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The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear
interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF)
neural networks are applied to approximate packaged unknown nonlinearities and then an adaptive neural decentralized controller
is systematically derived without requiring any information on the boundedness of dead zone parameters (slopes and break points).
It is proven that the developed control scheme can ensure that all the signals in the closed-loop system are semiglobally uniformly
ultimately bounded in the sense of mean square. Simulation study is provided to further demonstrate the effectiveness of the
developed control scheme.

1. Introduction

During the past several decades, a large number of research
results have been obtained on the problems of stability
analysis and control design for nonlinear systems because
of the extensive existence of nonlinearity in the practical
systems. So far, there are many control methods proposed
to control design of nonlinear systems, such as adaptive
backstepping control [1–4], fault-tolerant control [5–9], 𝐻

∞

control [10–16], and fuzzy control [17–21]. In the control of
uncertain complex nonlinear systems, backstepping-based
neural networks or fuzzy adaptive control technique is an
efficient and practical strategy, and many interesting results
have been obtained for a class of uncertain nonlinear strict-
feedback systems; for example, see [22–37]. In addition,
adaptive neural or fuzzy backstepping control approach can
also be extended to control a class of nonaffine pure-feedback
nonlinear systems representing a class of more general lower
triangular systems, in which no affine appearance of the
state variables can be used as virtual control signals. This

makes it quite difficult and more meaningful to control
the pure-feedback systems. By using small-gain theorem,
in [38], an adaptive neural control scheme is presented
for a class of completely nonaffine pure-feedback systems.
Afterwards, some researchers further consider other types
of pure-feedback nonlinear systems, such as pure-feedback
systems with time-delay [39] and with dead-zone [40].

Large-scale system is considered as a dynamical sys-
tem which is composed of some lower-order subsystems
with interconnections and often exists in many practical
applications such as electric power systems, computer net-
work systems, and aerospace systems. Decentralized adaptive
control of unknown nonlinear interconnected systems has
attracted much research attention because this problem is
important both theoretically and practically. Up to now,
many interesting adaptive decentralized control approaches
for large-scale nonlinear systems have been proposed in [41,
42] and the references therein. By combining backstepping
technique together with adaptive neural or fuzzy control,
many research papers have been published in [28–32] for
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affine nonlinear large-scale interconnected systems and in
[43, 44] for nonaffine nonlinear large-scale systems.However,
these researches have not considered the effect of the system
input signal with dead zone. The existence of dead zone
input nonlinearity severely degrades system performance. So,
dead zone nonlinearity has to be considered when controller
is designed in many industrial processes, such as valves,
DC servo motors, and other devices. In [45], an adaptive
robust control scheme is proposed for a class of nonlinear
systems, in which the dead zone nonlinearity is expressed
by a combination of a line and a disturbance-like term
and its parameters are tuned by using adaptive technique.
Then, some backstepping-based adaptive control schemes are
developed for nonlinear systems with unknown dead zone
input [46–50].

Based on the above observations, this paper focuses
on the problem of adaptive neural decentralized control
for a class of nonaffine large-scale nonlinear systems with
unknown dead zones. The proposed adaptive neural con-
troller guarantees that all the signals in the closed-loop
systems remain semiglobally uniformly ultimately bounded
in the sense of mean square, and the error signals eventually
converge to small neighborhood around the origin. The
main advantages of this research lie in that (i) the dead-
zone inverse as well as the prior knowledge of bounds
of dead-zone parameters (slopes and break-points) is not
required; (ii) only one adaptive parameter is involved in
the developed controller for each subsystem. As a result,
the computational burden is significantly alleviated. In this
way, the proposed control law could be easily implemented
in practical applications. Simulation results are provided to
further illustrate the effectiveness of the proposed control
approach.

The paper is organized as follows. Section 2 provides
the problem formulation and preliminaries. The control
design and analysis of state feedback controller are given
in Section 3, following a simulation example in Section 4.
Section 5 concludes this paper.

