-018-3318-y
https://marketplace.ultimaker.com/app/cura/plugins
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/3d-printers/ultimaker-s5
https://ultimaker.com/3d-printers/ultimaker-s5
https://ubuntu.com/download/alternative-downloads
https://ubuntu.com/download/alternative-downloads
https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://wiki.ubuntu.com/Releases
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

[16] Somayeh Ezadi, Tofigh Allahviranloo, and Salar Mohammadi. “Two new methods
for ranking of Z-numbers based on sigmoid function and sign method.” In: Inter-
national Journal of Intelligent Systems 33.7 (2018), pp. 1476-1487. por: https :
//doi.org/10.1002/int .21987. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/int.21987. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
int.21987.

[17] Francois Chollet, et al. Activation layers. URL: https ://keras . io/api/layers/
activation_layers/. (accessed: 02.06.2021).

[18] Francois Chollet, et al. Dense layer. URL: https://keras.io/api/layers/core _
layers/dense/. (accessed: 02.06.2021).

[19] Francois Chollet, et al. Flatten layer. URL: https://keras.io/api/layers/reshaping_
layers/flatten/. (accessed: 02.06.2021).

[20] Francois Chollet, et al. Layer activation functions. URL: https://keras.io/api/
layers/activations/. (accessed: 02.06.2021).

[21] K. M. Ghori et al. “Performance Analysis of Different Types of Machine Learning
Classifiers for Non-Technical Loss Detection.” In: IEEE Access 8 (2020), pp. 16033-
16048. por: 10.1109/ACCESS.2019.2962510.

[22] GroupGets. Adjustable Thermal Camera Stand. URL: https://wuw.thingiverse.com/
thing:1277474. (accessed: 18.01.2021).

[23] GroupGets. PureThermal 2 - FLIR Lepton Smart I/ O Module. URL: https://groupgets.
com/manufacturers/getlab/products/purethermal -2-flir-lepton-smart-i-o-
module. (accessed: 03.03.2021).

[24] Hari Prabhat Gupta et al. “A Continuous Hand Gestures Recognition Technique for
Human-Machine Interaction Using Accelerometer and Gyroscope Sensors.” In: IEEE
Sensors Journal 16.16 (2016), pp. 6425-6432. por: 10.1109/JSEN.2016.2581023.

[25] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification.” In: Proceedings of the IEEE international con-
ference on computer vision. 2015, pp. 1026-1034.

[26] Andrew Howard et al. “Searching for MobileNetV3.” In: CoRR abs/1905.02244 (2019).
arXiv: 1905.02244. URL: http://arxiv.org/abs/1905.02244,

[27] Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift.” In: arXiv preprint arXiv:1502.03167
(2015).

[28] IonEwe. Lepton USB Housing. URL: https://www.thingiverse.com/thing:3275190.
(accessed: 18.01.2021).

[29] John Hunter, et al. Matplotlib: Visualization with Python. URL: https://matplotlib.
org/stable/index.html. (accessed: 03.06.2021).

[30] Juan Pablo Wachs et al. “Vision-based hand-gesture applications.” In: International
Journal of Humanoid Robotics 54.02 (2011), pp. 60-71. por: http://hdl . handle.
net/10945/52012.

[31] Hyun Kang, Chang Lee, and Keechul Jung. “Recognition-based gesture spotting in
video games.” In: Pattern Recognition Letters 25 (Nov. 2004), pp. 1701-1714. por:
10.1016/j.patrec.2004.06.016.

[32] Kurt Kiefer. PureThermal 1/2/Mini Reference Firmware. URL: https://github.com/
groupgets/purethermall-firmware. (accessed: 03.03.2021).

[33] Seo Yul Kim et al. “A Hand Gesture Recognition Sensor Using Reflected Impulses.”
In: IEEE Sensors Journal 17.10 (2017), pp. 2975-2976. por: 10.1109/JSEN. 2017 .
2679220.

38

https://doi.org/https://doi.org/10.1002/int.21987
https://doi.org/https://doi.org/10.1002/int.21987
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.21987
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.21987
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21987
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21987
https://keras.io/api/layers/activation_layers/
https://keras.io/api/layers/activation_layers/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/reshaping_layers/flatten/
https://keras.io/api/layers/reshaping_layers/flatten/
https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/
https://doi.org/10.1109/ACCESS.2019.2962510
https://www.thingiverse.com/thing:1277474
https://www.thingiverse.com/thing:1277474
https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
https://groupgets.com/manufacturers/getlab/products/purethermal-2-flir-lepton-smart-i-o-module
https://doi.org/10.1109/JSEN.2016.2581023
https://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
https://www.thingiverse.com/thing:3275190
https://matplotlib.org/stable/index.html
https://matplotlib.org/stable/index.html
https://doi.org/http://hdl.handle.net/10945/52012
https://doi.org/http://hdl.handle.net/10945/52012
https://doi.org/10.1016/j.patrec.2004.06.016
https://github.com/groupgets/purethermal1-firmware
https://github.com/groupgets/purethermal1-firmware
https://doi.org/10.1109/JSEN.2017.2679220
https://doi.org/10.1109/JSEN.2017.2679220

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In:
International Conference on Learning Representations (Dec. 2014).

Yuhong Li, Xiaofan Zhang, and Deming Chen. “CSRNet: Dilated Convolutional Neu-
ral Networks for Understanding the Highly Congested Scenes.” In: (Feb. 2018).

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.
org/.

NVIDIA Corporation. JETSON AGX XAVIER Deploy Al-Powered Autonomous Machines
at Scale. URL: https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/. (accessed: 19.05.2021).

NVIDIA Corporation. Jetson AGX Xavier Developer Kit. URL: https://developer .
nvidia.com/embedded/jetson-agx-xavier-developer-kit. (accessed: 12.05.2021).

