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This paper is concerned with fault detection problem for a class of network control systems (NCSs) with multiple communication
delays and stochastic missing measurements. The missing measurement phenomenon occurs in a random way and the occurrence
probability for each measurement output is governed by an individual random variable. Besides, the multiple communication
delay phenomenon reflects that networked control systems have different communication delays when the signals are transferred
via different channels. We aim to design a fault detection filter so that the overall fault detection dynamics is exponentially stable in
themean square. By constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability
of the fault detection filter for the discrete systems, and the filter parameters are also derived by solving linear matrix inequality.
Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

1. Introduction

Over the past few decades, the fault detection problem has
been attracting extensive research attention from scholars
[1–6]. In a fault detection progress, we aim to construct a
residual signal and compute a residual evaluation function
which can then be compared with a predefined threshold;
if the residual exceeds the threshold we set, then the fault is
detected and an alarmof fault is generated. Inmany industrial
applications, various filter schemes have been proposed
recently for systems which assume that the measurements
always contain a true signal. However, systems may exhibit
process and measurement noise inputs. One approach to this
problem isH

∞
filtering, and the advantage of this approach

is that the noise signals in the H
∞

filtering setting are
arbitrary signals with bounded energy, and no exact statistics
are required to be known. So, H

∞
filter has been widely

applied to many actual systems due to its high accuracy and
robustness [7–13].

Considering the fault detection problem in a class of
networked control systems, some new problems havemerged

out [14–16]. Communication delays and missing measure-
ments are important issues in NCSs. Some existing literatures
assume that measurement signal is completely lost. In fact,
there often may be a part of the measurement information
loss, and each individual sensor may also have different
data loss probability [17–24]. For example, in [21], a model
of multiple missing measurements has been presented by
using a diagonal matrix to account for the different missing
probability for individual sensors. The finite-horizon robust
filtering problem has been considered in [22] for discrete-
time stochastic systems with probabilistic missing measure-
ments subject to norm-bounded parameter uncertainties.
A Markovian jumping process has been employed in [23]
to reflect the measurement missing problem. Moreover, the
optimal filter design problem has been tackled in [24] for
systems with multiple packet dropouts by solving a recursive
difference equation (RDE). In addition, the presence of com-
munication delays not only reduces relative stability and
robustness but also degrades the performance. So far, many
researchers have studied the stability and controller design
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problems for networked systems in the presence of commu-
nication delays [25–33].

Summarizing the above discussion, in this paper, we
are motivated to study the fault detection problem for a
class of network control systems with multiple communi-
cation delays and stochastic missing measurements. A fault
detection filter is constructed through the establishment
of the existing model; then the addressed fault detection
problem is converted into an auxiliaryH

∞
filtering problem.

Sufficient conditions are established for the existence of the
fault detection filter, and then the corresponding solvability
conditions for the desired filter gains are established. In the
end, a practical simulation example is given to show the effec-
tiveness of the proposed method. The main contributions of
this paper can be listed as follows. (1) A model is proposed
to describe multiple communication delays, and randomly
occurring packet dropout phenomenon is also considered.
(2)TheH

∞
performance requirement and the fault detection

specification can be obtained by employing stochastic analy-
sis technique. (3) Sufficient conditions are established under
which the augmented system is exponentially mean-square
stable and satisfies the performance constraint for all nonzero
exogenous disturbances under zero-initial condition.

Notation. The notation used in the paper is fairly stan-
dard. R𝑛, R𝑛×𝑚, and Z (Z+,Z−) denote, respectively, the
𝑛-dimensional Euclidean space, the set of all 𝑛 × 𝑚 real
matrices, and the set of integers (nonnegative integers,
negative integers). The notation ‖𝐴‖ refers to the norm of
a matrix 𝐴 defined by ‖𝐴‖ = √tr(𝐴𝑇𝐴). 0 represents zero
matrix of compatible dimensions.The 𝑛-dimensional identity
matrix is denoted as 𝐼

𝑛
or simply 𝐼, if no confusion is caused.

