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Abstract. Over the last decades, frequent itemset mining has become
a major area of research, with applications including indexing and simi-
larity search, as well as mining of data streams, web, and software bugs.
Although several efficient techniques for generating frequent itemsets
with a minimum frequency have been proposed, the number of item-
sets produced is in many cases too large for effective usage in real-life
applications. Indeed, the problem of deriving frequent itemsets that are
both compact and of high quality, remains to a large degree open.

In this paper we address the above problem by posing frequent item-
set mining as a collection of interrelated two-armed bandit problems.
We seek to find itemsets that frequently appear as subsets in a stream
of itemsets, with the frequency being constrained to support granularity
requirements. Starting from a randomly or manually selected examplar
itemset, a collective of Tsetlin automata based two-armed bandit play-
ers – one automaton for each item in the examplar – learns which items
should be included in the mined frequent itemset. A novel reinforcement
scheme allows the bandit players to learn this in a decentralized and on-
line manner by observing one itemset at a time. By invoking the latter
procedure recursively, a progressively more fine granular summary of the
itemset stream is produced, represented as a hierarchy of frequent item-
sets.

The proposed scheme is extensively evaluated using both artificial
data as well as data from a real-world network intrusion detection appli-
cation. The results are conclusive, demonstrating an excellent ability
to find frequent itemsets. Also, computational complexity grows merely
linearly with the cardinality of the examplar itemset. Finally, the hier-
archical collections of frequent itemsets produced for network intrusion
detection are compact, yet accurately describe the different types of net-
work traffic present.

1 Introduction

Over the last two decades, frequent itemset mining has become a major area of
research, with applications including indexing and similarity search, as well as
mining of data streams, web, and software bugs [5].
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The problem of finding frequent itemsets can be formulated as follows. Con-
sider a set I of n items, I = {i1, i2, . . . , in}. A transaction Ti, 1 ≤ i ≤ m, is
defined as a subset of I, Ti ⊆ I, collectively referred to as a transaction set:
T = {T1, T2, . . . , Tm}. When an arbitrary set X is a subset of a transaction Ti,
X ⊆ Ti, one says that Ti supports X. The support of X is then simply the number
of transactions Ti in T that supports X, support(X) = |{Ti ∈ T |X ⊆ Ti}|, with
|·| denoting set cardinality. The notion of interest in this paper – the frequency
of an itemset – can then be defined as follows:

Definition 1 (Itemset Frequency). The frequency of itemset X, freq(X), is
defined as the fraction of transactions Ti in T that supports X:

freq(X) =
|{Ti ∈ T |X ⊆ Ti}|

|T | .

In all brevity, the goal of frequent itemset mining is to produce the itemsets,
Xj , that commonly appear in the transactions, Ti, of a transaction set, T . By
exploring all of the possible item subsets, Xj , of each transaction Ti ∈ T , the
candidate frequent itemsets are identified and organized in a search space, so
that the frequent ones can be efficiently extracted. The frequent itemsets, in
turn, form the basis for building associations between itemsets in the form of
rules, A ⇒ B, meaning that whenever itemset A is contained in a transaction,
itemset B appears too (with a certain frequency).

The pioneering work of R. Agrawal et al. [2], introduced a framework for
finding all of the itemsets surpassing a minimum frequency, and for building
association rules that relates the frequent itemsets. It was here the concepts of
support and confidence (the frequency by which the precedent of a rule follows
the antecedent of the rule) were introduced. This work triggered a cascade of
new results expanding the foundation laid, as briefly sampled here. For a full
treatment of current status and future directions, the reader is referred to one of
the many surveys on frequent pattern mining, for instance a recent one by Han
et al. [5].

One avenue of research involves different kinds of measures besides support
and confidence, such as lift [4], itemset share [3] and collective strength [1]. Fur-
thermore, different approaches to mining with adaptively set minimum support
thresholds have been investigated. This includes using the Chi-square test for
correlation [4] to measure statistical significance of a rule, which allows rules
with arbitrarily small support to be extracted, as long as sufficient statistical
significance is ensured. Another direction of research concerns mining with con-
straints on the itemsets involved, for instance in the form of rule templates [6]
or in the form of a wide range of operators such as absence or presence of items
[10], extended with support constraints [16]. Other work further involves min-
ing of sequential rules to find sequential patterns, including remarkably efficient
algorithms such as SPADE [17]. Recently, a number of closely related problems
have been addressed, such as mining of structural patterns, high-dimensional
datasets, and closed and maximal frequent itemsets, further explored in [5].
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Although several efficient techniques for generating frequent itemsets with
a minimum frequency have been proposed, as exposed above, the number of
itemsets produced is in many cases too large for effective usage in real-life appli-
cations. Indeed, the problem of deriving frequent itemsets that are both compact
and of high quality, so that they are tailored to perform well in specific real-life
applications, remains to a large degree open [5].

