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The performance index of a suspension system is a function of the maximum and minimum values over the parameter interval.
Thus metamodel-based techniques can be used for designing suspension system hardpoints locations. In this study, an adaptive
metamodel-based optimization approach is used to find the proper locations of the hardpoints, with the objectives considering the
kinematic performance of the suspension. The adaptive optimization method helps to find the optimum locations of the hardpoints
efficiently as it may be unachievable through manually adjusting. For each iteration in the process of adaptive optimization,
prediction uncertainty is considered and the multiobjective optimization method is applied to optimize all the performance indexes
simultaneously. It is shown that the proposed optimization method is effective while being applied in the kinematic performance

optimization of a McPherson suspension system.

1. Introduction

The suspension K&C characteristics have directly effects on
vehicle handling and riding performances and thus gain
much effort and are of great importance in vehicle develop-
ment. With bush uncertainty and mechanical flexibility, it is
very difficult to predict sensitivity of hardpoints locations in
the kinematic performance of a suspension system as they
are highly nonlinear and coupled [1, 2]. Traditional chassis
developing, which benefits from the development of modern
virtual prototyping technology, can now do system design
effectively through some techniques, like the DOE (design
of experiment) technique, as well as other experience-based
attempts [3-5]. However, the mechanism of the suspension
system is designed by trial and error based on the designer’s
experiences and intuition, which will be time-consuming in
finding a sufficiently good solution since a lot of attempts
may be needed in doing virtual prototyping simulations.
A featured optimization technique may be useful to give
guidance through the design process.

The performance index of a suspension system is a
function of the maximum and minimum values over the
parameter interval [6, 7]. Thus, it is impossible to apply
directly a well-developed optimization algorithm based on
gradient information. It can be very difficult to evaluate
the analytical design sensitivity of the hardpoints locations
because the deviation is defined by using the maximum and
minimum values over the parameter interval. Metamodeling
techniques, which were initially developed as “surrogates” of
the expensive simulation process for improving the overall
computation efficiency and quality [8], are useful in such
a field. Metamodel-based methods in vehicle design area
mainly focused on FEM related problems [9]. Much work
has been done in suspension design area, most of which
focused on complex structural related area. The authors in
[10] studied a mechanical analysis of a suspension optimal
design for suspension system based on reliability analyses,
taking into consideration tolerances and grafting a reliability
analysis that applied the mean-value first order method
with tolerance optimization. Choi et al. recently studied
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optimal design for automotive suspension systems based on
reliability analyses for enhancing kinematics and compliance
characteristics; they performed reliability optimization with
the single-loop single-variable method by using the results
from a deterministic optimization as initial values. The robust
design problem was solved with 1700 analyses for 15 design
variables and four random constants [11]. Recently, researches
on applying metamodel-based optimization techniques to
the K&C performance design of vehicle suspension systems
were tried and gained reasonable good results. Kang et al.
introduced a robust suspension system design approach,
which takes into account the kinematic behaviors influ-
enced by bush compliance uncertainty, using a sequential
approximation optimization technique. The robust design
problem has 18 design variables and 18 random constants
with uncertainty [12]. After then, the team proposed a
so-called target cascading method for the robust design
optimization process of suspension system for improving
vehicle dynamic performances [13]. The design target of the
system is cascaded from a vehicle level to a suspension system
level. The design problem structure of suspension system
is defined as a hierarchical multilevel design optimization,
and the design problem for each level is solved using the
robust design optimization technique based on a metamodel.
The researches above opened the way for doing suspension
system optimization by using metamodel-based techniques
with their effectiveness tested, which motivated us to further
research along the direction. However, the former research
neither considered optimizing several objectives simulta-
neously to make them stable in comparable intervals, nor
gave the searching guidance for each design parameter in
accelerating the convergence of objective parameters.

In this paper, we employ a new adaptive metamodel-
based optimization approach for guiding suspension system
design in determining appropriate hardpoints locations. The
following characteristics distinguish the approach from other
metamodel-based applications in suspension system design.
(1) As we have several vehicle performance related parameters
to be optimized, adaptive weighting factors are used for
multiobjective optimization to ensure that all the objectives
are optimized simultaneously. (2) For each iteration of
the adaptive optimization, both predicted mean value and
prediction standard deviation are considered in case of the
system converging to the wrong optimum values. (3) We
select kriging method as it is more accurate and efficient than
other metamodeling methods in solving highly nonlinear
problems. (4) The optimization approach provides the possi-
ble trends in selecting hardpoints locations for optimizing the
system performances. We organize the paper in the following
manner. Section 2 introduces the engineering requirements
for the optimization problem in suspension system design.
Section 3 presents the methodology of adaptive metamodel-
based optimization considering modeling uncertainty. The
application of adaptive optimization method in suspen-
sion system is given in Section 4. Section 5 compares the
results of proposed adaptive metamodel-based optimization
considering modeling uncertainty and the regular adaptive
metamodeling approach. At last, Section 6 summarizes the
contents of this research.
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FIGURE 1: The kinematic structural model of a McPherson suspen-
sion system.