NVIDIA Corporation. Jetson Download Center. URL: https://developer.nvidia.com/
embedded/downloads#7search=Jetpack. (accessed: 12.05.2021).

NVIDIA Corporation. JETSON FAQ. URL: https://developer.nvidia.com/embedded/
fag#xavier-faq. (accessed: 12.05.2021).

Timothy Oa€™Shea and Jakob Hoydis. “An Introduction to Deep Learning for the
Physical Layer.” In: IEEE Transactions on Cognitive Comumunications and Networking
3.4 (2017), pp. 563-575. por: 10.1109/TCCN.2017.2758370.

OpenCV team. Releases. URL: https://opencv.org/releases/. (accessed: 03.06.2021).

Pramod Kumar et al. NUS dataset. URL: https://www.ece.nus.edu.sg/stfpage/
elepv/NUS-HandSet/. (accessed: 25.02.2021).

Sebastian Raschka. Model Evaluation, Model Selection, and Algorithm Selection in
Machine Learning. 2020. arXiv: 1811.12808 [cs.LG].

RASPBERRY PI FOUNDATION. Operating system images. URL: https://www.raspberrypi.
org/software/operating-systems/#raspberry-pi-os-32-bit. (accessed: 12.05.2021).

RASPBERRY PI FOUNDATION. Raspberry Pi4. URL: https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/. (accessed: 11.05.2021).

RASPBERRY PI FOUNDATION. Raspberry Pi 4 Tech Specs. URL: https : / /www .
raspberrypi . org/products/raspberry-pi-4-model-b/specifications/. (accessed:
12.05.2021).

Linga Reddy Cenkeramaddi et al. “A Survey on Sensors for Autonomous Systems.”
In: 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA).
2020, pp. 1182-1187. por: 10.1109/ICIEA48937.2020.9248282.

Rikke Gade, Thomas B. Moeslund. “Thermal Cameras and Applications.” In: Ma-
chine Vision & Applications 25.01 (2014), pp. 246-262. por: https://10.1007/
s00138-013-0570-5.

Dymitr Ruta and Bogdan Gabrys. “Classifier selection for majority voting.” In: In-
Jormation Fusion 6.1 (2005). Diversity in Multiple Classifier Systems, pp. 63-81.
1ssN: 1566-2535. por: https://doi.org/10.1016/j.inffus.2004 .04 .008. URL:
https://www.sciencedirect.com/science/article/pii/S1666253504000417.

Shuchen Du. Understanding Deep Self-attention Mechanism in Convolution Neu-
ral Networks. URL: https://medium. com/ai - salon/understanding - deep - self -
attention-mechanism-in-convolution-neural-networks-e8f9c01cb251. (accessed:

27.05.2021).

Sruthy Skaria et al. “Deep-Learning for Hand-Gesture Recognition with Simulta-
neous Thermal and Radar Sensors.” In: 2020 IEEE SENSORS. 2020, pp. 1-4. por:
10.1109/SENSORS47125.2020.9278683.

39

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/downloads#?search=Jetpack
https://developer.nvidia.com/embedded/downloads#?search=Jetpack
https://developer.nvidia.com/embedded/faq#xavier-faq
https://developer.nvidia.com/embedded/faq#xavier-faq
https://doi.org/10.1109/TCCN.2017.2758370
https://opencv.org/releases/
https://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/
https://www.ece.nus.edu.sg/stfpage/elepv/NUS-HandSet/
https://arxiv.org/abs/1811.12808
https://www.raspberrypi.org/software/operating-systems/#raspberry-pi-os-32-bit
https://www.raspberrypi.org/software/operating-systems/#raspberry-pi-os-32-bit
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://doi.org/10.1109/ICIEA48937.2020.9248282
https://doi.org/https://10.1007/s00138-013-0570-5
https://doi.org/https://10.1007/s00138-013-0570-5
https://doi.org/https://doi.org/10.1016/j.inffus.2004.04.008
https://www.sciencedirect.com/science/article/pii/S1566253504000417
https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251
https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251
https://doi.org/10.1109/SENSORS47125.2020.9278683

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]

[63]

STMicorelectronics. STM32 ST-LINK utility. URL: https://wuw.st.com/en/development-
tools/stsw-1ink004.html#overview. (accessed: 03.03.2021).

FLIR System. Software & SDK. URL: https://lepton. flir.com/software-sdk/.
(accessed: 04.02.2021).

FLIR Systems. FLIR LEPTON 3 & 3.5. URL: https://lepton.flir.com/wp-content/
uploads/2015/06/Lepton3_3.5-Data-Sheet.pdf. (accessed: 04.02.2021).

FLIR Systems. FLIR LEPTON Engineering Datasheet. URL: https://www.flir.com/
globalassets/imported-assets/document/flir-lepton-engineering-datasheet.pdf.

(accessed: 05.02.2021).

FLIR Systems. LEPTON. URL: https://www.flir.com/products/lepton/7model=3.5
20Lepton. (accessed: 05.02.2021).

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learn-
ing. 2012.

Josh Veitch-Michaelis. LJMUAstroecology/flirpy: v.0.1.0 Zenodo. Version v.0.1.0.
May 2020. por: 10.5281/zenodo .3866331. URL: https://doi.org/10.5281/zenodo.
3866331.

Dinesh Vishwakarma and Rajiv Kapoor. “An Efficient Interpretation of Hand Ges-
tures to Control Smart Interactive Television.” In: International Journal of Compu-
tational Vision and Robotics 7.4 (2017), pp. 454-471. por: 10. 1504 /IJCVR. 2017 .
10005393.