2. Problem Formulation and Preliminaries

Consider a class of pure-feedback nonlinear interconnected
large-scale systems with dead zones and 𝑁 subsystems, and
the 𝑖th (𝑖 = 1, 2, . . . , 𝑁) subsystem is in the following form:

𝑥̇
𝑖,𝑗
= 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗+1

) + 𝜑
𝑖,𝑗
(𝑦) , 1 ≤ 𝑗 ≤ 𝑛

𝑖
− 1,

𝑥̇
𝑖,𝑛𝑖

= 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 𝑢
𝑖
) + 𝜑
𝑖,𝑛𝑖
(𝑦) ,

𝑦
𝑖
= 𝑥
𝑖,1
,

(1)

where 𝑥
𝑖,𝑗

= [𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑗
]
𝑇 and 𝑦 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑁
]
𝑇.

𝑥
𝑖
= [𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑛𝑖
]
𝑇

∈ 𝑅
𝑛𝑖 and 𝑦

𝑖
∈ 𝑅 are the state

variables and the output of the 𝑖th subsystem, respectively.
𝑓
𝑖,𝑗
(⋅) : 𝑅

𝑗+1

→ 𝑅, (𝑗 = 1, 2, . . . , 𝑛
𝑖
) are unknown smooth

nonlinear functions; 𝜑
𝑖,𝑗
(⋅) : 𝑅

𝑁

→ 𝑅 (𝑗 = 1, 2, . . . , 𝑛
𝑖
) are

unknown interconnections between the 𝑖th subsystem and

other subsystems, with 𝑓
𝑖,𝑗
(0) = 𝜑

𝑖,𝑗
(0) = 0; 𝑢

𝑖
∈ 𝑅 is the

output of an unknown dead zone and defined as

𝑢
𝑖
= 𝐷 (V

𝑖
) =

{{

{{

{

𝑔
𝑖𝑟
(V
𝑖
) , V
𝑖
≥ 𝑏
𝑖𝑟
,

0, 𝑏
𝑖𝑙
< V
𝑖
< 𝑏
𝑖𝑟
,

𝑔
𝑖𝑙
(V
𝑖
) , V

𝑖
≤ 𝑏
𝑖𝑙
,

(2)

where 𝑏
𝑖𝑙
< 0 and 𝑏

𝑖𝑟
> 0 are the unknown parameters and

V
𝑖
(𝑡) ∈ 𝑅 is the input of the dead zone.
For the unknown dead zone input, the following assump-

tion is required.

Assumption 1 (see [40]). The functions, 𝑔
𝑖𝑙
(V
𝑖
) and 𝑔

𝑖𝑟
(V
𝑖
),

are smooth and there exist unknown positive constants,
𝑘
𝑖𝑙0
, 𝑘
𝑖𝑙1
, 𝑘
𝑖𝑟0
, and 𝑘

𝑖𝑟1
, such that

0 < 𝑘
𝑖𝑙0
≤ 𝑔
󸀠

𝑖𝑙
(V
𝑖
) ≤ 𝑘
𝑖𝑙1
, ∀V

𝑖
∈ (−∞, 𝑏

𝑖𝑙
] ,

0 < 𝑘
𝑖𝑟0

≤ 𝑔
󸀠

𝑖𝑟
(V
𝑖
) ≤ 𝑘
𝑖𝑟1
, ∀V

𝑖
∈ [𝑏
𝑖𝑟
, +∞) ,

(3)

and 𝛽
𝑖0

≤ min{𝑘
𝑖𝑙0
, 𝑘
𝑖𝑟0
} is an unknown positive con-

stant, where 𝑔
󸀠

𝑖𝑙
(V
𝑖
) = (𝑑𝑔

𝑖𝑙
(𝑧)/𝑑𝑧)|

𝑧=V𝑖 and 𝑔
󸀠

𝑖𝑟
(V
𝑖
) =

(𝑑𝑔
𝑖𝑟
(𝑧)/𝑑𝑧)|

𝑧=V𝑖 .

Remark 2. Assumption 1 is similar to the assumption in [40]
where 𝛽

𝑖0
is a known constant. However, Assumption 1 does

not require it to be known. So, Assumption 1 relaxes the
limitation in [40].