2. Optimization Problem in
Suspension System

In multibody dynamics point of view, a suspension sys-
tem can be classified into several groups according to the
mechanical joints. In this study, we take McPherson type
suspension system in consideration, which is sensitive to
the kinematic performance. Figurel shows a kinematic
structure model of a McPherson suspension system. Major
components include the strut, the lower control arm, the
tie rod, and the knuckle. Connections between individual
components are spherical, revolute, and universal joints, as
well as compliance elements such as springs, dampers, and
bushings. The design purpose of this study is to determine the
locations of the hardpoints according to the system kinematic
performances, without considering the elastic deformations
of the rigid components except for compliance elements.
The commercial software ADAMS, which can easily get the
suspension system performance, is employed for modeling
and analyzing the suspension system.

The kinematic characteristics of the system include the
positions of the fixed points of the suspension system. To
achieve optimal solution for suspension system, designing
a good kinematic performance is the first step and we
thus carry out kinematic optimization of the suspension
system in this study. For that purpose, the chosen suspension
performance indexes are the deviations in the camber angle,
the caster angle, the kingpin incline angle, and the toe angle
during the wheel stroke. Camber angle is the angle between
the vertical axis of the wheels used for steering and the
vertical axis of the vehicle when viewed from the front or
rear. It is defined as positive when the top of the wheel
moves to the outside. The camber angle alters the handling
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qualities of a suspension system; in particular, a negative
camber angle improves grip when cornering. Caster angle
is the angular displacement from the vertical axis of the
suspension of a steered wheel in a vehicle, measured in the
longitudinal direction. It is the angle between the pivot line
(in a car, an imaginary line that runs through the center of
the upper ball joint to the center of the lower ball joint) and
vertical line. On most modern designs, the kingpin is set at
an angle relative to the true vertical line, which is the kingpin
inclination angle, as viewed from the front or back of the
vehicle. The angle has an important effect on the steering,
making it tend to return to the straight ahead or center
position. Toe angle is the symmetric angle that each wheel
makes with the longitudinal axis of the vehicle, as a function
of static geometry and kinematic and compliant effects. The
toe angle change plays an important role in determining the
apparent transient oversteer or understeer. Positive toe is the
front of the wheel pointing in towards the centerline of the
vehicle. Negative toe is the front of the wheel pointing away
from the centerline of the vehicle. Large errors will have a
negative effect on the behavior of the chassis when braking
or accelerating.

In suspension system design, the locations of hardpoints
are the most important influencing factors that determine
the system kinematic performances. Although engineers
obtained some experiences on adjusting the locations of the
hardpoints, much effort is still needed on trying different
trials. Furthermore, all the geometric parameters of suspen-
sion system are coupled, which make finding the influence
of the hardpoints locations on the system performances a
more tough work, not mentioning there are several objectives
to be determined. In this study, while determining the
locations of the key hardpoints, we select the important
characteristics, that is, the variations of the camber angle, the
caster angle, the kingpin incline angle and the toe angle, for
the objectives since they are related much to the kinematic
performance. An adaptive metamodel-based optimization
approach will be proposed in the next section considering
modeling uncertainties.

3. Adaptive Metamodel-Based
Optimization Method

3.1. Metamodeling Method. In metamodeling, the relation-
ship between a vector of input parameters, x, and an output
parameter, Y, can be formulated as

Y=7F(x)+e 1)

where Y is a random output variable, f (+) is the approximated
relationship, and ¢ is the error of metamodel due to the
uncertainty introduced by the metamodeling method. Many
different metamodels, such as multivariate polynomial, radial
basis function (RBF), and kriging, can be used to build the
approximation relationship f(-). In metamodeling, first m
sample data (x;, ;) (i = 1,2,...,m) are collected to build

f(-). When an input point x, is given, the metamodel can then
be used to predict the output Y, using