The notation 𝑃 > 0 means that 𝑃 is real symmetric and
positive definite.𝑀𝑇 represents the transpose of the matrix
𝑀. diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. E{𝑥} and
E{𝑥 | 𝑦}will, respectively, mean expectation of the stochastic
variable 𝑥 and expectation of 𝑥 conditional on 𝑦. ∗ is used
as an ellipsis for terms induced by symmetry in symmetric
blockmatrices.Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation

In this paper, we consider the fault detection problem for a
class of network control systems with multiple communica-
tion delays and stochasticmissingmeasurements; then aNCS
model can be represented by the following dynamic model:

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘)

+

𝑁

∑
𝑚=1

(𝐴
𝑑
+ Δ𝐴
𝑑
) 𝑥 (𝑘 − 𝑚)

+ 𝐷
1
𝜔 (𝑘) + 𝐸

𝑓
𝑓 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷
2
𝜔 (𝑘) ,

𝑥 (𝑘) = 𝜓 (𝑘) ∀𝑘 ∈ 𝑍
−

,

(1)

where 𝑥(𝑘) ∈ R𝑛𝑥 represents the state vector, 𝑥(𝑘 − 𝑚) ∈
R𝑛𝑥 denotes the state delay of the system, and 𝜔(𝑘) ∈ R𝑛𝜔

denotes the unknown disturbance, while 𝑓(𝑘) ∈ R𝑛𝑓 is the
fault of the system. 𝑦(𝑘) ∈ R𝑛𝑦 denotes the system progress
output. 𝜓(𝑘) (𝑘 ∈ Z−) is given random initial conditions
satisfying sup

𝑘∈Z−E{‖𝜓(𝑘)‖
2

} < ∞. Δ𝐴 and Δ𝐴
𝑑
are internal

perturbation arising from uncertain factors𝐴 and𝐴
𝑑
.𝐴,𝐴

𝑑
,

𝐷
1
, 𝐸
𝑓
, 𝐶, and 𝐷

2
are known real matrices with appropriate

dimensions. Besides, the real-valued matrices Δ𝐴 and Δ𝐴
𝑑

represent the norm-bounded parameter uncertainties of the
following structure:

[Δ𝐴 Δ𝐴
𝑑
] = 𝐻

𝑎
𝐹 (𝑘) [𝐸

𝑎
𝐸
𝑑
] , (2)

where 𝐻
𝑎
, 𝐸
𝑎
, and 𝐸

𝑑
are known constant matrices with

appropriate dimensions, and 𝐹(𝑘) is an unknown matrix
function satisfying

𝐹
𝑇

(𝑘) 𝐹 (𝑘) ≤ 𝐼. (3)

Then, we model the missing measurements via a diagonal
matrix consisting of a series ofmutually independent random
variables satisfying certain probabilistic distributions on the
interval [0 1]. So, the multiple missing measurements are
described by

𝑦 (𝑘) = Ξ𝐶𝑥 (𝑘) + 𝐷
2
𝜔 (𝑘)

=

𝑟

∑
𝑗=1

𝛽
𝑗
𝐶
𝑗
𝑥 (𝑘) + 𝐷

2
𝜔 (𝑘) ,

(4)

where 𝑦(𝑘) ∈ R𝑛𝑦 is the actual measurement signal output,
and Ξ = diag{𝛽

1
, . . . , 𝛽

𝑟
},𝛽
𝑗
(𝑗 = 1, . . . , 𝑟) are a series of

mutually independent random variables; it is assumed that
𝛽
𝑗
has the probabilistic density function 𝑞

𝑗
(𝑆) (𝑗 = 1, . . . , 𝑟)

on the interval [0 1] with mathematical expectation 𝑢
𝑗
and

variance 𝜎2
𝑗
. 𝐶
𝑗
is defined by

𝐶
𝑗
= diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟−𝑗

}𝐶. (5)

For presentation convenience, we denote

Ξ = E {Ξ} , Ξ̃ = Ξ − Ξ. (6)

Remark 1. Because missing measurements in system occur
in a stochastic way, 𝛽

𝑗
is the probabilistic missing statue of

the 𝑗th sensor and can take value on the interval [0 1]. In
addition, for every sensor, their probability to take different
values may differ from each other, which reflects stochastic
character of the multiple missing measurements in system
model.
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Then, we can easily describe a NCS model with multiple
communication delays and stochastic missing measurements
as

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘)

+

𝑁

∑
𝑚=1

(𝐴
𝑑
+ Δ𝐴
𝑑
) 𝑥 (𝑘 − 𝑚)

+ 𝐷
1
𝜔 (𝑘) + 𝐸

𝑓
𝑓 (𝑘) ,

𝑦 (𝑘) = Ξ𝐶𝑥 (𝑘) + 𝐷
2
𝜔 (𝑘) ,

𝑥 (𝑘) = 𝜓 (𝑘) ∀𝑘 ∈ 𝑍
−

.