Based on Assumption 1, the dead zone (2) can be rewrit-
ten as [40]

𝑢
𝑖
= 𝐷 (V

𝑖
) = 𝐾

𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ 𝑑
𝑖
(V
𝑖
) , (4)

where

Φ
𝑖
(𝑡) = [𝜑

𝑖𝑟
(𝑡) , 𝜑
𝑖𝑙
(𝑡)]
𝑇

,

𝜑
𝑖𝑟
(𝑡) = {

1, V
𝑖
(𝑡) > 𝑏

𝑖𝑙
,

0, V
𝑖
(𝑡) ≤ 𝑏

𝑖𝑙
,

𝜑
𝑖𝑙
(𝑡) = {

1, V
𝑖
(𝑡) < 𝑏

𝑖𝑟
,

0, V
𝑖
(𝑡) ≥ 𝑏

𝑖𝑟
,

𝐾
𝑖
(𝑡) = [𝐾

𝑖𝑟
(V
𝑖
(𝑡)) , 𝐾

𝑖𝑙
(V
𝑖
(𝑡))]
𝑇

,

𝐾
𝑖𝑟
(V
𝑖
(𝑡)) = {

0, V
𝑖
(𝑡) ≤ 𝑏

𝑖𝑙
,

𝑔
󸀠

𝑖𝑟
(𝜉
𝑖𝑟
(V
𝑖
(𝑡))) , 𝑏

𝑖𝑙
< V
𝑖
(𝑡) < +∞,

𝐾
𝑖𝑙
(V
𝑖
(𝑡)) = {

𝑔
󸀠

𝑖𝑙
(𝜉
𝑖𝑙
(V
𝑖
(𝑡))) , −∞ < V

𝑖
(𝑡) < 𝑏

𝑖𝑟
,

0, V
𝑖
(𝑡) ≥ 𝑏

𝑖𝑟
,

𝑑
𝑖
(V
𝑖
) =

{{

{{

{

−𝑔
󸀠

𝑖𝑟
(𝜉
𝑖𝑟
(V
𝑖
)) 𝑏
𝑖𝑟
, V

𝑖
≥ 𝑏
𝑖𝑟
,

− [𝑔
󸀠

𝑖𝑙
(𝜉
𝑖𝑙
(V
𝑖
)) + 𝑔

󸀠

𝑖𝑟
(𝜉
𝑖𝑟
(V
𝑖
))] V
𝑖
, 𝑏
𝑖𝑙
< V
𝑖
< 𝑏
𝑖𝑟
,

−𝑔
󸀠

𝑖𝑙
(𝜉
𝑖𝑙
(V
𝑖
)) 𝑏
𝑖𝑙
, V

𝑖
≤ 𝑏
𝑖𝑙
,

(5)

where 𝜉
𝑖𝑙
(V
𝑖
) ∈ (V

𝑖
, 𝑏
𝑖𝑙
), if V
𝑖
< 𝑏
𝑖𝑙
; 𝜉
𝑖𝑙
(V
𝑖
) ∈ (𝑏

𝑖𝑙
, V
𝑖
), if 𝑏
𝑖𝑙
≤

V
𝑖
< 𝑏
𝑖𝑟
; 𝜉
𝑖𝑟
(V
𝑖
) ∈ (𝑏

𝑖𝑟
, V
𝑖
), if 𝑏
𝑖𝑟
< V
𝑖
; 𝜉
𝑖𝑟
(V
𝑖
) ∈ (V

𝑖
, 𝑏
𝑖𝑟
), and if

𝑏
𝑖𝑙
< V
𝑖
≤ 𝑏
𝑖𝑟
, and |𝑑

𝑖
(V
𝑖
)| ≤ 𝑝

∗

𝑖
, 𝑝∗
𝑖
is an unknown positive

constant with 𝑝∗ = (𝑘
𝑖𝑟1
+ 𝑘
𝑖𝑙1
)max{𝑏

𝑖𝑟
, −𝑏
𝑖𝑙
}.