Y, = J?(xo) 2)

Among various metamodeling schemes, kriging method
is often selected due to its high accuracy and efficiency
for solving nonlinear problems [14]. Kriging method was
originated from the geostatistics community [15] and used by
Sacks et al. [16] for modeling computer experiments. Kriging
method is based on the assumption that the true system
response, Y, can be modeled by

Y=Y Bfi®)+Zx), (3)

i=0

where f;(-) is a regression function, f3; is the coefficient for
f;(), m + 1 is the number of regression functions, and Z(-) is

the stochastic process with zero mean and covariance defined
by

COV(Z (xj),Z(xk)) = Uszk (ﬂ,xj,xk), (4)

where o is the process variance, Rjk(-) is the correlation
function, and @ is a vector with coefficients to be determined.

For ordinary kriging, the linear part of (3) is usually
assumed to be a constant, whereas the correlation function
R;i(0,x;,x;) is generally formulated as

p

Rjk (0, Xj’ Xk) = HQ (61, .x]'i, xki) 5 (5)

i=1

where p is the dimension of x, x; is the ith component of x;,
Xy, is the ith component of x;, and Q(-) is usually assumed to
be Gaussian as

Q (Oi, X jis xki) = exp (—Gidf) ,
(6)

d; = |xﬁ - xki' .

The linear predictor of kriging method can be formulated as

g =c @y, (7)
where ¢ () is the coefficient vector and y is the vector of the
observations at the sample sites (x,...,X,)

T
y=[&) -y (8)

Through minimizing the prediction variance o;:
o} =E[(§) - Y)’] (9)

concerning the coeflicient vector ¢! (x), the best linear unbi-
ased predictor (BLUP) is solved as [17]

G0 =Ry - (FR'r—f) (FR'E) (F'R Yy),
(10)
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where
r=[R(6,x,x) --- R(6,x,x)]",
R(0,x,,x,) --- R(6,%x,,x,)
R = i
R(6,x,,x,) --+ R(6,%,,x,)
. (11)
fO(Xl) ’ fO(Xn)

E= .. ,

fm(xl) fm(xn)
f=[fo® - fu®]".

The coefficients in 6 can be obtained by using maximum
likelihood estimation as [17]

miny (6) = IR|V"62, (12)
where |R| is the determinant of R and ¢ is obtained by
generalized least squares fit as [17]

2 1

o= m(y ~FB°)' R (y-Fp"), (13)

where B* is the vector with coefficients achieved from
generalized least squares fit and is calculated by

g = (F'R'F) F'R'. (14)

When metamodeling is used for solving specific prob-
lems, collection of sample data in specific parameter space,
rather than the whole parameter space, is then required to
improve the quality and efficiency. This issue is critical when
expensive or extensive experiments/simulations are required
to collect the sample data. Since the relationship is unknown
at the beginning, initial samples are usually collected to build
the initial metamodel. This developed metamodel is then
used to identify the input parameters that have the best
potential to lead to the expected output result. Due to the
errors of the metamodel, the actual output obtained from
experiment/simulation is usually different from the expected
one. The previously obtained metamodel is subsequently
updated to improve its quality using the new pair of input-
output data. The method to iteratively modify the metamodel
through an iterative sampling process is called adaptive
metamodeling.

3.2. Adaptive Metamodel-Based Optimization. When adap-
tive metamodeling is used for optimization, the optimization
process can be referred to as adaptive metamodel-based opti-
mization [8]. The detailed algorithm for adaptive metamodel-
based optimization is introduced here and we call it adaptive
optimization in later parts of the paper. First the m initial
samples with input parameters x; (i = 1,2,...,m) and output
parameter Y; (i = 1,2,...,m) are collected to build the
metamodel:

Y = f,, (x). (15)
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Based on the metamodel relationship f,,,, we can identify
the potential input parameters x* that lead to the minimum
output parameter through optimization:

min f,, (x). (16)

The optimization result of x* is then selected as the vector
of input parameters for the (m+1)th sample x,,,, ;. The output
Y, corresponding to the x,,,; is subsequently obtained
through experiment or simulation. The new pair of data,
(Xm+1> Yope1)» together with all the previously collected sample
data are used to update the metamodel into a new relationship

fm+1:
Y=Ff,1&. 17)

The process of identifying the potential optimal input
parameters, obtaining the output parameter through exper-
iment/simulation, and updating the metamodel is continued
iteratively until the optimization criteria are satisfied.