J. Wu. “Introduction to Convolutional Neural Networks.” In: 2017.

Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated Convolu-
tions. 2016. arXiv: 1511.07122 [cs.CV].

Xiaoliang Zhang et al. “Cooperative Sensing and Wearable Computing for Sequential
Hand Gesture Recognition.” In: IEEE Sensors Journal 19.14 (2019), pp. 5775-5783.
Dpor: 10.1109/JSEN.2019.2904595.

40

https://www.st.com/en/development-tools/stsw-link004.html#overview
https://www.st.com/en/development-tools/stsw-link004.html#overview
https://lepton.flir.com/software-sdk/
https://lepton.flir.com/wp-content/uploads/2015/06/Lepton3_3.5-Data-Sheet.pdf
https://lepton.flir.com/wp-content/uploads/2015/06/Lepton3_3.5-Data-Sheet.pdf
https://www.flir.com/globalassets/imported-assets/document/flir-lepton-engineering-datasheet.pdf
https://www.flir.com/globalassets/imported-assets/document/flir-lepton-engineering-datasheet.pdf
https://www.flir.com/products/lepton/?model=3.5%20Lepton
https://www.flir.com/products/lepton/?model=3.5%20Lepton
https://doi.org/10.5281/zenodo.3866331
https://doi.org/10.5281/zenodo.3866331
https://doi.org/10.5281/zenodo.3866331
https://doi.org/10.1504/IJCVR.2017.10005393
https://doi.org/10.1504/IJCVR.2017.10005393
https://arxiv.org/abs/1511.07122
https://doi.org/10.1109/JSEN.2019.2904595

D UL s W N

o2}

~

16

NN N NN DN N NN = =
N O g o W= O O 00N

o]

38
39
40

Appendix A

Python Code: Plain Background
Image Capture

#!/bin/env python

import cv2

import sys

import time

import os.path

import numpy as np

import matplotlib.pyplot as plt

from flirpy.camera.lepton import Lepton
from PIL import Image

H#HELELE S Arrays-------- #
image = []
#--—----- Definitions-------- #

def print_image_info(): # Flirpy

print (image) # Prints the pixel values in an array
print (camera.frame_count)
print (camera.ffc_temp_k)
print (camera.fpa_temp_k)
o m oo oo o #

def capture_image_grayscale(image_number): # Example from: https://github.com/
groupgets/pylepton

camera= Lepton ()
image = camera.grab()

#cv2.normalize (image, image, O, 65535, cv2.NORM_MINMAX) # Extend/increase

contrast
#np.right_shift (image, 8, image) # Fit image into 8 bits
#cv2.imwrite ("grayscale_output.jpg", np.uint8(image)) # Save image
arr = image

Make an array for image
pixels
plt.imsave (fname = ’/home/ubuntu/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Grayscale/gray_image_{}.png’.format (image_number),
arr = image ,cmap = ’gray’) # Save image using pyplot

camera.close ()

62

63
64
65
66
67

69

70

71

72

73

74
75
76
77
78
79
80
81

82

83

84

def

def

def

capture_image_colorscale(image_number): # Matplotlib

camera = Lepton ()
image = camera.grab()
arr = image

Make an array for
image pixels

plt.imsave (fname = ’/home/ubuntu/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Colorscale/plasma_image_<{}.png’.format (image_number
), arr = image ,cmap = ’plasma’) # Save image using pyplot

camera.close ()

___ #
capture_images (image_number_grey, image_number_color):

camera= Lepton ()

image = camera.grab()

arr = image # Make an array for image pixels

plt.imsave (fname = ’/home/ubuntu/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Grayscale/gray_image_{}.png’.format (
image_number_grey), arr = image ,cmap = ’gray’) # Save image grayscale
plt.imsave (fname = ’/home/ubuntu/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Colorscale/plasma_image_{}.png’.format (
image_number_color), arr = image ,cmap = ’plasma’) # Save image colorscale
del arr

camera.close ()
___ #

check_folder_grayscale():

directory_path = os.path.dirname(’/Grayscale/’)

Fnds the directory for the path
path = os.getenv(’HOME’) + ’/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Grayscale/’ # Finds the path to place
files
number_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(
path, £))]1) # Calculates the number of files in folder
print ("Number of images in folder {}: {}".format(directory_path, number_files)
)
print (" ")
return number_files + 1

check_folder_colorscale():

directory_path = os.path.dirname(’/Colorscale/’)
Fnds the directory for the path

path = os.getenv(’HOME’) + ’/FLIR_Lepton_docs/Lepton_imaging_git/
plain_background_images/NUS/Colorscale/’ # Finds the path to place
files

number_files = len([f for f in os.listdir(path)if os.path.isfile(os.path. join(
path, £))]) # Calculates the number of files in folder

print ("Number of images in folder {}: {}".format(directory_path, number_files)
)

print (" ")

return number_files + 1

42

91 def main():

92
93
94

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117

118

119

121

148

———————— Variables--------#
image_number = 0
#grayscale_folder = 1
##colorscale_folder = 1
number_files = 1

#for x in range (1): # For loop to read through the folders at
start

colorscale_folder = check_folder_colorscale ()

grayscale_folder check_folder_grayscale ()

while 1:
print ("Press 1 for 1 image")
print ("Press 2 for x images")
print ("Press 3 for colorscale image, only for example")
print ("Press 4 for grayscale image, only for example")
print ("Press 5 to see files in directories")
print ("Press 9 to exit")
num_input = int(input()) # Takes the input into a var.

