

Detecting Packed PE Files

Executable file analysis for the Windows operating system.

KRISTOFFER RENSTRØM OLSEN

SUPERVISOR
Vladimir A. Oleshchuk

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering Sciences

Publiseringsavtale
Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det
betyr blant annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven
tilgjengelig for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

I want to thank my supervisor Vladimir A. Oleshchuk. Furthermore, I would like
to thank the reverse engineering-focused youtube channel OALabs for being a
good source of inspiration/knowledge [16].

ii

Summary

This thesis’s intended reader audiences are computer nerds and reverse-engineers;
since the topics in this thesis will be primarily focused on PE packers and their
methods, it will also describe a program that can detect these packed PE (portable
executable) binary files and describe the development of this very program. An
experiment on around 225K files will be done, and its results will be shown in the
later Chapter 4 Results. In the Chapter 2 Theory, the thesis will go into details
around Windows PE files and their layout, so that the reader can get an under-
standing of what is inside the regular .exe file they have on their computers. It
will also give an insight into different types of packers and tricks they employ for
anti-debugging/anti-analyzation.

The results show that a packed PE image file has unique features that stand out
like a sore thumb compared to benign PE files. Therefore, the thesis also touches
on various types of packers and methods for detection and unpacking (dumping)
the original PE file. However, the experiments are only statical analyses since the
author does not want to deal with viruses on the loose.

iii

Abstract

Malware authors invent new methods regularly to hide and obfuscate their code.
One of these methods is known as packing. An entire program is hidden inside
another executable program; however, the hidden program is usually encrypted
or obfuscated such that antivirus software cannot detect its real intent without
unpacking it. This thesis will look into common PE packers and describe the de-
velopment of an application used to detect packed PE binaries using static anal-
ysis. This thesis is useful for reverse engineers and antivirus developers; it will
give some insight into the world of packing binaries, compression methods, and
encryption methods. The thesis will also gather some statistics around packed
PE binaries, using a prototype to analyze 225K viruses.

iv

Contents

Acknowledgements ii

Summary iii

Abstract iv

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Thesis structure . 2
1.4 Related works . 2

1.4.1 PEiD . 3
1.4.2 PE-Bear . 3
1.4.3 PE-detective . 3
1.4.4 EMBER . 3
1.4.5 PHAD . 4
1.4.6 Detect it Easy (DIE) . 4
1.4.7 MOV obfuscator . 4
1.4.8 Capa . 4

2 Theory 5
2.1 State of the art . 5

2.1.1 Different Packers . 5
2.1.2 Multi-Thread Packers . 5
2.1.3 UPX - Packer . 6
2.1.4 Other Popular Packers . 7

2.2 Processor Architechtures . 7
2.2.1 The execution of a program . 8

2.3 Important Windows APIs . 8
2.3.1 CreateProcessInternalW . 8
2.3.2 VirtualAlloc . 9
2.3.3 VirtualProtect . 11
2.3.4 LoadLibrary . 12

2.4 PE Structure . 12
2.4.1 Addresses: RVA, VA and Physical Addresses 12
2.4.2 IMAGE_DOS_HEADER . 13
2.4.3 IMAGE_NT_HEADER . 13
2.4.4 IMAGE_SECTION_HEADER . 15
2.4.5 .text . 15
2.4.6 .data . 16
2.4.7 .bss . 17
2.4.8 .tls . 17

v

3 Methodolgy 18
3.1 Assumptions and Limitations . 18
3.2 Experimental design . 19

3.2.1 Variable Explanation . 20
3.2.2 Categories Of Viruses . 20

3.3 Tools Utilized . 22
3.3.1 Capstone . 22
3.3.2 PeFile . 22
3.3.3 scipy . 22
3.3.4 PE-Bear . 22
3.3.5 matplotlib . 23
3.3.6 Ghidra . 23
3.3.7 x64dbg And x32dbg . 23

3.4 Expected Results . 24

4 Results 26
4.1 Questions . 26

4.1.1 Q1 - Detection . 26
4.1.2 Q2 - Static Analysis . 27
4.1.3 Q3 - Dynamic Analysis . 28
4.1.4 Q4 - Different Methods . 29

4.2 Experiment: Analyze Viruses . 30
4.2.1 The script that gathers the data 31
4.2.2 Results for A1 - Entropy . 32
4.2.3 Results for A2 - Execute rights 33
4.2.4 Results for A3 - EntryPoint . 33
4.2.5 Results for A4 - DLLs . 34
4.2.6 Results for A5 - Sections . 35
4.2.7 Results for A6 - Section sizes 36
4.2.8 Results for A7 - String in Binary 37
4.2.9 Summary Results . 38

4.3 The Prototype . 39
4.3.1 Pefile . 39
4.3.2 Capstone . 39

5 Discussion 42
5.0.1 Method discussion . 42
5.0.2 Result discussion . 43
5.0.3 Other solutions . 43
5.0.4 What to take away . 44

6 Conclusion 45
6.0.1 The solution . 45
6.0.2 Results . 46
6.0.3 Difference compared to other projects 46

6.1 Future Work . 46

A Abbreviations and Glossaries 47

Bibliography 49

List of Figures

1.1 Realia Spacemaker "Shrinks your COM and EXE files" [34] 1
1.2 Pe-detective by Erik Pistelli [33] . 3
1.3 The general process of a Packer [36] 4

2.1 An visual example of malicious malware "packed" in different meth-
ods [3] a) is a standard program b) Is a normal program with the
virus attached to the PE file c) A compressed PE file with the decom-
pressor inside the PE file d) Same as c but with the virus encrypted
e) A program with multiple layers of encryption and compression . 6

2.2 Aegis Crypter Tool [16] . 8
2.3 Detection rate of packers from black hat briefings 2006 [4] 9
2.4 Simple program that prints a string compiled with mingw-gcc . . . 10
2.5 Reflective DLL Loading detection by Windows Defender [45] 11
2.6 The two sections .text and .rdata in a bening PE file 16

4.1 The DLLs imported by Viruses . 35
4.2 Figure displaying the common amount of sections in viruses. sam-

ple size of 194K viruses . 36
4.3 Results of scanning the System32 folder on windows 10 37

vii

List of Listings

1 LoadLibaryA . 12
2 The _DOS_HEADER from winnt.h header file in windows 10 13
3 _IMAGE_NT_HEADER for a PE file, found from winnt.h 14
4 File header found from winnt.h . 14
5 Section header found from winnt.h 15
6 Optional header found from winnt.h 17
7 Example of Signature from PE-Bear [17] 22
8 Signature script used in experiments. 23
9 Example output of the custom made python script 25
10 Ghidras interpretation of assembly code seen in Figure 2.4 28
11 Bash script for analyzing all the viruses. 31
12 Entropy calculation . 32
13 Str resolving function, . 41

viii

List of Tables

3.1 Experiment Variables . 19

4.1 Vulnerability Overview . 32
4.2 Entry point / Section rights Statistics 34
4.3 DLL Imports - Viruses . 35
4.4 String statistics . 38
4.5 Main Results . 38
4.6 The prototype’s results compared with a simple signature detector . 39

ix

Chapter 1

Introduction

1.1 Background

In the computer world we live in, we use all kinds of software to fulfill our needs.
Developers write the software we use, and these developers can be anyone in the
entire world. Therefore a user exposes himself to a considerable risk since any
program can be either malicious or benign. As such, there has been developed
software to detect these malicious pieces of software. Such as antivirus software,
these programs usually scan the entire computer, every single file, looking for
malicious behavior; the antivirus programs also scan every new file downloaded
to the computer’s disk or programs that are loaded into RAM. The malicious soft-
ware creators have to dodge these antivirus gazes; one of these methods this
thesis will discuss is packing. The basic idea of packing can be seen in Figure
1.3

Figure 1.1: Realia Space-
maker "Shrinks
your COM and
EXE files" [34]

Packing of software is by no means a new phe-
nomenon, as you can see in Figure 1.1, which
is probably from around 1982 [31]. This pro-
gram is not meant to be malicious, and it in-
tends to shrink the image files on your DOS sys-
tem, which saves a couple of bytes from your
hard drive. Storage space was more valuable in
that period as large HDD were expensive com-
pared to today’s market. Microsoft came with an
answer to this software in 1985, creating their
own executable packer known as EXEPACK.EXE
created by the developer Reuben Borman [30].
These programs were more straightforward than
today’s packers; they solely compressed the data
and then loaded them into memory again when
executed. Packers these days use encryption,
bundlers, compression, and network sources to
hide their program’s actual content. In addition,
they can do the same packing on the same orig-
inal file with a different "stub" and get a differ-
ent output each time, making it nearly impos-
sible to detect viruses based on their signatures
alone.

1

1.2 Problem statement

For my master thesis; I consider the following questions:

• Q1 : How can one detect if a PE file is packed or contains a hidden PE file
inside it?

• Q2 : How does one uncover the file with static analysis? Is it possible?

• Q3 : Is it easier to recover the original PE using dynamic analysis (i.e., Execut-
ing it)?

• Q4 : Which methods are best at detecting a packed binary file? What are the
success rates?

In addition to answering these questions, I will be creating a python script that
will try to answer the following questions with a PE file as input.

• A : Has the executable file been packed?

• B : Is the unpacking process located on the same process or in a different
process/thread?

• C : Does the prototype recognize the packer used in the PE file?

1.3 Thesis structure

The thesis is structured into six chapters. In Chapter 2 Theory, the thesis in-
tends to describe state of the art and the inner details of Windows PE files. It
also describes essential Windows API functionality used by PE packers. There is
also a brief explanation of popular packers.

Chapter 3 Method; describes the experiments and how results will be presented.
It also provides a list of all the tools used to create the prototype.

The result chapter will be dedicated to how the prototype was built, and it will
present all the results found.

The discussion chapter is for discussing the validity of the experiments done and
their results. It will also discuss the validity of the methodology employed for the
experiments.

Finally, the conclusion will answer if the results and the thesis answered the
questions asked in the problem statement. The conclusion will also hint towards
future work and if this experiment was worth the time.

1.4 Related works

Most other related projects utilize header detection and other regex-like tools to
extract suspicious data from a binary PE file, such as PEiD 1.4.1 and Detect it
easy 1.4.6. These programs scan every single byte in the binary file; this is the
most common and most straightforward way of detecting anything suspicious in
the file. The scanning is quite effective and efficient; however, a crafty malware
constructor may try to circumvent their triggers by laying traps such as fake
sections or simply removing known headers from the file.

2

1.4.1 PEiD

PEiD is a free tool for detecting themost common packers, cryptors, and compilers
for PE files. Their Github Readme states that their program can detect over 600
different signatures in a PE file [43]. Unfortunately, the tool was written in 2008
and is therefore dated.

1.4.2 PE-Bear

PE-Bear is a graphical tool for navigating a PE file. It provides a disassembler and
other general information about the critical headers present in the PE file. PE-
Bear does have a method for detecting packed binaries, and that is done through
signature lookup. PE-Bear’s public signature files will be utilized later in this
thesis. The latest update to the program was pushed May 24th, 2021, so this
program is still in development, and the author claims that their program is
utilized by the CIA [17].

1.4.3 PE-detective

PE-detective is an old PE packing detector. It is based on signature detection, it
can scan entire directories or a single file at a time. This program was created by
Erik Pistelli and is considered freeware [32].

Figure 1.2: Pe-detective by Erik Pistelli [33]

1.4.4 EMBER

EMBER used 1.1 million binary files, 300K malicious, 300K benign, and 300K
unlabeled for their experiments [2]. Although this dataset is large and public, the
authors of the EMBER project wish that this dataset is used for machine learning
malware detection programs. The viruses they have analyzed are from the large
virus, malware, and URL scanner VirusTotal [46].

3

1.4.5 PHAD

PHAD is a thesis that uses the flags for each section and devises a method to
detect packed PE binaries. This Header detection method was entirely accurate,
in which the rate was 93.59% with a false positive rate of 3.99% [7]. The thesis
had eight distinct values calculated with the Euclidean distance and determined
if the file was packed if the file’s variables exceeded this number.

1.4.6 Detect it Easy (DIE)

An open-source project whose code is hosted online on Github. The program
does its best to determine if the provided exe file is packed using the signature
method [18].

1.4.7 MOV obfuscator

This technology is nothing other than impressive; Chris Domas, the developer,
has made a program that compiles programs into only "mov" instructions. To
do this, he had to define all x86_64 instructions as "mov" instructions. This
creates a unique output, a bloated one for sure, but still functional. The output
is about 500X the size of a program compiled with a regular compiler. However,
its use-fullness is seen whenever another engineer tries to reverse engineer the
program. The entire control flow of the program becomes a single "line"; there is
no branching with ifs and elses, there are no jumps or calls to other functions,
simply one line of mov instruction all the way through. I will not go into more
details on how it is done; if it sounds interesting, be sure to visit his GitHub at
[10].

1.4.8 Capa

Capa is a tool created by FireEye, which is designed to detect suspicious ca-
pabilities in PE files. It can detect Packed PE files; however, it is not its main
functionality. Therefore this tool will not be used in the experiments.