3.3. Adaptive Optimization considering Modeling Uncertainty.
In the process of adaptive optimization, the prediction
uncertainty of the developed metamodel would influence
the accuracy of the predicted optimum. Minimizing the f,,
directly to find the optimal input parameters may not lead to
good convergence for output parameters. The dual response
surface methodology is a powerful tool for simultaneously
optimizing the mean and the variance of responses to tackle
the problem of misleading [18]. Lin and Tu [19] gave a
dual response surface method using the mean squared error
(MSE) approach as follows:

min MSE = (@, - T)" + a2, (18)
where @, is the predicted response value, T is the target
value, and @, is the prediction standard deviation. Following
the format of (18), the objective function for our adaptive
optimization can be defined as follows:

min MSE = (f,, () - T)" + o(x)". (19)

The optimization result of x* is then selected as the vector of
input parameters for the (m + 1)th sample x,,, ;. The output
Y, corresponding to the x,,,; is subsequently obtained
through experiment or simulation. The new pair of data,
(Xms1> Yope1)» together with all the previously collected sample
data are used to update the metamodel into a new relationship
fon+1> as shown in (17).

We will formulate the specific problem for McPherson
suspension system using the adaptive metamodel-based opti-
mization considering prediction uncertainty in the coming
section.

4. Adaptive Optimization
considering Modeling Uncertainty
in McPherson Suspension

To investigate the performance of the designated suspension
system, a classic McPherson suspension system is modeled
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in ADAMS, as shown in Figure 2. The classic parallel wheel
travel suspension system analysis can be employed to do
system analysis. Vertical bound and rebound of 50 mm are
used. By changing the locations of each hardpoint, the
corresponding change of kinematic characteristics can be
obtained.

In this study, we take the locations of the 7 key hardpoints
labeled in Figure 1 as variables, 3 variables at each hardpoint,
that is, the coordinates of the hardpoint along axes x, y and z
of the vehicle coordinate. Therefore we have 21 variables (vl-
v21) for the designated suspension system. Table 1 listed the
21 variables versus the hardpoint coordinate.

For the kinematic characteristics, as stated in Section 2,
we choose the camber angle, the caster angle, the kingpin
incline angle, and the toe angle as the objective parameters
to be designed and optimized. For McPherson suspension
system, small variations of the four estimate angles surely
are more acceptable. Thus, we choose the four optimization
objectives to be the minimum deviations of the four angles
versus wheel travel from rebound —50 mm to bound 50 mm.

We thus have 21 design variables as input parameters and
4 optimum objectives as output parameters. The optimization
problem is clearly highly nonlinear and coupled on the input
variables. We thus employ the metamodeling method for
the optimal design. We clearly have several optimization
objectives; the usual way that people deal with multiobjective
optimization problems is assigning weighting factors to each
objective and then adding them to build a single objective.
However, the predefined weighting factors may not be proper
for the whole process of optimization. In our work, we only
assign the same value to the weighting factors for the output
parameters in the initial samples. Adaptive weighting factors
are used in the process of adaptive optimization, which is
carried out as follows:

Y,

ri

Yi=w Y +w,Yy +--- +w,

(20)
i=1,...,m,

where r is the number of output parameters and 1 is number
of initial samples. The m initial samples with input parameters
x; (i = 1,2,...,m) and output parameter Y; (i = 1,2,...,m)
are collected to build the metamodel and obtain the new
group of input parameters using (19).

The initial metamodel is built on the data generated
from Latin hypercube sampling [20], which has the following
advantages: (1) its sample mean has a relatively smaller
variance compared with simple random sampling, (2) it can
be used for generating design points when the number of
input variables is large and a great many runs are required,
and (3) it is cheap in computing and easy for implementation
compared with other more complex sampling methods. By
using ADAMS batch processing tools, the initial sets samples
can easily be obtained. With the built initial metamodel, the
adaptive optimization method introduced in Section 3.3 can
be used.

The 4 output parameters corresponding to the new
group of input parameters are subsequently obtained through
simulations. The weighting factors w; are adjusted using (21)
and the value of Y, is calculated using (22). The larger the

5
FIGURE 2: ADAMS model of the McPherson suspension system.
TaBLE 1: The key hardpoints and corresponding variables.

Number  Hardpoint name Coordinates Variables
1 LCA _front X, 9,2 vl,v2,v3
2 LCA _outer X, 9,2 v4,v5,v6
3 LCA _rear X, 9,2 v7,v8,v9
4 Struct_lwr X, 9,2 v10,v11,v12
5 Tierod_inner X, Y2 v13,v14,v15
6 Tierod_outer X, ), 2 v16,v17,v18
7 Top_-mount X, Y2 v19,v20,v21

Y, is, the larger weighting factor will be assigned to it in
order to minimize all the output parameters at the same time.