1.1 Paper Contributions

The approach introduced in the present paper is quite distinct from the above
families of techniques, as briefly explained here and further clarified in the fol-
lowing. A characteristic and typical property of algorithms for frequent itemset
mining is that they perform an exhaustive search of the space of candidate
frequent itemsets, ranking the found itemsets according to some measure, like
support. Research advances through the development of better ways of orga-
nizing and pruning the candidate itemset spaces, to deal with larger itemset
spaces or to produce the frequent itemsets with less computations. Although
itemset spaces often can be intelligently organized to support efficient searches,
managing the search requires memory consuming data structures and/or time
consuming computations, leading to scalability problems. After all, the number
of possible itemsets grows exponentially with the number of unique items in the
transaction set.

In this paper we introduce a completely different approach to frequent itemset
mining that possesses several unique properties:

– In contrast to being based on extensive and dynamically built data structures,
the memory footprint of the approach introduced here is both constant and
small in size — at most, the scheme only requires one bit per unique item,
ij ∈ I = {i1, i2, . . . , in}, to organize the search for frequent itemsets. Addition-
ally, each of the n unique items are associated with a dedicated deterministic
Learning Automata [13], which is a finite state machine whose state is repre-
sented merely by a single integer.

– Furthermore, instead of enumerating itemsets explicitly through exhaustive
search, our scheme is light-weighted when it comes to computation. The Learn-
ing Automata simply performs a guided random walk in the space of frequent
itemset candidates, with each computational step involving an increment or
a decrement of the integers associated with the Learning Automata. Yet, the
Learning Automata, as a collective, converge rather rapidly and accurately
towards producing itemsets that possess a user specified frequency.

– Relying on the above convergence property, the scheme is invoked recursively,
with each recursion step producing a new collection of frequent itemset, thus
forming a hierarchy of frequent itemsets. In this manner, a progressively larger
part of the transaction set is described.

– Also, as a consequence of the latter properties, our scheme operates online,
allowing it to process a single transaction at a time, arbitrarily ordered, and
with history remembered as part of the Learning Automata states. This is
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ideal for instance for network intrusion detection (one of our application
domains), where network packets arrive sequentially, in an endless stream.

– Finally, since our scheme is based on Learning Automata, it also handles
itemsets with stochastic items, that is, itemsets whose items are randomly
included or excluded from the itemset based on some unknown distribution.
Again, this is ideal for network intrusion detection since network packets usu-
ally contain some fields that for all practical purposes appear as random from
the perspective of a single network packet.

We achieve the above properties by posing frequent itemset mining as a col-
lective intelligence problem, modelled as a collection of interrelated two-armed
bandit problems. The two-armed bandit problem [11] is a classical optimization
problem where a player sequentially pulls one of multiple arms attached to a
gambling machine, with each pull resulting in a random reward. The reward dis-
tributions are unknown, and thus, one must balance between exploiting existing
knowledge about the arms, and obtaining new information.

Our proposed scheme can be summarized as follows. Starting from a ran-
domly or manually selected examplar transaction, a collective of so-called Tsetlin
automata [13] based bandit players – one automaton for each item in the exam-
plar – aims to learn which items should be included in the mined frequent item-
set, and which items should be excluded. A novel reinforcement scheme allows
the bandit players to learn this in a decentralized and on-line manner, by observ-
ing transactions one at a time, as they appear in the transaction stream. The
above procedure is invoked recursively, with each recursion step producing a new
collection of frequent itemset, thus forming a hierarchy of frequent itemsets. In
this manner, a progressively larger part of the itemset stream is described. Since
each bandit player learns simply by updating the state of a finite automaton, and
since the reinforcement feedback is calculated purely from the present transac-
tion and the corresponding decisions of the bandit players, the resulting memory
footprint is minimal. Furthermore, computational complexity grows merely lin-
early with the cardinality of the examplar transaction.

The above hierarchical Tsetlin automata based formulation of frequent item-
set mining provides us with four distinct advantages:

1. Any desired target itemset frequency can be obtained without spending any
more memory than what is required by the Tsetlin automata in the collective
(one integer per automaton).

2. Itemsets are found by the means of on-line collective learning, supporting
processing of on-line data streams, such as streams of network packets.

