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Abstract

This paper proposes a reversible anonymisation scheme for XML messages that supports �ne-grained enforcement of
XACML-based privacy policies. Reversible anonymisation means that information in XML messages is anonymised,
however the information required to reverse the anonymisation is cryptographically protected in the messages. The
policy can control access down to octet ranges of individual elements or attributes in XML messages. The reversible
anonymisation protocol e�ectively implements a multi-level privacy and security based approach, so that only authoried
stakeholders can disclose con�dential information up to the privacy or security level they are authorised for. The
approach furthermore supports a shared secret based scheme, where stakeholders need to agree to disclose con�dential
information. Last, it supports time limited access to private or con�dential information. This opens up for improved
control of access to private or con�dential information in XML messages used by a service oriented architecture. The
solution provides horizontally scalable con�dentiality protection for certain types of big data applications, like XML
databases, secure logging and data retention repositories.
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1. Introduction

This paper 1 proposes an innovative approach for re-
versible anonymisation of private or con�dential informa-
tion in XML messages. It extends the eXtensible Access
Control Markup Language (XACML) based decision cache
and anonymiser for XML documents, proposed in [23],
with support for reversible anonymisation of private or
con�dential information based on broadcast encryption.
An advantage compared to the original approach, is that
it supports multi-level privacy for con�dential content in
the XML messages, so that only authorised parties can ac-
cess this information. This simpli�es handling of data with
multiple security levels, since these can be stored together,
protected by encryption. It is assumed that all connec-
tions have basic security (e.g. encrypted using TLS/SSL),
to avoid cleartext attacks on underlying communication
channels.
Big data analytics often depend on small data inputs,

including information about people, places and things
collected by sensors, cell phones, click patterns and the
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like [11]. These small data inputs are aggregated to pro-
duce large datasets which analytic techniques mine for in-
sight [11]. It is assumed that sensitive parts of information
for such scenarios can be protected as close as possible to
the information sources. This means that private or con-
�dential information under these assumptions can be pro-
tected before the data is being aggregated into a big data
stream.

The proposed solution allows for retro�tting security as
an add-on to certain types of big data consumers, like XML
document databases. It is a horizontally scalable approach
that may be used for protecting the privacy and con�den-
tiality of sensitive data produced by web services or other
XML-based data sources. The approach allows for both
con�dentiality and integrity protection of the XML data
based on XML encryption. Such a solution can for exam-
ple be useful for secure logging, data retention, protect-
ing private or con�dential information in SmartGrid-based
systems (e.g. Demand-Response systems) or for Security
Incident and Event Management (SIEM) systems. The
approach furthermore supports location-aware authorisa-
tion and anonymisation of data, by using the GeoXACML
framework [1].

The reversible anonymisation enforcement scheme has
been successfully demonstrated for a SIEM system
anonymising XML-based Intrusion Detection System
(IDS) alarms in the Intrusion Detection Message Exchange
Format (IDMEF) [8]. This means that the proposed ap-
proach can be used to implement privacy-enhanced IDS
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services. The proposed scheme is general, and it is en-
visaged that it in the future will be integrated in an En-
terprise Service Bus (ESB), to provide on-demand policy
controlled reversible anonymisation of information in any
XML-based web service.

The original use case for the reversible anonymisation
scheme is privacy-enhanced intrusion detection system
based services. It can be noted that the IDMEF-based IDS
alarm format is a semi-structured XML format, that sup-
ports arbitrary extensions via the IDMEF AdditionalData
construct. Performing data mining of such semi-structured
data can be a challenge with existing relational databases,
meaning that a non-relational data representation may be
required for e�cient data processing. Horizontal scala-
bility is typically required for e�cient processing of IDS
alarms. Horizontal scalability for IDS is often implemented
by having local data repositories for IDS alarms, and us-
ing an event correlation system to reduce the number of
IDS alarms sent for central processing by a Security Op-
erations Centre. The proposed reversible anonymisation
scheme supports such a use case by being inherently par-
allelisable, so that IDS alarms from di�erent sensors can
be processed by individual anonymisers.

The proposed solution can be considered as security con-
trol extensions for XML databases that include shared se-
cret based authorisation (which can be used as a build-
ing block for multifactor authentication), data encryption
and anonymisation. This can be used to address some
of the privacy concerns on big data repositories based on
XML databases. It can also be used to increase the trans-
parency of anonymised services by supporting secure log-
ging schemes. This means that the approach can be a �rst
step towards solving the transparency paradox - that big
data operators pervasively collect all manner of private in-
formation, however with the operations of big data itself
being almost entirely shrouded in legal and commercial
secrecy [11].

The paper is organised as follows: The next section dis-
cusses the reversible anonymisation scheme, including no-
tation used, background and motivation for implementing
reversible anonymisation and a high-level description of
the reversible anonymisation process. Section 3 describes
how the reversible anonymisation protocol is extended to
support a default DENY anonymisation scheme. Section 4
describes the adaptations required to support key sharing,
and section 5 describes how time-based data expiry can
be implemented, in order to support time-limited data re-
tention. Section 6 describes the results from performance
tests of the anonymiser and the deanonymiser, and sec-
tion 7 discusses advantages and disadvantages with the
proposed approach. Section 8 discusses related work, sec-
tion 9 concludes the paper and section 10 outlines future
work.

2. Reversible Anonymisation Scheme

This section �rst describes the background and motiva-
tion for the reversible anonymisation scheme proposed in
this paper, and then outlines how the anonymisation pro-
cess works from a high level perspective. The reversible
anonymisation scheme is implemented as an extension of
the anonymising decision cache proposed in [23].

2.1. Background and Motivation

The reversible anonymisation scheme is useful for dy-
namically con�guring con�dentiality protection of XML-
based web services in a service oriented architecture. This
provides a possibility to enforce the security and privacy
of existing services by running these services through the
anonymiser. Authorised users or services can subsequently
deanonymise and use information in security levels they
have clearance for. This provides a �exible, policy driven
protection scheme for private or con�dential information,
where protection mechanisms can be added on demand.

General functionality that the reversible anonymisation
protocol provides, is irreversible and reversible anonymi-
sation of information in XML messages controlled by
XACML policies. In addition, it supports key sharing,
which can be used to enforce separation of duties con-
straints - for example so that di�erent stakeholders need
to agree to disclose con�dential information to reduce the
risk of insider attacks. The scheme can also be used to im-
plement trustworthy deployment of system con�gurations.
The approach furthermore supports time-limited access to
sensitive data, which can be used to support data retention
and secure logging mechanisms for XML databases.

It is expected that such a general policy-driven reversible
anonymisation scheme will be useful in a range of di�erent
use cases, including outsourcing - for example to cloud-
based services, e-health, e-commerce, critical infrastruc-
tures and managed security services, which is the practical
use case considered in this paper.