Figure 1.3: The general process of a Packer [36]

4

Chapter 2

Theory

2.1 State of the art

The concept of packing your executable files is an old one. Vendors have been
delivering this service for years; in the olden days, when storage was more expen-
sive, users had a reason to compress their executable files. The files are reduced
in size by executing compression methods on the entire executable file, thus re-
ducing the required space to store the program on your computer. The executable
(image) files in Microsoft Windows Operating systems are referred to as PE files
(portable executables) and Common Object File Format (COFF); these are the .exe
.dll .drv files on your Windows OS. The "portable" keyword in PE is supposed to
hint that those PE files are not architecture-specific [26].

Some general terms will often occur through this thesis; make sure to look at the
appendix for a short explanation of these terms A. As seen in Figure 1.3 the term
"stub" is used; this word is often used regarding packers as it is a vital part of
packers. The stub is equivalent to the inverse function of the packing function
like you have in cryptography. Moreover, that stub has to return the original PE
file in memory with no loss of data. The Figure 1.3 calls the stub "decompression
stub," but it does not have to be a decompression method; it could be a decrypting
stub as well.

2.1.1 Different Packers

The packers and users of packers can "pack" their binary images in theoretically
infinite ways. For example, they can compress the program, encrypt that com-
pressed data, and continue doing that one the same data; they could also salt it
with data hosted on malicious servers. An example for these different methods
can be seen in figure 2.1

2.1.2 Multi-Thread Packers

The unpacking routine runs whenever the user starts the program. When a
multi-threaded packer is used, other threads are spawned to perform actions
such as decompressing/decrypting the packed executable. The other threads
also have tasks such as looking out for debuggers attaching to the primary pro-
cess. They also make sure that the virus can spawn new processes that can
continue delivering the payload to the target machine.

5

Figure 2.1: An visual example of malicious malware
"packed" in different methods [3]
a) is a standard program
b) Is a normal program with the virus at-
tached to the PE file
c) A compressed PE file with the decompres-
sor inside the PE file
d) Same as c but with the virus encrypted
e) A program with multiple layers of encryp-
tion and compression

2.1.3 UPX - Packer

Upx is a popular open-source packer widely used; it is probably the biggest
and most known one. It is developed by Markus F.X.J Oberhumer, László Mol-
nár & John F. Reiser. Their GitHub states "UPX is portable, extendable, high-
performance executable packer for several executable formats" [23]. The UPX
packers are in high use by malware creators; the results from the experiments in
the thesis show that 33751 of the 225420 identified PE files use the UPX packer
(detected by header signature) more on this in chapter4.

The UPX developers claim that their packers can help reduce program size by
around 50-70 %, which is great if space is a problem, or it could also be help-
ful for websites that host exe files; it helps reduce bandwidth. The compression
aspect is the only one the UPX developers intend to support, however. As with en-
cryption, they claim that it only gives "people a false feeling of security because by
definition all protectors/compressors can be broken" [23]. The statement made
is true to some degree; it is especially true for compression, but a key is also
needed to uncover the original contents for encryption. This encryption key can
be stored somewhere else, for example, on a malicious site that recognizes the
fingerprint of the programmed asking for the key. However, this practice is still
just obfuscation because the intent of packing is only such that the AV and Re-
verse Engineer will have a rougher time detecting the virus.

6

2.1.4 Other Popular Packers

UPX is not the only leading spread packer floating around on the internet; The
following packers listed under have or are still quite popular.

• Morphine - Able to encrypt the output of compressed data, and has a poly-
morphic engine [21].

• ASpack - ASPack is a simple packer with inbuilt security against non-professional
reverse engineers [38].

• Armadillo - The first packer to introduce the anti-memory-dumping technol-
ogy: Nanomites [15].

• ASProtect - Made by the same developers from ASPack, the packer promises
several protections such as defense against debuggers, disassembler, unau-
thorized analysis, or copying. It provides encryption, compression, and in-
tegrity checks [44].

• PEBundle - Is a unique type of packer, and it provides the functionality to
packer multiple executables and data files into a single file [47].

• MEW - Compresses malware using the LZMA algorithm [21].

• FSG - The abbreviation FSG stands for "Fast, small good," it is a simple
packer, and it works by compressing the data sections.

• PESpin - Has protection against disassembling and patching; it compresses
windows code using MASM (Microsoft Macro Assembler) [21].

• FUD Aegis Crypter - A GUI tool for creating packed malware, with plenty of
features. See Figure 2.2 to see how it looks for the malware developer.

The different packers have strengths of their own, and some have complex guard-
ing mechanisms to deter debuggers, disassemblers, emulators, virtual machines,
and memory dumping. Figure 2.3 is an old data source, and the detection rates
have probably improved for all the services listed.

2.2 Processor Architechtures

Standard desktop machines come with x86_64 architecture. This project is di-
rected mainly at Windows PE files; it would typically only include x86_64 archi-
tecture processors. However, there has been a push lately towards ARM architec-
tures as it is more energy-efficient than the standard AMD64 CPUs. Apple, for
instance, has begun using ARM on its laptops. In addition, ARM has been present
in phones and other appliances that require less power consumption. This the-
sis will only look at a few of the standard x86_64 instructions for string gathering.

7

Figure 2.2: Aegis Crypter Tool [16]

2.2.1 The execution of a program

Whenever a program is started, the program counter or instruction pointer is
pointed towards the program’s EP (entry point). In 64 bit programs, this instruc-
tion pointer is called "RIP," whereas 32-bit programs are called "EIP." This is also
a rule for registers that the CPU has, the prefixes "R" and "E" signify whether or
not the program is a 32bit or 64bit program. In the case of 16bit DOS programs;
they have no prefix; it is simply "IP".

The AMD64 CPU architecture has a plethora of register that is used when the
program executes its instructions. as seen in figure 2.4. The "i r" command in
gdb prints all registers during runtime. The ax, cx, dx, and bx are what you
call general use registers; these are usually used before calling a routine (func-
tion). Additionally, before a function is called, the return point (current execution
pointer) is stored in one of these variables. Nevertheless, this is also up to the
compiler designer to decide which register he wants to use. The ebp and esp are
referred to as stack pointers, sp is the stack pointer, while bp is the frame pointer
[9].

2.3 Important Windows APIs

2.3.1 CreateProcessInternalW

CreateProcessInternalW is an API used to start a new process and thread within
the calling process. This function is usually invoked after the stub has done
its bidding. When invoking this function, the malware PE will be residing on its
memory section of the process. The CreateProcessInternalW is invoked whenever
the CreateProcessW is executed [19]. This function could also be used to make

8

Figure 2.3: Detection rate of packers from black hat
briefings 2006 [4]

multiple processes using the same process that started this one, and this is com-
mon for packers to avoid being stopped by debuggers. The malware would need
to add some mutex such that it does not start an infinite amount of processes.

2.3.2 VirtualAlloc

VirtualAlloc is a vital function located in the memoryapi.h file. It reserves, com-
mits, and changes the state of a region of pages in the virtual address space of the
calling process [27]. It helps store the malware contents in memory to the calling
process; you can choose what to do with the program. One old and deprecated
method is to write the memory buffer contents to a file; any modern antivirus
program would detect this, even windows defender would react; see figure 2.5 for
an example. The windows 10 Creators Update launched in April 2017 included
some new features for the Windows defender, this feature generates signals that
are sent to the windows defender program whenever a program uses the func-
tions VirtualAlloc or VirtualProtect [45]

An excellent trick to dig out the original PE malware inside is to debug the Packed
PE and place a breakpoint on the return address to VirtualAlloc since the address
to the new memory section will be stored in EAX/RAX at that moment. After the
address is noted, you can watch a memory dump of that section and look for any
suspicious data loaded into it.

Data Execution Prevention (DEP) is an essential policy in Windows, and it has
been a feature available since Windows XP Service Pack 2 [40]. This feature is
not unique to Windows and is called W xor X on other OSs. The memory pages
are marked by a bit called the NX (No eXecute); if a memory page is marked as
data, it prevents code execution on those pages. On Intel CPU’s this bit is called

9

Figure 2.4: Simple program that prints a string com-
piled with mingw-gcc

10

Figure 2.5: Reflective DLL Loading detection by Win-
dows Defender [45]

XD (Execute Disable) and XN (eXecute Never) on ARM CPUs. WxorX prevents
execution of shellcode on the stack, heap, or any data segment.

DEP has little to no performance impact when utilized on windows operating sys-
tems, and it is recommended to activate for all programs and services. You can
also compile your binaries with the /NXCOMPAT link option for visual studio,
indicating that your program is compatible with windows’ DEP.

2.3.3 VirtualProtect

Virtual Protect is a critical function to set the appropriate privileges for sections
of memory in a program. Let us say we have a program that unpacks its contents
into one memory segment stretching from the address 0x04000 to 0x08000; if
this content is written using the VirtualAlloc function, then the memory would
be in read-only mode. The main goal is to execute it, and the hacker has to
make the memory location executable and maybe even writeable. VirtualProtect
changes the protection on a region of committed pages in the virtual address
space of the process [28]. If the hacker succeeds, he can continue executing the
new program by moving the PC (Program Counter) or start a new process with
the API CreateProcessInternalW using the memory section.

11

2.3.4 LoadLibrary

LoadLibrary is a function that loads in other DLL files andmakes it possible to call
their API. This function is usually called when the program includes a header file
from a library; for example, #include <windows.h> would trigger the program to
load KERNEL32.DLL. The LoadLibrary function is located within the Kernel32.dll
[25].

To load a custom Library file in C++, it is done by invoking the function with an
LPCSTR and passing it to an HMODULE variable done as such:

char * myDLL = "EvilDLLs\\TheEvilDLL.dll";
LPCSTR myDLLpath = (LPCSTR)myDLL;
HMODULE handle = LoadLibraryA(myDLLpath);

Listing 1: LoadLibaryA

The LPCSTR in listing 1 is a long pointer to a constant string. This pointer can
be pointed to the string or, instead, the path in which the DLL is located. With
the DLL loaded, the user can invoke any function that may reside within it; bear
in mind, the dll itself may load other DLLs needed if not present already to run
its functions.

2.4 PE Structure

The PE structure layout is quite similar for both 64-bit and 32-bit programs.
This layout is specific to the Windows operating system and only applies to its
executable files, driver, object code, and DLLs, to name a few. The following
chapter will discuss the specifics for the Windows PE structure and describe an
executable image file’s essential parts.

First of all, we got to figure out if the file we got is a Windows PE file. To do this,
we will look at the "magic bytes"; these are in the case of a windows PE file, the
first two bytes, which in our PE case is "MZ" or 0x4D and 0x5A. Another hint is to
search for the string "This program cannot be run in DOS mode," which should
be located at the offset 0x4E and with a size of 0x26; however, as we will see later
in the thesis, hundreds of ways to identify a PE executable file.

2.4.1 Addresses: RVA, VA and Physical Addresses

A program compiled into an image PE file will be placed in a structured way,
with all the headers in the beginning. These headers explain where and what
has to be done to execute the program. As such, there is one "address" that will
be automatically generated, the psychical address. The physical address refers
to the actual offset in the binary file, so for example, 0x10 would be 16 bytes in
the current PE file or any other file, for that matter. However, in PE/ELF/Mach-O
files, another address refers to data locations, also known as the Virtual Address.
The virtual address (VA) is quite serviceable as it helps visualize which section
the address is located in. For example, an address in the data section may start
with a 0x4000 prefix, while an address in the text section starts with 0x1000.

12

The virtual address’s origin is from when page files were introduced. Page files
isolate the process memories and process "simple" addresses instead of physical
addresses on the ram stick. So when the CPU request an address at an address,
it will simply send the request to the MMU (Memory Management Unit). The
MMU translates the virtual address to a physical address and gets the data on
the actual position on the memory stick [3].

2.4.2 IMAGE_DOS_HEADER

The DOS header is the first part of the file and is usually 0x80 bytes large (128
bytes). The first two bytes, as discussed, is just an identifier known as the magic
bytes. The following bytes in this header are also exciting, specifically the four
bytes from 0x3C, containing the address to the NT Header, which we will discuss
later on.

1 typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
2 WORD e_magic; // Magic number
3 WORD e_cblp; // Bytes on last page of file
4 WORD e_cp; // Pages in file
5 WORD e_crlc; // Relocations
6 WORD e_cparhdr; // Size of header in paragraphs
7 WORD e_minalloc; // Minimum extra paragraphs needed
8 WORD e_maxalloc; // Maximum extra paragraphs needed
9 WORD e_ss; // Initial (relative) SS value

10 WORD e_sp; // Initial SP value
11 WORD e_csum; // Checksum
12 WORD e_ip; // Initial IP value
13 WORD e_cs; // Initial (relative) CS value
14 WORD e_lfarlc; // File address of relocation table
15 WORD e_ovno; // Overlay number
16 WORD e_res[4]; // Reserved words
17 WORD e_oemid; // OEM identifier (for e_oeminfo)
18 WORD e_oeminfo; // OEM information; e_oemid specific
19 WORD e_res2[10]; // Reserved words
20 LONG e_lfanew; // File address of new exe header
21 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

Listing 2: The _DOS_HEADER from winnt.h header file
in windows 10

The definition for the DOS_HEADER can be found in the winnt.h header file in
windows, and it contains a short and precise description for each entry in the
struct as seen in listing 2. For example, the word "WORD" is 2 bytes large, and it
is an unsigned short that ranges from [0,65535]. This data type is quite common
in Microsoft-related products, in comparison with ELF (Linux), in which they use
the data type "uint16_t" (also 2 bytes). The LONG keyword is just the regular
"long" datatype from C but capitalized.

