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For locating inaccurate problem of the discrete localization criterion proposed by Demigny, a new criterion expression of “good
localization” is proposed. Firstly, a discrete expression of good detection and good localization criterion of two dimension edge
detection operator is employed, and then an experiment to measure optimal parameters of two dimension Canny’s edge detection
operator is introduced after.Moreover, a detailed performance comparison and analysis of two dimension optimal filter obtained via
utilizing tensor product for one dimension optimal filter are provided which can prove that least square support vector regression
(LS-SVR) is a smoothness filter and give the construct method of the derivate operator. This paper uses LS-SVR as the object
function constructor and then realizes the approximation of two dimension optimal edge detection operator. This paper proposes
the utilitymethod of using singleness operator to realizemultiscale edge detection by referencing themultiscale analysis technology
of the wavelets theory. Experiment shows that the method has utility and efficiency.

1. Introduction

Edge detection is an important foundation of the image anal-
ysis such as image segmentation, texture feature extraction,
and shape feature extraction, which is one of the most active
research subjects in computer vision field. For the step edge
of gray image, due to the edge position corresponding to
the gradient extreme of gray function, edge detection may
be resolved by solving numerical derivative. As we all know,
the Roberts operator (Roberts, 1963), the Prewitt operator
(Prewitt, 1970), and the Sobel operator (Sobel, 1970) are all
proposed based on the above idea. Torre and Poggio [1]
pointed that the image numerical derivative is an ill problem,
and thus it is necessary for edge detection to use a low
pass filter (LPF) to smooth image and turn it into well
conditioned and then solve the derivative. Assuming that
𝐺(𝑋) is originality image,𝐻(𝑋) is smooth operator, and 𝑆(𝑥)

is the output after derivative, according to the convolution
characteristic, we can have

𝑆 (𝑥) = [∑𝐺 (𝑥 − 𝑦)𝐻 (𝑦)]


= ∑𝐺(𝑥 − 𝑦)𝐻

(𝑦) ,

𝑥, 𝑦 ∈ 𝑅
2
.

(1)

We can infer from (1) that edge detection may be realized
by using the derivative operator of smooth filter to filter
for image; clearly, the derivative operator of smooth filter,
namely, the edge detection operator, determines the effect of
edge detection.

To judge the performance of different edge detection
operators, Canny [2] proposed the distinguished 3-criterion
edge detection, took the one dimension step-like edge as
an example, gave each criterion mathematics expression in
continuous domain, and pointed that the first derivative of
the Gaussian function may be the approximation of the opti-
mal edge detection operator. Due to the rotation invariance
and two dimension partible characteristic of the Gaussian
function, Canny extended this conclusion to two dimension
image edge detection.On the basis of Canny’s work, Demigny
[3] proposed one dimension discrete format of Canny’s 3-
criterion and gave the calculation method of optimal edge
detection operator under this criterion. However, the image
is two dimensional and thus the edge detection should be two
dimensional. Therefore some academician suggested using
tensor product format [4] to generate two dimension edge
detection operator through one dimension smooth operator
and one dimension edge detection operator, which idealize
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image into separability signal of rows and columns. In fact,
there is some relativity between the rows and columns of
image, and in that respect the superiority of impartibility
wavelet [5] in the image processing has proved that the tensor
product format has bigger error. For the edge detection,
taking one dimension signal as the research object could not
clearly reflect the relativity of different rows and columns
pixels, and thus it is necessary to go on researching the design
problem of two dimension edge detection operator deeply. In
fact, there are lots of other methods such as data driven [6–
10] and support vector machine (SVM) which can deal with
the issue.

SVM is one machine study method based on statistical
learning theory [11], which is especially suitable for small
training set, via realizing structural risk minimization to
make study machine possess stronger generalization capabil-
ity. SVM gained broad application for its special superiority
on pattern recognition, function estimation, and so forth.
Different from standard SVM, least squares support vector
machine [12] (LS-SVM) turns convex quadratic function
optimization problem into linear equation solution, which
increases support vector number but avoids the complicated
optimizing process. Therefore, SVM has been applied widely
on function fitting [13–15]. The SVM function fitting is the
process of looking for the target function from the function
space, and the function format is decided by the setting of
SVM parameters. Therefore, parameters selecting is always
the puzzle problem in the SVM tradition application. But
from another point of view, this characteristic of SVM just
provides a new solving project for function construction
problem; that is, utilizing the same input vector, we may
obtain different format function via adjusting the SVM
parameters. Due to edge detection operator design being
essentially function construction problem, this paper tries to
utilize least squares support vector regression (LS-SVR) to
construct edge detection operator of two dimension image.

The paper is organized as follows. In Section 2, first, the
Canny continuous criteria and Demigny discrete criterion
are introduced, respectively. Next, localization criterion is
improved in Section 2.3, and the good detection results
criterion and localization criterion are extended to two
dimension in Section 2.4. In Section 3, LS-SVR is proved
to be smooth filter and the derivative operator constructor
method is given. In Section 4, first, the approximation ability
of LS-SVR is analyzed via experiment. The approximation of
the optimal two dimension edge detection operator proposed
in this paper is realized via adjusting LS-SVR parameters
in Section 4.2; at the same time, the optimal parameters of
Canny’s edge operator are given and the LS-SVR operator
in this paper is compared with Canny’s operator. Section 4.3
uses tensor product format to build two dimension edge
detection operator through one dimension optimal Canny’s
operator, compares the performance with two dimension
optimal Canny’s operator, and validates the conclusion that
one dimension optimal filter tensor product is just approxi-
mate of two dimension optimal filter. Section 5 proposes the
utility method using singleness operator to realize multiscale
edge detection based on multiscale analysis technology of
wavelet theory. A conclusion is made in Section 6.

2. Edge Detection Criterion

Noise is the main factor of influence edge detection effect;
in the various types of noise, especially the additive white
Gaussian noise is most familiar, and thus the evaluation
criterion of edge detection operator is mainly to decrease the
Gaussian noise effect as the main aim.