Mathematical Problems in Engineering 3

Remark 3. As shown in [40], there exist some other expres-
sions for the case of linear dead zone outside the deadband,
but (4) includes the most actual cases and 𝐾

𝑇

𝑖
(𝑡)Φ
𝑖
(𝑡) ∈

[𝛽
𝑖0
, 𝑘
𝑖𝑙1
+ 𝑘
𝑖𝑟1
] ⊂ (0, +∞).

Based on mean value theorem [51], 𝑓
𝑖,𝑗
(⋅) in (1) can be

described as

𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗+1

) = 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
0

𝑖,𝑗+1
) + ℎ
𝜇𝑖,𝑗
(𝑥
𝑖,𝑗+1

− 𝑥
0

𝑖,𝑗+1
) ,

𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 𝑢
𝑖
) = 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 𝑢
0

𝑖
) + ℎ
𝜇𝑖,𝑛𝑖

(𝑢
𝑖
− 𝑢
0

𝑖
) ,

(6)

where smooth function 𝑓
𝑖,𝑗
(⋅) is explicitly analyzed between

𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗+1

) and 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
0

𝑖,𝑗+1
), ℎ
𝜇𝑖,𝑗

:= ℎ
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
𝜇𝑖,𝑗
) =

(𝜕𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗+1

)/𝜕𝑥
𝑖,𝑗+1

)|
𝑥𝑖,𝑗+1=𝑥𝜇𝑖,𝑗

, 𝑥
𝑖,𝑛𝑖+1

= 𝑢
𝑖
, 𝑥
𝜇𝑖,𝑗

=

𝜇
𝑖,𝑗
𝑥
𝑖,𝑗+1

+ (1 − 𝜇
𝑖,𝑗
)𝑥
0

𝑖,𝑗+1
, 0 < 𝜇

𝑖,𝑗
< 1, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 =

1, 2, . . . , 𝑛
𝑖
.

Next, by substituting (6) and (4) into (1), and choosing
𝑥
0

𝑖,𝑗+1
= 0, 𝑢0

𝑖
= 0, we obtain

𝑥̇
𝑖,𝑗
= ℎ
𝜇𝑖,𝑗
𝑥
𝑖,𝑗+1

+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) + 𝜑

𝑖,𝑗
(𝑦) , 1 ≤ 𝑗 ≤ 𝑛

𝑖
− 1,

𝑥̇
𝑖,𝑛𝑖

= ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
) + 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0)

+ 𝜑
𝑖,𝑛𝑖
(𝑦) ,

𝑦
𝑖
= 𝑥
𝑖,1
.

(7)

Assumption 4 (see [40]). The signs of ℎ
𝜇𝑖,𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤

𝑗 ≤ 𝑛
𝑖
, do not change, and there exist unknown constants 𝑏

𝑚

and 𝑐 such that

0 < 𝑏
𝑚
≤
󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝜇𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 < ∞. (8)

Remark 5. Assumption 4 means that ℎ
𝜇𝑖,𝑗

are strictly either
positive or negative. Without loss of generality, it is assumed
that 0 < 𝑏

𝑚
≤ ℎ
𝜇𝑖,𝑗
. In addition, by means of Assumptions 1

and 4, it can be further supposed that

0 < 𝑏 ≤ ℎ
𝜇𝑖,𝑗
, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛

𝑖
− 1,

0 < 𝑏 ≤ ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) ,

(9)

where 𝑏 = min{𝑏
𝑚
, 𝑏
𝑚
𝛽
𝑖0
} is an unknown constant.

Assumption 6 (see [31]). For uncertain nonlinear functions
𝜑
𝑖,𝑗
(𝑦) in (1), there exist unknown smooth functions 𝜑

𝑖,𝑗,𝑙
(𝑦
𝑙
)

such that for 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛
𝑖
,

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑖,𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

≤

𝑁

∑

𝑙=1

𝜑
2

𝑖,𝑗,𝑙
(𝑦
𝑙
) , (10)

where 𝜑
𝑖,𝑗,𝑙
(0) = 0, 𝑙 = 1, 2, . . . , 𝑁.