if num_input >= 1 and num_input <= 9:
if num_input == 1:
capture_images (grayscale_folder, colorscale_folder) # Captures
both type of images
grayscale_folder = check_folder_grayscale () # Checks how many
images of grayscale images the folder contains
colorscale_folder = check_folder_colorscale() # Checks how many
images of colorscale images the folder contains
elif num_input == 2:
print ("Enter the amount of images to take")
rounds = int (input())
for x in range (rounds):
capture_images (grayscale_folder, colorscale_folder)
grayscale_folder = check_folder_grayscale ()

colorscale_folder = check_folder_colorscale ()
#time.sleep (0.2)
elif num_input == 3:

print ("Enter the amount of images to take")
rounds = int (input())
for x in range (rounds):
capture_image_colorscale(colorscale_folder)
colorscale_folder = check_folder_colorscale()
elif num_input == 4:
print ("Enter the amount of images to take")
rounds = int (input())
for x in range (rounds):
capture_image_grayscale (grayscale_folder)
grayscale_folder = check_folder_grayscale ()
elif num_input == 5:
print ("Folder content: ")
check_folder_grayscale ()
check_folder_colorscale ()
else:
#camera.close ()
break;
else:
print ("Input needs to be selected as stated")

43

153 if __mname__ == "_ _main__": main ()

Listing A.1: Plain background image capture code

44

16

R
N - S © ® N

N NNNN
C W

al

Appendix B

Python Code: Complex Background
Image Capture

#!/bin/env python

import cv2

import sys

import time

import os.path

import numpy as np

import matplotlib.pyplot as plt

from flirpy.camera.lepton import Lepton
from PIL import Image

- Arrays-------- #
image = []
HEELEELSS Definitions-------- #

def print_image_info(): # Flirpy

print (image) # Prints the pixel values in an array
print (camera.frame_count)
print (camera.ffc_temp_k)
print (camera.fpa_temp_k)
HESEEEE e e L L It il e B e B L L L Lt e e e e e L LR L S LS et Ll L L L #
def capture_image_grayscale(gesture_folder, image_number_gray): # Example from:

https://github.com/groupgets/pylepton

camera= Lepton ()
image = camera.grab()

#cv2.normalize (image, image, O, 65535, cv2.NORM_MINMAX) # Extend/increase
contrast

#np.right_shift (image, 8, image) # Fit image into 8 bits

#cv2.imwrite ("/home/pi/Documents/Lepton_imaging_git/complex_background_images/
NUS/grayscale/grayscale_{}png".format (image_number_gray), np.uint8(image)) #
Save image

#cv2.imwrite ("/home/pi/Documents/Lepton_imaging_git/complex_background_images
/{}/grayscale/grayscale_{}png".format (gesture_folder , image_number_gray), np.
uint8 (image)) # Save image

arr = image

Make an array for
image pixels
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/

45

40

66

68

69

70
71
72
73
74
75
76
77

78

79

80

81

complex_background_images/NUS/grayscale/gray_image_{}.png’.format (
image_number_color), arr = image ,cmap = ’gray’) # Save image grayscale
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/{}/grayscale/gray_image_{}.png’.format (gesture_folder
, image_number_color), arr = image ,cmap = ’gray’) # Save image grayscale

del arr

camera.close ()

capture_image_colorscale(gesture_folder, image_number_color): # Matplotlib

camera = Lepton()
image = camera.grab()
arr = image

Make an array for
image pixels

plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/NUS/colorscale/plasma_image_{}.png’.format (
image_number_color), arr = image ,cmap = ’plasma’) # Save image grayscale
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/{}/colorscale/plasma_image_{}.png’.format(
gesture_folder, image_number_color), arr = image ,cmap = ’plasma’) # Save image
colorscale
del arr

camera.close ()

capture_images (gesture_folder ,image_number_gray, image_number_color):

camera= Lepton ()

image = camera.grab()
arr = image # Make an array for image pixels
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/NUS/grayscale/gray_image_{}.png’.format (
image_number_gray), arr = image ,cmap = ’gray’) # Save image grayscale
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/{}/grayscale/gray_image_{}.png’.format (gesture_folder
, image_number_color), arr = image ,cmap = ’gray’) # Save image grayscale
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/NUS/colorscale/plasma_image_{}.png’.format (
image_number_color), arr = image ,cmap = ’plasma’) # Save image colorscale
plt.imsave (fname = ’/home/pi/Documents/Lepton_imaging_git/
complex_background_images/{}/colorscale/plasma_image_{}.png’.format (
gesture_folder , image_number_color), arr = image ,cmap = ’plasma’) # Save image
colorscale
del arr

camera.close ()

check_folder_grayscale():

directory_path = os.path.dirname(’/grayscale/’)

Fnds the directory for the path
path = os.getenv(’HOME’) + ’/Documents/Lepton_imaging_git/
complex_background_images/NUS/grayscale/’ # Finds the path to
place files
number_files = len([f for f in os.listdir (path)if os.path.isfile(os.path.join(
path, £))]1) # Calculates the number of files in folder
print ("Number of images in folder {}: {}".format(directory_path, number_files)
)

return number_files + 1

46

82

83 H——mm - o T T T T T T ——————— #

84

85 def check_folder_colorscale():

86

87 directory_path = os.path.dirname(’/colorscale/’)

Fnds the directory for the path

88 path = os.getenv(’HOME’) + ’/Documents/Lepton_imaging_git/
complex_background_images/NUS/colorscale/’ # Finds the path to place
files

89 number_files = len([f for f in os.listdir(path)if os.path.isfile(os.path. join(
path, £))]) # Calculates the number of files in folder

90 print ("Number of images in folder {}: {}".format(directory_path, number_files)
)

91 return number_files + 1

92

93 H——mm - o T T T T T T T ———————— #

94

95 H--———-——-- main-------- #

96 def main():

97

98 #--—--—-—-—-—- Variables-------- #

99 image_number = 0

100 #grayscale_folder = 1

101 #colorscale_folder = 1

102 number_files = 1

103

104 #for x in range (1): # For loop to read through the folders at
start

105 colorscale_folder = check_folder_colorscale ()