2.1. Canny’s Continuous Criterion

2.1.1. Good Detection. Good detection is to be a low proba-
bility of failing to mark real edge position and low proba-
bility of falsely marking nonedge position. Since both these
probabilities will decrease monotonically with the increase
of signal-to-noise ratio (SNR), this criterion is equivalent to
maximizing the SNR of edge points after filtering by solving
the smooth filter derivative operator 𝑓(𝑋). Assuming 𝐺(𝑋)

is one dimension step edge signal and 𝑁(𝑋) is the Gaussian
noise signal with zero mean and variance 𝜎2, then after 𝑓(𝑋)

filtering edge point SNR is

SNR (𝑓) =
𝐻
𝐺

𝐻
𝑁

=


∫
𝑊

−𝑊
𝐺 (−𝑥) 𝑓 (𝑥) 𝑑𝑥



𝜎√∫
𝑊

−𝑊
𝑓2 (𝑥) 𝑑𝑥

. (2)

2.1.2. Localization Criterion. Good localization is that the
edge points marked by the edge detection operator should
be as close as possible to the real edge. Assuming that the
real edge is centered at 0 and the edge point marked is 𝑥

0
,

then minimizing the expectation 𝐸(𝑥
0

2
) is to maximize the

following function:

Localization (𝑓) =

[∫
𝑊

−𝑊
𝐺

(−𝑥) 𝑓


(𝑥) 𝑑𝑥]

2

𝜎2 ∫
∝

−∝
𝑓2 (𝑥) 𝑑𝑥

. (3)

2.1.3. Only One Response to a Single Edge. The response peak
value of edge detection operator to noise is the main reason
of repeat response to a single edge; thus, this criterion can be
scaled by the average distance (𝑥ave) between the two peak
values of noise response. Assuming that the width of filter
windows is 2𝑊, we have

𝑥ave (𝑓) = 2𝜋(

∫
+∞

−∞
𝑓
2
𝑑𝑥

∫
+∞

−∞
𝑓2𝑑𝑥

)

1/2

= 𝑘𝑊. (4)

Once 𝑘 is fixed, the peak value number of the noise
response is confirmed in filter windows. It can be proved that
the result of this criterion is irrelative to the filter space scale;
thus, wemay take the 3rd criterion as the constraint, optimize
the decision function which is composed of the first two
criteria, and then solve the optimal edge detection operator.

2.2. Canny’s Discrete Criterion. Canny obtained the results
mentioned above under assuming that image and filter are all
continuous function. However, images are discrete; accord-
ingly, filters should be discrete. Therefore, in the application,
only the sampling of continuous function is used to act on
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image, but the sampling only satisfying sampling theorem
can be taken as discrete expression of continuous function;
otherwise, it will produce frequency overlap. So, the optimal
result of continuous domain after figure image sampling is
hardly optimal; moreover, according to statistic theory, the
result of formula (3) also has a certain degree of deviation.
Thus, by studying deeply [16, 17], Demigny proposed the
one dimension edge detection discrete criterion [3] based
on Canny’s continuous criterion. Demigny found that the
third criterion used by Cannymay be replaced with threshold
operation in the discrete domain; thus, this paper only
introduces the first two criteria.

Assuming that ℎ is the discrete edge detection operator
based on gradient, scale of ℎ is 2𝑑 + 1, ∀𝑑 > 0, which should
satisfy ℎ

0
= 0, ∀𝑘 > 0, ℎ

−𝑘
> 0, and ℎ

−𝑘
= −ℎ
𝑘
, and input

signal is 𝑒
𝑛
= 𝐴(𝑈

𝑛
−𝑈
𝑛−𝑑

), where𝑈
𝑛
is the discrete Heaviside

sequence, then, without noise, the filter output is

𝑠
𝑛
= 𝐴

−1

∑

−𝑑

ℎ
𝑘
, (5)

where 𝑑 is the scale of the filter size.
Only in the presence of noise, the variance of the filter

output is

𝜎
2

𝑠
= 𝜎
2

+∞

∑

−∞

ℎ
𝑘

2
. (6)

2.2.1. Good Detection: Criterion Σ. Good detection should
maximize the SNR of filter at the edge point, that is, maximize
the following function:

Σ =
∑
−1

−𝑑
ℎ
𝑘

(∑
+∞

−∞
ℎ
𝑘

2
)
1/2

. (7)

It is equivalent to maximize the following function:

𝐹 =

(∑
−1

−𝑑
ℎ
𝑘
)
2

∑
−1

−∞
ℎ
𝑘

2
. (8)

For the formulas above, solve the partial derivative and let
it be 0; thus

−𝑑 ≤ 𝑘 ≤ −1, ℎ
𝑘
=

∑
−1

−𝑑
ℎ
𝑖

𝐹
,

𝑘 < −𝑑, ℎ
𝑘
= 0.

(9)

We can see that the optimal edge detection filter is the box
filter of size 2𝑑 + 1, so the optimal value of formula (7) is

Σmax = √
𝑑

2
. (10)

Formula (9) gives a conclusion as follows: for one step
edge of width 𝑑, the optimal edge detection operator should
not be longer than 2𝑑+1; that is to say, for the edge filter with
2𝑑 + 1 coefficient, the edge would be detected reliably only
when the positive and negativewidth are larger than𝑑, in fact,
which offers the basis for scale selection of edge detection.