Consider

wM+1 _ leMl
' [Yie| + [Yome| + - + [Youd] (21)
i=1,....,r;, M=50,...N -1,

where M +1 is the number of samples for each iteration in the
process of adaptive optimization, and N is the total sample
size. Consider

M+1 M+1 M+1
Yy =wy Yy tw, Y+ +w, Y. o (22)

The new pair of data, (Xp,q> Yas1)> together with all
the previously collected sample data are used to update the
metamodel into a new relationship. The optimization process
is stopped when the change of the objective function in
several consecutive iterations is less than a predefined value,
or the maximum number of iterations is reached.

As there are 4 output parameters as optimizing objectives
for our suspension system, (23) is used to transform the mul-
tiobjective optimization into single objective optimization.
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FIGURE 3: Flowchart of the proposed adaptive multiobjective optimization approach.

The adaptive weighting factors are obtained from (21). The
design objective is to minimize Y as in

Y = wchamber + wZYcaster + w3Ykingpin + w4Ytoe' (23)

The flowchart for the adaptive optimization process is given
in Figure 3.

5. Comparisons and Analysis of the
Optimization Results

The number of the initial sample is selected as 50 to build the
initial metamodel. 50 initial samples may not be enough for
a metamodeling problem with 21 variables; however, due to
the cost consideration in engineering design, we just initially
choose 50 samples and gradually add new samples during
the design process. Based on the initial metamodel, more
trails are sampled sequentially and adaptively to approach
the optimum value. When the total sample size reaches 100,
the values of the output parameters are generally stable.
We analyze each of the 4 output parameters individually
every time while we update the metamodel. For this high
dimensional (21D input) problem, 100 samples may not
be enough to reach the optimum value. However, we can
evaluate its effectiveness through its convergent trend. The
optimization results are shown in Figure 4. The value of the
objective function is well converged and the variations of the
4 output parameters are generally stable.

The 4 types of curves with “»”, “x”, “+”, and “0” indicate the
camber angle variation, the caster angle variation, the kingpin
incline angle variation, and the toe angle variation. The trail

function
I SR

.

0 10 20 30 40 50 60 70 80 90 100

Trail number

Value of objective

2
g >
SY 4|
« &
Ss 3t
23 2f
s8]
5—1:‘ 3
= y
>Cu

g0

(=]

Trail number

camber Ykingpin

Yeaster Yice

FIGURE 4: Adaptive optimization results.

distributions from 1 to 50 are obtained from Latin hypercube
sampling in the whole design space for building the initial
metamodel. From Figure 4, we can see that corresponding
to the same design interval (=50, 50), the variation interval
for the camber angle, the caster angle, the kingpin incline
angle, and the toe angle are (0, 2.5), (0, 4.5), (0, L.5), and
(0, 4.5). While adaptive optimization is applied for the trails
from 51 to 100, the variation intervals decrease and the
curves become smooth. The adaptive weighting factors help
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TABLE 2: The initial and optimized hardpoints coordinates.

Variables Initial Optimized

v1,v2,v3 160, —410, 265 195.7, -381, 234
v4, v5, v6 -80, -710, 165 =95, -710.6, 213
v7,v8,v9 190, —395, 185 190.6, —366, 166
v10,v11,v12 50, =630, 530 64.6, —622, 531.3
v13,v14,v15 155, —440, 355 130, —=391.2, 305
v16,v17,v18 210, =700, 240 219.5, =749, 290
v19,v20,v21 7.5, -603.8, 850 35.2, -642, 873.6

the output parameters with different variation intervals con-
verge to the same variation interval (0, 0.33). It can be seen
from Figure 4 that our method succeeds in optimizing the
4 output parameters simultaneously while the value of the
objective function is well converged. Table 2 listed the initial
and the optimized hardpoints locations for the suspension
system. We have chosen the 100th sample as the optimized
result.