106 grayscale_folder = check_folder_grayscale ()

107

108 print ("\n######SHEHHAHAHAHSEH AR AR HAHSHS BB RER")

109 print ("Select gesture folder to add images")

110 gesture_folder = str(input())

111

112

113 while 1:

114

115 print ("\n######HHHHHSHAHSHERER AR H SRS B SRS BHRHL")

116 print ("Press 1 for 1 image of both colors")

117 print ("Press 2 for x images of both colors")

118 print ("Press 3 for colorscale image, only for example")

119 print ("Press 4 for grayscale image, only for example\n")

120 print ("Press 5 to see files in directories\n")

121 print ("Press 6 to change gesture_folder")

122 print ("Press 7 to see if images are modulus of 24\n")

123 print ("Press 9 to exit")

124 print ("####SHS#SHSEH AR HSH SRR AR AR RS HSHS#E#E# \D")

125

126 num_input = int(input()) # Takes the input into a var.

127

128 if num_input >= 1 and num_input <= 9:

129 if num_input == 1:

130 print ("\n####d#SHHGHGHAEHAEH AR AR AR AR B A HBHSHEREHR")

131 capture_images (gesture_folder, grayscale_folder, colorscale_folder
) # Captures both type of images

132 grayscale_folder = check_folder_grayscale () # Checks how many
images of grayscale images the folder contains

133 colorscale_folder = check_folder_colorscale() # Checks how many
images of colorscale images the folder contains

134 print ("#H#4HAHAHAHAB AR HAHAHAEH SRR A B R AR AHEHEH# \D")

135 elif num_input == 2:

136 print ("\n######SH GRS HSEHAEH AR AR AR AR BB HSHSHEREHR")

137 print ("Enter the amount of images to take")

138 rounds = int (input ())

139 for x in range (rounds):

47

140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179
180
181

182
183
184
185

capture_images (gesture_folder, grayscale_folder,
colorscale_folder)

grayscale_folder = check_folder_grayscale ()
colorscale_folder = check_folder_colorscale ()
#time.sleep (0.2)

print ("#H#4HSHSHAH A B AR HAHAHAH SRR AR HBHBHEHEH# \D")

elif num_input == 3:

print ("\n####AH#ASHHEHHERBHAHASHBSBHSRHSRHHHH")

print ("Enter the amount of images to take")

rounds = int (input())

for x in range (rounds):
capture_image_colorscale (gesture_folder, colorscale_folder)

colorscale_folder = check_folder_colorscale ()
print ("#####HAHHARHAAHHSHHSR B AR R AR HHSHHE#H#E \D")
elif num_input == 4:

print ("\n####AAHAAHHEHHEHHAAHAAH BB RS RHSRHALH")
print ("Enter the amount of images to take")
rounds = int (input())
for x in range (rounds):
capture_image_grayscale (gesture_folder, grayscale_folder)
grayscale_folder = check_folder_grayscale ()
print ("#####HAHHAAHAAHHSEHH SR HAAHBSBHERHEHH#E\ ")
elif num_input == 5:
print ("\n###HAAHHEHHEHH BB BABHABHBAH RSB H SR BB BB RS BHRRHE")
print ("Folder content: ")
check_folder_grayscale ()
check_folder_colorscale ()
print ("####HHAHH RSB HEHHAAH RSB AR HSAH RSB H SR H SR HAS#HE#\D")
elif num_input == 6:
print ("\n####44# BB HEHH SR BB AH AR B BB RS BB S RHRHH")
print ("Current gesture folder: %s" % gesture_folder)
print ("Type new gesture folder")
gesture_folder = str(input())
print ("####4HAHHAHH RSB HSHHSRH AR H RSB HSHHE#H#E\D")
elif num_input == 7:
if int(colorscale_folder - 1) % 24 == O:
print ("\n####A4HHSEHHEHBERH RSB RSB RS RHSRHESHHEH")
print ("Images are modulus of 24 (even) \nTotal number of
images: {} + {} = {}".format(int(colorscale_folder -1), int(grayscale_folder -
1), int(colorscale_folder + grayscale_folder - 2)))
print ("#H#4HSHAHAHHBRGHAHAH AR A B A B RS HAHAHEHEH#\D")
else:
print ("\n####AAHHEHHEHBERHAAHASHHSRHSRHHAHEHH")
print ("\nNot a modulus of 24 (odd)")

print ("%i images left to take" %((int(colorscale_folder - 1) %
24) - 24))
print ("#H#4HSHAHAHHBRGHAHAHAH A B AR AR HAHAHEHEH# \D")
clfsiel
#camera.close ()
break;
elfslel

print ("\nInput needs to be selected as stated")

Listing B.1: Complex background image capture code

48

W N

a & W N =

o]

N o=

N -

Appendix C

Google Colab: Preprocessing Data

from google.colab import drive
drive .mount (’/gdrive’)
%hcd /gdrive

Listing C.1: Import Google Drive

import glob

letter=[’a’,’b’,’c’,’d’,’e’,’f’>,°g?,’h’,2i’,°j"]

dict={’a’:[1,’b’:[]1,’c?:[1,°da’:[1,’e’:01,°f£>:[1,’g’>:[]1,’h>:[],7i>:01,°3°>:01}

for i in letter:
dict[i]=(glob.glob("/gdrive/MyDrive/thermal_sign_data/"+i+"/Colorscale/*.png"))

s print (len(dict[’a’1))

Listing C.2: Label data

for i in letter:
print (len(dict[i]))