Reversible anonymisation here means that sensitive in-
formation in the XML messages is anonymised, however
necessary information required to reverse the anonymi-
sation process is stored encrypted in the XML mes-
sage. Reversible anonymisation is di�erent from tradi-
tional pseudonymisation since no pseudonym is used to
replace the anonymised XML element. Instead the en-
crypted information required to reverse the anonymisa-
tion is added to the XML message. There are several
advantages by using such a strategy compared to a tradi-
tional pseudonymisation strategy. First, this means that
there is no need to consider the cryptographic strength of
a pseudonymisation scheme to avoid linkability between
pseudonyms, since pseudonyms are not used. Second, the
anonymised data can be any data, for example an infor-
mative text, replacing the anonymised data. This infor-
mative text may even contain nonsensitive parts of the
original data (for example the most signi�cant part of an
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IP range)2. Third, having larger chunks of encrypted data
reduces the risk of leaking information via tra�c analysis.
The reversible anonymisation scheme builds key distri-

bution into the XACML policies, so that the Policy En-
forcement Point (PEP) queries the Policy Decision Point
(PDP) about which public keys that are authorised to ac-
cess information in the XML messages.
It is assumed that the Security Assertion Markup Lan-

guage (SAML) or similar is used both to authorise the data
consumer to receive anonymised messages, and also to au-
thorise individual users for access to sensitive information
in the messages. SAML supports automatic logout of users
by using the single logout protocol of SAML 2.0 [19].

2.2. Outline of the Reversible Anonymisation Process

The cryptographic problem that must be solved, is how
to cryptographically protect con�dential information, so
that only authorised personnel can access the information
on a needs basis. It is assumed that information may be
split into d > 1 di�erent security levels (for example Re-
stricted, Con�dential, Secret). There may furthermore be
one or more consumers of XML messages, where each con-
sumer is authorised to a given subset of security levels.
The solution proposed here does not assume any seman-
tics or relationships between the security levels, apart from
controlling who have access to which security levels. It is
assumed that additional semantics, e.g. that access to
level Secret also includes access to level Con�dential and
Restricted, can be enforced by the XACML policies con-
trolling the anonymisation policy. Some stakeholders, for
example law enforcement or CERT, may have a need to
access information with a higher level of sensitivity than a
�rst-line service. It is also desirable to enforce a shared se-
cret scheme to ensure that two or more parties must agree
by providing their key shares before sensitive information
is disclosed (for example that a data controller and law
enforcement must agree to disclose a given set of sensitive
data).
The following notation is used in the paper. A pseudo-

random number generator is denoted by rnd(), an encryp-
tion function is denoted by Enc(key, value) and decryp-
tion function by Dec(key, value). Furthermore, value′ de-
notes the encrypted or anonymised value, i.e. value′ =
Enc(key, value) and value = Dec(key, value′). The list
of notation used in the paper can be found in Table 1.
Fig. 1 gives overview over how the encryption scheme

used to implement reversible anonymisation and multi-
level security is implemented. The con�dential informa-
tion li in each security level i ∈ {1, ..., d} consists of both
a speci�cation on how to reverse the anonymisation using
XPath expressions and the con�dential information iden-
ti�ed using these XPath expressions. The information in

2Note however that such a strategy should be used with care
for private or con�dential data to avoid reducing the anonymity set
unduly for the underlying data.

Index Meaning

d Number of security levels.

i Security level

j Share index of encryption key Ki,j .

N Number of resources.

n Number of key shares.

m Number of users.

p XPath expression number.

q Match number for XPath expression p.

u User number.

z Number of matches of rp.

Type Meaning

C Set of classi�ed XML elements.

ep
ep = (ep,1, ep,2, ..., ep,z) identi�ed by
XPath resource rp on message.

ep,q
XML element q identi�ed by evaluating
XPath resource rp on message.

Ki Encryption key for security level i.

KM
Set of keymap tuples consisting of
encryption key Ki and security level i.

li Information on security level i.

L Vector of all con�dential information li.

Λu Keymaps user u is authorised for.

AM
Authorisation map from public keys
PKu to the set of keymaps Λu ⊆ KM
the user u is authorised for.

PKu Public key of user u.

rp
XPath expression for p identifying
resources that need authorisation.

R Set of all rp.

S Set of encrypted keys.

SKu Secret key of user u.

texp Key expiry time.

tretention Data retention time.

Q
Matrix of authorised elements ep,q for
resouce p and security level i.

Table 1: List of notations
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K1 l1

K2 l2

K i li ...
Kd ld

(K2 ,2) ,(K i , i) ,(K d , d )

EK 1

(K1 ,1), (K2 ,2)
EK u

...

Confidential information li  on security level i

Encrypted information li
'  using key K i

Authorisation
mapping 

...

level:1 level:2
level:2 level:i level:d

SK 1 SK u

User 1 User u...

AM '

PK 1

EK 1

... PK 2

EK 2

Ephemeral key

Figure 1: Overview over encryption scheme used to imple-
ment reversible anonymisation.

each security level li is encrypted using the correspond-
ing encryption key Ki for the security level referenced by
the security level index (or label) i. In this paper it is
assumed for simplicity that the security level index is a
natural number3.
Furthermore, users can be authorised to a subset of all

security levels. In Fig. 1, User 1 has access to security lev-
els 1 and 2, and User u has access to security levels 2, i and
d. The authorisation mapping (AM) for each user is en-
crypted using a two-stage process, where a symmetric key
EKu is used to encrypt the AM, and the public key PKu

of the authorised user u is used to encrypt the EKu. EKu

is regenerated each time a user is authorised for access to
the data, and has a con�gurable key renegotiation time-
out. The authorisation mapping, encryption keys and the
number of security levels are controlled by XACML poli-
cies. An advantage by using a separate key for encrypting
the key mapping, is to avoid having to use relatively slow
public key cryptography for encrypting the AM. Another
advantage is that standardised XML Encryption methods
can be used for key wrapping.
A given user u, can then decrypt the EKu using her

private key SKu, which in turn can be used to decrypt the
tuples (Ki, i) that the user is authorised for. The index i
can subsequently be used to retrieve the corresponding en-
crypted information l

′

i which then can be decrypted using
the corresponding key Ki. The con�dential information in
li both contains the con�dential data that is anonymised
in the original IDS alarm and a speci�cation (XPath ex-
pressions) that describes how the anonymisation for the
given security level can be reversed. The approach used
for encrypting information in security levels is similar to

3However it may also be implemented using textual labels (e.g.
�secret�) if the underlying data structure is implemented as an asso-
ciative array.

Anonymiser/
Proxy (PEP) XACML PDP Consumer

KM={(K i , i)}, i∈1, ... , d

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
policytype=PERMIT

L=( l1←∅ , ..., ld ←∅)

R={r 1,r2, ... ,rN }

AM={(PK u , EK u ,Λu ,u)}, u∈1,... ,m

C=∅ , D=∅
Λu⊆KM

K i← rnd ( ), i∈1,... , d

EK u← rnd (), u∈1, ... ,m

Figure 2: Initial authorisation sequence.

broadcast encryption [5].
This approach gives �exibility for authorising access to

information on a given security level according to operative
needs. It may for example be desirable to enforce separa-
tion of duties between information considered secret by
customer A and information considered secret by another
customer B, by authorising di�erent trusted CERT teams
to access this information in each organisation.