2.2.2. Good Localization: Criterion Λ. Since noise may cause
the offset of edge position, to confirm the good localization,
we should maximize the 𝑠



−1
> 0 probability. If the white

Gaussian noise𝑁with variance 𝜎2 is added to the signal, then
the total output at −1 point is

𝑠
−1

= 𝐴

−1

∑

−𝑑

ℎ
𝑘
+

+∞

∑

−∞

ℎ
−1−𝑘

𝑁
𝑘
. (11)

Demigny use discrete difference to take place ofderivation
operation; thus

𝑠


−1
= 𝐴 (ℎ

−1
− ℎ
−1−𝑑

) +

+∞

∑

−∞

ℎ


−1−𝑘
𝑁
𝑘
. (12)

The probability to obtain 𝑠


−1
> 0 is then

𝑃 (𝑠


−1
> 0) =

1

2
+ erf (Λ𝐴

𝜎
) , (13)

where erf(𝑥) = 1/√2𝜋∫
𝑥

0
𝑒
−𝑡
2
/2
𝑑𝑡 and Λ is the localization

criterion:

Λ =
ℎ
−1

− ℎ
−1−𝑑

(∑
+∞

−∞
ℎ
2

𝑘
)
1/2

=
∑
−1

−𝑑
ℎ


𝑘

(∑
+∞

−∞
ℎ
2

𝑘
)
1/2

. (14)

We have

Λ
2
= (2 + 2

∑
−1

−𝑑
ℎ
2

𝑘

(∑
−1

−𝑑
ℎ


𝑘
)
2
)

−1

. (15)

When ℎ


𝑘
= ℎ


𝑘+1
, −𝑑 ≤ 𝑘 ≤ −1, formula (15) obtains

the maximization, so the optimal value of the localization
criterion is

Λmax = √
𝑑

2 (𝑑 + 1)
. (16)

2.3. ImprovedDiscrete LocalizationCriterion. For one dimen-
sion step edge, the reason of maximization the probability to
obtain 𝑠



−1
> 0 is that the real edge position is between −1

and 0. Demigny used discrete difference to calculate deriva-
tiveness, in fact, which gave the maximization probability to
obtain 𝑠

−1
> 𝑠
−2
; that is to say, all the filters that satisfy

𝑠
−1

> 𝑠
−2

are good localization operator, which permits the
maximization of edge detection to be between −1 and −2 and
lean to −1, which has one pixel deviation with the real edge.
Moreover, for the less scale filter, the operator derivativeness
solved by difference has been influenced largely by the
borderline. Therefore, only using the derivative operator of
the edge detection filter that strictly satisfies the derivative
definition can solve the existing problem.
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Assume that width of the input signal is larger than 2𝑑+1

and ℎ
 is the second derivative operator of size 2𝑑 + 1 that

is deduced via formula (1), which should satisfy

𝑑

∑

−𝑑

ℎ


𝑘
= 0,

ℎ


𝑘
= ℎ


−𝑘
, 0 < 𝑘 ≤ 𝑑,

ℎ


𝑘
= 0, |𝑘| > 𝑑.

(17)

Thus,

Λ =
∑
−1

−𝑑
ℎ


𝑘

(∑
𝑑

−𝑑
ℎ
2

𝑘
)
1/2

, Λ
2
=

(∑
−1

−𝑑
ℎ


𝑘
)
2

∑
𝑑

−𝑑
ℎ
2

𝑘

. (18)

For ℎ
0
= −2∑

−1

−𝑑
ℎ


𝑘
, we have

Λ
2
=

(∑
−1

−𝑑
ℎ


𝑘
)
2

4(∑
−1

−𝑑
ℎ


𝑘
)
2

+ 2∑
−1

−𝑑
ℎ
2

𝑘

= (4 + 2
∑
−1

−𝑑
ℎ
2

𝑘

(∑
−1

−𝑑
ℎ


𝑘
)
2
)

−1

.

(19)

Obviously, the optimal ℎ obtained by solving the maximum
of formula (19) should satisfy ℎ



𝑘
= ℎ


−𝑘
= ℎ


𝑘+1
, 1 ≤ 𝑘 ≤ 𝑑 − 1,

and ℎ


0
= −2𝑑ℎ



𝑘
, 1 ≤ 𝑘 ≤ 𝑑; thus, the optimal value of the

localization criterion is

Λmax = √
𝑑

4𝑑 + 2
. (20)

2.4. Two Dimension Optimal Filter. One two dimension
smooth filter of the good space domain should have cen-
trosymmetric characteristic; that is, the filter coefficients are
symmetric according to row, column, and diagonal. This
paper discusses smooth filter with the above characteristic.
According to the conclusion of formula (1), edge detection
operator should be the derivative of a smooth filter operator
and the gradient of smoothness operator for the two dimen-
sion operator. Supposing 𝑥 = (𝑟, 𝑐) of formula (1), then, the
response of two dimension edge detection operator should be

𝑆


(𝑥)

= [(∑𝐺(𝑥 − 𝑦)
𝜕

𝜕𝑟
𝐻 (𝑦))

2

+ (∑𝐺(𝑥 − 𝑦)
𝜕

𝜕𝑐
𝐻 (𝑦))

2

]

1/2

.

(21)

We can see that two dimension edge detection operator is
composed of row and column directional partial derivative of
smooth filter operator. Assuming that input signal 𝐺 is a two
dimension column directional discrete Heaviside sequence,
filter window is𝑁×𝑁 neighborhood, where𝑁 = 2𝑑+1, and
windows center coordinate is (0, 0).

2.4.1. Optimal Filter for Criterion Σ. Assuming that dcH is
column directional first partial derivative of formula (1) and
drH is row directional first partial derivative, we have

𝑑𝑐𝐻
𝑖,0

= 0, −𝑑 ≤ 𝑖 ≤ 𝑑,

𝑑𝑐𝐻
𝑖,𝑗

= 𝑑𝑐𝐻
−𝑖,𝑗

= −𝑑𝑐𝐻
𝑖,−𝑗

,

− 𝑑 ≤ 𝑖 ≤ 𝑑, −𝑑 ≤ 𝑗 ≤ −1, −𝑑 ≤ 𝑖 ≤ 𝑑,

𝑑𝑐𝐻 = 𝑑𝑟𝐻
𝑇
.