(7)

Thekey step of fault detection schemes is the construction
of a dynamic system called a fault detection observer or filter,
in which the residual signal is generated in order to decide
whether a fault has occurred or not. In this paper, according
to the above formula, we build a fault detection filter whose
model can be described as follows:

𝑥 (𝑘 + 1) = 𝐴
𝑓
𝑥 (𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑟 (𝑘) = 𝐶
𝑓
𝑥 (𝑘) + 𝐷

𝑓
𝑦 (𝑘) ,

(8)

where 𝑥(𝑘) ∈ R𝑛𝑥 represents the filter state vector, 𝑟(𝑘) ∈
R𝑛𝑙 is the so-called residual that is compatible with the
fault vector 𝑓(𝑘), and 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
are appropriately

dimensioned filter matrices to be determined. We set the
following variables:

𝑒 (𝑘) = 𝑟 (𝑘) − 𝑓 (𝑘) ,

𝜂 (𝑘) = [𝑥𝑇 (𝑘) 𝑥
𝑇

(𝑘)]
𝑇

,

] (𝑘) = [𝜔𝑇 (𝑘) 𝑓𝑇 (𝑘)]
𝑇

.

(9)

Then, we can get the overall fault detection dynamics
governed by the following system:

𝜂 (𝑘 + 1) = (𝐴 + 𝐴) 𝜂 (𝑘) +

𝑁

∑
𝑚=1

𝐴
𝑑
𝜂 (𝑘 − 𝑚) + 𝐵] (𝑘) ,

𝑒 (𝑘) = 𝑟 (𝑘) − 𝑓 (𝑘) = (𝐶 + 𝐶) 𝜂 (𝑘) + 𝐷] (𝑘) ,

(10)

where

𝐴 = [
𝐴 + Δ𝐴 0

𝐵
𝑓
Ξ𝐶 𝐴

𝑓

] , 𝐴 = [
0 0

𝐵
𝑓
Ξ̃𝐶 0

] ,

𝐴
𝑑
= diag {𝐴

𝑑
+ Δ𝐴
𝑑
, 0} ,

𝐵 = [
𝐷
1
𝐸
𝑓

𝐵
𝑓
𝐷
2
0
] , 𝐶 = [𝐷

𝑓
Ξ𝐶 𝐶

𝑓
] ,

𝐶 = [𝐷
𝑓
Ξ̃𝐶 0] , 𝐷 = [𝐷

𝑓
𝐷
2
−𝐼] .

(11)

Remark 2. There is a big probability of the existence of errors
between theoretical and practical systems due to unexpected

factors in NCSs. In order to overcome this phenomenon, it
is natural to assume system uncertainties. In this paper, we
assume that the uncertainties occur on not only regular item
of the system but also time-delay item. Therefore, this is a
more general description for the NCSs.

The main purpose of this paper is to design a fault
detection filter such that the overall fault detection dynamics
is exponentially stable in the mean square and, at the same
time, the error between the residual signal and the fault signal
is made as small as possible. Until now, the fault detection
problem to be addressed in this paper can be described by
the following two steps.

Step 1. For system (7), we construct a fault detection filter as
the model of (8); then we can obtain the residual signal 𝑟(𝑘).
Furthermore, the filter is designed so that the overall fault
detection system (10) is exponentially mean-square stable
with the following H

∞
performance constraint under zero-

initial condition:
∞

∑
𝑘=0

E {‖𝑒 (𝑘)‖
2

} ≤ 𝛾
2

∞

∑
𝑘=0

‖V (𝑘)‖2, (12)

where V(𝑘) ̸= 0, and 𝛾 > 0 is made as small as possible.