2.4.3 IMAGE_NT_HEADER

The NT Header contains three entries, one character string that is the signature
of the PE file; this is usually "PE" or 0x5045000. The IMAGE_NT_HEADER can be

13

1 typedef struct _IMAGE_NT_HEADERS64 {
2 DWORD Signature;
3 IMAGE_FILE_HEADER FileHeader;
4 IMAGE_OPTIONAL_HEADER64 OptionalHeader;
5 } IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

Listing 3: _IMAGE_NT_HEADER for a PE file, found
from winnt.h

seen in listing 3. Then we have the behemoth IMAGE_FILE_HEADER, which con-
tains plenty of helpful information about the PE file; the IMAGE_FILE_HEADER
can be seen in the listing 4. The Machine field describes the architecture required
to run the program; for windows binaries, this field is usually 0x64 and 0x86,
referring to AMD64/Intel64/x86_64 Processor architecture. Windows also sup-
ports arm for some few select boards with what they are calling "Windows 10 IoT
Core".

The number of sections is a field that describes the number of sections in the PE
image file. These sections contain different kinds of data. The most compelling
section is the ".text" section, as it contains the instructions for the program.
These instructions can be disassembled using the AMD64-IA32 manual, or you
can use a pre-written disassembly program. As for the experiments this thesis
will perform, the capstone disassembler will be utilized [5], more on this later in
the thesis.

The number of sections in the program can hint at whether the PE file is packed.
If the program contains less than the average amount of sections, it indicates
that either the program was compiled with a simple assembler or linker or an-
other unknown compiler. For example, a standard Windows program compiled
with minGW GCC/G++ (The free GNU compiler for windows) typically has around
12 sections (32-bit versions). Moreover, as seen in results 4, the average number
of sections in PE files located in the Windows10’s System32 folder contains six
to seven sections, refer to Figure 4.3. It is important to note that many of these
headers can be tempered with, so the data in these structures does not necessar-
ily reflect reality. This tampering of the headers is seen in the experiments, where
the reported number of sections did not reflect the actual amount of sections.

1 typedef struct _IMAGE_FILE_HEADER {
2 WORD Machine;
3 WORD NumberOfSections;
4 DWORD TimeDateStamp;
5 DWORD PointerToSymbolTable;
6 DWORD NumberOfSymbols;
7 WORD SizeOfOptionalHeader;
8 WORD Characteristics;
9 } IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

Listing 4: File header found from winnt.h

14

2.4.4 IMAGE_SECTION_HEADER

The Image section header describes the data each section in a Windows PE file
contains. These data points will be used later in the thesis. Further details in
3.2.

1 typedef struct _IMAGE_SECTION_HEADER {
2 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
3 union {
4 DWORD PhysicalAddress;
5 DWORD VirtualSize;
6 } Misc;
7 DWORD VirtualAddress;
8 DWORD SizeOfRawData;
9 DWORD PointerToRawData;

10 DWORD PointerToRelocations;
11 DWORD PointerToLinenumbers;
12 WORD NumberOfRelocations;
13 WORD NumberOfLinenumbers;
14 DWORD Characteristics;
15 } IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

Listing 5: Section header found from winnt.h

An example of two sections can be seen in figure 2.6

2.4.5 .text

The .text section is usually not found in packed PE binaries since the packers
scramble all sections and their data into their own defined sections. The main
goal for a security analyst is to get access back to the original .text section, which
contains all the instructions for the program.

This section may be included in a packed binary as well. However, it may just
be an impostor, which sole purpose is to trick antivirus tools. Its size may vary
even as an impostor; however, it is usually empty with a size of 0 or nonexistent
whenever there is packing involved.

In a regular PE/ELF/Mach file, this section is the most important one that con-
tains all instructions for the program. These instructions vary from CPU archi-
tecture but are, in essence, the same. It is up to the compiler and linker to
organize the data in an executable file. The free Min-gw compiler has different
procedures compared with Microsoft Visual C++ compilers. They both have a dif-
ferent amount of sections used. They store different data types in every PE file;
from my experience, the Windows compilers are the ones who usually create the
most bloat.

The .text sections flags has averagely the configuration of

• Read: True

• Write: False

• Execute: True

15

Figure 2.6: The two sections .text and .rdata in a bening
PE file

This thesis will use the notation r-x, to express the standard rights for a section.

Note that the "Write" flag is false; if this is attempted to be changed using Virtu-
alProtect, Windows will react by sending signals to Windows Defender. Finally,
the .text section should also contain the Entry point for the execution pointer.
The execution pointer is the main thread’s address; so to speak, it is usually
referred to as the program counter. The EntryPoint can be found in the header
"_IMAGE_OPTIONAL_HEADER" 6. The "optional" header is found under the NT
header. The EntryPoint is a critical data point that can be used to detect packed
pe files, as it should always be located inside the address space of the .text sec-
tion, or at least a section with the rights r-x.

2.4.6 .data

The data section is pretty straightforward. It is simply a section in which data is
stored, and it also is a section where data is written, compared with rdata (read-
only). So if the program is compiled containing a char abc[20] = "Hello," it will
store those bytes in a data section. However, some compilers differ in this regard,
and if it is a small string, it may just store the string as an instruction such as
"movabs rax,0x6f6c6c6548," which moves the string 0x6f6c6c6548, which equals
"Hello." The data is stored in data segments and retrieved by doing a "lea" or
equivalent instruction to get the data, which usually refers to the address to the
data segment.

16

2.4.7 .bss

The bss section contains uninitialized data; usually, either statically allocated
variables are declared without any value. It is an older assembly term meaning
"block started by symbol." In short, it stores uninitialized global or static vari-
ables.

2.4.8 .tls

This section enables thread-local storage, and it gives the developer the possi-
bility to store a data object that is individual for each thread that runs in the
program [26]. TLS data can be stored using the Windows API calls TlsAlloc, Tls-
Free, TlsSetValue, and TlsGetValue.

1 typedef struct _IMAGE_OPTIONAL_HEADER {
2 // Standard fields.
3 WORD Magic;
4 BYTE MajorLinkerVersion;
5 BYTE MinorLinkerVersion;
6 DWORD SizeOfCode;
7 DWORD SizeOfInitializedData;
8 DWORD SizeOfUninitializedData;
9 DWORD AddressOfEntryPoint;

10 DWORD BaseOfCode;
11 DWORD BaseOfData;
12 // NT additional fields.
13 DWORD ImageBase;
14 DWORD SectionAlignment;
15 DWORD FileAlignment;
16 WORD MajorOperatingSystemVersion;
17 WORD MinorOperatingSystemVersion;
18 WORD MajorImageVersion;
19 WORD MinorImageVersion;
20 WORD MajorSubsystemVersion;
21 WORD MinorSubsystemVersion;
22 DWORD Win32VersionValue;
23 DWORD SizeOfImage;
24 DWORD SizeOfHeaders;
25 DWORD CheckSum;
26 WORD Subsystem;
27 WORD DllCharacteristics;
28 DWORD SizeOfStackReserve;
29 DWORD SizeOfStackCommit;
30 DWORD SizeOfHeapReserve;
31 DWORD SizeOfHeapCommit;
32 DWORD LoaderFlags;
33 DWORD NumberOfRvaAndSizes;
34 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
35 } IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

Listing 6: Optional header found from winnt.h

17

Chapter 3

Methodolgy

Cybersecurity is an exciting field; it has differences from other traditional stud-
ies, as it has pretty complex and old studies regarding it. Furthermore, the field
is constantly being developed, and new threats emerge that have to be solved.
The methodology used for the experiments is the hypothetico-deductive research
model, which is quite common for the cybersecurity field [11].

This chapter will lay the ground for an experiment. The outputs of the experi-
ment are defined in Section 3.2.2 Experimental design. The experiment will only
analyze files statically. There will be a discussion on dynamic analysis and emu-
lation/debugging later in the Results 4.1.3.

3.1 Assumptions and Limitations

Assumptions
• Hardware is available, and that it supports virtualization (most do).

• This experiment requires a basic understanding of assembly code.

• Access to Windows 10 OS and its files

• Knowledge on how to handle viruses inside a Virtual Machine (to prevent
viruses bleeding onto the host OS)

• Bash scripting knowledge.

• Assumption that the downloaded virus set is labeled correctly and truly are
viruses.

Limitations
• The analysis will be performed inside a Virtual Machine with no connection to
the network since I do not want to risk any spillage of viruses onto our home
network. This virtualization does impact the efficiency of the experiments.

• The variations of viruses may not reflect what types of viruses are delivered
to people daily.

• Time: If the program is supposed to analyze every PE downloaded, it will
take a tremendous amount of time.

• RAM: Only 24GB of memory is useable, limiting the number of tasks running
simultaneously.

• The virus dataset is not marked with which file is packed or not.

18

3.2 Experimental design

Viruses are gathered from sources such as VirusTotal and VirusShare; these
viruses are mostly PE files, some are other types of viruses. In addition, a giant
set of viruses from the website Virus eXchange, a 61GB large folder with 271 098
viruses in it [39] was downloaded. This dataset will be the primary source of
viruses for the experiment.

A script will remove any non-PE file, removing any file that lacks the two magic
bytes "MZ" in the header. A simple bash script will be executed to scan every
single virus file in the folder. Then, a custom-made Python script will look over
the file and output the appropriate information in a JSON file. Those JSON files
will be utilized for representing the results later on in Chapter 4.

For the experiments to give any valuable outputs, the variables need to be de-
fined. These variables will be crucial to make the decision that the Binary file
has been packed or not. This method is not a new one and has had plenty of
studies done on it beforehand. Reports such as "Pe File Features in Detection of
Packed Executables" by Dhruwajita Devi and Sukumar Nandi [8] use the vari-
ables such as section Entropy, size of uninitialized data, size of headers, and the
size of raw data. These are all logical variables to take into accord for determining
if a binary file is packed or not; therefore, they will be taken into accord when
determining if a file is packed.

Moreover, the "PHAD" report [7] written by Yang-Seo Choi, Ik-Kyun Kim, Jin-Tae
Oh, and Jae-Cheol Ryou have additional variables I will use as well, these are
the following; Number of executable and writable sections, Numbers of sections
with code but is not flagged as executable, if there are no executable sections in
the binary if the EP is not in executable code and more. These will be taken into
consideration as well. A more thorough list is detailed in Table 3.1

The Table 3.1 are all data points that are negative if they are higher, negative
in the sense that the file is more likely to be packed the higher it is. All of them
are a percentage of the occurrences divided by the total number of files in that set.

Variable
name

Range Description

A1 [0,1] If the file has a section larger than 7, this datapoint
is set to 1.

A2 [0,1] If the file does not contain a ".text" section with the
standard r-x rights.

A3 [0,1] If the Entry Point is not in an execute section
A4 [0,1] If the number of DLL’s imported are less than 12
A5 [0,1] If the number of sections is larger than 8 or less than

4
A6 [0,1] If the size of the sections are larger than the program
A7 [0,1] If the number of strings are less than 10.

Table 3.1: Experiment Variables

19

3.2.1 Variable Explanation

• A1 - Entropy: The entropy describes the chaos in a section: the section data’
randomness. This variable is calculated using the python function listed in
Listing 12. This data point is set to one if the file contains a section with
entropy higher than 7.

• A2 - Each section has its rights for be it reading, writing, or executing, and if
there are multiple sections with r-x rights, it is a red flag. Since a normal PE
file should only have the .text section with executing set to true. The stan-
dard rights for an executing section can be written as r-x (read and execute).

• A3 - The EP (entry point) is the address to the starting instruction for the
program. It is found in the NT header. This data point is counted towards if
the EP is not within a section with the standard r-x or not pointing towards
any sections’ address space.

• A4 - The number of imported DLLs is an intriguing data point. The number of
DLLs imported may differ based on the program’s functionality; the simpler
the program, the fewer imported dlls. This data point is counted towards if
the number of dll imports is less than 12.

• A5 - The number of sections is an input that can help determine if a file is
packed. Some packers like UPX leaves only three sections when a PE file has
been packed. Of course, there are no rules to this; a packer can use many
sections it wants, up to a limit of 65535 (WORD-2 bytes).

• A6 - The last variable is if the sections’ size is bigger than the exe file itself.
If it is, the value is set to 1.