Listing C.3: Print files in array

import cv2
import numpy as np
import matplotlib.pyplot as plt

X=np.empty ((7200,120,160,1))
Y=np.empty ((7200,1))
k=0
for j in letter:
for i in dict[j]:
X[k,:,:,0]l=cv2.imread(i,cv2.IMREAD_GRAYSCALE)
k=k+1

20

for i in range(0,10):

for j in range(1,321):
X[k,:,:,0]=cv2.imread ("/gdrive/My Drive/thermal_images/"+str(i)+"/image_"+str(
j)+".png",cv2.IMREAD_GRAYSCALE)
Y[k]l=1
k=k+1
20
print (k)

Listing C.4: Print total entries of "k"

print (X.shape)
Listing C.5: Print shape

import numpy as np

np.save("/gdrive/My Drive/thermal_images/X.npy",bX)
Listing C.6: Save to Google Drive

49

S

[}

k=0
label_dict={’a’:0,’b’:1,’c’:2,’d°:3,’e’:4,°f’:5,’g?:6,’h’:7,°17:8,7j°:9}
for j in letter:
for i in dict[j]:
Y[k]=1label_dict[j]
k=k+1
print (k)

Listing C.7: Print total labeled entries of "k"

np.save("/gdrive/My Drive/thermal_images/Y.npy",Y)
Listing C.8: Save to Google Drive

import cv2

import numpy as np

import matplotlib.pyplot as plt

test=np.empty ((32,32,1))

im=cv2.imread("/gdrive/MyDrive/thermal_sign_data/a/Colorscale/plasma_image_4.png",
cv2.IMREAD_GRAYSCALE)

#test[:,:,0]=im

print (im. shape)

plt.imshow (im)

plt.show ()

plt.imshow(test[:,:,0])

plt.show ()

Listing C.9: Show thermal and test image

50

w

N~

N

u

N =

Appendix D

Google Colab: Load Data as Arrays

import numpy as np
X=np.load("/gdrive/My Drive/thermal_images/X.npy")
Y=np.load("/gdrive/My Drive/thermal_images/Y.npy")

Listing D.1: Import images

print (X.shape)
print (Y.shape)

Listing D.2: Print shapes

X_=np.stack ((X[:,:,:,0],)*3, axis=-1)
Listing D.3: Stack array

import cv2

import numpy as np

import matplotlib.pyplot as plt
plt.imshow (X[1438,:,:,0])

print (Y[1438])

Listing D.4: Show image

print (Y. shape)
a=[0,0,0,0,0,0,0,0,0,0]

3 for i in range (Y.shape[0]):

[}

alint (Y[i])]=alint(Y[i])]+1
print (a)

Listing D.5: Print Y shape of array

51

o u

~

N

Appendix E

Google Colab: Create Train and Test
Dataset

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X_, Y, test_size=0.2,
random_state=42,stratify=Y)

print (Y_test.shape)

; a=[0,0,0,0,0,0,0,0,0,0]

for i in range(Y_test.shape[0]):
alint(Y_test[i])]=alint(Y_test[i])]1+1

9 print(a)

Listing E.1: Split dataset

print (X_train.shape)

Listing E.2: Print train data shape
X=None
#X_=None

Listing E.3: Set X = None

import numpy as np

3 X_train=np.empty ((5760,120,160,1))

Y_train=np.ones ((5760,1))
Listing E.4: Set train dataset

52

N =

Appendix F

Google Colab: Create Model

import tensorflow as tf

from tensorflow import Temnsor

from tensorflow import keras

from tensorflow.python.keras.layers import Input, Conv2D, RelU,

>\

BatchNormalization

Add, AveragePooling2D, Flatten, Dense

from tensorflow.python.keras.models import Model
from tensorflow.keras.layers import MaxPool2D, AveragePooling2D,
initializer = tf.keras.initializers.he_normal ()

def scheduler (epoch, 1r):
if (epoch¥%8)==0:
return lr * tf.math.exp(-0.1)
else:
return 1lr

s def relu_bn(inputs: Tensor) -> Tensor:

relu = ReLU() (inputs)
bn = BatchNormalization () (relu)
return bn

def relu_u(inputs: Tensor) -> Tensor:
relu = ReLU() (inputs)
#bn = BatchNormalization () (relu)
return relu

; def bottleneck(x: Tensor, kernels:int, dilation: int) -> Tensor:

y = Conv2D(kernel_size=1,
strides= 1,
filters=int (kernels/4),
padding="same") (x)

y = relu_bn(y)

y = Conv2D(kernel_size=3,
strides=1,
filters=int (kernels/4),
padding="same") (y)

y = relu_bn(y)

y = Conv2D(kernel_size=1,
strides= 1,
filters=kernels,
padding="same") (y)

y = relu_bn(y)

out = Add () ([x, y])

y1 = Conv2D(kernel_size=1,

53

SeparableConv2D

w N = O

Q O @ g oo g g g g U g o u
N = O © 0 N O O b

63
64
65
66
67
68
69

70

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

def

def

yi

yi

yi

yi

yi

outl

strides= 1,

filters=int (kernels/4),

padding="same") (out)
relu_bn(y1l)

Conv2D (kernel_size=3,
strides=1,
filters=int (kernels/4),
dilation_rate=dilation,
padding="same") (y1)
relu_bn(y1l)

Conv2D (kernel_size=1,
strides= 1,
filters=kernels,
padding="same") (y1)

relu_bn(y1l)

Add () ([out, y11)

return outl

resblock (x: Tensor, kernels:int, dilation:

yi

y1

yi

yi

yi1

yi

outl

Conv2D (kernel_size=1,
strides= 1,
filters=int (kernels/4),
padding="same") (x)
relu_bn(yl)

Conv2D (kernel_size=3,
strides=1,
filters=int (kernels/4),
dilation_rate=dilation,
padding="same") (y1)
relu_bn(y1l)