2.3. Reversible Anonymisation Protocol

This subsection describes the reversible anonymisation
protocol. The detailed description of the protocol is given
in Fig. 6.
Initially, the consumer sends a SAML assertion with

proof of authenticity to log in to the Anonymiser/Proxy
PEP, as shown in Fig. 2. The PEP will then ask the
XACML PDP for authorisation of the consumer. If the re-
sponse is Permit, then the XACML response will contain
a set of obligations that amongst others contain the set
of N ≥ 0 resource identifying expressions (XPath expres-
sions) R = {r1, r2, ..., rN} which identify information that
needs authorisation. The reply furthermore contains the
Keyspec, which specify keys such as the public keys PKu,
and information on how to generate ephemeral keys EKu,
u ∈ {1, ...,m}. It also speci�es the number of security lev-
els d as well as how to generate the unique encryption keys
Ki, i ∈ {1, ..., d} that are used. Then the vector of con�-
dential information L is initialised to the empty vector for
all security levels, i.e: L = (l1 ← ∅, ..., ld ← ∅), and the
encryption keys are initialised to a random number using
the speci�ed key generation algorithm, i.e: Ki ← rnd(),
i ∈ {1, ..., d}.
The encryption keys are used to generate a set of

keymaps KM = {KMi|i ∈ 1, ..., d}, where each keymap
KMi = (Ki, i) is a tuple consisting of the encryption key
Ki and an index i referring to the con�dential information
li on security level i. The ephemeral keys EKu for each
u ∈ {1, ...,m} are subsequently generated.
The initial XACML response also contains a key au-

thorisation mapping AM = {(PKu, EKu,Λu, u)|u ∈
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

Authorise user u

Authorise u

Permit, use PK
u
 for level i,...

M=M∪{(PK u , EK u ,Λu , u)}

Λu={(K i , i) , ...}

EK u← rnd ()

Figure 3: Authorise user.

1, ...,m}, which describes who (i.e. which user u's pub-
lic keys PKu) that are authorised to access data at which
security levels (via the ephemeral keys EKu). Here Λu ⊆
KM is the subset of keymaps indicating which security
levels i the user is authorised for.
It is assumed that deployment of XACML policies de-

scribing the key mapping is being controlled by the in-
formation owner, so that the key owners themselves will
not be allowed to modify this mapping. Finally, the set of
classi�ed elements, denoted as C, and elements explicitly
declassi�ed, denoted as D, are initialised to the empty set.
The relative complement C\D describes the set of XML
elements or attributes that needs to be anonymised.
The process of subsequent authorisation of a user u is

shown in Fig. 3. The user asks the Anonymiser to be au-
thorised for access to a set of one (or more) security level(s)
Lu ⊆ {1, ..., d}. If the analyst has access according to the
security policy, then the XACML responds with Permit.
The response contains an obligation with the public key of
the analyst PKu and an authorisation mapping showing
that this analyst is authorised for the set of security levels
Lu. The PEP �rst generates the ephemeral key EKu and
then adds this decision to the key authorisation mapping:
AM = AM ∪ {(PKu, EKu,Λu, u)}, where Λu = {KMi|
i ∈ Lu} so that the user is authorised for accessing con�-
dential information in li.
After that, the authorisation of elements and attributes

in the XML message starts, as shown in Fig. 4. First each
resource identifying XPath expression rp, p ∈ {1, ..., N}
is evaluated on the XML message to get a vector of z
matching XML elements:

ep = (ep,1, ep,2, ..., ep,z)← XPATH(rp,message). (1)

The PEP then needs to authorise each of the elements in
ep by querying the PDP for which security level(s) each
element is authorised for. If access to the element ep,q
is granted, then the XACML Response contains a Permit
decision with an obligation to anonymise the given element
which also contains which security level(s), denoted levels,
that are authorised to reverse the anonymisation.
The anonymiser then iterates through all levels i ∈

levels and stores the value of each element ep,q in a matrix
Qi,q, so that each row vector Qi contains the con�dential

Authorise XML element e
p,q

Anonymiser/
Proxy (PEP) XACML PDP

li← li∪{(r p ,Qi)}

Permit, anonymise, 
authorised for levels

e p← XPATH (r p ,message)
for p ←1, ... ,N do

for q ←1,... , z do
Q=d× z matrix initialised to∅

if decision=Permit and

for i∈levels do
Qi , q← valueof (e p ,q)

C ←C∪e p, q

for i∈1, ... , d do

XACML Request, Authorise e p ,q

z matching elements

anonymise=True then

Figure 4: XML Element Authorisation

Anonymiser/
Proxy (PEP) Consumer

Anonymised XML:
message ' , EK u

' , AM ' , L'

Encrypt AM:

Encrypt each security level:

li
'
← Enc (K i , li)

AM ' ←∅

for (PK u , EK u ,Λu , u)∈AM do

AM '
← AM '

∪(EK u
' ,Λu

' ,u)

for i∈1, ... , d do
L'

=(l1
'
=∅ , ... ,l d

'
=∅)

Anonymisation 
reversal

for element∈C ∖D do
Anonymise element

Anonymise:

EK u
'
← Enc (PKu , EK u)

Λu
'
← Enc(EKu ,Λu)

Figure 5: Anonymisation enforcement and reversal for de-
fault PERMIT policies.

elements of ep that security level i is authorised for, and

∅ otherwise. After that, the current element ep,q is added
to the list of classi�ed elements C, i.e: C ← C ∪ ep,q, that
later will be anonymised.

The last part of element authorisation is to iterate
through all security levels i ∈ {1, ..., d} and add a tuple
(rp, Qi), consisting of resource identi�er rp and con�den-
tial information for the given resource identi�er Qi to the
set of con�dential information li for security level i, i.e:
li ← li ∪ {(rp, Qi)}. This essentially means that a speci�-
cation on how to undo the anonymisation has been stored
in li.

When all elements matching the set of resources R have
been authorised, the algorithm proceeds to the enforce-
ment part, as shown in Fig. 5. Enforcement starts with
anonymising all classi�ed elements in C that have not
been explicitly declassi�ed (that are not part of D) i.e.
C\D. The anonymiser then loops through the autho-
risation mapping tuples in AM , and encrypts Λu with
EKu, and then encrypts EKu using the user u's pub-
lic key PKu. After that, the anonymiser adds a tu-
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ple consisting of the encrypted ephemeral key EK
′

u ←
enc(PKu, EKu), the encrypted encryption keys and secu-
rity level references Λ

′

u ← enc(EKu,Λu) and a reference
to the user u that can decrypt the authorisation map-
ping to the set of encrypted authorisation maps AM

′
, i.e:

AM
′ ← AM

′ ∪ {(EK
′

u,Λ
′

u, u)}.
Finally, the con�dential information li in each security

level i is encrypted using the respective symmetric encryp-
tion key Ki, to protect the sensitive information from dis-
closure by unauthorised parties. The encrypted autho-
risation mapping AM

′
, the ephemeral key(s) EK

′

u and

the vector of encrypted security levels L
′

= {l′1, ..., l
′

d}
are �nally enveloped in an IDMEF AdditionalData ele-
ment of message

′
. The anonymised anonymised IDMEF

XML message (message
′
) is then sent to the receiver. It

must be noted that the proposed solution is not restricted
to IDMEF based IDS alarms. It works for any XML
schema that supports an extension mechanism where the
encrypted data and XML signatures can be inserted.
On the receiving side, the deanonymiser goes through

the (Λ
′

u, u) tuples in AM
′
to search for a user u that

matches the current user as shown in Fig. 7. If
this is found and decryption of the encrypted ephemeral
key EK

′

u using the secret key SKuser succeeds, then
the deanonymiser will decrypt Λu using EKu, and goes
through all key maps (Ki, i) ∈ Λu and decrypt the con-
�dential information at the given security level: li ←
Dec(Ki, l

′

i).
The deanonymiser can then loop through all tuples

(rp, Qi) ∈ li, use XPath searches with the expression rp
on message

′
to retrieve the elements that need to be

deanonymised, i.e. ep ← XPATH(rp,message
′
) and �-

nally loop through all elements q of ep to replace the orig-

inal content using ep,q ← Qi,q if Qi,q 6= ∅, which reverses
the anonymisation.
The XACML policy allows the encryption keys to be

regenerated at regular time intervals, to reduce the risk
of key recovery attacks and also to reduce the amount of
con�dential information that can be accessed with a given
encryption key.
The con�dential information is stored in random order,

using random identi�ers to avoid revealing explicitly which
security level (or grading) the con�dential information has.
Each security level in addition contains a nonce (not shown
in the �gures), to make it harder to correlate sensitive
information between IDS alarms. This nonce can also be
used by the deanonymiser to detect and avoid data replay
attacks.