3. An examplar transaction is used to focus the search towards frequent itemsets
that are both compact and of high quality, tailored to perform well in real-life
applications.

4. Our hierarchical organization of the frequent itemsets supports a progressively
more fine-granular summary of the transaction set at hand, as the depth of
the hierarchy is increased. This opens up for frequent itemset based network
anomaly detection, as will be discussed later in this paper.
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1.2 Example Application — Network Anomaly Detection

Network intrusion detection has been a particularly promising application area
for frequent itemset mining [14,15]. In so-called network anomaly detection,
huge amounts of network packet data needs to be mined so that the patterns
of normal traffic can be found, and so that anomalous traffic can be distilled as
deviations from the identified patterns. Although not based on frequent itemset
mining, the packet byte based anomaly detection approach of Mahoney [8] is
particularly fascinating in this perspective because it achieves state-of-the-art
anomaly detection performance simply by inspecting 48 bytes from the header
of network packets.

In order to investigate to what degree the properties of our bandit problem
based approach to frequent itemset mining can be taken advantage of in network
anomaly detection, we also introduce a novel packet byte based anomaly detec-
tion scheme in this paper. Formulated as a frequent itemset mining problem,
each network packet i is seen as a transaction Ti and each byte value from the
network packet is seen as an item belonging to the transaction. In other words,
in this application we are looking for frequent itemsets consisting of byte-value
pairs, such as {dstaddr1 : 24, dstaddr2 : 34, tcpflag : 12}, which is an itemset
that identifies network packets with destination 24.34. ∗ .∗ and with the tcp-flag
set to 12.

1.3 Paper Organization

The paper is organized as follows. First, in Sect. 2 we present our decentralized
Tsetlin automata based solution to frequent itemset mining, as well as a novel
reinforcement scheme that guides the collective of Tsetlin automata towards a
given target itemset frequency. The recursive approach to building a hierarchy
of frequent itemsets is introduced in Sect. 3. Then, in Sect. 4 we demonstrate
the performance advantages of the introduced scheme, including its ability to
robustly identify compact itemsets that are useful for summarizing both artificial
as well as real-life data. Finally, in Sect. 5 we offer conclusions as well as pointers
to further work.

2 A Collective of Two-Armed Bandit Players for
Examplar Based Frequent Itemset Mining

We here target the problem of finding frequent itemsets with a given support
by on-line processing of transactions, taking advantage of so-called transaction
examplars. To achieve this, we design a collective of Learning Automata (LA)
that builds upon the work of Tsetlin and the linear two-action automaton [9,13].
Generally stated, an LA performs a sequence of actions on an Environment. The
Environment can be seen as a generic unknown medium that responds to each
action with some sort of reward or penalty, generated stochastically. Based on
the responses from the Environment, the aim of the LA is to find the action
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Fig. 1. A Learning Automaton interacting with an Environment

that minimizes the expected number of penalties received. Figure 1 shows the
interaction between a LA and the Environment.

As illustrated in the figure, an LA can be defined in terms of a quintuple [9]:

{Φ,α, β,F(·, ·),G(·, ·)}.

Φ = {φ1, φ2, . . . , φs} is the set of internal automaton states, α = {α1, α2, . . . , αr}
is the set of automaton actions, and, β = {β1, β2, . . . , βm} is the set of inputs
that can be given to the automaton. An output function αt = G[φt] determines
the next action performed by the automaton given the current automaton state.
Finally, a transition function φt+1 = F [φt, βt] determines the new automaton
state from the current automaton state as well as the response of the Environ-
ment to the action performed by the automaton.

Based on the above generic framework, the crucial issue is to design automata
that can learn the optimal action when interacting with the Environment. Several
designs have been proposed in the literature, and the reader is referred to [9,12]
for an extensive treatment.

2.1 The Item Selector Automaton (ISA)

Our LA based scheme for solving frequent itemset problems is centered around
the concept of an examplar transaction TE ⊂ I. With the examplar transaction
TE as a basis, the goal of our scheme is to identify an itemset X ⊆ TE whose
frequency, freq(X), is equal to a specific target frequency γ.

At the heart of our scheme we find an Item Selector Automaton (ISA). In
brief, for each item ij in TE , a dedicated ISA, based on the Tsetlin automaton
[13], is constructed, having:

– States: Φ = {−N − 1,−N, . . . ,−1, 0, . . . , N − 2, N}.
– Actions: α = {Include,Exclude}.
– Inputs: β = {Reward ,Penalty}.