• A7 - The number of strings found in a program can hint at the program’s
intention. If there are no English words found in the binary, it is clear that
the program wants to hide its secrets. The number of strings found within
the file is the ones that intersect with an English word list file. The file with
the English words is separated with a newline 0x0a and has 354 281 unique
words.

3.2.2 Categories Of Viruses

The viruses are also put into different categories. These categories were labeled
by the ones who provided the data source. The categories found in the dataset
are the following:

• Backdoor - A backdoor is a common virus that leaves an entry point on the
host machine for new sessions down the line. The Mitre ATT&CK matrix
would categorize this as "Persistence."

• Constructor - Software that can create malware based on the options the
hacker chooses. Like the Hacktool type of software, this may not bemalicious
on its own. A hacker would create the malware and then spread it through
other means such as email, IRC, FTP, USB sticks, etc [42].

• DoS - An abbreviation for "Denial of service." The intention of the virus is
quite obvious, as it only wants to disrupt and cause havoc on the system.

20

• Email-Flooder - An Email flooder will grab the email application on the host
computer and send spam to every known contact from the host. This type
of email may contain viruses attached to the email or links to malicious
websites.

• Email-Worm - The Email-Worm is a well-known type of virus that spreads
itself through email, infecting the target and continues to spread itself from
the target.

• Exploit - The definition of the exploit may wary, as it quite a general word.
Generally, it is used as a verb, as in exploiting a weakness.

• Hacktool - The word describes itself; it is a software tool that can hack others.
These types of software may not be malicious but can pose a risk for the
user. As Malwarebytes labs states, "Hacktools are often downloaded from
less reputable sites, which may be malware instead of the promised hacking
software" [22].

• Flooder - A flooder is a virus that sends a massive amount of data to a spe-
cific target. Similar to Email-Flooders; however, the general flooder usually
targets IRC clients [14].

• Hoax - This imposter "virus" is not a virus on its own; it merely states that
it is a virus. For example, this type of hoax could be a simple popup mes-
sage window saying, "The computer is infected pay 0.01 BTC to this address
within 4 hours to solve the issue or RISK losing ALL data." This type of soft-
ware could also be called "Scareware," it uses alarmist language and stresses
the lack of time to solve something [41].

• IM-Flooder - A program that spams and floods up a message channel like
Discord, Skype, WhatsApp [12].

• Several Trojans such as DDoS, Downloader, Ransom, Clicker, Banker are
among the categories.

• Virus - A general term used to describe malware that spreads itself and
infects the target.

• P2P-Worm - Malware that spreads through peer-to-peer networks.

• Rootkit - These types of malware are the worst as they plant themselves
deep within the machine’s configuration files and other vital parts. A famous
rootkit virus that caused billions in damage is the Sony BMGRootkit incident
[29]. The primary purpose of the rootkit virus is to hide from the user, such
that the user has no clue that his system is infected [6].

• Spoofer - A spoofer has the intent of spoofing another identity, usually an-
other user on the system, such that the hacker has elevated access to the
machine.

21

3.3 Tools Utilized

3.3.1 Capstone

Capstone is a disassembler for the Python Language. It can analyze any bytes you
provide it, and it will do its best to disassemble that machine code into readable
assembly code. For example, the byte array 0x488b05863400000 will result with:
"mov rax, qword ptr [rip + 0x3486]," which is considerably easier to read; it is also
possible to create an interpreter/emulator for this type of code, and then guess
what it does. This module will be critical for analyzing the PE file in question;
every EXE virus file we analyze will be disassembled with capstone.

3.3.2 PeFile

It is a python module that can take a file as input or raw bytes, and it will find ev-
ery header and store the interesting data in an object that can easily be accessed
while analyzing the binary file. This library will be handy for my master’s project
as it helps me organize all related PE header data in a convenient object file that
can be accessed from a variable. The other option would be to know the exact
offset in the binary exe file to find the related data myself, not impossible, but it
would be a huge time sink. PeFile is open source and can be found on GitHub to
Ero Carrera [13].

3.3.3 scipy

Scipy will be utilized to calculate the entropy for the sections. The entropy gives
an interesting data point about how chaotic the section is (i.e., how random it is).
If a section has very high randomness, it is indicative of compressed or encrypted
data. Furthermore, as we know, encrypted and compressed data is the product
of "packing" a pe binary file/section.

3.3.4 PE-Bear

As explained in the introduction 1.4.2, PE-Bear is a disassembler, general-
purpose information displayer with a solid GUI. It also has a signature list that
can be downloaded. This signature will be utilized in the experiments to compare
the prototype packing results versus the signature’s results. The signatures come
bundled in a single text file organized in a way seen in Listing 7

1 Armadillo 4.40 -> Silicon Realms Toolworks
2 85
3 31 2E 31 2E 34 00 00 00 C2 E0 94 BE 93 FC DE C6
4 B6 24 83 F7 D2 A4 92 77 40 27 CF EB D8 6F 50 B4
5 B5 29 24 FA 45 08 04 52 D5 1B D2 8C 8A 1E 6E FF
6 8C 5F 42 89 F1 83 B1 27 C5 69 57 FC 55 0A DD 44
7 BE 2A 02 97 6B 65 15 AA 31 E9 28 7D 49 1B DF B5
8 5D 08 A8 BA A8

Listing 7: Example of Signature from PE-Bear [17]

The signature seen in Listing 7 consists of three parts, firstly it is the name of
the packer; second, the number of bytes to be compared with, which in this
case is 85 bytes. The third part consists of the actual signature, and these are

22

written as hex values pr byte, so the value "31" would be b"1". The signature file
also contains the eventual ?? between the bytes, which means that it can be
any byte from 0->255. Those "??" bytes are added as wild cards in the regex, by
simply replacing them as ".." which means any two characters.

For the experiment, I wrote a small-byte comparison script, and this will later
show a mistake as the detection rate is relatively low. The script that was written
for scanning through the relevant virus files was relatively slow and inefficient.
It simply converts the entire program into string hex values such as seen in the
Listing 7. The script in question can be seen in Listing 8.

1 def findsig(data,signatures):
2 sigresults = {}
3 data_string = ""
4 for byte in data:
5 data_string+=hex(byte)[2:].upper()+" "
6 data_string=data_string[:-1]
7 for signame,values in signatures.items():
8 bytes_sign = values["Bytes"]
9 match = bool(re.findall(bytes_sign ,data_string))

10 if match:
11 sigresults["Name"] = signame
12 return sigresults
13 sigresults["Name"] = "No signatures found"
14 return sigresults

Listing 8: Signature script used in experiments.

3.3.5 matplotlib

An open-source plotting tool for Python [20]. This tool will be used for plotting
results onto graphs for visualization.

3.3.6 Ghidra

The tool Ghidra was developed by the NSA’s Research Directorate for NSA’s cyber-
security mission and is intended for reverse engineers [1]. Ghidra allows viewing
the entire binary statically, providing an easy-to-use GUI where the sections can
be disassembled and interpreted as C code. This tool is not used in the experi-
ments. However, it is used to verify that the claims made in the theory chapter
are correct in practice.

3.3.7 x64dbg And x32dbg

x64dbg and x32dbg are programs for debugging 64-bit and 32-bit programs, re-
spectively. The debugger attaches or launches the EXE file, provides all the basic
debugger functionality such as GDB, and provides a nice GUI.

23

3.4 Expected Results

Each file that is to be analyzed will give a plethora of information through its
headers. Every section in the PE packed file will be in the results and exciting
flags on the section; these flags describe the section’s own rights to either
execute, write, or read. The data will include its size, virtual address, physical
address, all strings found in the section, and its entropy. The output of each file
will be organized as seen in listing 9. Every file will also be put under a category,
such as Backdoor, Trojan, Email-Spam, Hoax.

Every file will have an output as seen in listing 9. The output data will then
be used in python scripts to present the data uncovered. For this presentation
of data, matplotlib will be used, a data representation library for the Python
programming language. These scripts made for presenting the data are small
and easy to understand since their actions only include accessing the result
JSON files and loading their data into memory [20]. Microsoft Excel will also be
utilized for visualizing data.

24

1 "Email-Worm.Win32.Bagz.f": {
2 "Number of sections": 4,
3 "Time spent": 2.4342153072357178,
4 "Packer detected": "UPX",
5 "Imports": "GetSystemDirectoryA,SetCurrentDirectoryA,CreateWindowExA....",
6 "Packing certainty": 90,
7 "KERNEL32.DLL": "GetModuleFileNameA,SetCurrentDirectoryA,...",
8 "SHELL32.dll": "ShellExecuteA",
9 "USER32.dll": "CreateWindowExA,SetWindowPos",

10 "Sections": {
11 ".text\u0000\u0000\u0000": {
12 "Size": 24576,
13 "Entropy": 7.130176741636183,
14 "Rights": {
15 "Read": true,
16 "Write": false,
17 "Execute": true
18 },
19 "Virtual Address": 4096,
20 "Virtual Size": 24074,
21 "Physical Address": 24074,
22 "Strings": "open,name"
23 },
24 ".rdata\u0000\u0000": {
25 "Size": 4096,
26 "Entropy": 4.829555134574962,
27 "Rights": {
28 "Read": true,
29 "Write": false,
30 "Execute": false
31 },
32 "Virtual Address": 28672,
33 "Virtual Size": 2824,
34 "Physical Address": 2824,
35 "Strings": "spa"
36 },
37 ".data\u0000\u0000\u0000": {
38 "Size": 65536,
39 "Entropy": 4.327100158011958,
40 "Rights": {
41 "Read": true,
42 "Write": true,
43 "Execute": false
44 },
45 "Virtual Address": 32768,
46 "Virtual Size": 71452,
47 "Physical Address": 71452,
48 "Strings": "ju,is,ix,lan,ey,tu,spa,fo,hel,pl,go"
49 },
50 ".rsrc\u0000\u0000\u0000": {
51 "Size": 4096,
52 "Entropy": 1.869670701428837,
53 "Rights": {
54 "Read": true,
55 "Write": false,
56 "Execute": false
57 },
58 "Virtual Address": 106496,
59 "Virtual Size": 928,
60 "Physical Address": 928,
61 "Strings": ""
62 }
63 },
64 "EntryPoint": "0x1982",
65 "Image Base": "0x400000"
66 "FileSize": 102400
67 },

Listing 9: Example output of the custom made python
script

25

Chapter 4

Results

4.1 Questions

Here there will be an attempt to answer the general questions asked in the prob-
lem statement in chapter 1.

4.1.1 Q1 - Detection

The first question states:

How can one detect if a PE file is packed or contains a hidden PE file inside it?

Hidden PE : Let us say there exists a hidden PE file within a PE file. Then the
hidden PE file can be scattered inside the host PE file in multiple fashions. For
example, it can either be scattered throughout the main PE files sections, and
the malware developer can refer to the areas where the PE’s bytes are hidden in
the different sections to rebuild it at runtime. The rebuilding of a PE file may
seem easy to do, but several protections are in place. These protections were
discussed briefly in chapter 2, namely the section flags which define what can be
done to the section, be it executing, reading, or writing. The trick which packer
developer uses are the different API calls VirtualProtect and VirtualAlloc.

The PE contents can also be encrypted with a straightforward method like XoR
every byte with a key. This key could be stored inside the PE file itself or on
a network server; either way, the code has to get the key at some point on the
machine locally to be able to XoR it with the data. This key could then be
extracted by debugging the exe file or simply looking for keys statically (which
is hard). The best method or the easiest is running the program and looking
for many XoR operations. However, running the program comes with a risk;
therefore, running the program on a burner (disposable) or VM (Virtual Machine)
is advisable.

The encryption is usually more advanced than just XoR the bytes; for example,
they could use RSA and hold onto the decryption key on a cloud server, such
that the program can not be unpacked without running it. It would then
request the server, and the server could confirm the packer; it could even send
some general information about the running process. If there is a debugger
present, the packer would most likely report that to the server, and thus the
server can choose not to give the key to the process. The packer has several
options to check if a debugger is attached to the process, such as using the ker-
nel32 function IsDebuggerPresent() or the NtQueryInformationProcess() function.

26

Detection : The reverse engineer will try to open the malware file inside a
disassembler like IDA, Ghidra, or OllyDBG to discover that all the instructions
look like a random mess. Most professional disassemblers also detect the packed
PE because they will not find the different functions as they do not match their
pre-compiled function hashes (FID). For a reverse engineer, determining if a file
is packed is relatively easy, but it is more complex for a general program like an AV.

The detection part is what the experiment in this thesis mainly focuses on, and
the results can be seen in Section 4.2. The methodology is described in Section
3.2; this experiment is mainly for detecting if a file is packed using statistics.
This type of approach is also done in antivirus programs, as they look for known
signatures and behavior in a PE file, be it the number of sections, entropy, DLLs,
strings.