(22)

Since drH and dcH are transposing each other, to assure the
column directional optimal can obtain the row directional
optimal.Therefore, here only considering dcH and according
to one dimension instance, “good detection” criterion should
be

Σ =
∑
𝑑

−𝑑
∑
−1

−𝑑
𝑑𝑐𝐻
𝑖,𝑗

(∑
𝑑

−𝑑
∑
𝑑

−𝑑
𝑑𝑐𝐻
2

𝑖,𝑗
)
1/2

. (23)

Thus, the optimal filter may be solved, which satisfies

𝑑𝑐𝐻
𝑖,𝑗

= −𝑑𝑐𝐻
−𝑖,−𝑗

= 𝑘,

𝑘 > 0, −𝑑 ≤ 𝑖 ≤ 𝑑, −𝑑 ≤ 𝑗 ≤ −1,

𝑑𝑐𝐻
𝑖,0

= 0, −𝑑 ≤ 𝑖 ≤ 𝑑.

(24)

So, the maximum of Σ is

Σmax = √
𝑑 (2𝑑 + 1)

2
. (25)

2.4.2. Optimal Filter for Criterion Λ. For formula (1), to
introduce the Laplacian operator, we have

𝑆


(𝑥) = ∑𝐺 (𝑥 − 𝑦)
𝜕
2

𝜕𝑟2
𝐻(𝑦) + ∑𝐺(𝑥 − 𝑦)

𝜕
2

𝜕𝑐2
𝐻(𝑦) .

(26)

Localization criterion demands that there is minimal devi-
ation between the marked edge position and the real edge
position. Since the input signal is a column directional Heav-
iside sequence, simon-pure edge position should be between
(0, −1) and (0, 0), and here 𝑆


(0, −1) > 0 and 𝑆


(0, 0) < 0.

Good edge detection operator should make 𝑆

(0, −1) > 0

and 𝑆

(0, 0) < 0 have the maximal probability; therefore

we discuss the maximization problem of the probability to
obtain 𝑆


(0, −1) > 0 firstly. Assuming that 𝑑𝑐𝑐𝐻is column

directional second derivative operator of 𝐻 and 𝑑𝑟𝑟𝐻 is
row directional second derivative operator, then 𝑑𝑐𝑐𝐻 should
have the symmetric characteristic according to row and
column and satisfy 𝑑𝑐𝑐𝐻 = 𝑑𝑟𝑟𝐻

𝑇. Assuming that 𝐿 is the
Laplacian operator, where 𝐿

𝑖,𝑗
is the coefficient, 𝐿 = 𝑑𝑐𝑐𝐻 +

𝑑𝑟𝑟𝐻 holds. Thus, 𝐿 is symmetric according to row and
column and the elements of the zero row and the zero column
are symmetric according to (0, 0), and ∑

𝑑

−𝑑
∑
𝑑

−𝑑
𝐿
𝑖,𝑗

= 0; we
have

𝐿
0,0

= −(4

−1

∑

−𝑑

𝐿
0,𝑗

+ 4

−1

∑

−𝑑

−1

∑

−𝑑

𝐿
𝑖,𝑗
) . (27)
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According to one dimension format, localization crite-
rion should be

Λ =
∑
𝑑

−𝑑
∑
−1

−𝑑
𝐿
𝑖,𝑗

(∑
𝑑

−𝑑
∑
𝑑

−𝑑
𝐿
2

𝑖,𝑗
)
1/2

. (28)

MaximizationΛmay be equivalent to theminimization of the
following formula:

𝐹 =

∑
𝑑

−𝑑
∑
𝑑

−𝑑
𝐿
2

𝑖,𝑗

(∑
𝑑

−𝑑
∑
−1

−𝑑
𝐿
𝑖,𝑗
)
2
=

𝐿
2

0,0
+ 4∑
−1

−𝑑
𝐿
2

0,𝑗
+ 4∑
−1

−𝑑
∑
−1

−𝑑
𝐿
2

𝑖,𝑗

(∑
−1

−𝑑
𝐿
0,𝑗

+ 2∑
−1

−𝑑
∑
−1

−𝑑
𝐿
𝑖,𝑗
)
2

.

(29)

Solving partial derivative of 𝐹 to coefficients and letting it be
equal to 0

𝜕𝐹

𝜕𝐿
0,𝑗

= 0 ⇒ 𝐿
0,𝑗

=
1

4
𝐹

𝑑

∑

−𝑑

−1

∑

−𝑑

𝐿
𝑖,𝑗

+ 𝐿
0,0

,

𝜕𝐹

𝜕𝐿
𝑖,𝑗

= 0 ⇒ 𝐿
𝑖,𝑗

=
1

2
𝐹

𝑑

∑

−𝑑

−1

∑

−𝑑

𝐿
𝑖,𝑗

+ 𝐿
0,0

.

(30)

Thus optimal filter for criterion Λ should satisfy

1 ≤
𝑗
 ≤ 𝑑, 𝐿

0,𝑗
= 𝐿
𝑗,0

=
1 − 2𝑑

2
𝑘, 𝐿

0,0
= −2𝑑𝑘.

(31)

Here, we can compute the maximal value for Λ:

Λmax =
1

2

√𝑑. (32)

It can be proved that the optimal filter for criterion Λ

may assure the probability to obtain 𝑆

(0, 0) < 0 to be

maximization at the same time.
To sumup the result, the design process of two dimension

edge detection operator is as follows: first, to construct one
smooth operator; next, to solve the first derivative operator
and take it as edge detection filter and, at the same time, to
solve the second derivative of smooth filter; lastly, to utilize
criterion Σ and criterion Λ to construct judge function and
then be on seeking the optimization.

3. LS-SVR Filter

3.1. LS-SVR. For the training database, LS-SVR can be
expressed by:

[

[

0 1
𝑇

𝑁

1
𝑁

Ω + 𝛾
−1
𝐼
𝑁

]

]

[
𝑏

𝛼
] = [

0

𝑌
] . (33)

Here, 𝑌 = [𝑦
1
, . . . , 𝑦

𝑁
]
𝑇 is input vector; 1

𝑁
=

[1, . . . , 1]
𝑇and 𝛼 = [𝛼

1
, . . . , 𝛼

𝑁
]
𝑇are the Lagrange multipliers

corresponding to each input sample; 𝐼
𝑁
is 𝑁 × 𝑁 identity

matrix; Ω ∈ R𝑁×𝑁, Ω𝑖𝑗 = 𝐾(𝑥
𝑖
, 𝑥
𝑗
), and 𝐾(𝑥, 𝑦) is kernel

function; 𝛾 is penalty factorization.