Figure 2 specifies the G and F matrices.
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Fig. 2. An ISA choosing between including or excluding an item from candidate fre-
quent itemsets

The G matrix can be summarized as follows. If the automaton state is posi-
tive, then action Include will be chosen by the automaton. If on the other hand
the state is negative, then action Exclude will be chosen. Note that since we
initially do not know which action is optimal, we set the initial state of the ISA
randomly to either ‘−1’ or ‘0 ’.

The state transition matrix F determines how learning proceeds. As seen in
the graph representation of F found in the figure, providing a reward input to
the automaton strengthens the currently chosen action, essentially by making it
less likely that the other action will be chosen in the future. Correspondingly,
a penalty input weakens the currently selected action by making it more likely
that the other action will be chosen later on. In other words, the automaton
attempts to incorporate past responses when deciding on a sequence of actions.

Note that our ISA described above deviates from the traditional Tsetlin
automaton in one important manner: State −N and state N − 1 are absorbing.
This allows the ISA to converge to a single state, rather than to a distribution
over states, thus artificially introducing an unambiguous convergence criterion.

2.2 Reinforcement Scheme

Since each item ij in the transaction examplar TE is assigned a dedicated ISA,
ISAj , we obtain a collective of ISA. The reinforcement scheme presented here
is incremental, processing one transaction at a time at discrete time steps. At
each time step s, a transaction Ti ∈ T is presented to the collective of ISA,
whose responsibility is to propose a candidate itemset X(s) for that time step.
By on-line processing of the transactions, the goal of the ISA is to converge to
proposing an itemset X∗ that is supported with frequency, freq(X∗) = γ, with
probability arbitrarily close to 1.

To elaborate, each automaton, ISAj , chooses between two options at every
time step s: shall its own item ij be included in X(s) or shall it be excluded?
Based on the decisions of the ISAs as a collective, a candidate itemset X(s) for
time step s is produced. A response from the Environment is then incurred as
follows. First it is checked whether the present transaction Ti supports X(s), and
based on the presence or absence of support, each ISAj is rewarded/penalized
according to the following novel reinforcement scheme.



8 V. Haugland et al.

The novel reinforcement scheme that we propose rewards an automaton ISAj

based on the decision of the automaton at time step s and based on whether the
present transaction Ti supports the resulting candidate itemset X(s). In brief, if
ISAj decides to include item ij in X(s), we have two possibilities. If Ti supports
X(s), ISAj is rewarded. On the other hand, if Ti does not support X(s), then
ISAj is randomly penalized with probability r = γ

1−γ (assuming γ < 0.5). The
other decision ISAj can make is to exclude item ij from X(s). For that decision,
ISAj is randomly rewarded with probability r = γ

1−γ if Ti does not support
X(s) ∪ {ij}. On the other hand, if Ti supports X(s) ∪ {ij}, then the ISA is
penalized.

The above reinforcement scheme is designed to guide the collective of learning
automata as a whole towards converging to including/excluding items in X(s)
so that the frequency of freq(X(s)) converges to γ, with probability arbitrarily
close to 1.

Note that because multiple variables, and thereby multiple ISA, may be
involved when constructing the frequent itemset, we are dealing with a game of
LA [9]. That is, multiple ISA interact with the same Environment, and the
response of the Environment depends on the actions of several ISA. In fact,
because there may be conflicting goals among the ISA involved, the resulting
game is competitive. The convergence properties of general competitive games
of LA have not yet been successfully analyzed, however, results exist for certain
classes of games, such as the Prisoner’s Dilemma game [9].

In order to maximize speed of learning, we initialize each ISA randomly to
either the state ‘−1’ or ‘0 ’. In this initial configuration, the actions will be
switched relatively quickly because only a single state transition is necessary
for a switch. Accordingly, the joint state space of the ISA is quickly explored
in this configuration. However, as learning proceeds and the ISA move towards
their boundary states, i.e., states ‘−N ’ and ‘N −1’, the exploration calms down.
Accordingly, the search for a solution to the frequent itemset problem at hand
becomes increasingly focused.

Furthermore, note that we keep a time step counter for each ISA. When a
certain cut off threshold has been achieved, we force one of the ISA to converge
if it has not yet done so. This enforcement resets the counters of the other ISA,
allowing them to adapt to the new configuration. The purpose of this mechanism
is to increase convergence speed in ambiguous decision making cases where two
different actions provide more or less the same feedback.