Step 2. We set up a fault detection measure to judge whether
a fault occurs. In this paper, we adopt two variables: an
evaluation function 𝐽(𝑘) and a threshold 𝐽th. The faults can
be detected by comparing these two variables:

𝐽 (𝑘) = {

𝑘=𝑠

∑
𝑘=𝑠−L

𝑟
𝑇

(𝑘) 𝑟 (𝑘)}

1/2

, 𝐽th = sup
𝑤∈𝑙
2
,𝑓=0

E {𝐽 (𝑘)} ,

(13)

whereL denotes the length of the finite evaluating time hori-
zon. Based on (13), the occurrence of faults can be detected by
comparing 𝐽(𝑘) with 𝐽th according to the following rule:

𝐽 (𝑘) > 𝐽th ⇒ with faults ⇒ alarm,

𝐽 (𝑘) ≤ 𝐽th ⇒ no faults.
(14)

3. Main Results

First of all, let us introduce the following lemmas which will
be used in deriving our main results.

Lemma 3 (Schur complement). Given constant matrices
𝑆
1
, 𝑆
2
, 𝑆
3
, where 𝑆

1
= 𝑆𝑇
1
and 0 < 𝑆

2
= 𝑆𝑇
2
, then 𝑆

1
+𝑆𝑇
3
𝑆−1
2
𝑆
3
<

0 if and only if

[
𝑆
1
𝑆𝑇
3

𝑆
3
−𝑆
2

] < 0 or [
−𝑆
2
𝑆
3

𝑆𝑇
3
𝑆
1

] < 0. (15)

Lemma 4 (𝑆-procedure). Let 𝑁 = 𝑁
𝑇, 𝐻 and 𝐸 be real

matrices with appropriate dimensions, and let 𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼.
Then, the inequality𝑁+𝐻𝐹𝐸+(𝐻𝐹𝐸)𝑇 < 0 if and only if there
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exists a positive scalar 𝜀 such that𝑁+ 𝜀𝐻𝐻𝑇 + 𝜀−1𝐸𝑇𝐸 < 0 or,
equivalently,

[

[

𝑁 𝜀𝐻 𝐸𝑇

𝜀𝐻𝑇 −𝜀𝐼 0

𝐸 0 −𝜀𝐼

]

]

< 0. (16)

For convenience of presentation, we first discuss the
nominal system without parameter uncertainties Δ𝐴 and
Δ𝐴
𝑑
in Theorems 5 and 6 and will eventually extend our

main results to the general case in Theorem 7. Therefore, in
Theorems 5 and 6, we redefine 𝐴 and 𝐴

𝑑
as

𝐴 = [
𝐴 0

𝐵
𝑓
Ξ𝐶 𝐴

𝑓

] , 𝐴
𝑑
= diag {𝐴

𝑑
, 0} . (17)

Theorem 5. Consider the nominal system model (10) and
suppose that the filter parameters are given. The nominal fault
detection filter (8) is exponentially mean-square stable with a
disturbance attenuation level 𝛾 > 0, if there exist matrices
𝑃 > 0, 𝑄

𝑘
> 0 (𝑘 = 1, 2, . . . , 𝑁) satisfying

Ψ
𝑇

�̌�Ψ + Ψ̂
𝑇

�̌�Ψ̂ + 𝑃 < 0, (18)

where

𝑍 = [𝐴
𝑑
⋅ ⋅ ⋅ 𝐴

𝑑
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

, 𝐶
𝑗
= [𝐷
𝑓
𝐶
𝑗
0] ,

A = [𝐴 𝑍 𝐵] , C
𝑚
= [𝐶 0 𝐷] ,

Ψ = [A
𝑇

C𝑇
𝑚

]
𝑇

, Ǎ = [

𝑚

∑
𝑗=1

𝜎
𝑗
𝐴
𝑗
0 0] ,

Č = [

𝑚

∑
𝑗=1

𝜎
𝑗
𝐶
𝑗
0 0] , Ψ̂ = [Ǎ𝑇 Č𝑇]

𝑇

,

�̌� = diag {𝑃, 𝐼} , F = diag {−𝑄
1
, . . . , −𝑄

𝑁
} ,

𝑄
𝑘
=

𝑁

∑
𝑘=1

𝑄
𝑘
− 𝑃, �̂� = diag {𝑄

𝑘
,F} ,

𝑃 = diag {�̂�, −𝛾2𝐼} .