3. Supporting Default DENY Protocol

The reversible anonymisation protocol described so far
is a default PERMIT protocol. This means that any infor-
mation in the IDS alarms, which is not explicitly being au-
thorised by the cache speci�cation, by default is being per-
mitted. This strategy has the de�ciency that parameters

1: function deanon(user, SKuser, msg
′
, AM

′
, L

′
)

2: for (EK
′

u,Λ
′

u, u) ∈ AM
′
do

3: if u = user and EKu ← Dec(SKuser, EK
′

u)
4: then

5: if Λu ← Dec(EKu,Λ
′

u) then
6: for (Ki, i) ∈ Λu do

7: li ← Dec(Ki, l
′

i)
8: for (rp, Qi) ∈ li do

9: ep ← XPath(rp,msg
′
)

10: for q ← 1, ..., z do
11: if Qi,q 6= ∅ then
12: Restore content:
13: ep,q ← Qi,q

14: return msg
′

15: end function

Figure 7: Anonymisation reversal.

Authorise XML element e
p,q

Anonymiser/
Proxy (PEP) XACML PDP

Permit, declassify

e p← XPATH (r p ,message)
for p ←1, ... ,N do

for q ←1,... , z do

if decision=Permit and

D← D∪ep ,q

XACML Request, Authorise e p ,q

with z matching elements

declassify=True then

Figure 8: Element declassify operation for default DENY
scheme.

which are unknown by the policy will not be anonymised.
This can be problematic from a privacy perspective.
A better strategy is then to support privacy by default

[2], by introducing a default DENY protocol. This is also
similar to common practices in computer security for �re-
wall design, which typically use a default DENY scheme.
The remainder of this section outlines how the building
blocks for multi-level privacy/security can be used to im-
plement a default DENY reversible anonymisation proto-
col for the anonymiser.
A default DENY scheme can be implemented by mi-

nor modi�cations of the proposed scheme. The initial au-
thorisation need to specify whether a default PERMIT or
default DENY protocol is being used. Subsequent autho-
risation of other parties after the initial authorisation is
done in the same way as for the default PERMIT scheme
shown earlier.
Authorisation of individual elements can then be per-

formed in two ways, depending on the outcome of the
XACML element authorisation:

1. If the outcome of the XACML Response is PERMIT
with an Obligation to anonymise information, then
the levels specify that the information for this docu-
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Initial XACML authorisation:
1: R = {r1, r2, ..., rN}
2: KM = {(Ki, i)|Ki ← rnd(), i ∈ 1, ..., d}
3: AM = {(PKu, EKu,Λu, u)|Λu ⊆ KM,EKu ← rnd(), u ∈ 1, ...,m}

4: function anonymise(message, defaultpolicy, defaultlevel)
5: L = (l1 = ∅, ..., ld = ∅) . Con�dential information per security level.

6: L
′

= (l
′

1 = ∅, ..., l′d = ∅) . Encrypted con�dential information.
7: C = ∅ . Set of classi�ed elements to be anonymised.
8: D = ∅ . Set of elements to declassify.
9: for p← 1, ..., N do

10: ep ← XPath(rp,message) . ep = {ep,1, ..., ep,z} XPath matches
11: Evaluate XPATH expressions to select scope parameters for ep
12: Create a d× z matrix Q, initialised to ∅ storing authorised elements.
13: for q ← 1, ..., z do
14: Authorise element ep,q (XACML request)
15: (decision, anonymise, declassify, levels)← XACMLReq(scope(ep,q))
16: if decision = ”Permit” then
17: if anonymise = True then
18: for i ∈ levels do . ep,q may be authorised for ≥ 0 levels.
19: Qi,q ← valueof(ep,q) . Copy value of element.

20: C ← C ∪ ep,q . Anonymise element
21: else if declassify = True then
22: D ← D ∪ ep,q . Declassify element
23: else

24: C ← C ∪ ep,q . Anonymise element

25: else

26: C ← C ∪ ep,q . Anonymise element

27: for i ∈ 1, ..., d do
28: li ← li ∪ {(rp, Qi)}
29: if defaultpolicy=PERMIT then

30: for element ∈ C\D do

31: Anonymise element

32: else if defaultpolicy=DENY then

33: Fetch all elements containing text and all attributes.
34: Rdefaultlevel = {”// ∗ [name()]/ ∗ [normalize-space(text())]”, ”//@ ∗ ”}
35: for rdefaultlevel ∈ Rdefaultlevel do

36: allElements← XPath(rdefaultlevel,message)
37: Qdefaultlevel = []
38: for element ∈ allElements do
39: Qdefaultlevel.append(valueof(element))
40: if element /∈ D or element ∈ C then

41: Anonymise element

42: ldefaultlevel ← ldefaultlevel ∪ {(rdefaultlevel, Qdefaultlevel)}
43: AM

′ ← ∅
44: for (PKu,Λu) ∈ AM do

45: AM
′ ← AM

′ ∪ {(Enc(PKu, EKu), Enc(EKu,Λu), u)} . Encrypt AM

46: for i ∈ 1, ..., d do
47: l

′

i ← Enc(Ki, li) . Encrypt each security level using encryption key

48: return (AM
′
, L

′
)

49: end function

Figure 6: Reversible anonymisation.
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Anonymiser/
Proxy (PEP) Consumer

for element∈allElements do

Anonymise element

Anonymise:

if element∉D  or element∈C then

Rdefaultlevel={

allElements ← XPath(r defaultlevel ,message )

Qdefaultlevel . append (valueof (element))

Qdefaultlevel=[ ]

λdefaultlevel ← λdefaultlevel∪(rdefaultlevel ,Qdefaultlevel)

"//@*"}
for rdefaultlevel∈Rdefaultlevel do

Anonymised XML:
message ' , EK u

' , AM ' , L'
Encrypt authorisation mapping
(same as for default PERMIT) Anonymisation

reversal (same as 
default PERMIT)

"//*[name()]/*[normalize-space(text())]" ,

Figure 9: Default DENY scheme.

ment element should remain anonymised, and moved
from the default security level and to the security lev-
els speci�ed in levels. This is the same operation as
shown in Fig. 4.

2. If the outcome is PERMIT with an Obligation to de-
classify information, then this means that the given
element should be declassi�ed, i.e. it should not be
anonymised in the original IDMEF message. This op-
eration is shown in Fig. 8.

3. If the outcome is DENY, or PERMIT with unknown
or unde�ned parameters and the default policy is
DENY, then nothing should be done, since the de-
fault DENY policy protects the information of the
XML message.