Conv2D (kernel_size=1,
strides= 1,
filters=kernels,
padding="same") (y1)

relu_bn(y1l)

Add OO ([x, y11)

return outl

create_net () :

inputs = Input(shape=(120,160,1))

20

t

>

Conv2D (kernel_size=3,
strides=2,
filters=64,
padding="valid") (inputs)
relu_bn(t)

Conv2D (kernel_size=3,
strides=2,
filters=128,
padding="valid") (t)

relu_bn(t)

bottleneck (t,kernels=128,dilation=2)

Conv2D (kernel _size=3,
strides=2,
filters=256,

54

int)

-> Tensor:

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171

172
173

174
175
176
177
178
179

padding="valid") (t)
t = relu_bn(t)

t = bottleneck(t,kernels=256,dilation=4)

t = Conv2D(kernel_size=3,
strides=2,
filters=128,
padding="same") (t)

t = relu_bn(t)

t = bottleneck(t,kernels=128,dilation=8)
t = Conv2D(kernel_size=3,

strides=2,
filters=64,

padding="valid",kernel_initializer=initializer) (t)

t = relu_bn(t)

t=bottleneck (t,kernels=64,dilation=4)

t = Conv2D(kernel_size=3,
strides=2,
filters=16,
padding="valid",kernel_initializer=initializer) (t)
t = relu_bn(t)

t=bottleneck (t,kernels=32,dilation=2)

padding="valid",data_format="channels_last") (inputs)

t = Conv2D(kernel_size=3,
strides=2,
filters=16,
padding="valid") (t)

t = relu_bn(t)

t = Conv2D(kernel_size=(3,2),
filters=16,

t = relu_bn(t)

#t= MaxPool2D ((2,2)) (t)
#t=Dropout (0.3) (t)

#t = Conv2D(kernel_size=(3,4),
#filters=4,

#padding="valid",kernel_initializer=initializer ,data_format="

channels_last") (t)
#t = relu_bn(t)

#t= MaxPool2D ((2,2)) (t)
#t=Dropout (0.3) (t)

#t= resblock(t,kernels=16,dilation=2)
t = Conv2D(kernel_size=(3,2),
valid",data_format="channels_last") (t)
t = relu_bn(t)

#t = Conv2D (kernel_size=3,filters=32,
data_format="channels_last") (t)

#t = relu_bn(t)

t= MaxPool2D ((3,2)) (t)
#t=Dropout (0.3) (t)

t = Conv2D(kernel_size=(5,4),filters=64,
data_format="channels_last") (t)

55

filters=32, padding="

padding="valid",

dilation_rate=2, padding="valid",

180
181
182
183
184
185
186

187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

1 net

t = relu_bn(t)

#t= MaxPool2D ((2,2)) (t)

#t=Dropout (0.35) (t)

#t= resblock(t,kernels=32,dilation=4)

#t=MaxPool2D ((2,2)) (t)

t = Conv2D(kernel_size=(5,4) ,filters=128, dilation_rate=2,padding="valid",
data_format="channels_last") (t)

t = relu_bn(t)

t=MaxPoo0l2D ((3,2)) (t)

#t=Dropout (0.35) (t)

#t = Conv2D(kernel_size=5,filters=256, padding="valid",kernel_initializers=
initializer ,data_format="channels_last") (t)

#t = relu_bn(t)

t = Flatten() (t)

outputs = Dense (10, activation=’softmax’) (t)

model = Model (inputs, outputs)

model.compile (
optimizer=keras.optimizers.Adam(learning_rate=0.001),

loss=’sparse_categorical_crossentropy’,
metrics=[’accuracy’]

return model

Listing F.1: Create model architecture

= create_net ()

2 print (net.summary ())

Listing F.2: Print summary

56

Appendix G

Google Colab: Train model

] net = create_net ()

2 callback = tf.keras.callbacks.LearningRateScheduler (scheduler)

3 a=net.fit(X_train,Y_train,batch_size=32,epochs=50,validation_split=0.1,shuffle=
True,callbacks=[callback])

Listing G.1: Training parameters

57

a & W N

N o

o)

Appendix H

Google Colab: 10 Fold Validation

from sklearn.model_selection import StratifiedKFold
from numba import cuda

from keras import backend as K

import gc

kfold = StratifiedKFold(n_splits=10, shuffle=True)

; acc_per_fold = []

loss_per_fold = []
fold_no=1

9 a=[0,0,0,0,0,0,0,0,0,0]

#test_X=np.empty ((5,1440,120,160,1))
#test_Y=np.empty ((5,1440,1))
for train, test in kfold.split(X_train,Y_train):
200
print (X[train].shape)
print (X[test].shape)

for i in range(Y[test].shape[0]):
alint(Y[test][i]l)]l=alint(Y[test][i])]+1

print (a)

break

)0

net = create_net ()

callback = tf.keras.callbacks.LearningRateScheduler (scheduler)

history = net.fit(X_train[train], Y_train[train],
batch_size=32,
epochs=50,

verbose=1,callbacks=[callback],validation_data=(X_train[test],
Y_train[test]))

Generate generalization metrics
scores = net.evaluate(X_train[test], Y_train[test], verbose=0)

print (f’Score for fold {fold_no}: {net.metrics_names[0]} of {scores[0]}; {net.

metrics_names [1]} of {scores[1]*100}%°’)
acc_per_fold.append(scores[1] * 100)
loss_per_fold.append(scores[0])

Increase fold number
fold_no = fold_no + 1
if (fold_no == 11):
h=history
model=net
#test_X=X[test]
#test_Y=Y[test]