(19)

Proof. Choose a Lyapunov functional for system (10):

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) , (20)

where

𝑉
1
(𝑘) = 𝜂

𝑇

(𝑘) 𝑃𝜂 (𝑘) ,

𝑉
2
(𝑘) =

𝑁

∑
𝑚=1

𝑘−1

∑
𝑖=𝑘−𝑚

𝜂
𝑇

(𝑖) 𝑄
𝑚
𝜂 (𝑖) .

(21)

Then, along the trajectory of augmented system (10) with
](𝑘) = 0, we have

E {Δ𝑉
1
(𝑘)}

= E
{

{

{

[(𝐴 + 𝐴) 𝜂 (𝑘) +

𝑁

∑
𝑚=1

𝐴
𝑑
𝜂 (𝑘 − 𝑚) + 𝐵] (𝑘)]

𝑇

𝑃

× [(𝐴 + 𝐴) 𝜂 (𝑘) +

𝑁

∑
𝑚=1

𝐴
𝑑
𝜂 (𝑘 − 𝑚) + 𝐵] (𝑘)]

− 𝜂(𝑘)
𝑇

𝑃𝜂 (𝑘)
}

}

}

,

E {Δ𝑉
2
(𝑘)}

=E{
𝑁

∑
𝑚=1

[𝜂
𝑇

(𝑘) 𝑄
𝑚
𝜂 (𝑘) − 𝜂

𝑇

(𝑘 − 𝑚)𝑄
𝑚
𝜂 (𝑘 − 𝑚)]} .

(22)

For notational convenience, we denote

𝜂 (𝑘 − 𝜏) = [𝜂𝑇 (𝑘 − 1) ⋅ ⋅ ⋅ 𝜂
𝑇

(𝑘 − 𝑁)]
𝑇

,

𝜉 (𝑘) = [𝜂
𝑇

(𝑘) 𝜂
𝑇

(𝑘 − 𝜏)]
𝑇

, 𝜉 (𝑘) = [𝜉𝑇 (𝑘) V𝑇 (𝑘)]
𝑇

,

A = [𝐴 𝑍] , Â = [

𝑚

∑
𝑗=1

𝜎
𝑗
𝐴
𝑗
0] , 𝐴

𝑗
=[

0 0

𝐵
𝑓
𝐶
𝑗
0
] .

(23)

In the following, we first prove the exponential stability
of the fault detection dynamics system (10) with ](𝑘) = 0.
Therefore, we can easily have

E {Δ𝑉 (𝑘)} ≤ E {𝜉
𝑇

(𝑘) (A
𝑇

𝑃A + Â
𝑇

𝑃Â + �̂�) 𝜉 (𝑘)} . (24)

By utilizing Schur complement Lemma 3, we know that
E{Δ𝑉(𝑘)} < 0 if (18) is true. Furthermore, along the same
line of the proof for Theorem 1 in [34], it can be concluded
that the discrete-time nominal system of (10) with ](𝑘) = 0 is
exponentially mean-square stable.

Now, we are in a position to deal with the H
∞

per-
formance of the nominal system of (10). Under zero-initial
condition, 𝐽(𝑛) can be described as the following forms:

𝐽 (𝑛) = E
𝑛

∑
𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘)]

≤ E
𝑛

∑
𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉 (𝑘)] .

(25)

Then we have

𝐽 (𝑛) ≤ E{
𝑛

∑
𝑘=0

𝜉
𝑇

(𝑘) (Ψ
𝑇

�̌�Ψ + Ψ̂
𝑇

�̌�Ψ̂ + 𝑃) 𝜉 (𝑘)} . (26)
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If there exist 𝑃 > 0, 𝑄
𝑘
> 0 (𝑘 = 1, 2, . . . , 𝑁) satisfying

Ψ
𝑇

�̌�Ψ + Ψ̂
𝑇

�̌�Ψ̂ + 𝑃 < 0, (27)

then we will have 𝐽(𝑛) < 0 by consideringTheorem 5.
Letting 𝑛 → ∞, we can obtain

∞

∑
𝑘=0

E {‖𝑒(𝑘)‖
2

} ≤ 𝛾
2

∞

∑
𝑘=0

‖V(𝑘)‖2 (28)

which is equivalent to the inequality in (12). To this end, the
proof of Theorem 5 is complete.