As to the regular adaptive optimization, prediction stan-
dard deviation is not considered in the process of the
optimization, and the objective function is usually defined
as in (16). We used the same 50 initial samples to build the
initial metamodel and then apply the objective function given
in (16) to search the subsequent 50 samples. We compare
the mean output values of the last 5 samples for each of the
4 output parameters from optimization objective functions
defined by (19) and (16), as shown in Table 3. The mean output
values are compared by a ratio, «, representing how much
the adaptive optimization method considering uncertainty is
better than the regular adaptive optimization method. Here,

Var, — Var
o = mean mean(un) i (24)
Varmean(un)

where Var,.,, indicates the mean output value in the last
5 iterations from regular adaptive optimization method,
and Var,,, ) gives the mean output value in the last 5
iterations from adaptive optimization method considering
the modeling uncertainty.

From Table 3, we could see that the adaptive optimiza-
tion method with consideration of modeling uncertainty
performs better. The adaptive optimization performs better
up to 81.11% for all the four output parameters. The reason
should be that the number of sample points is far from
sufficient to build an accurate metamodel, especially at the
very beginning. Thus the optimization result based on the
built metamodel only considering predicted mean value may
not converge to the right direction. With the prediction
standard deviation being considered at the same time, the
inaccuracy of the metamodel can be compensated to some
extent to approach the right direction.

What is interesting is that the approach can illustrate
a suggested trend that the hardpoints should be moved
over to. Figure5 shows the approximate trends that the
hardpoints tierod inner and tierod outer stay around during

7
I
£
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9]
i=]
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=) ; A
S e . .
0 10 20 30 40 50 60 70 80 90 100
Trail number
—— Tierod-inner x
e Tierod-inner y
-» - Tierod-inner z
=
E
g
IS
&
3
=
o

0 10 20 30 40 50 60 70 80 90 100

Trail number

—— Tierod-outer x
o Tierod-outer y
-o - Tierod-outer z

FIGURE 5: The evolution trend of the hardpoint tierod inner and
tierod outer.

the optimization procedure, and other hardpoints perform
similarly. From this figure, it can be seen that the 3 coordinate
values for each input parameter tend to change in a smaller
interval rather than change in the original design interval
(=50, 50). This result from our research can help to reduce
the design space in the process of adaptive optimization,
in order to greatly improve the optimization efficiency,
which would be especially significant for higher dimensional
problems.

The apparent result that the optimization procedure can
achieve is reducing the variation of the design objectives.
Figure 6 gives the variations of the camber angle, the caster
angle, the kingpin incline angle, and the toe angle, versus the
wheel travel for the optimized trail number 100 and the initial
trail during the parallel suspension travel analysis. We can see
that the optimized data significantly reduced the variation of
the camber angle, the kingpin incline angle, and the toe angle,
while also slightly reducing the caster angle. This shows the
effectiveness of the proposed approach on guiding to search
for the optimized solution for kinematic performance design
of vehicle suspension systems. Other related parameters can
be considered in a similar way.

6. Conclusion

This study introduced adaptive metamodel-based optimiza-
tion considering modeling uncertainty to optimize the kine-
matic performance of a McPherson suspension system. The
optimization design problem is of 21 input parameters and
4 output parameters. The multioutput optimization in the
McPherson suspension system is transformed to a single out-
put optimization problem using adaptive weighting factors.
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TaBLE 3: Comparison between adaptive optimization considering modeling uncertainty and regular adaptive optimization.

e .. . ! 1 Kingpi 1 T 1
Optimization objective function Camber .ang ¢ Castgr z?ng ¢ mgplln'ang ¢ oe. an.g N
variation variation variation variation
Adaptive optimization considering modeling uncertainty 0.1056 0.0916 0.3044 0.0577
Regular adaptive optimization 0.1616 0.1585 0.4717 0.1045
« 53.03% 73.03% 54.96% 81.11%
2.5 11.5
2 4
1.5 A
El T % 9.8333 1
2 1 3
= E LT L
o0 S s el i
£ 05 froi g 1
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2 ] e R R 8
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8 1 S 81667
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FIGURE 6: The variation of camber angle, caster angle, kingpin incline angle, and toe angle versus wheel travel before and after the optimization.

50 initial samples and 50 sequential trails are generated to
analyze the convergent trend of the objective parameters. It
shows that the proposed optimization method provided a set
of relatively good results of the 4 output objective parameters
simultaneously for the 50 sequential trails. Possible optimal

design trends of the hardpoints are given as the trail goes
on. Comparisons showed that the adaptive metamodel-
based optimization method considering modeling uncer-
tainty worked better than general adaptive metamodel-based
optimization for the suspension design problem.
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