Detection also includes finding out which sections has the data relevant for recov-
ering the original PE file, or as we call it, the unpacking "stub." For example, the
most significant section with the highest entropy has most likely the data needed
to recover it, but then you need the stub of the packer to execute it on the data to
recover it. However, finding the inverse function may not be as hard as it seems,
as it should be one of the sections with comprehendible code/instructions. One
could also follow from the EP (entry point), interpret each instruction, and look
for calls to APIs like VirtualProtect or VirtualAlloc.

4.1.2 Q2 - Static Analysis

The second question states:

How does one uncover the file with static analysis? Is it possible?

The answer here is a bit complicated, and it is both yes and no. The statical
analysis does not provide a way to recover the original PE file, but it will give
hints on how to do it. What is meant with "statical analysis" is that one can look
at the code without actually executing it, therefore avoiding the risk of being
affected. This method is what linters do when analyzing your code; they will
find faults with syntax and help you fix them. However, the code we find in
an image file is nonexistent because the data inside an image file is machine code.

The machine code inside the binary has to be disassembled, as done in the
experiment using the python library capstone [35]. The disassembly can also
be done using the manual for the target CPU architecture, such as the AMD64
programmer manual, and then write a disassembler using the AMD64 manual
as a reference. However, writing a disassembler takes an awful amount of time
as there are over 1000 different types of instructions to consider.

After the code is disassembled, you are left with assembly code as seen in Figure
2.4. This type of code can be interpreted as C code, which is, in return, is easier
to understand. Let us take Figure 2.4 as an example; using Ghidra’s [1] assembly
interpreter, and we get the results as seen in Listing 10
The results from Ghidra’s interpreter are pretty good, but when it comes to data
types and the like, it is more of a struggle, leaving the interpretation up to the
developer. The point is that it is possible to find the code for the inverse function
of the packer inside the binary. Moreover, you can create a function in your

27

int __cdecl _main(int _Argc,char **_Argv,char **_Env)
{

___main();
_printf("This is a string!");
return 0;

}

Listing 10: Ghidras interpretation of assembly code
seen in Figure 2.4

favorite language with this code and then run the function on the section you
believe the data is stored. In theory and indeed in practice, this will then leave
you with the original PE file. The only scary thing with the method mentioned
above is that you might use the wrong code and execute something else if not
done correctly.

The static analysis method is also relatively slow since you have to interpret all
the instructions and make your code replicating these instructions, which could
take weeks. This time is quite expensive, so this should only be done if the
program is vital to reverse engineer. I would recommend the Dynamic analysis
approach to get the original malware binary file.

4.1.3 Q3 - Dynamic Analysis

The third question states:

Is it easier to recover the original PE using dynamic analysis (i.e., Executing it)?

By dynamic analysis, it is meant that the program is executed inside a controlled
environment, for example, by a debugger such as WinDbg, x64dbg, or gdb. The
debugger attaches to the process and halts its execution, leaving the execution
control up to the user. Standard functionality includes dumping memory regions
which help get the original PE file. However, it is crucial to choose when to dump
the memory, and if the memory is dumped at the beginning of the executable,
then it is obvious the decompression function has not run yet; therefore, the
original PE file will not be inside the memory.

A standard method of getting the data is to use a breakpoint at the Kernel32
functions VirtualAlloc and VirtualProtect because when those functions are
called, memory is allocated and given rights by the VirtualProtect function.
With tools like x32dbg, one can view the memory map when those functions
have returned and then look for any new suspicious memory segments with
the strings "MZ" and "This program cannot be run in DOS mode." If a memory
segment like that is found, one can dump that segment, and voila, the exe file is
found.

There are, however, guard mechanisms against dumping the memory from a
debugger, such as described in the article to Peter Ferrie [15]. "Namoites" is
a type of guard mechanism; they work by putting "int 3" instructions in place
of branches (if jumps). The "int 3" instruction is known as an instruction that
generates a software interrupt for x86 CPUs [24]. The nanomite will then look at

28

the unpacking method for which "int 3" is a branching instruction. The debugger
does not know this and will break at each "int 3" instruction, and the control
flow will then be broken.

There is a similar method to debugging, and that is simply dumping all memory
while running the program. Furthermore, after the fact, search for the exe-
cutable inside the memory dump. An obvious downside with this approach is
that the virus gets to do its evil bidding, and disregarding the code within the
virus could be detrimental.

The packed file can also be emulated, and you achieve this by emulating the
instructions inside a controlled environment. Emulating it lets you look at
each expression like you would with a debugger. This method is safer than just
dumping the memory.

A scary part of debugging the executable itself is that some malware files
execute themselves multiple times when launched. This method is called "Self-
Execution," which spawns as many subprocesses as possible until it is content.
The problem here is that since you launched the program in user mode, all
subsequent subprocesses have the same user rights. So, you may have paused
one instance whenever you debug the program, but there could be four others
running such that the system gets infected. [15].

4.1.4 Q4 - Different Methods

The fourth question states:

Which methods are best at detecting a packed PE file? What are the success rates?

The manual approach to determine if a PE file is packed must be the simplest be-
cause a skilled reverse engineer will quickly see that the PE file is packed. Thus,
the case of false positives will be low whenever a reverse engineer manually looks
at the file in a tool like Ghidra or IDA. Nevertheless, for an antivirus program,
the process of detecting a packed PE file must be automated. The AV will then
employ their functions on the data to determine if it is packed. The function they
use could be like the one this thesis’s experiment does, which statically loads
the file into a program, disassembles it, searches the PE files headers, looks for
known signatures, checks for an abnormal entropy, and then estimates if it may
be packed.

Another trick packer developers try to do is to make the stub (unpacking routine)
as benign-looking as possible, such that it can trick antivirus checks; in addition
to that, they change how the stub and general PE file is structured each time
they generate a new Packed file with that malware inside, to avoid signature
detection and hash databases.

So to conclude, the methods we have are the following:

• Signature Lookup - This is the most common for opensource and freeware
tools, as those signature lists are easy to find on the internet, and they
contain thousands of known signatures. The method is quite simple as one
scans through the entire file and looks for any bytes matching the signature

29

list; if there is a match, you have found the packed file. A popular tool for
this is PEiD, and according to the thesis PHAD [7], it has a detection rate of
75%.

• Dynamic Analysis - By the use of a debugger, emulator, or a VM, one can
dump the contents of the memory section the hidden PE file is temporarily
stored in during execution. This approach may be the riskiest one, but it is
pretty effective and quick because the reverse engineer skips the phase of
actually understanding the decompression methods in the PE file.

• Manual Detection - By the use of a human who directly looks at the PE
file in a disassembly tool like OllyDbg or Ghidra, he can determine if it is
packed. This method is the best approach if there is only one file to be
analyzed, but by all means, it does not hurt to put it through a detection
program for extra confirmation. The success rate depends on the experience
of the analyst and the cunning of the PE packer.

• Header Detection - A simple approach is to look through the PE file’s head-
ers and look for irregularities, such as odd section names or odd section
rights. This method may easily be avoided with decoy sections with bogus
code in them. The imported functions can also be found in the headers.
Those imported functions can be used to gain a better understanding of
the program’s intent. However, those import tables are usually deleted
by a malware program after those functions have been solved [15]. The
success rate for this method seems to work for PHAD [7] where the detection
rate is at 93.59%, but it has a higher false-positive score than signature
comparison. The false-negative score is much higher for signature tools
such as PEiD compared to the PHAD project.

• Behaviour Checking - It is also plausible to see that the program is
packed if it behaves in a specific way during execution by monitoring API’s
frequently used or any new suspicious memory sections with data that
could resemble an executable. This point could be called API hooking,
which is like a debugger; you attach yourself to the process and listen for
any API you may like to record. When the API is triggered, you gain access
to variables such as the current registers when it was called and the stack.

4.2 Experiment: Analyze Viruses

The downloaded Viruses were around 270k; about 225k of these are PE files
with the "MZ" header. The analyzing process takes its time; some of the viruses
are more complex than others. Some take 0.2 seconds to analyze and run
through the code, while others take 50 seconds or upwards. This limits the
amount I can scan and analyze. The Virtual Machine will stay on for the
entirety of my master’s period, continually analyzing. This also means that any
change to the code that goes through those viruses would make a huge differ-
ence, and perhaps those files that are analyzed last have a better confidence level.

30

There is also the need to state that this experiment was not without its flaws,
several hiccups regarding running out of memory, crashes, exceptions that hap-
pened during the analysis of the files, resulting in some files being incomplete
and therefore lacking the critical information to give the results needed to fill
the variables explained in Chapter 3. These hiccups resulted in a loss of 30 419
legitimate PE files’ data, and they lacked information such as the EP(entry point)
and section address space. Therefore, out of the 224 902 files analyzed, 194 482
are left to represent the results.

In addition to the 194 482 viruses, the experiments have two other data sets
to use for comparison. The first dataset is the system32 files on a Windows10
machine, totaling about 587 files. Those files were selected because they are
assumed to be benign. The second dataset is random exe files found around
on a daily use Windows10 machine; these include software like web browsers,
video games, education software, and other general daily use software. General
software solutions tend not to have state of the art packers to hide their intent,
yes they want to protect their IP (intellectual property), but there are other
measurements in place for that, such as DRM (Digital Rights Management),
DMCA (Digital Millennium Copyright Act), key certification schemes, and other
in house solutions. The random exe files found on my computer and those that
did not take ages to analyze amounted to 1606 files.

4.2.1 The script that gathers the data

#!/bin/bash

TIMEFILE="tids_bruk.txt"
echo "Calculating number of files..."
files=(~/Downloads/viruses-2010-05-18/*)
number_of_files=${#files[@]}
echo "Found $number_of_files"
for ((i=0; i<number_of_files;i+=24)); do

STARTTIME=$(date +%s)

for ((j=0;j<24;j++)); do
timeout 5m python3 pakkeoppdag.py "${files[i+j]}" "results$j.json" &

done

wait
ENDTIME=$(date +%s)
printf "$(($ENDTIME - $STARTTIME))\n" >> $TIMEFILE
echo "$i/$number_of_files has been scanned spent $(($ENDTIME - $STARTTIME))"

done

Listing 11: Bash script for analyzing all the viruses.

As seen in figure 11 there are 24 instances of the python script launched
simultaneously, and this works great for my AMD 3900X 24 Thread system;
however, it requires a tremendous amount of ram as well as the script loads all
data in the file and tries to interpret it as instructions. The Virtual Machine
has been assigned with 24 GB of ram, but this proves later to not be enough at
times, causing crashes and lag. The script also runs the python scripts with a

31

timeout command meaning that if they spend more than x amount of time, the
script is killed, which sometimes is necessary since some files are humongous
and require more processing than others. The script waits for all 24 processes
to exit before it launches an additional 24 processes; this is achieved using the
"wait" command on Linux systems.

However, the script shown in listing 11 proved to be too slow. Therefore some
reorganization was done to the viruses and how they were scheduled to be
scanned. The main idea is to have all 24 threads running at the same time.
Nevertheless, with this script shown above, the program has to constantly read
the results from the previous run, resulting in unnecessary RAM allocation and
dumping; the hard disk was also pinned to 100% using the previous scanning
method. As a result, the prototype’s code had considerable changes at the end
of the project, such that the scanning could be done quickly enough to gather
necessary results before the deadline.

4.2.2 Results for A1 - Entropy

The entropy was calculated using this python3 function:

1 def entropy(data):
2 if len(data) == 0:
3 return 0.0
4 frequency = Counter(bytearray(data))
5 entropy = 0
6 for x in frequency.values():
7 p_x = float(x) / len(data)
8 entropy -= p_x*math.log(p_x, 2)
9

10 return entropy

Listing 12: Entropy calculation

The Listing 12 shows the python3 function detailing how the entropy is calcu-
lated for a section of data, this function is the same as:

H(X) =
n∑

i=1
P (xi) log2 P (xi)

File Set Number Of
Files

Avarage
Entropy

Standard Deviation

Viruses 194 482 5.605 2.080
System32 587 5.010 1.258
randomexes 1606 5.039 1.404

Table 4.1: Vulnerability Overview
The table above Table 4.1 shows the results regarding entropy in the sections of
the viruses. The entropy shown in the third column is the average entropy of
every section in the entire result file. The viruses, for example, had 194 482 files,
and all of those viruses had 587 123 sections in total; the average was done by
simply summarizing the entropy and then dividing by the number of sections.

32

The sections with the size of 0 were ignored, as there were a few of those present.

These results were not entirely expected. The entropy for the System32 and
randomexe files were closer to the viruses’ average entropy. The reasons can
be plenty, but the most logical one is that the System32 programs are complex
programs made by one of the largest software producers out there; they are
most likely quite complex and contain a large amount of random data. However,
the spikes of entropy were more prominent among the viruses, as seen in the
standard deviation field.

The variable A1 will be in a range from 0 to 1. The variable A1 is 1 when a section
with entropy higher than seven exists inside the file. As for the viruses, a section
with entropy higher than seven occurs quite often 49.1% of the files contain a file
with that attribute. If this number is adjusted, the more files meet the require-
ment, and this is logical if we look at the average entropy for each set in Table 4.1.