3 A Hierarchical Collective of Two-Armed Bandit
Players

The two-armed bandit problem based scheme proposed in the previous section
seeks to produce an itemset X that is supported by a fraction γ of the trans-
actions Ti contained in a transaction set T . In this section, we take advantage
of the latter scheme in order to produce a compact summary of the complete
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transaction set T . The summary is formulated as a hierarchy of frequent item-
sets. At each “level” in the hierarchy, every transaction in T is supported by
at least one frequent itemset, and with each level descended, the granularity
of the frequent itemsets increases. In this manner, multiple degrees of granu-
larity, from coarse grained to fine grained, are concurrently maintained in the
hierarchy. We achieve this by the means of a recursive algorithm, presented
below. We explore the expressive power of this hierarchical approach in the next
section, using the frequent itemset hierarchy as the basis for a network anomaly
detection system.

Algorithm 1. Hierarchy Construction
Input: Transactions T ; Maximal coarseness γmax

Output: Hierarchy H of frequent itemsets
1: Queue Q; # Queue for organizing breadth first construction of hierarchy
2: Hierarchy H; # Hierarchy of frequent itemsets
3: # Empty frequent itemset {} as root, supporting all transactions in T
4: Q.enqueue([{}, T , γmax]);
5: H.root({});
6: # Breadth first expansion of hierarchy nodes, starting from root
7: while not Q.empty() do
8: [XP , TP , γP ]← Q.dequeue();
9: # Identifies candidate children nodes of parent P

10: C ← Frequent Itemset Generation([XP , TP , γP ]);
11: # Expands parent P with children nodes who has coarseness greater than or

equal to the minimum coarseness sought:
12: for [XC , TC , γC ] ∈ C do
13: if γC ≥ γmin then
14: Q.enque([XC , TC , γC ]);
15: H.addChild(XP , XC);
16: end if
17: end for
18: end while
19: return H;

As seen in Algorithm 1, the input to the hierarchy construction algorithm
is the transaction set T to be summarized, as well as the maximum, γmax, and
the minimum, γmin, coarseness sought. Each node P in the hierarchy built is
associated with a frequent itemset XP , a transaction set TP , and a coarseness
γP , organized as a triple [XP , TP , γP ]. As initialization, the root node is assigned
an empty itemset, the complete transaction set T , and the maximum coarseness
γmax. The hierarchy is then built breadth first, based on a queue of hierarchy
nodes, initialized to contain the root node. Each node [XP , TP , γP ] dequeued is
expanded producing a collection of candidate children [XC , TC , γC ] ∈ C. If the
coarseness γC of a triple is greater than or equal to γmin, the triple is enqueued
and the frequent itemset XC is added to the hierarchy H as a child of XP .

The scheme for expanding a node P to produce candidate children C ∈ C
is shown in Algorithm 2. As seen, the candidate children are built one by one,
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Algorithm 2. Frequent Itemset Generation
Input: Parent itemset XP ; Parent transactions TP ; Parent coarseness γP

Output: Collection CP of itemset-transactions-coarseness triples [Xi, Ti, γi], i ∈ {1, . . . , n},
such that TP =

⋃n
i=1 Ti and for i �= j : Ti ∩ Tj = ∅

1: CP ← {}; # Collection of child triples empty initially

2: TR ← TP ; # TR keeps track of remaining unsupported transactions

3: γC ← γP ; # γC keeps track of current level of coarseness

4: # Keeps producing child triples until all transactions in TP are supported (TR �= ∅)
5: while TR �= ∅ do

6: # Generates itemsets until one more fine-grained than the parent itemset is found

7: XC = ISA Collective(TR, γC); # Invokes ISA collective on remaining transactions

8: if XC ⊆ XP then

9: γC ← 0.999 · γC ; # Reduces target coarseness

10: else

11: CP ← CP ∪ [XC , {Ti ∈ TR|XC ⊆ Ti}, γC ]; # Adds new triple to child set

12: TR ← {Ti ∈ TR|XC �⊆ Ti}; # Removes transactions supporting XC

13: end if

14: end while

15: return CP ;

using the ISA collective proposed in the previous section. The ISA collective
is repeatedly invoked on the part of the parent transaction set TP that is still
unsupported by the current collection of generated children. Since the children
itemsets are to offer a finer granularity than the parent itemset, a child itemset
that is a superset of the parent itemset is rejected, triggering a reduction in
coarseness γC sought. If the child itemset is a superset of the parent itemset, on
the other hand, it is added to the collection of candidate children.

In combination, the above two algorithms ensure that the coarseness, γC ,
of a child C always is less than or equal to the coarseness, γP , of its parent,
P . Furthermore, all the transactions Ti ∈ TP of a parent is supported by at
least one of the frequent itemsets of its children CP , ∀Ti ∈ TP ,∃[XC , TC , γC ] ∈
CP : XC ⊆ Ti. Note that the children transaction sets TC jointly contain all of
the transactions in the parent transaction set TP . These properties are taken
advantage of in the next section to build a rule based network packet anomaly
detection system.