After solving the value of parameters 𝛼 and 𝑏, least
squares support vector regression (SVR) function is

𝑦 = 𝑓 (𝑥) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥
𝑖
, 𝑥) + 𝑏. (34)

The key to assure formula (34) with generalization capa-
bility is to select kernel function 𝐾(𝑥, 𝑦). For the problem
of including little prior information, the Gaussian kernel
function is a good selection [18]; theGaussian kernel function
is selected as the kernel function in this paper:

𝐾(𝑥, 𝑦) = exp(
−
𝑥 − 𝑦



2

𝜎2
) . (35)

Let Ω = Ω + 𝛾
−1
𝐼
𝑁
; thus 𝑌 = 1

𝑁
𝑏 + Ω𝛼; via trans-

forming the augmented matrices of formula (32), the solving
of formula (32) is

𝑏 =
1
𝑇

𝑁
Ω
−1

1
𝑇

𝑁
Ω
−1

1
𝑁

𝑌 = 𝐴𝑌, (36)

𝛼 = Ω
−1

(𝑌 − 1
𝑁
𝑏) = Ω

−1

(𝐼
𝑁

− 1
𝑁
𝐴)𝑌 = 𝑀𝑌. (37)

3.2. LS-SVR Filter Operator. Via analyzing LS-SVR, the
following theorem can be obtained.

Theorem 1. Using LS-SVR to be fitting for the center of the
equidistant discrete time sequence windows of size 2𝑑 + 1, is
equivalent to one discrete filter of size 2𝑑 + 1.

Proof. Assuming that window center is 𝑦(𝑛) and the output
by LS-SVR fitting is 𝑓(𝑛), then the input vector of LS-SVR
is 𝑌 = [𝑦(𝑛 − 𝑑), . . . , 𝑦(𝑛), . . . , 𝑦(𝑛 + 𝑑)]

𝑇. The fitting is only
for the points which have fallen into the windows, therefore
the points can be expressed by relative coordinate; that is,
𝑌
𝑤

= [𝑦(−𝑑), . . . , 𝑦(0), . . . , 𝑦(𝑑)]
𝑇, and, obviously, 𝑌 = 𝑌

𝑤

holds. Thus, in the case of the kernel function and penalty
factorization 𝛾 being determined, 𝐴 is a constant coefficient
row vectorwith 2𝑑+1 elements and𝑀 is a constant coefficient
matrix of [2𝑑 + 1] × [2𝑑 + 1]. Assuming 𝑏

𝑖
is the first element

of𝐴,𝑚
𝑖
is the 𝑖th row ofmatrix𝑀, and𝑚

𝑖,𝑗
is the 𝑗th element

of the 𝑖th row, then, 𝛼
𝑖
= 𝑚
𝑖
𝑌 and −𝑑 ≤ 𝑖 ≤ 𝑑 hold, and thus

𝑓 (𝑛) =

𝑑

∑

𝑖=−𝑑

𝛼
𝑖
𝐾 (𝑖, 0) + 𝑏 =

𝑑

∑

𝑖=−𝑑

𝐾 (𝑖, 0)𝑚
𝑖
𝑌 + 𝐴𝑌

= [

𝑑

∑

𝑖=−𝑑

𝐾 (𝑖, 0)𝑚
𝑖
+ 𝐴]𝑌.

(38)

Let𝐻 = ∑
𝑑

𝑖=−𝑑
𝐾(𝑖, 0)𝑚

𝑖
+𝐴; thus, we have𝑓(𝑛) = 𝐻𝑌, where

𝐻 is the row vector with 2𝑑 + 1 constant coefficient and the
𝑗th element𝐻

𝑗
= ∑
𝑑

𝑖=−𝑑
𝑚
𝑖,𝑗
𝐾(𝑖, 0) + 𝑏

𝑗
, and thus

𝑓 (𝑛) =

𝑑

∑

−𝑑

𝐻
𝑖
𝑦 (𝑛 + 𝑖) . (39)
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Therefore, the center point𝑦(𝑛) ofwindowwith size 2𝑑+1
being fitted via LS-SVR is equivalent to one discrete filter of
size 2𝑑 + 1. This completes the proof.

The meaning of the above conclusion is to use LS-
SVR to be fitting discrete data points in the windows, to
obtain a continuous domain function, whose value at the
windows center points can be obtained via convolution of
one discrete filter to each discrete point of windows, which
avoid the probable arising problem of turning discrete data
into continuous domain to be disposed and then sampled into
discrete domain.

Since 𝐻 is deduced by using LS-SVR, the first derivative
operator 𝐻 and the second derivative operator 𝐻 in strict
accord with mathematics definition may be obtained as
follows:

𝐻


𝑗
=

𝑑

∑

𝑖=−𝑑

𝑚
𝑖,𝑗
𝐾


(𝑖, 0) ,

𝐻


𝑗
=

𝑑

∑

𝑖=−𝑑

𝑚
𝑖,𝑗
𝐾


(𝑖, 0) .

(40)

The conclusion abovemay be extended to twodimensions
easily. Assuming that the fitting window is [2𝑑 + 1] × [2𝑑 + 1]

neighborhood and windows center point is 𝑦(𝑚, 𝑛), then, 𝑀
of formula (37) is the matrix of row [2𝑑 + 1]

2
× [2𝑑 + 1]

2 and
𝐴 of formula (36) is the row vector of [2𝑑 + 1] × [2𝑑 + 1].
Assuming that mi,j is the corresponding row of 𝛼

𝑖,𝑗
in the

matrix 𝑀, 𝑚
𝑖,𝑗
(𝑘, 𝑙) is the corresponding element of input

points 𝑦(𝑚 − 𝑘, 𝑛 − 𝑙) in 𝑚
𝑖,𝑗
, and 𝑏

𝑘,𝑙
is the corresponding

element of 𝑦(𝑚 − 𝑘, 𝑛 − 𝑙) in 𝐴, then

𝐻
𝑖,𝑗

=

𝑑

∑

𝑘,𝑙=−𝑑

𝑚
𝑖,𝑗

(𝑘, 𝑙) 𝐾 ((𝑖, 𝑗) , (0, 0)) + 𝑏
𝑖,𝑗
. (41)