According to the analysis results established, we will deal
with the fault detection filter design problem.

Theorem 6. Consider the nominal system model (10), and let
𝛾 > 0 be a given constant scalar which represents H

∞
noise

attenuation level bound. The desired full-order fault detection
filter of form (8) exists if there exist matrices 𝑃 > 0, 𝑄

𝑘
>

0, (𝑘 = 1, 2, . . . , 𝑁),𝑋, and 𝐾 satisfying

Ω = [
𝑃 ∗

Γ −P̌
] < 0, (29)

where

Γ
11
= [
𝑃𝐴
0
+ 𝑋�̂�
1
𝑃𝑍

𝐾�̂�
1

0
] , Γ

12
= [
𝑃𝐵
0
+ 𝑋�̂�
2

𝐸
0
+ 𝐾�̂�
2

] ,

Γ
21
= [
𝑋�̂�
4
0

𝐾�̂�
4
0
] , �̂�

1
= [

0 𝐼

Ξ𝐶 0
] ,

Γ = [
Γ
11
Γ
12

Γ
21
0
] , 𝐴

0
= [
𝐴 0

0 0
] ,

𝐵
0
= [
𝐷
1
𝐸
𝑓

0 0
] , �̂�

2
= [

0 0

𝐷
2
0
] ,

�̂�
4
=
[
[

[

0 0
𝑚

∑
𝑗=1

𝜎
𝑗
𝐶
𝑗
0
]
]

]

, 𝐸
0
= [0 −𝐼] ,

𝐸 = [0 𝐼]
𝑇

, P̌ = 𝐼
2
⊗ �̌�,

(30)

and 𝑃 and �̌� are defined in Theorem 5. Furthermore, if there
exist 𝑃 > 0, 𝑄

𝑘
> 0, (𝑘 = 1, 2, . . . , 𝑁), 𝑋, and 𝐾 satisfying

(29), then the fault detection filter parameters in the form of
(8) are given as follows:

[𝐴
𝑓
𝐵
𝑓
] = (𝐸

𝑇

𝑃𝐸)
−1

𝐸
𝑇

𝑋, [𝐶
𝑓
𝐷
𝑓
] = 𝐾. (31)

Proof. First, let us rewrite the parameters inTheorem 5 in the
following form:

𝐴 = 𝐴
0
+ 𝐸𝐿�̂�

1
,

𝑚

∑
𝑗=1

𝜎
𝑗
𝐴
𝑗
= 𝐸𝐿�̂�

4
,

𝐵 = 𝐵
0
+ 𝐸𝐿�̂�

2
,

𝐶 = 𝐾�̂�
1
,

𝑚

∑
𝑗=1

𝜎
𝑗
𝐶
𝑗
= 𝐾�̂�

4
,

𝐷 = 𝐸
0
+ 𝐾�̂�
2
, 𝐿 = [𝐴

𝑓
𝐵
𝑓
] .

(32)

Now, we can rewrite (18) by using Lemma 3 (Schur comple-
ment lemma) as follows:

[
𝑃 ∗

Γ̂ −P̌−1
] < 0, (33)

where

Γ̂ = [
Γ̂
11
Γ̂
12

Γ̂
21
0
] , Γ̂

11
= [
𝐴
0
+ 𝐸𝐿�̂�

1
𝑍

𝐾�̂�
1

0
] ,

Γ̂
12
= [
𝐵
0
+ 𝐸𝐿�̂�

2

𝐸
0
+ 𝐾�̂�
2

] , Γ̂
21
= [
𝐸𝐿�̂�
4
0

𝐾�̂�
4
0
] .

(34)

Pre- and postmultiplying inequalities (33) by diag{𝐼, P̌}
and letting 𝑋 = 𝑃𝐸𝐿, then we can obtain (29) readily. The
proof of this theorem is complete.

Now, according to previous Theorems 5 and 6, we can
do further research about the system with uncertainties
described in (7).