Noting that 𝜑
𝑖,𝑗,𝑙
(𝑦
𝑙
) in (10) is smooth function with

𝜑
𝑖,𝑗,𝑙
(0) = 0, so there exist unknown smooth functions

𝜑
𝑖,𝑗,𝑙
(𝑦
𝑙
) such that

󵄨󵄨󵄨󵄨󵄨
𝜑
𝑖,𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨

2

≤

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑗,𝑙
(𝑦
𝑙
) . (11)

In what follows, RBF neural networks are applied to approx-
imate any continuous function 𝑓(𝑋) : 𝑅𝑛 → 𝑅,

𝑓
𝑛𝑛
(𝑋) = 𝑊

𝑇

𝜙 (𝑋) , (12)

where 𝑋 ∈ Ω
𝑍

⊂ 𝑅
𝑞 is the input vector with 𝑞 being

the neural networks input dimension, weight vector 𝑊 =

[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑙
]
𝑇

∈ 𝑅
𝑙, 𝑙 > 1 is the neural networks

node number, and 𝜙(𝑋) = [𝜙
1
(𝑋), 𝜙

2
(𝑋), . . . , 𝜙

𝑙
(𝑋)]
𝑇 means

the basis function vector with 𝜙
𝑖
(𝑋) being chosen as the

commonly used Gaussian function of the form

𝜙
𝑖
(𝑋) = exp[−

(𝑋 − 𝜇
𝑖
)
𝑇

(𝑋 − 𝜇
𝑖
)

𝜂
2

𝑖

] , 𝑖 = 1, 2, . . . , 𝑙,

(13)

where 𝜇
𝑖
= [𝜇
𝑖1
, 𝜇
𝑖2
, ..., 𝜇
𝑖𝑞
]
𝑇 is the center of the receptive field

and 𝜂
𝑖
is the width of the Gaussian function. In [52], it has

been indicated that with sufficiently large node number 𝑙, the
RBF neural networks (12) can approximate any continuous
function 𝑓(𝑋) over a compact set Ω

𝑍
⊂ 𝑅
𝑞 to arbitrary any

accuracy 𝜀 > 0 as

𝑓 (𝑋) = 𝑊
∗𝑇

𝜙 (𝑋) + 𝛿 (𝑋) , ∀𝑧 ∈ Ω
𝑧
∈ 𝑅
𝑞

, (14)

where𝑊∗ is the ideal constant weight vector and defined as

𝑊
∗

:= arg min
𝑊∈𝑅

𝑙

{ sup
𝑍∈Ω𝑍

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑋) −𝑊

𝑇

𝜙 (𝑋)
󵄨󵄨󵄨󵄨󵄨
} , (15)

and 𝛿(𝑋) denotes the approximation error and satisfies
|𝛿(𝑋)| ≤ 𝜀.

Lemma7 (see [53]). Consider theGaussianRBFnetworks (12)
and (2). Let 𝜌 := (1/2)min

𝑖 ̸= 𝑗
‖𝜇
𝑖
− 𝜇
𝑗
‖; then an upper bound

of ‖𝜙(𝑋)‖ is taken as

󵄩󵄩󵄩󵄩𝜙 (𝑋)
󵄩󵄩󵄩󵄩 ≤

∞

∑

𝑘=0

3𝑞(𝑘 + 2)
𝑞−1

𝑒
−2𝜌
2
𝑘
2
/𝜂
2

:= 𝑠. (16)

It has been shown in [38] that the constant 𝑠 in Lemma 7
has a limited value and is independent of the variable 𝑋 and
the dimension of neural weights 𝑙.