Each coefficient value of filter 𝐻 given by the theorem is
related to enactment of LS-SVR kernel function format and
penalty factorization 𝛾; therefore different kernel function
and different penalty factorization will get the different
smooth filter; in this sense, 𝐻 is the function of kernel and
penalty factorization; that is, 𝐻 = 𝑓(𝐾, 𝛾). For the Gaussian
kernel function LS-SVR using the form of formula (35), we
have

𝐻 = 𝑓 (𝜎, 𝛾) . (42)

It should be noted that smooth operator solved according
to the theorem is a normalized operator, which may be used
in application, but by which the first derivative operator is
deduced and gives the first derivative value of windows center
after images smoothing. When the smoothness function is
stronger, the first derivative operator is less, and this is not for
numerical processing. Therefore, the first derivative operator
needs normalizing, and themaximal value of output is usually
set as 0.5. For the first derivative operator of two dimension
column direction, normalization method is

ℎ
𝑖,𝑗

=

𝐻


𝑖,𝑗

(∑
−1

−𝑑
∑
−1

−𝑑
𝐻


𝑘,𝑙
)

. (43)
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Figure 1: Curve of LS-SVR performance for good detection.

4. LS-SVR Approximate Ability of
the Optimal Operator

4.1. LS-SVR Approximate Ability. Our aim is to construct the
required derivative operator via utilizing LS-SVR. Accord-
ing to SVM theory, we can obtain object function that is
expressed by the radix of the high dimension space, that
is, kernel function, and is one point that belongs to the
whole function space. Obviously, so far we have not found
this kernel function, and its finite linearity combination may
express the arbitrary function in the whole function space.
Therefore, LS-SVR could only give the approximation of the
required function. To review the approximate ability of LS-
SVR to optimal edge detection operator, this paper provides
experiment examples to illustrate.

Figure 1 presents the approximation curve of LS-SVR
filter to the optimal edge detector for one dimension criterion
Σ of size 2𝑑 + 1 and Table 1 presents the corresponding LS-
SVR parameters value; we may see that LS-SVR could only
construct the optimal filter for criterion Σwith 𝑑 = 1 and 𝑑 =

2 and the approximation filter for 𝑑 ≥ 3 and the optimization
abiltiy about the filter only reach 90% of optimal value for
𝑑 = 10. When LS-SVR obtains the maximum according to
the criterion Σ, the corresponding Λ value will deviate with
the optimal value largely.

Figure 2 presents the approximation curve of LS-SVR
filter to the optimal filter for one dimension criterion Λ and
Table 2 presents the corresponding parameters of LS-SVR.
We can see form Figure 2 that the approximation curve of
LS-SVR coincides with the theory curve; that is, LS-SVR
can realize one dimension optimal edge detection filter for
criterion Λ, but at this time the value of Σ

2 is around 0.5,
which is widely discrepant from the optimal value.

Figure 3 is the approximation curve of LS-SVRfilter to the
two dimension optimal filter for criterion Σ; we can see that,
when𝑑 = 2, LS-SVR can realize the optimal filter for criterion
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Table 1: Optimal parameters of LS-SVR for good detection.

𝑑 1 2 3 4 5 6 7 8 9 10
𝛾 9.78 4.69 0 0 0 0 0 0 0 0
𝜎
2 7.001 8.889 7.780 12.413 18.211 25.171 33.293 42.575 53.018 64.621

Table 2: Optimal parameters of LS-SVR for good localization.

𝑑 1 2 3 4 5 6 7 8 9 10
𝛾 9.11 0.51 0.18 0.06 0.69 0.41 0.61 0.69 0.51 0.30
𝜎
2 9.602 0.030 0.030 0.032 0.023 0.044 0.037 0.017 0.036 0.027
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Figure 2: Curve of LS-SVR performance for good localization.

Σ basically, but, when 𝑑 ≥ 3, the approximation capability of
LS-SVR filter will be low apparently.

In the approximation experiment for criterion Λ, we find
that LS-SVR approximation capability is the worst; when 𝑑 =

2, LS-SVR could only obtain 70% optimization ability about
ideal state, moreover, when 𝑑 ≥ 3, the maximum of Λ could
not be improved obviously via utilizing LS-SVR. In fact, the
worse approximation capability of LS-SVR to the criterion
Λ could not influence us to use the LS-SVR to construct
edge detection filter. We can see from the experiment that Λ
changes very slowly with the LS-SVR parametermodification
but Λ has a larger rate of change. The final result of the
decision function according to product criterion is decided
by the larger entry of change rate. Therefore, we can use
LS-SVR to design the edge detection operator with better
performance.

4.2. Optimization of aCombination ofΣ andΛ. CriteriaΣ and
Λ have the mutex characteristic; we can see from Figures 1
and 2 that the localization capability of the optimal filter for
criterion Σ is poor and the signal SNR of the optimal filter
for criterion Λ is poor. Therefore, we can only make a trade-
off on the two criteria in the real application, and the concrete
method is to utilize criteria Σ andΛ to construct one decision
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Figure 3: Curve of 2D LS-SVR performance for good detection.

function, so as to find the filter that makes the two criteria
reach the larger value at the same time and thinks it is the
optimal.

4.2.1. Summation Criterion. Use the summation of criteria Σ

and Λ to construct decision function; that is,

𝐽 = Σ + 𝜇Λ. (44)

Here 𝜇 > 0 is called adjustment coefficient. In the case of
different scale, there is a great difference between the value of
Σ and Λ, so different scale 𝜇 should choose different value.