4 Empirical Results

In this section we evaluate our proposed scheme using both artificial data as
well as data from a real-world network intrusion detection application. We first
evaluate the ISA collective separately, before we evaluate the hierarchical invo-
cation of ISA collectives, as presented in the previous section.
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4.1 Artificial Data

For the evaluation on artificial data we constructed a collection of transactions
in a manner that by selecting the correct itemset X, one can achieve a frequency,
freq(X), of either 0.0, 0.125, 0.25, . . . , 0.75, 0.875, 1.0. The purpose is to challenge
the scheme by providing a large number of frequency levels to choose among, with
only one of these being the target frequency γ that our scheme must converge
to. By varying the target frequency γ in the latter range, we also investigate the
robustness of our scheme towards low, medium, and high frequency itemsets.

We here report an ensemble average after conducting 100 runs of our scheme.
Given a target frequency γ, each run produces an itemset X∗, with X∗ being
supported by an actual frequency freq(X∗). By comparing the sought target
frequency γ with the achieved frequency freq(X∗), the convergence accuracy of
our scheme is revealed.

We first study convergence accuracy when any subset X ⊂ TE of the exam-
plar transaction TE either have a support frequency, freq(X), equal to the target
frequency γ, 1, or 0. Then the goal of the ISA collective is to identify the subset
X ⊂ TE with frequency γ. As seen in Fig. 3, our scheme achieves this goal with
remarkable accuracy.

Fig. 3. Achieved percentage of transactions supported by produced itemset (y-axis)
using a specific examplar transaction, for varying target frequencies γ (x-axis)

We observe that for any of the target frequencies γ listed in the figure, on
average our ISA collective identifies itemsets X∗ with frequencies freq(X∗) ∈
{0.0, 0.125, 0.25, . . . , 0.75, 0.875, 1.0} that either equals γ or surpasses γ with the
least possible amount: freq(X∗) ≥ γ ∧ freq(X∗) − 0.125 < γ.

When using a generic transaction examplar TE instead — one that con-
tains item subsets X ⊆ TE of any arbitrary frequency level freq(X) ∈ {0.0,
0.125, 0.25, . . . , 0.75, 0.875, 1.0}, the challenge increases. The ISA collective then
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also have the option to produce frequencies in close vicinity of the target fre-
quency γ. Figure 4 reports the resulting convergence accuracy, and as seen, it is
now more difficult for the collective of ISA to always produce an itemset X with a
transaction support frequency exactly equal to γ. Still, the itemsets produced are
always close to a nearby neighbor of γ in {0.0, 0.125, 0.25, . . . , 0.75, 0.875, 1.0}.

Fig. 4. Achieved percentage of transactions supported by produced itemset (y-axis)
using a generic examplar transaction, for varying target frequencies γ (x-axis)

4.2 DARPA Intrusion Detection Evaluation Data Set

To evaluate the ISA collective scheme on a real life application, we have imple-
mented a network intrusion detection system, with the ISA collective at its core.
Briefly explained, we analyze the last 40 bytes of each network packet header in
combination with the first 8 bytes of the transport layer payload, as also done
in NETAD [8].1 Essentially, we see each network packet as a transaction, and
byte-value pairs from a network packet are seen as items.

We intend to detect network attacks by first learning a collection of frequent
itemsets that describe the key features of normal network traffic – and based
on these frequent itemsets, reporting network packets as anomalous when they
do not support any of the learned frequent itemsets. We use the 1999 DARPA
Intrusion Detection Evaluation data set [7] for training and testing our system.
This data set simulates network traffic occurring in a small US Air Force base
that is connected to the Internet. The internal network is connected to the
Internet by a CISCO router, and network traffic is captured on both sides of
this router. The captured traffic is made available in separate files based on the
origin of the network traffic — outside, from the Internet, or inside, from the
internal network.
1 Note that in contrast to NETAD, we analyze both ingoing and outgoing network

packets, for greater accuracy.
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During training, we use one week of normal traffic data, learning one frequent
itemset at a time by randomly picking examplar transactions (network packets)
from the normal traffic data. Each time the collective of ISA converges to a new
frequent itemset, all network packets that support this itemset are removed from
the normal traffic data, and the procedure is repeated on the network packets
remaining, to learn each kind of traffic being present. This step produces the
first level of children nodes in the hierarchy, the children of the root. Each of
the produced children are now associated with a disjoint subset of the network
packets, and by recursively invoking the ISA collective on these subsets, a more
fine granular representation of the network packets are found. Again, coarseness
is controlled by gradually reducing γ from γmax to γmin.