Theorem7. Consider the uncertain fault detection system (10)
with parameter uncertainties Δ𝐴 and Δ𝐴

𝑑
, and let 𝛾 > 0 be a

given constant scalar which represents H
∞

noise attenuation
level bound. The desired full-order fault detection filter of form
(8) exists if there exist matrices 𝑃 > 0, 𝑄

𝑘
> 0, (𝑘 =

1, 2, . . . , 𝑁),𝑋, 𝐾, and positive 𝜀 > 0 satisfying

[
[

[

Ω ∗ ∗

𝐻
𝑇

𝑎
−𝜀𝐼 ∗

𝜀𝐸
𝑎
0 −𝜀𝐼

]
]

]

< 0, (35)

where

𝐻
𝑎
= [0 0 0| 0 |�̂�

𝑇

𝑎
0| 0 0]

𝑇

,

𝐸
𝑎
= [𝐸
𝑎
𝐸
𝑑
0| 0 |0 0| 0 0] ,

�̂�
𝑎
= [𝐻𝑇
𝑎
0]
𝑇

, 𝐸
𝑎
= [𝐸
𝑎
0] ,

𝐸
𝑑
= [𝐸
𝑑
0 ⋅ ⋅ ⋅ 𝐸

𝑑
0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

.

(36)

Furthermore, if there exist appropriate matrices 𝑃 > 0, 𝑄
𝑘
>

0 (𝑘 = 1, 2, . . . , 𝑁), 𝑋, and 𝐾 satisfying (35), then the fault
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detection filter parameters in the form of (8) are given as
follows:

[𝐴
𝑓
𝐵
𝑓
] = (𝐸

𝑇

𝑃𝐸)
−1

𝐸
𝑇

𝑋, [𝐶
𝑓
𝐷
𝑓
] = 𝐾. (37)

Proof. According to result (29) inTheorem 6, we can replace
𝐴 and 𝐴

𝑑
in (29) with 𝐴 + 𝐻

𝑎
𝐹(𝑘)𝐸

𝑎
and 𝐴

𝑑
+ 𝐻
𝑎
𝐹(𝑘)𝐸

𝑑
;

then we can obtain the following form:

Ω +𝐻
𝑎
𝐹 (𝑘) 𝐸

𝑎
+ 𝐸
𝑇

𝑎
𝐹
𝑇

(𝑘)𝐻
𝑇

𝑎
< 0, (38)

where the corresponding parameters have been defined in
(36). According to Lemma 4, we can easily obtain (35), and
the proof is then complete.

Remark 8. From Theorem 7, we can know that the fault
detection filter is designed such that the overall fault detection
dynamics is exponentially stable in the mean square and, at
the same time, the error between the residual signal and the
fault signal is made as small as possible.

Remark 9. The main results in Theorems 5–7 can be applied
to a wide class of network control systems that involve
uncertainties, multiple communication delays, and stochastic
missing measurements that result typically from networked
environments. Sufficient conditions are established for the
existence of the desired fault detection filters. The corre-
sponding solvability conditions for the desired filter gains are
established, and the explicit expression of such filter matrices
is characterized in terms of the solution to a LMI that can be
effectively solved.

4. Numerical Example

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed algorithm. Consider
the following networked system with multiple communica-
tion delays and stochastic missing measurements:

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘)

+

𝑁

∑
𝑚=1

(𝐴
𝑑
+ Δ𝐴
𝑑
) 𝑥 (𝑘 − 𝑚)

+ 𝐷
1
𝜔 (𝑘) + 𝐸

𝑓
𝑓 (𝑘) ,

𝑦 (𝑘) = Ξ𝐶𝑥 (𝑘) + 𝐷
2
𝜔 (𝑘) ,

𝑥 (𝑘) = 𝜓 (𝑘) 𝑘 ∈ 𝑍
−

.

(39)

The model parameters are given as follows:

𝐴 = [
0.6 0.2

0 0.7
] , 𝐴

𝑑
= [
0.03 0

0.02 0.03
] ,

𝐷
1
= [
0.8

0.3
] , 𝐸

𝑓
= [
−1

0.6
] , 𝐻

𝑎
= [
0.2

0.01
] ,

𝐶 = [
0.2 −0.1

0.3 −0.2
] , 𝐷

2
= [
0.6

0.7
] , Ξ = [

𝛽
1
0

0 𝛽
2

] ,

𝐸
𝑎
= [0 2] , 𝐸

𝑑
= [0.1 2] , 𝐹 (𝑘) = sin (𝑘) ;

(40)

𝛽
1
and 𝛽

2
are independent random variables whose probabil-

ity density functions 𝑞(𝛽
1
) and 𝑞(𝛽

2
) satisfy

𝑞 (𝛽
1
) =

{{

{{

{

0 𝛽
1
= 0

0.1 𝛽
1
= 0.5

0.9 𝛽
1
= 1,

𝑞 (𝛽
2
) =

{{

{{

{

0 𝛽
2
= 0

0.2 𝛽
2
= 0.5

0.8 𝛽
2
= 1.