4.2.2. Product Criterion ΣΛ. In the method the decision
function is

𝐽 = Σ ⋅ Λ. (45)

This method is very often used. Canny has used the
decision function as (43) to compute and obtain a conclusion
that the Gaussian function is the approximation of the one
dimension optimal filter and extended it to two dimension
edge detection. According to this method, this paper utilizes
LS-SVR to approximate two dimension column directional
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Table 3: The parameters of LS-SVR for 2D optimal filter.

𝑑 1 2 3 4 5 6 7
𝛾 1 0.1𝐸 − 9 0.1𝐸 − 9 0.1𝐸 − 9 0.1𝐸 − 9 0.1𝐸 − 9 0.1𝐸 − 9

𝜎
2 85.00 4.86 8.62 13.80 20.30 28.12 37.25

Σ
2 1.5000 4.5284 9.1280 15.2770 22.9654 32.1946 42.9631

Λ
2 0.2500 0.2246 0.2261 0.2267 0.2270 0.2271 0.2272

Table 4: Optimal parameters of Canny’s edge operator.

𝑑 1 2 3 4 5 6 7
𝜎
2 0.41 0.80 1.32 2.00 2.82 3.76 4.84

Σ
2 1. 0773 2.4563 4.5218 7.2343 10.5046 14.2572 18.5671

Λ
2 0.0924 0.1849 0.2061 0.2094 0.2109 0.2126 0.2133

(a) Result of LS-SVR (SNR = 15 dB) (b) Result of Canny (SNR = 15 dB) (c) Result of LS-SVR (SNR = 10 dB) (d) Result of Canny (SNR = 10 dB)

Figure 4: Result of Lena by LS-SVR operator and Canny operator.

optimal filter; Some approximation results and correspond-
ing parameters under several common scales are shown in
Table 3.

In this paper, we test Canny’s edge detection operator
according to the proposed two dimension discrete criterion,
and in the testing the Gaussian smoothness filter function
used is

𝐻
𝑔
(𝑖, 𝑗) = exp(−

(𝑖
2
+ 𝑗
2
)

2𝜎2
) . (46)

The first derivative of the column directional and the
Laplacian operator are, respectively,

𝐻


𝑔
(𝑖, 𝑗) = −

𝑗

𝜎2
exp(−

(𝑖
2
+ 𝑗
2
)

2𝜎2
) ,

∇
2

𝑔
(𝑖, 𝑗) = (

𝑗
2
+ 𝑖
2

𝜎4
−

2

𝜎2
) exp(−

(𝑖
2
+ 𝑗
2
)

2𝜎2
) .

(47)

Since Canny’s operator is a linear operator, formula (45)
and the standardGaussian function have the same calculation
result. Table 4 is the optimal parameters of Canny’s operator
of generated scale.

From the data of Tables 3 and 4, we can see that the
localization capability of Canny’s operator is poorer than
that of the operator obtained by LS-SVR, but on the noise

resistance ability this operator solved in this paper has the
greater advantages.

In order to compare the two operators’ performance, this
paper utilizes the Lena image and the Cameraman image of
the 256 × 256 pels to be on simulation experiment. In the
experiment, the used filter window is 5 × 5 neighborhood;
the edge detection algorithm is as follows.

Step 1. Solve the row and column directional derivative of
image by using edge detection operator and then obtain the
gradient image and angular image.

Step 2. Obtain nonmaxima suppression.

Step 3 (two thresholds detection edge). Here, assume that
high threshold (Th) is 0.8 of cumulative histogram and low
threshold (Tl) is 0.4Th.

Figure 4 is the output result of two edge detection after
adding the Gaussian noise to the Lena image and Figure 5
is the detection result of the Cameraman image. We can see
from the figures that the operator proposed in this paper has
the better performance.

4.3. Comparison of One Dimension and Two Dimension Oper-
ator. For the separable signal, two dimension edge detection
windows operator can be obtained via one dimension edge
detection operator according to tensor product format [4].
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Table 5: Optimal parameters of 1D Canny’s edge operator.

𝑑 1 2 3 4 5 6 7
𝜎
2 0.33 0.73 1.07 1.50 2.04 2.66 3.34

Σ 0.7071 0.8605 0.9900 1.1069 1.2157 1.3129 1.3994
Λ 0.3774 0.4278 0.4180 0.3888 0.3610 0.3383 0.3199

Table 6: 2D Σ and Λ criterion value of Canny’s operator from 1D optimal filter.

𝑑 1 2 3 4 5 6 7
𝜎
2 0.33 0.73 1.07 1.50 2.04 2.66 3.34

Σ
2 0.9449 2.2305 3.5903 5.3181 7.4819 9.9642 12.6860

Λ
2 0.0878 0.1977 0.2355 0.2434 0.2455 0.2467 0.2475

(a) Result of LS-SVR (b) Result of Canny

Figure 5: Result of 15 dB Cameraman by LS-SVR operator and Canny operator.

Assuming that the scale of one dimension edge detection
operator 𝐻

 educed from formula (1) is 2𝑑 + 1, the two
dimension edge detection operator can be obtained via the
following formula:

𝐻𝑑𝑥 = 𝐻𝐻
𝑇
, 𝐻𝑑𝑦 = 𝐻𝑑𝑥

𝑇
, (48)

where Hdx and Hdy are the column and row directional two
dimension edge detection operator of size [2𝑑+ 1] × [2𝑑+ 1],
respectively.

The Gaussian function has the two dimension separa-
bility; for example, the column directional Canny’s edge
detection operator may be decomposed into product of
the column directional one dimension Gaussian function
derivative and the row directional Gaussian smooth filter
operator; that is, the two dimension optimal edge detec-
tion operator may be obtained via one dimension optimal
operator according to formula (48). Just according to the
characteristic of the Gaussian function, Canny extended the
one dimension optimal operator to a two dimension operator.
From the view of optimal filter, we think the two dimensions
extend form of the one dimension optimal filter obtained
via formula (48) which just only is the approximation of
two dimension optimal filter. We take Canny’s edge detection
operator as an example to validate the conclusion as follows.