#test_X[fold _no-2,:,:,:,:1=X[test]
#print (Y_test .shape)
#test_Y[fold_no-2,:,:]1=Y[test]

del net

K.clear_session ()
gc.collect ()

58

a s~ W N

D G (R e i)
print (’Score per fold’)
for i in range (0, len(acc_per_fold)):

D G (R i ittt L E b 2

)

print (£’> Fold {i+1} - Loss: {loss_per_fold[il} - Accuracy: {acc_per_fold[il}%’)
PEiiE (7 coscorsoossorssossors s e E e e s e S S S S S S O S eSS E DD E S e e DD DS)
print (’Average scores for all folds:’)
print (£’> Accuracy: {np.mean(acc_per_fold)} (+- {np.std(acc_per_fold)})’)
print (£°> Loss: {np.mean(loss_per_fold)}’)
PRin (? cooosocooocosoooonooonosorooooooooooooonooooooDEooDDoCEoRoECDoSDoDEoDOS ”)

Listing H.1: 10 fold validation

from keras import backend as K
import gc

del net

K.clear_session ()

gc.collect ()

Listing H.2: Garbage handling

59

Appendix I

Google Colab: Final Test Accuracy

I print ("Evaluate on test data")
2 results = net.evaluate(X_test, Y_test, batch_size=1)
3 print("test loss, test acc:", results)

Listing I.1: Evaluate model

60

N =

D G W W

~

Appendix J

Google Colab: Save the Model

net.save(’/gdrive/My Drive/thermal_images/model_final_separable_.h5’)

Listing J.1: Save model

net.save(’/gdrive/My Drive/thermal_images/model_final_new_99.88_.h5’)
Listing J.2: Save model

np.save(’/gdrive/My Drive/thermal_images/k_test_X.npy’,test_X)
np.save(’/gdrive/My Drive/thermal_images/k_test_Y.npy’,test_Y)

Listing J.3: Save images

import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

import seaborn as sns
from tensorflow import keras
moe=keras .models.load_model (’/gdrive/My Drive/thermal_images/model_98.1_k_.h5’)

Listing J.4: Load model

moe . summary ()

Listing J.5: Print summary

61

o W

19

Appendix K

Google Colab: Convert TensorFlow
to TensorFlow Lite

import tensorflow as tf
from tensorflow import lite
from tensorflow import keras

#mode = keras.models.load_model(’/gdrive/My Drive/thermal_images/

model _final_new_k_.h57)
#mode .save (’/gdrive/My Drive/final_model_.h5°’)

converter = lite.

TFLiteConverter.from_keras_model (net)

tflite_model = converter.convert ()

20

#net = keras.models.load_model(’/gdrive/My Drive/thermal_images/

model _final _new_tf_2.2.0_k_.h5’)

batch_size = 2

input_shape = net.inputs[0].shape.as_list ()

input_shape [0] =

batch_size

func = tf.function(net).get_concrete_function
tf.TensorSpec (input_shape, net.inputs [0].dtype))

converter = tf.lite.TFLiteConverter.from_concrete_functions ([func])

tflite_model = converter.convert ()

2

open(’/gdrive/My Drive/thermal_images/model_final_separable_.tflite’,

tflite_model)

Listing K.1: Convert TF to TFLite

62

wb’) .write (

Appendix L

Google Colab: Timing code

import numpy as np
import tensorflow as tf
import time

interpreter = tf.lite.Interpreter (model_path=’/gdrive/My Drive/thermal_images/
model_final_separable_.tflite’) # change path

6 input_details = interpreter.get_input_details ()

7 output_details = interpreter.get_output_details ()

9 interpreter.allocate_tensors ()

12 t=[]

13 for i in range (20):

14 tl=time.time ()

15 # Test the model on random input data.

16 input_shape = input_details [0][’shape’]

18 #x=np.empty ((1,120,160,3) ,dtype=np.float32)# for benchmark models
19 x=np.empty ((1,120,160,1) ,dtype=np.float32) # for our model
interpreter.set_tensor (input_details [0] [’index’], x)

SIS

interpreter.invoke ()

NN N NN
a A @ N =

[}

output_data = interpreter.get_tensor (output_details[0][’index’])
t2=time.time ()

t.append (t2-t1)

7 print (np.average(np.array(t)))

Listing L.1: Timing code

N

63

	Acknowledgements
	Abstract
	Figures
	Tables
	Introduction
	Organization
	Similar Products
	Background
	Limitations
	Structure of the thesis

	Theory
	Raspberry Pi 4B
	Ubuntu 18.04 LTS
	Nvidia Jetson AGX Xavier DK
	FLIR Lepton
	Lepton User App

	Purethermal 2 breakout board
	Convolutional Neural Network
	Convolution Layer
	Dilated Convolution Layer
	Max Pool Layer
	Activation Layer
	Fully Connected Layers
	Softmax Layer
	TensorFlow

	Methods
	Dataset creation
	Camera stand
	Plain background image capturing
	Complex background image capturing
	Thermal imaging in low lighting conditions

	Convolutional Neural Network
	Convolution Layer
	Dilated Convolution Layer
	Max Pooling
	Training
	Benchmark Model
	Fine Tuning

	Numerical Results
	Discussions
	Project plan
	Process
	End product
	Implementation
	Challenges

	Conclusion
	Further work

	Bibliography
	Python Code: Plain Background Image Capture
	Python Code: Complex Background Image Capture
	Google Colab: Preprocessing Data
	Google Colab: Load Data as Arrays
	Google Colab: Create Train and Test Dataset
	Google Colab: Create Model
	Google Colab: Train model
	Google Colab: 10 Fold Validation
	Google Colab: Final Test Accuracy
	Google Colab: Save the Model
	Google Colab: Convert TensorFlow to TensorFlow Lite
	Google Colab: Timing code