As an example, a frequent itemset hierarchy generated from the network
packets of Week 1 of the DARPA data set is shown in Fig. 5. In brief, multi-
ple children are needed to support the parent transactions (network packets).
Furthermore, node expansion stops when the transaction set of a node contains
less than 5 % of the total population of network packets. Notice the hierarchy
compactness achieved despite the huge amount of network packets present in the
DARPA data set and despite the fine grained target granularity (γmin = 0.05)
sought.

Fig. 5. Example of a frequent itemset hierarchy that was generated based on one week
of training data from the 1999 DARPA IDS Evaluation Set. Each node in the hierarchy
corresponds to a single frequent itemset

To gain further insight into the hierarchy generation process, Fig. 6 reports
the total number of iterations spent by each ISA, grouped by network packet
byte position. The figure shows that certain packet bytes and their values are
“easier” to learn than others. Basically, we observe that the greater the diversity
of values associated with a network packet byte (high entropy), the more iter-
ations are needed to decide upon whether to include the corresponding item in
the frequent itemset being constructed by the ISA collective. For instance, the
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values contained in the content bytes (byte 40 to 48) of a packet are by nature
highly diverse, and thus require more time for learning an appropriate decision.

Fig. 6. Total number of iterations performed by ISAs to generate complete hierarchy,
grouped by network packet byte position

For testing, the second week of the DARPA data set is used. The network
packets from this week contain attacks, interspersed among the normal traffic.
If a network packet in the second week of data does not support any of the
learned frequent itemsets, it is reported as an anomaly. Table 1 contains a few
representative examples of frequent itemsets, called Rules, and which kind of
attacks they allow us to detect. As seen, each Rule consists of selected bytes from
a packet, combined with a hexadecimal representation of the corresponding byte
value. Thus, considering the first row of the table, network packets of the so-
called ps-attack do not support the frequent itemset {ver+ihl:0x45, frag1:0x40,
frag2:0x00, proto:0x06, srcport1:0x00, tcphl:0x50, urgptr1:0x00, urgptr2:0x00},
and are therefore reported as anomalies.

For computational efficiency, each Rule (frequent itemset) is implemented as
a classification tree, as illustrated in Fig. 7. Each node in the classification tree
corresponds to a specific item of the frequent itemset. As explained in Sect. 1, for
the intrusion detection application an item refers to the combination of packet
byte position and packet byte value, represented as a bit string. A non-match
marks that the transaction being analyzed is unsupported, and accordingly, can
be “blocked” by the network anomaly detection system unless another matching
itemset can be found. For the frequent itemset reported in the figure, the target
coarseness γ was set to 0.5, and as can be seen, the resulting Rule matches a
percentage of 49.9 % of the network packets, i.e., very close to the target.

To further demonstrate the effect minimum coarseness γmin has on anomaly
detection sensitivity, Fig. 8 plots the anomaly scores for three unique frequent
itemset hierarchies, each with different granularity constraints. An anomaly score
was introduced to differentiate between different levels of the hierarchy — a
packet not being supported by the more coarse frequent itemsets closer to the
root is more aggravating than minor deviations closer to the leaf nodes. In order
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to capture such effects, we trace a path through the hierarchy, starting from
the root, and continuing, level-by-level, with the child that supports the current
transaction. When the path reaches a node P whose children do not support the
current transaction, the transaction is assigned the anomaly score:

48 − 2 · |XP |.

In other words, the smaller the frequent itemset the larger the anomaly score. For
instance, a transactions that stops being supported immediately after the root,
will have the maximum anomaly score possible, which is 48. The plots in Fig. 8
highlights particularly anomalous packets as spikes, while packets recognized as
normal possessing anomaly score less than or equal to zero. Notice that as the
hierarchy coarseness increases, from top to bottom in the figure, the number of
spikes decreases. Although the number of detected anomalies is at its highest
with low coarseness, all of these anomalies are not necessarily true attacks (finer
granularity may lead to false alarms). Thus, to quantify the anomaly detection
capability of our scheme, Table 2 provides the estimated detection probability for
attacks (detection rate), as well as the average number of false alarms produced
for a whole week of network traffic. The table shows that the best detection rates
were achieved by the hierarchies that were trained on Week 1 data, and which
“leaves” possessed a minimum granularity γmin = 0.05.