4.2.3 Results for A2 - Execute rights

When analyzing the benign System32 Exe files, all of them contain the ".text"
section, and the rights are always r-x. So the first and most blatant hint for a
file to be packed is that it lacks a ".text" section; however, some compilers have
other names for the .text section, such as "/CODE." The section label can be
changed as pleased using linker scripts. The data point is determined if the
execute rights are set to True, False, True. Some statistics regarding the execute
rights can be found in Table 4.2.

A thought for the mind is that antivirus programs can choose to enforce rules
such as "there must exist a .text section" to allow the program to execute; if
an AV has a check like that, the packer developer can choose to create decoy
sections, or name his sections after the standard naming convention to avoid
detection. For example, the variable A2 is a variable that the packer can trick
since the variable A2 is fulfilled whenever there is a section with the name ".text"
and has the right r-x (read, execute).

4.2.4 Results for A3 - EntryPoint

The EP (entry point) should always be pointing into a typical .text section with
the execute and reading rights. The problem with this data point is that not
necessarily all PE files have the .text section. If this is the case, the variable A2
will be set to 1 automatically, and A3 will depend if the EP is within a section
with the rights r-x. Moreover, the results show that out of the 194482 files, only
78528 have a section with the string ".text". Therefore will most of the files have
a score of 1 on this point. However, out of the 78528 sections with ".text" in
them, 57209 has the EP in them. This check was achieved by checking if the
address of the EP is more significant than the Virtual Address to the section and
less than the size of the section plus the virtual address.

There is also the case where the EP may not be inside a .text section but is
inside a section with the standard read, write and execute rights. Out of the
194482 files analyzed, the Entrypoint was found in all of them. In the results,
we see that out of these 194482 files with entry points in them, 79427 is within

33

a section with the standard rights. 79213 of the EP points to a section with
all rights set to true, which is a red flag because the code should never self-modify.

File Set
(Number of
files)

Number of
.text
sections

.text with
standard
rights

EP
within
standard
rights

EP
outside
standard
rights

EP
outside
sections

Viruses
192 482

78 528 57 209 79 427 98 224 16 832

System32
587

587 587 584 0 3

randomexes
1606

1594 1590 1570 9 27

Table 4.2: Entry point / Section rights Statistics

4.2.5 Results for A4 - DLLs

There were also two other scans of other PE-related files; these files are found
in the Windows 10 System32 folder. The System32 PE files are all 32bit and are
a relic of the past. However, these files are fascinating to compare because we
know these files are benign and developed by Microsoft developers. Finally, all
the DLL files were scanned; additionally, they are also PE files; however, they are
not executable. The DLLs are mainly equal to standard EXE files; they have a
few differences. The main difference is that a dll is linked into the program at
the time of executing, instead of building it into the program when it is compiled.

The average amount of DLLs imported in windows10/System32 is 16.85, while
the average amount of DLLs imported for the virus sample is 3.73. This difference
is significant, and it helps to prove that most viruses will pack their programs
to hide their tricks. In the Table 4.3 below, you can see the most popular DLL
imports and functions used in the virus data set.

The findings from Table 4.3 are moderately intriguing, and there is confirmation
on some of the theories that the functions VirtualAlloc and LoadLibrary are
essential for packers as described in Section 2.3. You can also see the use of
message box and string printing functions from the user32 dll; those could
intimidate the user by showing threatening messages.

34

DLL Number
Im-
ports

DLL Number
Im-
ports

DLL Number
Imports

kernel32.dll 164638 user32.dll 99685 advapi32.dll 81913
Functions Functions Functions
GetProc
Address

108594 Message
BoxA

33965 RegClose
Key

46244

Load
LibraryA

103544 Find
WindowA

17858 RegQuery
ValueExA

31176

ExitProcess 71498 Create
WindowExA

17788 RegOpen
KeyExA

26045

GetModule
HandleA

52313 GetWindow
Thread
ProcessId

17388 RegSet
ValueExA

22129

VirtualAlloc 47351 CharNextA 17303 RegCreate
KeyExA

13969

VirtualFree 42723 wsprintfA 17260 OpenProcess
Token

9447

Table 4.3: DLL Imports - Viruses

Figure 4.1: The DLLs imported by Viruses

4.2.6 Results for A5 - Sections

The number of sections found in the results wary wildly, as seen in Figure 4.2.
The average amount of sections in the virus sample is 4.96, the most common
amount of sections are three. The average amount of sections for the system32
exe files are 6.505. Surprisingly the difference is not as grand as expected. The
average amount of sections is less for the viruses because many of them are
packed, and packed PE files usually require fewer sections. Such as UPX packers
only contain three sections.

However, some files contain an absurd amount of sections, for example, the file
Trojan-Downloader.Win32.Banload.fnz contains 65 452 sections. This number
cannot be trusted because the malware developer intentionally changed the

35

header field NT_HEADERS.FILE_HEADER.NumberOfSections. This oversight is
a flaw on the prototype’s part; instead of trusting that data field, the prototype
should have looked for the actual number of sections by manually counting
each section. Doing the manual counting changes the result. The average of
sections becomes 4.12, and the standard deviation is 2.244. Additionally, the
max number of sections in the virus set becomes 36.

Figure 4.2: Figure displaying the common amount of
sections in viruses. sample size of 194K
viruses

4.2.7 Results for A6 - Section sizes

Every program has a set amount of bits it occupies on the HDD; this
is also reflected in the section headers to the PE file. The variable IM-
AGE_SECTION_HEADER.SizeOfRawData describes the section header size on
disk. There is also the datapoint VirtualSize which is how large the section
will be during runtime. The VirtualSize can be either more or less than the
SizeOfRawData. As stated in the explanation of the variable, see the List 3.2.1, if
the sizes of each section combine differ from the size gathered from the command
"wc -c file" it is set to 1.

The results show that 68 193 out of the 194 482 files have the same size as the
sum of all sections’ size. Meanwhile, for the System32 files, 470/587 - 80% had
the same size. As for the randomexes, the results were 737/1606 - 46%.

36

Figure 4.3: Results of scanning the System32 folder on
windows 10

4.2.8 Results for A7 - String in Binary

The number of strings found inside the virus binaries varies a decent amount
when looking at the results. The string searcher in the prototype is the most
complex part of the code. It interprets each instruction and tries to determine if
the instruction is pointing towards a string in a data segment or is storing string
data on the stack. The get_str_from_instruction function is 62 lines long and
has deep if lookups; it honestly is spaghetti code, but it gets the job done. The
function only continues looking for a string if the instruction contains 1 of the
four mnemonics ["mov", "lea", "push", "movabs"], and if it does, it will attempt to
either get data if the address in the operation field is a pointer or try to interpret
the operation field as a string itself. If there is an instruction like:
mov eax,0x6f6c6c6548
It would flip the number (little-endian) and then try to use the function chr()
on the numbers, such that it would find the string "Hello." The byte for byte
procedure may produce some errors and characters that are not wanted. In
order to minimize the amount of rubbish that is translated, only characters from
0x10 to 0x7f are included.

37

File Set
(Number of
files)

Number of
Strings

Avarage
Amount
of
Strings

Avarage
string
length

Standard
Devia-
tion
String
Amount

Standard
Deviation
String Length

Viruses
192 482

4 231 106 21.755 2.569 39.593 1.417

System32
587

17 115 29.156 4.492 57.849 2.461

randomexes
1606

134 941 84.023 4.972 221.825 2.618

Table 4.4: String statistics
The standard deviation as shown in Table 4.4 and Table 4.1 is done using the
following forumla:

StandardDeviation =
√√√√ 1

n

n∑
i=1

(xi − x)2

The results gathered from this experiment are interesting. First, it shows that a
virus file is less likely to contain an English string within it, that could be because
more of the viruses are packed, and therefore the strings hidden in the original
malware cannot be seen.

4.2.9 Summary Results

This section is dedicated to summarising all the above results’ main points into
a table.

File Set A1 A2 A3 A4 A5 A6 A7
Viruses 0.491 0.702 0.591 0.938 0.818 0.649 0.578
System32 0.030 0 0.005 0.449 0.069 0.199 0.461
Randomexes 0.083 0.009 0.022 0.661 0.263 0.541 0.363

Table 4.5: Main Results
With these results in Table 4.5 we can create a case for each file in the set and
check if they are packed by checking each point individually and then compare
it with the average for viruses. The average amount of offenses for the viruses
is 4.735, while for the system32 files, 1.131 offenses were committed. For the
random exe files on the computer, 1.890 of the variables were 1. These numbers
are obtained by simply summarizing the averages in Table 4.5,
As an example, we will use the file shown in Figure 9, that file would have the
array:

1, 0, 0, 1, 0, 1, 0

if this array is summarized, we get 3, the file has committed a few offenses, but
these are not enough to classify this file as packed. As the results show, the
viruses generally score higher on the tests, with a score of 4.735. As each file
is currently being scored from 0 to 7 (only real numbers), we can label a file as
packed if it commits more than four offenses. Setting the threshold to four, we
get the following results seen in Table 4.6

38

File Set Files Prototype Signature Overlap
Viruses 194 482 110 908 11 463 4277
System32 587 2 0 0
Randomexes 1606 43 63 0

Table 4.6: The prototype’s results compared with a sim-
ple signature detector

The prototype has quite a high rate of labeling a file with "packed," as seen in
Table 4.6. The signature column indicates how many of the 194 482 files had
a signature within them, and the signature list was downloaded from PE-Bear’s
public list [17]. Unfortunately, the results are not expected; only 11 463 have
shown a known signature. The cause of this discrepancy could be my hastily
written signature lookup method 8. The script uses the inbuilt library re in
python to compare the bytes in the PE files against the signature.

4.3 The Prototype

The prototype itself is the python3 script that gathers all the exciting data points
in the binary file. It uses various tools to achieve this, and the following subsec-
tions describe the program and its logic. The main program is relatively short,
with only 420 lines, but it is not the only script used to gather the data and
display data. There were four other scripts dedicated to their task. The present
results scripted amounted to 450 lines of code, and other small scripts such as
string sanitation, consolidating JSON files, and signature scanners were created.

4.3.1 Pefile

As established in the Methodology chapter 3 the program will be written in
Python3, and it will feature some powerful open-source libraries; these libraries
will be vital for finishing the master in the limited six-month time period given to
us.

The primary and most important library is pefile; the pefile library uses all known
headers and offsets to create a comprehensive python object that is easy to nav-
igate. Every programmer familiar with object-oriented programming will find
this library helpful if they are analyzing PE-related files. All the object-related
names are the same ones as you would find in the winnt header; therefore,
if you want to find the number of sections in the program, you can find it at
pe.NT_HEADERS.FILE_HEADER.NumberOfSections. These headers and vari-
ables are key components in the prototype program that was made. Another
useful function pefile has, is that it can find import_tables at specific addresses;
with this, we can determine what function the "call" instruction is calling on. For
example, with the instruction "call qword ptr[rip + 0x6d9b]", we can then try to
find what function is being called on looking using pefile. The lookup can be done
with the function pe.get_import_table(operation address XOR image_base).

4.3.2 Capstone

As mentioned earlier in the thesis, Capstone is an open-source disassembler with
excellent documentation and architectural support. The code can be found on
Github to Nguyen Anh Quynh [35]. The capstone disassembler can take any

39

data in as an argument and will return a list of instructions. These instructions
include their:

• id - Instruction ID, datatype: int

• address - The Virtual address to the instruction, datatype: int

• mnemonic - The command to the instruction, for example, "lea", "mov",
"push". The data type is a string.

• op_str - The operand of the instruction. The op_str contains the actual op-
eration given in the standard Intel disassembly format, for example, "rax,
qword ptr [rip + 0x3485]". The data type of this item is a string.

• Size - The size in number bytes, datatype: int

• bytes - An array of the actual bytes to the instruction.

The instructions can be used to find strings hidden in the program, strings
assembled when the program runs, and put onto the stack (RAM). The number
of strings can indicate obstructed strings within the program since a benign
program has no intention of hiding its strings unless it is confidential. A
method for determining if the number of strings hint towards a benign pro-
gram is to look at the amount functions required in the program. So, for
example, if there is a printf function located inside the program, but there
are no strings passed to the printf, one can conclude that the string has been
obstructed so that the disassembler cannot find it. Finding these function
calls such as "printf" is not always straightforward though, if there has been
any compression/encryption, you cannot find it; additionally, a compiler does
not have to include debugger details such as symbols for the program to function.

However, there is the plausibility to utilize the functions found in the imported
symbol table, and these are the functions that are resolved through a DLL file,
for example, VirtualProtect from Kernel32.dll. Using this knowledge, we can
find functions that require strings by looking in the official Microsoft documents
for the function imported. However, this lookup after string function is not
done for these experiments because of the strict time constraints. The code
for the current string solving function can be seen in Listing 13. The script is
not without its flaws. There are many false positives without any sanitation,
resulting in lots of junk being labeled as strings. Therefore, after analyzing the
PE packed file, a second script is employed, running over each string and checks
if they are in the English dictionary; if not, they are thrown away. Some good
strings are unfortunately lost in this process, but it gets rid of the nonsense
strings.