(41)

We can easily get the mathematical expectation and variance
of 𝛽
1
and 𝛽

2
: 𝑢
1
= 0.95, 𝑢

2
= 0.9, 𝜎

1
= 0.15, and 𝜎

1
= 0.2.

By applying Theorem 7, we can obtain the desired H
∞

filter parameters as follows:

𝐴
𝑓
= [
−0.2854 −0.2854

−0.2854 −0.2854
] , 𝐵

𝑓
= [
−0.4828 −0.1696

−0.4828 −0.1696
] ,

(42)

𝐶
𝑓
= [5.2489 5.2489] , 𝐷

𝑓
= [−18.6850 4.9809]

(43)

with the optimized performance index 𝛾∗ = 16.61.
To further illustrate the effectiveness of the designed fault

detection filter, we give a fault signal; for 𝑘 = 0, 1, . . . , 150, let
the fault signal 𝑓(𝑘) be given as

𝑓 (𝑘) = {
1, 50 ≤ 𝑘 ≤ 100

0, else.
(44)

First, we assume our initial conditions as 𝑥(0) =

[𝜋/8 0]
𝑇, 𝑥(0) = [0 0]

𝑇, and the external disturbance
is 𝑤(𝑘) = 0. The residual signal 𝑟(𝑘) and evolution of
residual evaluation function 𝐽(𝑘) are shown in Figures 1 and 2,
respectively, which indicate that the designed filter can detect
the fault effectively when it occurs.

Next, we consider that the disturbance is given by

𝑤 (𝑘) = {
0.5 × rand [0 1] , 30 ≤ 𝑘 ≤ 130
0, else,

(45)

where the rand function generates arrays of randomnumbers
whose elements are uniformly distributed in the interval
[0 1]. Then, the residual signal 𝑟(𝑘) and evolution of residual
evaluation function 𝐽(𝑘) are shown in Figures 3 and 4.
Respectively, it can be seen that the residual can not only
reflect the fault in time but also detect the fault without
confusing it with the disturbance 𝑤(𝑘).

Selecting a threshold as 𝐽th= sup𝑓(𝑘)=0E{∑
200

𝑘=0
𝑟𝑇(𝑘)𝑟(𝑘)}

1/2

and accordingly obtaining that 𝐽th = 36.9234 in Figure 4 rep-
resented the Dotted curve after 200 Monte Carlo simulations
with no faults. Solid curve represents the residual evaluation
of the system. From Figure 4, it can be seen that 36.6700 =
𝐽(76) < 𝐽th < 𝐽(77) = 37.1069, which means that the fault
can be detected in 27 time steps after its occurrence. From
simulation results, it can be clearly observed that the smaller
the thresholdwe obtain, the faster the fault detectionwill take.
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Figure 1: Residual signal 𝑟(𝑘) without 𝑤(𝑘).
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Figure 2: Evolution of residual evaluation function 𝐽(𝑘) without
𝑤(𝑘).

5. Conclusions

In this paper, we have addressed the fault detection problem
for a class of network control systems comprising multi-
ple communication delays and stochastic missing measure-
ments. Our purpose is to build up a fault detection filter
through an existing model of NCSs such that the overall fault
detection dynamics is exponentially stable while preserving a
guaranteed performance; at the same time, the error between
the residual signal and the fault signal is made as small
as possible. At the end, an illustrative simulation example
has been given to demonstrate the effectiveness of the fault
detection techniques presented in this paper.
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Figure 3: Residual signal 𝑟(𝑘) with 𝑤(𝑘) = 0.5 × rand[0, 1], 30 ≤
𝑘 ≤ 130.
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Figure 4: Evolution of residual evaluation function 𝐽(𝑘)with𝑤(𝑘) =
0.5 × rand[0, 1], 30 ≤ 𝑘 ≤ 130.
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