Table 1. Transaction examplars

Rule Attacks

ver+ihl:0x45, frag1:0x40, frag2:0x00, proto:0x06, srcport1:0x00,
tcphl:0x50, urgptr1:0x00, urgptr2:0x00

ps

ver+ihl:0x45, dscp:0x00, frag1:0x00, frag2:0x00, proto:0x06,
tcphl:0x50, urgptr1:0x00, urgptr2:0x00

ps

ver+ihl:0x45, dscp:0x00, len:0x00, frag1:0x40, frag2:0x00, ttl:0x40,
proto:0x06, dstaddr1:0xac, dstaddr2:0x10, dstport1:0x00,
dstport2:0x17, tcphl:0x50, recwd1:0x7d, recwd2:0x78,
urgptr1:0x00, urgptr2:0x00, pld1:0x00, pld5:0x00, pld7:0x00,
pld8:0x00, pld9:0x00

ps, guesstelnet,
sendmail

To conclude this investigation, Table 3 provides an overview of the attack
types that remain undetected by the hierarchies that we produced. Note that
only network packets originating from outside the firewall were used in these
tests. In other words, the attacks that take place purely on the inside of the
firewall were left undetectable as a consequence of the experimental setup. Also
undetectable are the locally executed attacks that do not generate any network
traffic. This leaves us with only two attacks that could have been detected, but
were not: one instance of guesspop and one instance of land (the other instance
is on the inside), which reveals a remarkable detection rate/false positive ratio.
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Fig. 7. Classification tree based implementation of frequent itemset transaction sup-
port determination

As a final note, observe that since each bandit player learns simply by updat-
ing the state of a finite automaton, and since the reinforcement feedback is
calculated purely from the present itemset and the corresponding decisions of

Table 2. Results from IDS evaluation using the DARPA set

Parameters Rate False positives

Training data Granularity avg min max avg min max

Week 1 outside 1% 0.56 0.55 0.57 412.67 392 453

5% 0.73 0.72 0.74 123 120 129

10% 0.43 0.42 0.44 61.67 52 69

Week 3 outside 1% 0.54 0.50 0.58 427 426 429

5% 0.63 0.57 0.66 88.33 81 96

10% 0.54 0.53 0.55 59.67 58 61

Week 1 + 3 outside 1% 0.54 0.52 0.56 418 404 436

5% 0.61 0.57 0.66 82 68 94

10% 0.46 0.43 0.53 47.33 40 61
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Fig. 8. Comparison of anomaly distribution between three frequent itemset hierarchies
of different granularity.
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Table 3. Undetected DARPA attack types

Alias Instances Console/remote Inside/outside Stealthy

anypw 2 Console – No

dict 6 Remote Inside No

guesspop 1 Remote Outside No

illegalsniffer 14 Remote Inside Mix

land 2 Remote Both No

ntfsdos 3 Console – No

resetscan 1 Remote Inside Yes

sshprocesstable 12 Remote Inside No

the bandit players, the resulting memory footprint is minimal (usually one byte
per ISA). Furthermore, computational complexity grows merely linearly with
the cardinality of the examplar itemset.

5 Conclusion

In this paper we have addressed frequent itemset mining by the means of a col-
lective of so-called Item Selector Automata (ISA). By on-line interaction with
a stream of transactions, the collective of ISA decides which items should be
excluded and which should be included in a frequent itemset, with items being
chosen from a randomly or manually selected examplar itemset. A novel rein-
forcement scheme guides the ISA towards finding a candidate itemsets that is
supported by transactions with a specified frequency. By invoking the latter pro-
cedure recursively, a progressively more fine granular summary of the itemset
stream is produced, represented as a hierarchy of frequent itemsets.

Since each bandit player learns simply by updating the state of a finite
automaton, and since the reinforcement feedback is calculated purely from the
present itemset and the corresponding decisions of the bandit players, the result-
ing memory footprint is minimal. Furthermore, computational complexity grows
merely linearly with the cardinality of the examplar itemset.

In extensive evaluation using both artificial data and data from a real-world
network intrusion detection application, we find the results quite conclusive,
demonstrating that the ISA collective possesses an excellent ability to find fre-
quent itemsets at various levels of support. Furthermore, the sets of frequent
itemsets produced for network intrusion detection are compact, yet accurately
describe the different types of network traffic present, allowing us to detect
attacks in the form of anomalies.

In our further work, we intend to develop formal convergence proofs for
the ISA collective. We are also presently investigating a hierarchical scheme for
organizing ISA collectives, with the purpose of increased scalability.
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