3. Adaptive Neural Control Design

In this section, an adaptive neural backstepping control
scheme will be developed. During the controller design,
for the 𝑖th subsystem, RBF neural network 𝑊

𝑇

𝑖,𝑗
𝜙(𝑋
𝑖,𝑗
) will

be utilized to approximate the packaged unknown function
𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
) at step 𝑗. Both the virtual control signals 𝛼

𝑖,𝑗
(𝑋
𝑖,𝑗
)



4 Mathematical Problems in Engineering

and adaption laws ̇̂
𝜃
𝑖
will be constructed in the following

forms:

𝛼
𝑖,𝑗
(𝑋
𝑖,𝑗
) = −𝑘

𝑖,𝑗
𝑧
𝑖,𝑗
−

1

2𝑎
2

𝑖,𝑗

𝑧
𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
(𝑋
𝑖,𝑗
) 𝜙
𝑖,𝑗
(𝑋
𝑖,𝑗
) , (17)

̇̂
𝜃
𝑖
=

𝑛𝑖

∑

𝑗=1

𝜆
𝑖

2𝑎
2

𝑖,𝑗

𝑧
2

𝑖,𝑗
𝜙
𝑇

𝑖,𝑗
(𝑋
𝑖,𝑗
) 𝜙
𝑖,𝑗
(𝑋
𝑖,𝑗
) − 𝛾
𝑖
𝜃
𝑖
, (18)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛
𝑖
, 𝑘
𝑖,𝑗
, 𝑎
𝑖,𝑗
, 𝜆
𝑖
, and 𝛾

𝑖
are

positive design parameters, 𝑋
𝑖,1
= 𝑥
𝑖,1
, 𝑋
𝑖,𝑗
= [𝑥
𝑇

𝑖,𝑗
, 𝜃
𝑖
]
𝑇, (𝑗 =

2, . . . , 𝑛
𝑖
) with 𝑥

𝑖,𝑗
= [𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑗
]
𝑇, and 𝑧

𝑖,𝑗
satisfy the

following coordinate transformation:

𝑧
𝑖,𝑗
= 𝑥
𝑖,𝑗
− 𝛼
𝑖,𝑗−1

(19)

with 𝛼
𝑖,0
= 0. 𝜃

𝑖
is used to estimate an unknown constant 𝜃

𝑖

which will be defined as

𝜃
𝑖
= max {1

𝑏

󵄩󵄩󵄩󵄩󵄩
𝑊
𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩

2

; 𝑗 = 1, 2, . . . , 𝑛
𝑖
} , (20)

where 𝑏 is specified in Remark 5, and ‖𝑊
𝑖,𝑗
‖ will be defined

at the 𝑗th step. Specially, 𝛼
𝑖,𝑛𝑖

is the actual control input signal
𝑢
𝑖
.
For simplicity, in the following, the time variable 𝑡 and

the state vector 𝑥
𝑖,𝑗

will be omitted from the corresponding
functions and let 𝜙

𝑖,𝑗
(𝑋
𝑖,𝑗
) = 𝜙
𝑖,𝑗
.

Step 1. Based on 𝑧
𝑖,1
= 𝑥
𝑖,1
, 𝑧
𝑖,2
= 𝑥
𝑖,2
−𝛼
𝑖,1
, the error dynamic

𝑧
𝑖,1
satisfies

𝑧̇
𝑖,1
= ℎ
𝜇𝑖,1
𝑧
𝑖,2
+ ℎ
𝜇𝑖,1
𝛼
𝑖,1
+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) + 𝜑

𝑖,1
(𝑦) . (21)

Consider a Lyapunov function candidate as 𝑉
𝑖,1

=

(1/2)𝑧
2

𝑖,1
= (1/2)𝑦

2

𝑖
. Then, the time derivative of𝑉

1
along (21)

satisfies

𝑉̇
𝑖,1
= 𝑦
𝑖
(ℎ
𝜇𝑖,1
𝑧
𝑖,2
+ ℎ
𝜇𝑖,1
𝛼
𝑖,1
+ 𝑓
𝑖,1
(𝑥
𝑖,1
, 0) + 𝜑

𝑖,1
(𝑦)) . (22)

By using (11) and the completion of squares, we get

𝑦
𝑖
𝜑
𝑖,1
(𝑦) ≤

1

2
𝑦
2

𝑖
+
1

2

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,1,𝑙
(𝑦
𝑙
) . (23)

Further, (22) can be rewritten as

𝑉̇
𝑖,1
= 𝑦
𝑖
(ℎ
𝜇𝑖,1
𝑧
𝑖,2
+ ℎ
𝜇𝑖,1
𝛼
𝑖,1
+ 𝑓
𝑖,1
(𝑥
𝑖,1
, 0) +

1

2
𝑦
𝑖
)

+
1

2

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,1,𝑙
(𝑦
𝑙
) .