This approach allows the default DENY scheme to imple-
ment policies supporting anonymisation of information by
moving certain information to a di�erent security level.
The scheme also supports declassi�cation of information
that should remain visible in the XML message. Elements
that are not explicitly authorised remain in the default
security level for the DENY policy.
Declassi�cation of information is controlled by the

XACML policy. This means that resource elements are
authorised as normal, however the authorisation decision
for XACML elements that are declassi�ed contains an
obligation to declassify the given information instead of
anonymising it.
The anonymisation enforcement part of the default

DENY scheme is described in Fig. 9. All informa-
tion which needs to be anonymised by default, denoted
by Rdefaultlevel, can be identi�ed using two XPath re-
source expressions. The �rst expression // ∗ [name()]/ ∗
[normalize-space(text())] selects the text attribute of all
XML elements trimmed for whitespace, and the second
expression //@∗ selects the value of all XML attributes in
the XML document being anonymised4.

4These two expressions have not been combined to one using the
XPath or (�|�) operator, to ensure that the sequence of matches is
well de�ned.

Anonymiser/
Proxy (PEP) XACML PDP Consumer

K i← rnd ( )

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
policytype=PERMIT
encryption-key:level:i:split-key shares

L=(l1 ←∅ , ... ,l d←∅)

AM={(PK 1 ,Λ1 ←{KM i ,1 },1) , ... ,

{KM i ,1 , ... ,KM i , n}=splitKeyMap (KM i ,∣shares∣)

(PK n ,Λn←{KM i ,n }, n)}
...

KM i=(K i ,i , shares)
where KM i , j=(K i , j , i , j)

Figure 10: Key sharing scheme.

The algorithm then iterates through these resources and
selects the matching elements using XPath. Then the en-
forcement part loops through all matching elements for
each resource in Rdefaultlevel and adds the value of the
elements to the list of elements in the default security
level Qdefaultlevel. In addition, elements that either are ex-
plicitly classi�ed or elements that are not declassi�ed are
anonymised. Subsequently the data required to reverse the
default security level is stored in ldefaultlevel, by executing
ldefaultlevel ← ldefaultlevel ∪ (rdefaultlevel, Qdefaultlevel).
The remainder of the default DENY anonymisation

scheme, including anonymisation reversal, is equivalent to
the default PERMIT scheme. The complete anonymisa-
tion algorithm that combines the default PERMIT and
default DENY schemes is shown in Fig. 6.

4. Adaptations Required to Support Key Sharing

Key sharing is implemented based on a threshold en-
cryption scheme. The easiest key sharing scheme to adapt,
is the scheme of Karnin, Greene and Hellman [3], assum-
ing that all n shares must be known to reveal the secret
(i.e. t = n), and assuming that the PEP acts as a trusted
dealer.
Assume that the secret key space is all numbers from 0

to 2keysize where keysize is the size of the encryption key
in bits. Key sharing can then be implemented by letting
the anonymiser choose n − 1 random shares of the same
size as the original encryption key, and calculate the last
share as the chosen encryption key minus the sum of the
chosen random shares modulo 2keysize. The encryption
key can then be reconstructed by adding up all the shares
modulo 2keysize.
To support secret key sharing, the encryption key de�ni-

tion in the XACML policy needs a split-key operator and
the implementation must be extended to support address-
ing of key shares. A key sharing scheme can then be set
up by authorising stakeholders to encryption key shares
instead of encryption keys, as illustrated in Fig. 10.
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
  policytype=PERMIT
       t

retention
=P30D

AM={(PK card , Λcard , card )}

K i← SHA512 ( padding |K i
master | t exp)

K i
master

← rnd ()

t exp←now ()+t retention

L=(l1←∅ , ... ,l d←∅)

KM i ← KM i∪{(K i , i)}

for i∈1, ... , d do

Λcard ← Λcard∪{(K i
master ,t exp , i)}

Λcard ←∅

Figure 11: Time-based data expiry initialisation.

On receiving the initial XACML authorisation response,
encryption keys Ki are generated as normal, and these
are used to encrypt the sensitive information in (l1, ..., ld).
The XACML Response also contains an Obligation to
split the encryption key Ki into n = |shares| subkeymaps
{KMi,1, ...,KMi,n}. Each subkeymap KMi,j consists of a
tuple KMi,j = (Ki,j , i, j), where Ki,j is share number j of
the encryption key for security level i and n is the number
of key shares. The key map KMi is also extended to con-
tain a reference to all shares, i.e: KMi = (Ki, i, shares).
The authorisation mapping AM will then contain one key
mapping share for each public key, i.e:

AM = {(PK1,Λ1 ← {KMi,1}, 1), ..., (2)

(PKn,Λn ← {KMi,n}, n)}

so that the owners of SK1, ..., SKn need to collaborate
to reveal the con�dential information. Note that if the
parent encryption key times out and is regenerated, then
the shares must also be updated.

5. Adaptations Required for Time-based Data Ex-

piry

The �fth Privacy by Design principle requires end-to-
end security with full lifecycle management of private or
con�dential data from inception and until destruction [2].
This can be implemented by introducing time-based data
expiry, assuming that the messages can be protected using
encryption until they reach the anonymiser. Time-based
data expiry means that the encryption key expires after
a given retention time, so that con�dential information in
the XML messages can not be accessed beyond this time.
This ensures safe destruction of con�dential data in the
messages. Time-based data expiry can also be used to
limit how long users will have access to the data they have
analysed, for example to set up policies to avoid access to
con�dential data beyond the current work shift.

Anonymiser/
Proxy (PEP) Consumer

Anonymised IDMEF:
message ' , AM ' , L'

Anonymisation reversal:
for (Λu

' ,u)∈AM ' do

Smart
card

if u=card then Decrypt Λu
'

if Λu ←Dec(EK u ,Λu
'
) then

if now ()<t exp then
K i← SHA512 ( padding ||K i

master || t exp)
Λu

gen
Λu

gen
← Λu

gen
∪{(K i ,i)}

Λu
gen

←∅

for (K i
master , t exp ,i)∈Λu

for(r p ,Q i)∈lido
e p← XPATH (r p ,message

'
)

forq←1,... , z do
if Qi , q≠∅ then

Replace content
e p , q←Qi , q

li←Dec (K i ,li
'
)

for(K i , i)∈Λu
gendo

if u=card∧EK u ←Dec(SKcard ,EK u
'
) then

Figure 12: Decryption for time-based data expiry.