40

1 def get_str_from_instruct(instruct:instruction):
2 mnemonics = ["mov", "lea", "push", "movabs"]
3 if instruct.mnemonic.lower() in mnemonics:
4 if instruct.op_address:
5 op_addr_int = int(instruct.op_address, 16)
6 if op_addr_int > image_base:
7 virt_addr = op_addr_int ^ image_base
8 elif ("lea" in instruct.mnemonic or "mov" in instruct.mnemonic)\
9 and re.search("ip", instruct.bracket_content):

10 virt_addr = instruct.address+op_addr_int+0x7
11 else:
12 virt_addr = op_addr_int
13

14 if pe.get_section_by_rva(virt_addr):
15 instruct.op_section = pe.get_section_by_rva(virt_addr).Name.decode("utf-8")
16

17 if instruct.op_section and "data" in instruct.op_section:
18 try:
19 stringen = pe.get_string_at_rva(virt_addr)
20 if stringen.__len__() > 0:
21 instruct.string_bin = stringen
22 instruct.decode_string()
23 except:
24 pass
25 else:
26 if not instruct.string:
27 if re.search("ip", instruct.bracket_content):
28 try:
29 stringen = pe.get_qword_at_rva(instruct.addr\
30 +int(instruct.op_address, 16)+0x8)
31 if pe.get_string_at_rva(stringen):
32 instruct.string = pe.get_string_at_rva(stringen)
33 instruct.decode_string()
34 except:
35 pass
36 else:
37 op_addr = instruct.op_address
38 if len(op_addr) > 4:
39 instruct.op_section = "Stack string"
40 if len(op_addr) % 2 == 1:
41 op_addr = "0" + op_addr[2:]
42 else:
43 op_addr = op_addr[2:]
44 reversed_string = "".join(reversed([op_addr[i:i+2]
45 for i in range(0, len(op_addr), 2)]))
46 result = ""
47 for hex_code in range(0, len(reversed_string), 2):
48 tall = int(reversed_string[hex_code:hex_code+2], 16)
49 if 0x10 <= tall < 0x7f:
50 result += chr(tall)
51 if result:
52 instruct.string = result
53 else:
54 instruct.op_section = ""

Listing 13: Str resolving function,
41

Chapter 5

Discussion

5.0.1 Method discussion

The methodology of gathering information from a binary file is often used, and
it has been done multiple times before. The difference this thesis makes is the
variables that are taken into consideration. In addition to using the known
header techniques, my code also looks through all bytes in each section and
treats them as instructions; the only thing it currently finds from these are
the strings they may include: stack strings or strings pointed to in other data
segments. This string detection makes my solution slightly different from the
plethora of other thesis doing this same experiment. It would also be possible to
run the free UNIX tool "strings" to gather strings from the binary itself; however,
this tool is not as flexible as the custom-made one since it only finds strings
related to the entire PE files and not each specific section.

The large sample size was definitely a blunder, or rather a mistake. Although the
large sample size takes days to slug through, this may vary depending on the
activated functionality. The amount of RAM to hold all the related data points
was significant; even with 24GB assigned to the Virtual Machine, it still used all
of the memory. The ram usage could be a fault with the prototype’s code. There
were also attempts to run multiple programs at once; since the VM was given 24
threads to work with, it would make sense to let each thread handle one instance
of the python program. However, the practice of running multiple programs at
once; was too much for the old spinning HDD that had to write results and read
previous results.

There are also flaws in gathering data from the files because the prototype mainly
used the headers to determine several data points, such as the number of sec-
tions. Some packers try their best to remove or alter header data that can be
used to detect a packed PE file [15].

42

5.0.2 Result discussion

The results were somewhat expected, but there were interesting tidbits about
how many sections a virus usually has, what kind of execution rights the
sections had with EP inside them. The main gripe I have with the experiments is
that they did not have exe files for the categories packed and not packed (benign).
The virus files downloaded were categorized by what kind of malware they
contained, but there was no information on whether they were originally packed.
Therefore, comparing my detection algorithm works is more challenging because
I do not have the solution to check my results. There was this idea of using a
well-established tool such as PE-Bear or PEiD to make some "solution" as to if
the exe file was packed, and then check my results up against theirs; however,
the tools PE-Bear and PEiD is quite dated and does not have the functionality
to export the results to a file. If the results from PE-Bear or PEiD were to be
gathered, it would have required dumping stack memory and analyzing that to
find the data stored about the results. Doing so would take an awful amount of
time that I do not have.

There was confusion on my part regarding the calculation of entropy. I initially
thought the base used for calculating it was 256. Having the base as 256 instead
of 2 caused a bit of chaos in my results. However, this is easily fixable with a
custom script only recalculating the entropy with the correct base of 2, but it
did take away some of my time and caused frustration.

5.0.3 Other solutions

The Ember project [2] is a project about analyzing malware using machine
learning; however, it does not focus on packers, but that does not mean they do
not meet the issue since packing is a standard procedure of malware developers.

If I were to experiment again, I would try to find the 20 most popular packers
and then pack a suite of standard software, such that the results could show
a detection rate of packed software and the false-positive and false-negative
percentage. Those three points of data would help solidify and confirm that the
method devised in Chapter 3 works and is worth doing. Based on the results
of the PHAD [7] one would think this method is worth doing, at least use it in
tandem with other detectors.

Another thing that the experiment should incorporate more of is the use of
the instructions disassembled with capstone. For example, look for standard
compression code or decryption code. There are probably hundreds of other
good ideas that could be done with the instructions disassembled. I could have
used the instructions to validate if the section with r-x rights had logical/legit
code. That could be another variable for the experiments, probably giving the
prototype a better detection rate.

The functions that were found in the binaries should also be used in the
experiments. There should be a variable that is one if, for example, VirtualAlloc
or VirtualProtect are loaded. If there were time, this is something that should
have been added.

43

5.0.4 What to take away

The packing of PE binaries is not a new concept by any means, and it has
matured quite a lot throughout the years. However, PE packers employ tons of
tricks to slow down the reverse engineer, be it nanomites (decoy breakpoints),
encryption, shuffling of important header data, using new API function such
as IsDebuggerPresent(), hiding threads, blocking inputs, removing software
breakpoints, suspending threads, guard pages to mention a few. Therefore, the
field has become highly intricate since one has to know each of these tricks,
and who knows how many new tricks are being employed today to trick reverse
engineers?

Header detection might be good at detecting if a file is packed, but it is best to
employ more methods to check if the file is packed, even though the user may
suffer a slight performance hiccup. The good old saying goes as follows: "Anything
that can possibly go wrong, does" [37].

44

Chapter 6

Conclusion

6.0.1 The solution

In Chapter 1 Introduction, the thesis asked several questions; the first four
questions mainly were theory/research questions. The last three were re-
garding the prototype. The first question A: "Is the file packed" were answered
for all files in the dataset; if the answers are accurate or not, that is another topic.

As for the second question B : "Is the unpacking process located on the same
process or in a different process/thread?" is a much more complex question.
This question did not get answered in the experiments. To answer this question
for each file, we would have to find the stub that packs out the PE file and then
analyze the stub. It could also require a bit of emulation or debugging to find
the proper answer for this question.

The third question C : "Does the prototype recognize the packer used in the
PE file?" is somewhat answered if we link the signature script that was hastily
written and the results from the main program; there are a few packers that were
identified. In addition, many UPX packers were detected in the main program
itself; if you count the number of files that detected the UPX packer, it will
amount to 28 159 hits. Therefore, the answer to question C is mainly no.

The problem was to create an application purposed to dig information from
a binary PE file, even if it was packed. The prototype saved every vital detail
into result files used to determine if the binary file was packed. However, due
to the complexity of these files, the success of my experiments was limited.
Nevertheless, the project helped to understand the structure of PE files better
and was valuable for understanding assembly and AMD64 instructions.

45

6.0.2 Results

The virtual machine gathered the results in multiple fashions, and the method-
ology of getting these results changed from time to time, which consumed a
considerable amount of time. Also, developing a program that was supposed
to read and interpret assembly code was an inspiring learning experience. In
addition, since the PE file is windows specific, you are forced to learn how the
Windows OS / API calls works to a degree.

Some results were unexpected, but most of the assumptions made in the theory
and method were correct. For example, the entropy is usually much higher
for the virus files, meaning most of them are likely packed. The number of
strings was also as expected; the viruses had fewer strings in them on aver-
age compared to the benign system32 and random exe files found on Windows10.

The results were interesting to some degree, but they lack the confidence that
those results represent packed malware. It is a fact that most malware creators
with an ounce of self-respect should pack their viruses, but that does not mean
that the viruses used in the experiments have to be packed. We can assume they
are, but we cannot be sure. However, the results shown in Table 4.5 show that
there is a big difference in the file sets used, which could mean that most of the
virus files are packed.

6.0.3 Difference compared to other projects

The solution was honestly a bit weak, as it only included header reading, en-
tropy calculation, dll/imported functions, section rights, number of sections, and
amount of strings. The amount of strings is at least a bit unique compared to
other solutions to this problem, but it does not make it that much different. If
time allowed, there would be more additions to the static detection of a packed
PE file. There would also be an attempt at using an x64_86 emulator to check
the behavior of the file when executed.

6.1 Future Work

The packing problem is a continually developing one, malware developers and
security professionals struggle to keep their opponent in check. It is a continuous
battle where new packing methods and guarding mechanisms are innovated,
and solutions against them are raised. In addition, antivirus software has to
overcome the tricks employed by malware writers. Thus, this field will, as stated,
always be in development, evil against good.

An excellent example of the eternal struggle would be the malware attempts to
detect if OllyDbg debugs the current malware. As such, the community to Olly-
Dbg responded with creating plugins to avoid those detection methods, which in
turn, the malware creators made modifications to circumvent those plugins [15].

46

Appendix A

Abbreviations and Glossaries

Abbriviations

• PE - Portable Executable (usually an .exe file)

• DEP - Data Execution Prevention

• JIT - Just in time (Code generation or execution)

• AV - Anti Virus

• DLL - Dynamic Link Library

• BASH - Bourne Again SHell

• GNU - GNU’s Not Unix

• ELF - Format of Executable and Linking Format (Linux)

• VM - Virtual Machine

• SSL - Secure Socket Layer

• HDD - Hard disk drive

• RAM - Random Access Memory

• EP - Entry point, the address to the first instruction in an image file.

• FID - Function ID (method used by Ghidra and IDA to detect known functions
like printf and the like)

• MASM - Microsoft Macro Assembler

• LZMA - Lempel-Ziv-Markov chain algorithm (used for lossless data compres-
sion)

• IP - Intellectual Property

• DMCA - Digital Millennium Copyright Act

• DRM - Digital Rights Management

• TLS - Thread Local Storage

• RSA - Rivest–Shamir–Adleman (public key cryptosystem)

• CIA - Central Intelligence Agency (National defense org in US)

• COFF - Common Object File Format

47

Glossaries

• EXE - Executable program

• Mach-O - Apple equivalent for PE and ELF files

• UPX - A open source packer and unpacker for executables

• Capstone - Open source disassembler for python

• pefile - A Tool for reading PE headers and representing them as data

• WxorX - Policy for execution of code in a process.

• Scipy - Python Tool for calculating complex math

• linter - A program that scans program code looking for syntax errors, bugs,
or bad practice code. A tool for developers.

• Stub - The stub is the unpacking routine to a packed PE file.

• Signature - A signature is something that is unique for a type of file, often
called "magic bytes".

• DOS - Disk operating system for older versions of Microsoft Windows

• Bundler - In PE packing terms, it means that you add multiple payload PE
files inside the packed PE file.

48

Bibliography

[1] National Security Agency. Ghidra. Accessed: 02-04-2021. url: https://www.nsa.
gov/resources/everyone/ghidra/.

[2] H. S. Anderson and P. Roth. “EMBER: An Open Dataset for Training Static PE
Malware Machine Learning Models.” In: ArXiv e-prints (Apr. 2018). arXiv: 1804.04637
[cs.CR].

[3] Herbert Bos Andrew S. Tanenbaum. Modern Operating Systems. 2014. isbn: ISBN-
10: 1-292-06142-1, ISBN-13: 978-1-292-06142-9.

[4] Tom Brosch and Maik Morgenstern. “Runtime packers: The hidden problem.” In:
Black Hat USA (2006). Accessed: 05-28-2021.

[5] Capstone. Capstone The ultimate disassembler. Accessed: 12-4-2020. url: https:
//www.capstone-engine.org/.

[6] Ken Chiang and Levi Lloyd. “A Case Study of the Rustock Rootkit and Spam Bot.”
In: HotBots 7.10-10 (2007). Accessed: 2-5-2021, p. 7.

[7] Yang-seo Choi et al. “PE File Header Analysis-Based Packed PE File Detection Tech-
nique (PHAD).” In: International Symposium on Computer Science and its Applica-
tions. Accessed: 1-18-2021. 2008, pp. 28–31. doi: 10.1109/CSA.2008.28.