According to the improved one dimension criterion that
is proposed in this paper, this paper carries out experiments
for one dimensionCanny’s edge detection operator according
to (45), where the Gaussian function is of one dimension
form as (46). Table 5 gives the optimal parameters of one

dimension optimal Canny’s edge detection operator via
experiment measurement. Utilizing variance presented in
Table 5 to build two dimension edge detection operator via
formula (48), the values of Σ and Λ obtained according to
two dimension criterion are shown in Table 6. Comparing
Table 4 with Table 6, we can see that the SNR of the two
dimension operator built from the one dimension optimal
filter declines more largely than the two dimension optimal
filer; just the localization capability rises a little. But from the
view of formula (45), the performance difference is larger.
Therefore, we can draw a conclusion that utilizing tensor
product format to extend one dimension optimal operator to
two dimension operator just can obtain the approximation of
two dimension optimal filter.

5. Multiscale Fusion

Image edge has different local intensity characteristics for
the different factors such as obstruction, shadow, highlight,
peak, and veins, so Marr pointed out that, in order to reliably
detect edge, multi-non-scale edge operator should be used
[19], and then Witkin and others developed the idea into
scale space filtering technology. For the variance 𝜎

2 of the
Gaussian filter controls the image smoothness degree, in
multiscale filter technology, take 𝜎2 as scale gene, via altering
the value of 𝜎2 to reach the aim of multiscale filter, and apply
it into multiscale Canny’s edge detection. But we can see
from Table 4 that, for the definite edge detection windows,
the Gaussian function that is only 𝜎

2 is a particular value
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(a) Fusing result of Lena by down-
sampling operator

(b) Fusing result of Lena by 9 × 9
operator

(c) Fusing result of Cameraman by
downsampling operator

(d) Fusing result of Cameraman by
9 × 9 operator

Figure 6: Fusing result of downsampling and scale-up operator.

satisfying the optimal filter for product criterion ΣΛ, so this
method via altering 𝜎

2 to carry out multiscale edge detection
is improper. Therefore, from the view of the optimal edge
detection operator, multiscale edge detection can be realized
only via converting the size of filter windows, but for the
different filter windows parameters of edge detection filter
are different, which only needs using different filter operator
to realize the aim of multiscale detection, and with the size
of filter windows increase, operation magnitude will increase
geminately, whichwill bringmuch inconvenience to us in real
application. In 1992, Mallat proposed the wavelet multiscale
edge detection technology [20] and realized the multiscale
edge detection via using approximate 3D spline functionwith
the Gaussian function to construct two dimension spline
function and using modulus maximum method in different
scales. The aim of Mallat constructing the two dimension
spline function is to make the edge detection operator of
wavelet domain satisfy the wavelet admitting condition, to
realize the signal reconstruction after transformation. But
for the edge detection, we only need to judge whether
one point is edge or not, namely, whether the modulus is
the maximum or not after transformation. As long as the
transformation satisfies Canny’s criteria, we may think it
is one good transformation and need not to consider the
reconstruction after the transformation. So, we can utilize
one definite optimal edge detection operator to replace the
filter ofwavelet transformation in order to obtain the different
scale edge and then realize multiscale edge detection via
multiscale fusion technology. That is to say, we can construct
big scale filterwindows via downsamplingmethod andobtain
different scale edge via using single edge detection operator.
In order to validate the presumption, experiments are carried
out in this paper. The concrete method is as follows.

Step 1. Solve the derivative of row and column direction via
utilizing LS-SVR operator whose size is 5 × 5.

Step 2. Construct filtering windows via row and column
directional downsampled by two for each point of the original
image and utilize 5 × 5 LS-SVR operator to solve the row and
column derivative of the image.

Step 3. Multiply row directional derivative by column direc-
tional derivative obtained from Steps 1 and 2, to obtain row
directional and column directional derivative of two kinds of
scale fusion and to solve the gradient value.

Step 4. Carry out nonmaxima suppression and two-
threshold edge detection.

The filter windows data, which is the 4 extraction of the
originality image, has been obtained by Step 2. Therefore,
the comparative object employed the windows size which is
defined 9 × 9 operator, and the same edge extraction method
as the proposed 5× 5 filter operatermethod. Figure 6 presents
the comparesion results under the two methods about Lena
and Cameraman image with 10 dB SNR. From the image we
can see that the two methods have the close detection result,
but the method proposed in this paper has a faster operation
speed.

6. Conclusion

Starting from the problem that the solving numerical deriva-
tive of image is an ill problem, this paper studies the edge
detection operator design criterion. For locating inaccurate
problem of the discrete localization criterion proposed by
Demigny, this paper puts forward a new criterion expression
of “good localization,” establishes the discrete expression
of good detection and good localization criterion of two
dimension edge detection operator, and then introduces the
experiment tomeasure optimal parameters of two dimension
Canny’s edge detection operator. In this paper, compare the
obtained two dimension optimal Canny’s edge detection
operators with the two dimension extended forms of one
dimension optimal Canny’s edge detection operator and val-
idate the conclusion that one dimension optimal filter tensor
product just only is the approximation of two dimension
optimal filter. We prove that LS-SVR is a smoothness filter,
give the construct method, and realize the approximation of
two dimension optimal edge detection operator via adjusting
LS-SVR parameters. This paper proposes the utility method
of using singleness operator to realize multiscale edge detec-
tion by referencing the multiscale analysis technology of



Mathematical Problems in Engineering 11

the wavelets theory. This paper uses LS-SVR as the object
function constructor and obtains LS-SVRparameter values of
the optimal edge detection filter in the case of generated scale
via the experiment. These LS-SVR parameters are irrelative
from concrete application object, so we need not to consider
LS-SVR learning problem in different application. Utilizing
the given LS-SVR parameters, we can obtain not only the
better edge detection operator but also the smoothness filter
with the edge-preserving capability, which has the reference
meaning for the smoothness filter design. This paper uses
the Gaussian kernel function as kernel function of the least
squares support vector machine, that is, takes the Gaussian
function as the basis of function space to construct new
function. For the limitation of the Gaussian function, this
paper obtains merely the approximation that needs function,
so construct the better kernel function is the father research
task.
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