5.1. Implementing Time-based Data Expiry

The reversible anonymiser can with small adaptations
support a time-based data expiry scheme similar to [12].
This scheme uses Smartcards to enforce the key expiration
scheme (one card per user). Only the necessary adapta-
tions will be discussed here.
The encryption key management of the reversible

anonymiser needs to be adapted as shown in Fig. 11 to
support the key derivation scheme in [12]. To support
time-based data expiry, the XACML policy must return
an obligation with the retention time tretention for element
authorisation requests, so that the data retention time can
be con�gured per encryption key. The retention time is
then sent to the PEP in the initial XACML Response as
part of the XACML Obligation. The key expiry time texp
is then calculated as the current time plus tretention.
To achieve time-based data expiry, the key expiry time

texp must be cryptographically bound to the encryption
key Ki. Assume that padding is a 64 bit number, that is
initialised to zero. The time expiring encryption key Ki,
that encrypts the classi�ed information li, is derived from
a master keyKmaster

i by using the key derivation function:
Ki = SHA512(padding||Kmaster

i ||texp). This encryption
key is then used to encrypt the con�dential information in
li. The authentication map is the same as the basic scheme
uses, i.e: AM = {(PKcard, EKcard,Λcard, card)}. Λcard is
however modi�ed to contain the master key Kmaster

i , the
expiry time texp and the security level i. i.e: Λcard =
{(Kmaster

i , texp, i)|i ∈ 1, ..., d}.
The decryption algorithm must be modi�ed to ask the

Smartcard to decrypt Λ
′

u as shown in Fig. 12. The �g-
ure only shows Smartcard based key retrieval. Smartcard
initialisation and authorisation will be similar to [12].
The Smartcard will �rst initialise the generated key map-
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ping Λgen
u ← ∅. Subsequently, it veri�es that the key be-

longs to the card and decrypts the encryption key using
EKu = Dec(SKcard, EK

′

u). If this succeeds, then the
Smartcard will decrypt Λu using Λu ← Dec(EKu,Λ

′

u),
and then iterate through all tuples ((Kmaster

i , texp), i) in
Λu and verify that the current time is less than texp. If
this test succeeds, then the Smartcard will generate the de-
cryption key for security level i by using the key derivation
functionKi ← SHA512(padding|Kmaster

i |texp) and gener-
ate a new keymap Λgen

u = Λgen
u ∪{(ki, i)}. The Smartcard

then returns Λgen
u to the Anonymisation reversal function,

which reverses the anonymisation for the given security
level i in the same way as shown previously.
Note that this scheme assumes trusted time sources,

which can be implemented in a similar way as proposed
in [12].

6. Experiments

The anonymiser and deanonymiser was tested on a
server with 8 Gb RAM and a 3.3 GHz Intel Core i5 CPU.
The anonymiser was connected to the deanonymiser using
a SOAP web service with persistent HTTP connections, to
verify the entire production pipeline. The performance can
be expected to be somewhat higher if the anonymiser and
deanonymiser are run separately. The experiments used
the IDMEF alarm log from previous IDS experiments us-
ing PreludeIDS. These experiments are based on alarms
from the 1999 KDD Cup data set (DARPA IDS test set)5.
This is an old synthetic data set, and will therefore have
less diversity that one can expect from real tra�c today.
The cache hit rate and performance is therefore higher
than what one can expect from a production system. The
KDD Cup data set was chosen despite these de�ciencies,
since this still is considered the gold standard for IDS mea-
surements, and it is di�cult to get access to real IDS data.
The software is implemented in Jython and based on the

XACML Decision-cache based anonymiser in [23], which
uses SunXACML with a Java HashMap based Least Re-
cently Used cache and virtual token descriptor based XML
parser VTD-XML for increased XPath performance. The
solution in this paper has been extended with the GeoX-
ACML patches [1], to support more advanced XACML
data types like pointlists which are used by the imple-
mentation. This also allows for supporting location-aware
anonymisation and authorisation policies. Apache Santu-
ario is used for XML encryption, Apache CXF as SOAP
server for the deanonymiser and SUDS as SOAP client for
the anonymiser. The anonymiser uses three threads - one
for reading and bu�ering IDS alarms, one for anonymising
the alarms and an output thread for bu�ering and send-
ing data to the deanonymiser. This strategy decouples
the anonymiser from the deanonymiser to avoid any of the
threads blocking the production pipeline.

5KDD Cup 1999 data (DARPA IDS test set)
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Each statistical value is calculated as the average of an
ensemble of 100 IDS alarms. Each experiment furthermore
selects a random uniform sample of 1000 IDS alarms from
a corpus of 130.000 IDS alarms from the KDD Cup'99 test
set. A maximum limit of 30 anonymisation rules, 10 secu-
rity levels and 10 key shares was chosen, since this is ex-
pected to be around the maximum numbers needed for ID-
MEF anonymisation policies. A new XACML policy with
a random selection of the current number of anonymisation
rules was generated for each experiment in the ensemble.
It uses an XACML policy generator to generate random
anonymisation policies with between 0 and 30 anonymised
resources, each resource consisting of two di�erent poli-
cies matching the relevant Target section and containing a
Condition section that matches one of two di�erent poli-
cies per anonymised resource. The policy generator fur-
thermore supports a con�gurable number of users, security
levels and key shares.

6.1. Anonymiser Performance

Anonymiser run time as a function of anonymised re-
sources, default protocol type, number of security levels
and number of key shares is shown in Fig. 13. Each sub�g-
ure shows the median and the 95% con�dence band (0.025-
0.975 percentile) for reversible anonymisation, as well as
the median for irreversible anonymisation indicated using
stapled lines.
The Figures show that the distribution functions are

signi�cantly skewed towards lower run-times both for non-
cached and cached results, which means that the median
gives a more representative picture of the mode of the dis-
tribution than the standard deviation.
Figures 13a and 13b show that the anonymiser run-time

for the default PERMIT scheme is nearly the same as the
default DENY scheme as a function of number of resources
in the interval between 0 and 30 resources. These exper-
iments use one security level and no key shares. There
is perhaps a trend that the default DENY scheme starts
with somewhat higher run-time and scales slightly better
than the default PERMIT scheme. The �gures further-
more show that the decision cache reduces the average
run-time from 33 ms to 18.5 ms (median from 27 to 14ms)
for 30 anonymised or declassi�ed resources when reversible
anonymisation is used. This means that the reversible
anonymiser performance is increased from approximately
30 to 54 IDS alarms/s for 30 anonymised resources by us-
ing decision caching.
The cache hit rate for the experiments is 98%, which

is higher than one can expect in a production system due
to lack of entropy in the KDD Cup data set. The �gures
furthermore show that reversible anonymisation based on
XML Encryption and XML Signatures adds an average
cryptographic overhead of 11 ms (median 8ms) compared
to using irreversible anonymisation for the given experi-
ments. Irreversible anonymisation with decision caching
would give a performance of around 130 anonymised IDS
alarms/s on the given hardware.
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a: Run-time as function of resources with
decision cache for one user and one security
level.
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b: Run-time as function of resources without
decision cache for one user and one security
level.
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c: Default PERMIT run-time for 15 re-
sources, one user per security level and no
key shares as function of security levels with
decision cache.
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Figure 13: Anonymiser run-time as a function of number of anonymised resources, default protocol type, number of
security levels and number of key shares. The sub�gures show the median and the 95% con�dence band (in gray) of the
measurements.
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Fig. 13c shows the anonymiser run-time as a function
of number of security levels for 15 resources, one user per
security level and no key shares6. It shows that there is
a linear dependency between run-time and number of se-
curity levels, where the run-time increases with 0.7ms per
additional security level.
Fig. 13d shows the anonymiser run-time as a function

of number of key shares or users for 15 resources and one
security level. The logic for mapping access from a set
users to a set of security levels or key shares is essentially
the same for the anonymiser, hence using only one �gure
to show the performance as a function of of either users or
shares. The Anonymiser run-time increases linearly and
has little in�uence from number of shares, increasing only
with 0.3ms per additional user or key share.