[8] Dhruwajita Devi and Sukumar Nandi. “PE File Features in Detection of Packed
Executables.” In: International Journal of Computer Theory and Engineering (Jan.
2012), pp. 476–478. doi: 10.7763/IJCTE.2012.V4.512.

[9] AdvancedMicro Devices. AMD64 ArchitectureProgrammer’s Manual. Accessed: 4-28-
2021. Mar. 2021. url: https://www.amd.com/system/files/TechDocs/24593.pdf.

[10] Chris Domas. M/o/Vfuscator2. Accessed: 3-1-2021. url: https : / / github . com /
xoreaxeaxeax/movfuscator.

[11] In: Research Methods for Cyber Security. Ed. by Thomas W. Edgar and David O.
Manz. Syngress, 2017, p. iv. isbn: 978-0-12-805349-2. doi: https://doi.org/10.
1016/B978-0-12-805349-2.00017-0.

[12] Kaspersky IT Encyclopedia. IM-Flooder. Accessed: 05-26-2021. url: https : / /
encyclopedia.kaspersky.com/knowledge/im-flooder/.

[13] erocarrera. pefile. Accessed: 12-4-2020. url: https : / / github . com / erocarrera /
pefile.

[14] F-Secure. Flooder. Accessed: 05-29-2021. url: https : / / www . f - secure . com / v -
descs/flooder.shtml.

[15] Peter Ferrie. Anti-Unpacker Tricks. Accessed: 05-30-2021. 2007. url: https : / /
pferrie.tripod.com/papers/unpackers.pdf.

[16] Sergei Frankoff. How Do Packers Work - Reverse Engineering "FUD" Aegis Crypter.
Accessed: 03-05-2021. Youtube. 2018. url: https://www.youtube.com/watch?v=
uxlpRof1QWs.

[17] hasherezade. PE-bear: What is it? Accessed: 02-3-2021. url: https : / / hshrzd .
wordpress.com/pe-bear/.

49

https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://arxiv.org/abs/1804.04637
https://arxiv.org/abs/1804.04637
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://doi.org/10.1109/CSA.2008.28
https://doi.org/10.7763/IJCTE.2012.V4.512
https://www.amd.com/system/files/TechDocs/24593.pdf
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://doi.org/https://doi.org/10.1016/B978-0-12-805349-2.00017-0
https://doi.org/https://doi.org/10.1016/B978-0-12-805349-2.00017-0
https://encyclopedia.kaspersky.com/knowledge/im-flooder/
https://encyclopedia.kaspersky.com/knowledge/im-flooder/
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://www.f-secure.com/v-descs/flooder.shtml
https://www.f-secure.com/v-descs/flooder.shtml
https://pferrie.tripod.com/papers/unpackers.pdf
https://pferrie.tripod.com/papers/unpackers.pdf
https://www.youtube.com/watch?v=uxlpRof1QWs
https://www.youtube.com/watch?v=uxlpRof1QWs
https://hshrzd.wordpress.com/pe-bear/
https://hshrzd.wordpress.com/pe-bear/

[18] Horsicq. Detect It Easy. Accessed: 04-13-2021. url: https://github.com/horsicq/
Detect-It-Easy.

[19] Fu-Hau Hsu et al. “BrowserGuard: A Behavior-Based Solution to Drive-by-
Download Attacks.” In: IEEE Journal on Selected Areas in Communications 29.7
(2011), pp. 1461–1468. doi: 10.1109/JSAC.2011.110811.

[20] Darren Dale John Hunter and Michael Droettboom Eric Firing. Matplotlib: Python
Plotting. Accessed: 1-23-2021. 2012. url: https://matplotlib.org/.

[21] Matthew Jones. Top 13 Popular Packers Used in Malware. Accessed: 05-30-2021.
url: https://resources.infosecinstitute.com/topic/top-13-popular-packers-
used-in-malware/.

[22] Malwarebytes Labs. Hacktool. Accessed: 05-29-2021. url: https : / / blog .
malwarebytes.com/detections/hacktool/.

[23] Laszlo Molnar John Reiser Markus Oberhumer. UPX - the Ultimate Packer for eXe-
cutables. Accessed: 11-16-2020. url: https://github.com/upx/upx.

[24] Microsoft. Debugbreak. Accessed: 05-12-2021. url: https://docs.microsoft.com/
en-us/cpp/intrinsics/debugbreak?view=msvc-160.

[25] Microsoft. LoadLibraryA function (libloaderapi.h). Accessed: 3-22-2021. May 2018.
url: https://docs.microsoft.com/en- us/windows/win32/api/libloaderapi/nf-
libloaderapi-loadlibrarya.

[26] Microsoft. PE Format. Accessed: 11-15-2020. url: https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format.

[27] Microsoft. VirtualAlloc function. Accessed: 1-12-2021. url: https : / / docs .
microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc.

[28] Microsoft. VirtualProtect function. Accessed: 1-18-2021. url: https : / / docs .
microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect.

[29] Deirde K Mulligan and Aaron K Perzanowski. “The magnificence of the disaster:
Reconstructing the Sony BMG rootkit incident.” In: Berkeley Tech. LJ 22 (2007).
Accessed: 2-4-2021, p. 1157.

[30] Michal Necasek. EXEPACK and the A20-Gate. Accessed: 2-17-2021. Mar. 2018. url:
http://www.os2museum.com/wp/exepack-and-the-a20-gate/.

[31] Michal Necasek. Realia SpaceMaker. Accessed: 2-17-2021. Apr. 2018. url: http:
//www.os2museum.com/wp/realia-spacemaker/.

[32] NTCore. PE Detective. Accessed: 4-29-2021. url: https://ntcore.com/?page_id=367.
[33] PE-detective image. Accessed: 4-29-2021. url: https : / / www . aldeid . com / wiki /

Explorer-Suite/PE-Detective.
[34] Ziff-Davis Publishing. If you use DOS you need this program. Accessed: 4-3-2021.

Jan. 1983. url: https://books.google.no/books?id=vy3cBZkjbZgC&pg=RA3-PA417&
redir_esc=y#v=onepage&q&f=false.

[35] Nguyen Anh Quynh. capstone github. Accessed: 1-3-2021. url: https://github.
com/aquynh/capstone.

[36] Thomas Roccia. Malware Packers Use Tricks to Avoid Analysis, Detection. Accessed:
06-2-2021. May 2017. url: https://www.mcafee.com/blogs/enterprise/malware-
packers-use-tricks-avoid-analysis-detection/.

[37] J. Sack and 1950 Harvard Andean Expedition. The Butcher: The Ascent of Yerupaja.
Rinehart, 1952. url: https://books.google.no/books?id=iT4xAAAAIAAJ.

[38] Martino Sani. ASpack manual unpacking. Accessed: 05-31-2021. url: http : / /
martinosani.it/2020/02/aspack-manual-unpacking.html.

50

https://github.com/horsicq/Detect-It-Easy
https://github.com/horsicq/Detect-It-Easy
https://doi.org/10.1109/JSAC.2011.110811
https://matplotlib.org/
https://resources.infosecinstitute.com/topic/top-13-popular-packers-used-in-malware/
https://resources.infosecinstitute.com/topic/top-13-popular-packers-used-in-malware/
https://blog.malwarebytes.com/detections/hacktool/
https://blog.malwarebytes.com/detections/hacktool/
https://github.com/upx/upx
https://docs.microsoft.com/en-us/cpp/intrinsics/debugbreak?view=msvc-160
https://docs.microsoft.com/en-us/cpp/intrinsics/debugbreak?view=msvc-160
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
http://www.os2museum.com/wp/exepack-and-the-a20-gate/
http://www.os2museum.com/wp/realia-spacemaker/
http://www.os2museum.com/wp/realia-spacemaker/
https://ntcore.com/?page_id=367
https://www.aldeid.com/wiki/Explorer-Suite/PE-Detective
https://www.aldeid.com/wiki/Explorer-Suite/PE-Detective
https://books.google.no/books?id=vy3cBZkjbZgC&pg=RA3-PA417&redir_esc=y#v=onepage&q&f=false
https://books.google.no/books?id=vy3cBZkjbZgC&pg=RA3-PA417&redir_esc=y#v=onepage&q&f=false
https://github.com/aquynh/capstone
https://github.com/aquynh/capstone
https://www.mcafee.com/blogs/enterprise/malware-packers-use-tricks-avoid-analysis-detection/
https://www.mcafee.com/blogs/enterprise/malware-packers-use-tricks-avoid-analysis-detection/
https://books.google.no/books?id=iT4xAAAAIAAJ
http://martinosani.it/2020/02/aspack-manual-unpacking.html
http://martinosani.it/2020/02/aspack-manual-unpacking.html

[39] Jason Scott. VXHeavens Snapshot(2010-05-18). Accessed: 01-03-2021. url: https:
//archive.org/details/vxheavens-2010-05-18.

[40] Robert Seacord. Secure Coding in C and C++, 2nd Edition. Accessed: 1-18-2021.
Apr. 2013. isbn: ISBN-10: 0-321-82213-7, ISBN-13: 978-0-321-82213-0.

[41] Panda Security. Hoax: Definition. Accessed: 05-29-2021. url: https : / / www .
pandasecurity.com/en-us/security-info/hoax/.

[42] Panda Security. Virus Encyclopedia: Constructor. Accessed: 05-23-2021. url:
https : / / www . pandasecurity . com / en - us / security - info / 132932 / information /
Constructor.

[43] Jibz xineohP Snaker Qwerton. app-peid. Accessed: 2-17-2021. url: https : / /
github.com/wolfram77web/app-peid.

[44] ASPACK software. What is ASProtect32? Accessed: 05-31-2021. url: http://www.
aspack.com/asprotect32.html.

[45] Microsoft Defender Security Research Team. Detecting reflective DLL loading with
Windows Defender ATP. Accessed: 5-3-2021. Nov. 2017. url: https : / / www .
microsoft.com/security/blog/2017/11/13/detecting- reflective- dll- loading-
with-windows-defender-atp/.

[46] VirusTotal. virustotal. Accessed: 3-23-2021. url: https://www.virustotal.com/gui/.
[47] Wei Yan, Zheng Zhang, and Nirwan Ansari. “Revealing Packed Malware.” In: IEEE

Security Privacy 6.5 (2008), pp. 65–69. doi: 10.1109/MSP.2008.126.

51

https://archive.org/details/vxheavens-2010-05-18
https://archive.org/details/vxheavens-2010-05-18
https://www.pandasecurity.com/en-us/security-info/hoax/
https://www.pandasecurity.com/en-us/security-info/hoax/
https://www.pandasecurity.com/en-us/security-info/132932/information/Constructor
https://www.pandasecurity.com/en-us/security-info/132932/information/Constructor
https://github.com/wolfram77web/app-peid
https://github.com/wolfram77web/app-peid
http://www.aspack.com/asprotect32.html
http://www.aspack.com/asprotect32.html
https://www.microsoft.com/security/blog/2017/11/13/detecting-reflective-dll-loading-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2017/11/13/detecting-reflective-dll-loading-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2017/11/13/detecting-reflective-dll-loading-with-windows-defender-atp/
https://www.virustotal.com/gui/
https://doi.org/10.1109/MSP.2008.126

	Acknowledgements
	Summary
	Abstract
	Introduction
	Background
	Problem statement
	Thesis structure
	Related works
	PEiD
	PE-Bear
	PE-detective
	EMBER
	PHAD
	Detect it Easy (DIE)
	MOV obfuscator
	Capa

	Theory
	State of the art
	Different Packers
	Multi-Thread Packers
	UPX - Packer
	Other Popular Packers

	Processor Architechtures
	The execution of a program

	Important Windows APIs
	CreateProcessInternalW
	VirtualAlloc
	VirtualProtect
	LoadLibrary

	PE Structure
	Addresses: RVA, VA and Physical Addresses
	IMAGE_DOS_HEADER
	IMAGE_NT_HEADER
	IMAGE_SECTION_HEADER
	.text
	.data
	.bss
	.tls

	Methodolgy
	Assumptions and Limitations
	Experimental design
	Variable Explanation
	Categories Of Viruses

	Tools Utilized
	Capstone
	PeFile
	scipy
	PE-Bear
	matplotlib
	Ghidra
	x64dbg And x32dbg

	Expected Results

	Results
	Questions
	Q1 - Detection
	Q2 - Static Analysis
	Q3 - Dynamic Analysis
	Q4 - Different Methods

	Experiment: Analyze Viruses
	The script that gathers the data
	Results for A1 - Entropy
	Results for A2 - Execute rights
	Results for A3 - EntryPoint
	Results for A4 - DLLs
	Results for A5 - Sections
	Results for A6 - Section sizes
	Results for A7 - String in Binary
	Summary Results

	The Prototype
	Pefile
	Capstone

	Discussion
	Method discussion
	Result discussion
	Other solutions
	What to take away

	Conclusion
	The solution
	Results
	Difference compared to other projects

	Future Work

	Abbreviations and Glossaries
	Bibliography