6.2. Deanonymiser Performance

Fig. 14a shows that the run time of the deanonymiser
for the default PERMIT scheme increases linearly (0.27
ms/resource) after an initial transient part for the �rst 0-2
deanonymised resources, and is approximately 3 ms faster
than the anonymiser for anonymisation of 1-30 elements.
The average value is 14 ms/alarm (median 13 ms/alarm)
for 30 resources, which means that the deanonymiser man-
ages to deanonymise 71 IDS alarms/s for 30 resources with
the default PERMIT scheme in the experiments.
Fig. 14b shows that the deanonymiser run time of

the default DENY scheme scales much better with num-
ber of deanonymised resources than the default PERMIT
scheme. It has an average run-time of 8.8 ms (median
7.5 ms) and decreases slightly (by -0.02 ms/resource) with
number of deanonymised resources. The reason for this is
that all the work on deanonymising resources for the de-
fault DENY scheme is done in the anonymiser. Only one
XPATH search is required to replace the content in the
default security level, and less e�ort is required with more
declassi�ed resources, since these resources are not copied
back from the default level. The default DENY scheme
is in other words very e�cient for the deanonymiser. The
deanonymiser manages to deanonymise up to 113 alarms/s
for the default DENY scheme, which can be an advantage,
for example if the deanonymiser is used as part of an alarm
correlation system.
Fig. 14c shows the deanonymiser run-time as function

of number of security levels, assuming that only one of
the security levels need to be deanonymised. The run-
time only increases slightly (0.1 ms/security level) with
increasing number of security levels.
Fig. 14d shows the deanonymiser run-time as a function

of key shares. Adding key shares is relatively expensive,
and adds 1.8 ms run-time per added share. The reason for
this, is the relatively expensive RSA and ephemeral key
decryptions that must be performed for each share.

6Note that this experiment cannot be performed for default
DENY, since it by default uses one security level.

The experiments indicate that both the anonymiser
and deanonymiser should have su�cient performance to
be usable at least for small to medium-scale deploy-
ments of privacy-enhanced IDS. The performance should
also be su�cient for several other applications where the
anonymiser and deanonymiser is used as part of a service
oriented architecture, and where security or privacy is pri-
oritised above performance. It can furthermore be noted
that the XACML PDP, anonymiser and deanonymiser are
parallelisable on an XML message level, meaning that the
capacity can be scaled up by adding more hardware, if
required.

6.3. Bandwidth e�ciency of the proposed solution.

The original IDMEF message size is on average 3.8 kB.
Each XML-signature user or key share adds approximately
1 kB of data to the message. There is furthermore a lin-
ear dependency where each additional anonymisation rule
adds approximately 0.15 kB for the given test data. The
anonymised message is 3.1 kB larger than the original mes-
sage for 0 anonymised elements and 5.7 kB larger for 15
anonymised XML resources in the experiments with two
signatures, one user, one security level and no key shares.
For 15 resources and 10 users, each accessing an individual
security level, the bandwidth usage increases by a factor of
11 to 41.6 kB per IDS alarm. This means that bandwidth
usage will probably limit how complex anonymisation poli-
cies it is practical to implement with the proposed scheme.
It is in particular limited how many security levels, users
and key shares it is possible to implement without having
too large bandwidth and performance overhead.
This means that it may not be desirable to operate with

one key mapping per authorised user, since this solution
scales poorly with number of authorised users. One way to
mitigate this problem, at the expense of relying more on
trust in the XACML authorisation, is to use a role-based
authorisation scheme where roles are authorised using pub-
lic keys for certain use scenarios instead of individual users.
Such a scheme could for example be based on the Smart-
card based encryption scheme proposed in Section 5, to
securely deploy the secret role keys. It would in this case
be natural to use the XACML Role-Based Access Control
(RBAC) pro�le7 for deploying role keys. Such a solution
can be integrated with the proposed solution in a similar
way as discussed in [24]. The details of this is however left
as future work.

7. Discussion

Our approach has the advantage compared to existing
schemes that pseudonymisation is not used, which elimi-
nates the risk of tra�c analysis attacks and known plain-
text attacks on the pseudonyms. It is also an advan-
tage that it is implemented as a proxy which allows for

7XACML RBAC pro�le: docs.oasis-open.org/xacml/3.0/xacml-
3.0-rbac-v1-spec-cd-03-en.html
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Figure 14: Deanonymiser run-time as a function of number of anonymised resources, default protocol type, number
of security levels and number of key shares. The sub�gures show the median and the 95% con�dence band of the
measurements.
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anonymising any XML protocol that can be sent via the
proxy service. It is able to deal with IDS technologies that
use IDMEF, which is a standardised XML-based alarm for-
mat. This allows anonymised IDS alarms to be compati-
ble with existing Security Information and Event Manage-
ment systems that support IDMEF [2]. It must however
be noted that anonymisation reversal may not be possible
without altering the SIEM database, since this requires
preserving the structure of the XML.

It is important to mention that successful reversal of the
anonymisation requires that the anonymisation function
does not semantically change the structure of the XML
document, since this causes the XPath expression for re-
versing the anonymisation to fail. One example of this, is
if one or more text nodes are removed, since this alters the
DOM tree. Furthermore, if XML data is used to represent
the anonymised data, then these data must be quoted.

A more subtle limitation is that the default DENY
protocol does not support replacing anonymised data
by whitespace, since this causes the function normalize-
space() to ignore the anonymised nodes. The latter prob-
lem can be worked around by de�ning an XPath exten-
sion function that recursively iterates through the DOM
tree and identi�es all text nodes enclosed by an element
node. This has been implemented for the VTD-XML
based parser. Note however that the problem persists
if normalize-space() is used in other resource identifying
expressions in the XACML policies. All in all, these are
relatively minor limitations that can be detected and miti-
gated during regression tests of the XACML policies, since
the inner XML signature calculated over the original mes-
sage will fail if the anonymisation reversal is not done cor-
rectly.

8. Related Works

There are some examples of prior work that describes
reversible anonymisation schemes that are not based on
pseudonymisation. A reversible anonymisation scheme for
anonymisation of DICOM images using automatically gen-
erated policies was proposed in [14]. The policy de�ni-
tion consists of a list of attribute rules that describe how
the document shall be anonymised. Anonymised infor-
mation is stored in a separate di�erence �le, in order to
later reverse the anonymisation by merging in this infor-
mation. The solution in our paper is more general and can
anonymise any XML-based format using XACML-based
policies, which is a standardised policy language. Our so-
lution is furthermore di�erent by embedding the informa-
tion required to reverse the anonymisation in the messages,
as well as supporting a multi-level security based scheme
where di�erent stakeholders can be granted access to infor-
mation based on need. Our scheme furthermore supports
both a default PERMIT, default DENY policy and key
sharing, whereas this scheme only supports default PER-
MIT.

Another paper that suggests a reversible anonymisation
scheme for protecting organisational data con�dentiality
in cloud-based services is [25]. Reversible anonymisation
is however not yet implemented in this paper, so the per-
formance measurements only show traditional irreversible
anonymisation.
The paper is also related to the �eld of privacy en-

hanced intrusion detection systems. Most previously pro-
posed privacy-enhanced IDS schemes use some kind of
pseudonymisation scheme, where sensitive information in
the IDS alarms is replaced by pseudonyms, to later be able
to reverse the pseudonymisation process on a needs basis.
Use of pseudonyms in audit logs was �rst suggested

by Fischer-Hübner [20, 6]. Another early example of a
privacy-enhanced IDS that uses pseudonymisation is the
Adaptive Intrusion Detection system (AID) [22]. Both
schemes use symmetric key encryption as pseudonym map-
ping, and focus mainly on encrypting subject identifying
data. AID in addition contains a higher order IDS (ex-
pert system) that correlates the alarms, and discloses the
pseudonymised data if suspicious sequences of events are
detected. The pseudonyms of these early schemes are sus-
ceptible to tra�c analysis attacks during the lifetime of the
session key used for encrypting the pseudonym mapping.
An example of a privacy enhanced IDS that uses

anomaly detection on pseudonymised data is [13]. The
pseudonymisation strategy consists of a very simple static
mapping between sensitive data and pseudonyms, however
this paper also re�ects over the need to pseudonymise other
�elds than directly user/subject identifying �elds.
A Kerberos based pseudonymisation scheme is proposed

in [18]. The scheme implements a hierarchical IDS solu-
tion where pseudonyms only are revealed if the higher-
order anomaly-based IDS detects suspicious tra�c. This
scheme operates with group reference pseudonyms which
correspond to UNIX user groups instead of pseudonymis-
ing users directly. The scheme uses public key encryption
and relies on a trusted third party for initial pseudonym
creation. An extended version of the protocol uses Mixes
to avoid linkability towards the original data sessions. A
similarity with our solution is that both are based on au-
thorisation schemes (Kerberos and XACML), however our
scheme is more �exible when it comes to policy-based �ne-
grained authorisation and anonymisation of XML data. A
pseudonymisation scheme based on homomorphic encryp-
tion is proposed in [16]. This allows for performing certain
equality or inequality tests on encrypted information with-
out revealing the underlying information.
A privacy enhanced intrusion detection scheme for

UNIX audit records is proposed in [7, 10]. This scheme is
based on Shamir's threshold cryptography, and the general
idea is that pseudonymised information shall only be dis-
closed when an attack scenario has been identi�ed. An at-
tack scenario here means that a su�cient amount of shares
have been recovered from IDS alarms to recover the secret
key used by the pseudonymiser. This approach proposes to
use transaction pseudonyms to avoid linkability between

14



pseudonyms, however the proposed implementation has
some weaknesses that cause the authors to reintroduce
linkability between transactions. This scenario has the
same weakness as the other pseudonymisers, since it may
be vulnerable to tra�c analysis attacks in the intervals be-
tween rekeying of the pseudonymiser. Some of the ideas in
this scheme have been extended to support multilaterally
secure ubiquitous auditing in [27, 26]. It combines trans-
action pseudonyms based on threshold cryptography with
secure multiparty computations to support secure and pri-
vacy enhanced tracking of mobile rescue units. The solu-
tion also supports veri�ability via log attestation. This
solution implements transaction pseudonyms in a seman-
tically secure way, to mitigate the risk of tra�c analysis
attacks against the pseudonyms.

A secure logging scheme for retained data of an
anonymity service (AN.ON) is described in [12]. This so-
lution is based on smart cards in order to provide time
restricted access to system logs from the anonymity ser-
vice according to the requirements in the Data Retention
Directive [4]. This scheme uses a similar hybrid encryp-
tion scheme to ours in that symmetric encryption is used
for the log entries and asymmetric encryption is used for
access to the keys. However our scheme is di�erent by
supporting reversible anonymisation with several security
levels and not only encryption. This scheme is therefore
complementary to the scheme proposed here.

Our solution is also somewhat related to anonymisation
of network logs. A NetFlow anonymiser which supports
multiple anonymisation strategies is proposed in [21]. The
intrusion detection system BRO has support for anonymi-
sation of packet traces [15]. However neither of these solu-
tions support reversible anonymisation of XML messages.

9. Conclusions

This paper proposes a reversible anonymisation scheme
for protecting sensitive information in XMLmessages. The
scheme has been applied to IDMEF-based intrusion detec-
tion system alarms, and we expect the reversible anonymi-
sation protocol to be useful for policy based con�dentiality
and integrity protection of sensitive information for a range
of services in a service oriented architecture.

The solution is based on existing standards like XML,
IDMEF, XACML, XML-Encryption and XML-Signature,
and uses a proxy-based reversible anonymiser based on an
earlier proposed XACML decision cache for authorisation
and anonymisation of XML documents [23]. The solution
furthermore supports location-based anonymisation poli-
cies via the GeoXACML framework [1].

Using XACML gives �exibility when it comes to de�n-
ing privacy or security policies for controlling access to
sensitive information. It also solves deployment of encryp-
tion keys in an e�cient way as part of the privacy policy.
The scheme allows for de�ning parties that by default are
authorised for access to sensitive information, but it can

also support on-demand time-restricted access to sensitive
data for authorised users.

A secret sharing scheme is supported, to enforce separa-
tion of duties constraints where more than one stakeholder
need to agree to reveal the sensitive data. The scheme al-
lows for policy-based control of rekeying intervals, data
authorisation and anonymisation schemes. Furthermore,
time-based data expiry is outlined, based on the scheme
in [12], to support secure deletion of sensitive data after a
con�gurable retention time.

This approach provides a method to improve the privacy
of certain types of big data implementations for problems
that scale horizontally, assuming that a large number of
smaller individual data sources can be anonymised before
they are aggregated and stored in a big XML database.

The proposed approach has been integrated into the
existing Security Information and Event Management
systems (SIEM) PreludeIDS8, which supports IDMEF.
Anonymised IDS alarms can be stored in the SIEM
database using the proposed approach without any mod-
i�cations, since the alarms follow the standard IDMEF
extension schema. However implementing support for
anonymisation reversal may require some modi�cations of
the SIEM tools, since the structure of the IDMEF XML
needs to be maintained unmodi�ed for successful anonymi-
sation reversal. One way to mitigate this limitation, is to
store the anonymised data in an XML database.

The performance of the proposed approach has been
tested and should be su�cient for small to medium scale
IDS deployments. However, larger data rates can be man-
aged by running several anonymisers or deanonymisers in
parallel. A useful feature for alarm correlation systems
is that the deanonymiser is fast for default DENY poli-
cies, which allows for correlating alarms between several
privacy-enhanced IDS sensors in business cases where this
is acceptable from a privacy and con�dentiality perspec-
tive.

10. Future Work

Implementing and testing time-based data expiry using
the Smartcard-based solution is left for future work. More
research is also needed on how to protect the XACML poli-
cies themselves, for example using XML encryption as pro-
posed in [9]. Implementing support for role-based instead
of user-based authorisation is also left as future work. An
interesting idea is to extend the multi-level security based
scheme proposed here to also cover XACML policies and
policy handling. Details of logging procedures to ensure
transparency of the operation is also left as future work.
This can for example be implemented in a similar way as
the AN.ON secure logging service [12]. It is also envisaged
that the proposed scheme in the future can be extended to

8PreludeIDS: http://www.prelude-ids.org
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support operations on encrypted data, for example by us-
ing homomorphic encryption of the sensitive data elements
as pseudonyms for the anonymised data. This could make
the reversible anonymisation scheme more useful for XML
databases, since it would allow de�ning certain standard-
ised query operators (e.g. equality tests) on encrypted
data, in a similar way as CryptDB does for relational
databases [17]. Both anonymisation and deanonymisation
are horizontally scalable, which make them suitable for
performing data analysis and deanonymisation using tools
like Apache Hadoop based clusters.
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