(24)

Step 𝑗 (2 ≤ 𝑗 ≤ 𝑛
𝑖
− 1). According to (19), one has

𝑧̇
𝑖,𝑗
= ℎ
𝜇𝑖,𝑗
𝑧
𝑖,𝑗+1

+ ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) + 𝜑

𝑖,𝑗
(𝑦) − 𝛼̇

𝑖,𝑗−1
,

(25)

where

𝛼̇
𝑖,𝑗−1

=

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

(𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

) + 𝜑
𝑖,𝑘
(𝑦)) +

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
. (26)

Take Lyapunov function 𝑉
𝑖,𝑗
= (1/2)𝑧

2

𝑖,𝑗
; then we have

𝑉̇
𝑖,𝑗
= 𝑧
𝑖,𝑗
(𝑔
𝜇𝑖,𝑗
𝑧
𝑖,𝑗+1

+ 𝑔
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) + 𝜑

𝑖,𝑗
(𝑦)

−

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

(𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)+𝜑
𝑖,𝑘
(𝑦))−

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
) .

(27)

Following the same line as the procedures used in (23), one
has

− 𝑧
𝑖,𝑗

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

𝜑
𝑖,𝑘
(𝑦)

≤
1

2
𝑧
2

𝑖,𝑗

𝑗−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

)

2

+
1

2

𝑗−1

∑

𝑘=1

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑘,𝑙
(𝑦
𝑙
) ,

(28)

𝑧
𝑖,𝑗
𝜑
𝑖,𝑗
(𝑦) ≤

1

2
𝑧
2

𝑖,𝑗
+
1

2

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑗,𝑙
(𝑦
𝑙
) . (29)

It can be easily verified from (27) to (29) that

𝑉̇
𝑖,𝑗
≤ 𝑧
𝑖,𝑗
(ℎ
𝜇𝑖,𝑗
𝑧
𝑖,𝑗+1

+ ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0)

−

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

) +
1

2
𝑧
𝑖,𝑗

+
1

2
𝑧
𝑖,𝑗

𝑗−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

)

2

−

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
)

+
1

2

𝑗

∑

𝑘=1

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑘,𝑙
(𝑦
𝑙
) .

(30)

Step 𝑛
𝑖
. Similar to (25), the following equation can be

obtained:

𝑧̇
𝑖,𝑛𝑖

= ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
) + 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0)

+ 𝜑
𝑖,𝑛𝑖
(𝑦) − 𝛼̇

𝑖,𝑛𝑖−1
,

(31)

where 𝛼̇
𝑖,𝑛𝑖−1

is shown in (26) with 𝑗 = 𝑛
𝑖
. Choose a Lyapunov

function as

𝑉
𝑖,𝑛𝑖

=
1

2
𝑧
2

𝑖,𝑛𝑖

+
𝑏

2𝜆
𝑖

𝜃
2

𝑖
, (32)

where 𝜃
𝑖
= 𝜃
𝑖
−𝜃
𝑖
is the parameter error and 𝜆

𝑖
> 0 is a design

parameter.
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Then, the following result holds.

𝑉̇
𝑖,𝑛𝑖

= 𝑧
𝑖,𝑛𝑖
(ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
)

+ 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0) + 𝜑

𝑖,𝑛𝑖
(𝑦) −

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖

−

𝑛𝑖−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

(𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

) + 𝜑
𝑖,𝑘
(𝑦)))

−
𝑏

𝜆
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
.

(33)

Repeating the same derivations as (28)–(30) produces

𝑉̇
𝑖,𝑛𝑖

≤ 𝑧
𝑖,𝑛𝑖
(ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
)

+ 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0) −

𝑛𝑖−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)

+
1

2
𝑧
𝑖,𝑛𝑖

𝑛𝑖−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

)

2

+
1

2
𝑧
𝑖,𝑛𝑖

−

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
)

+
1

2

𝑛𝑖

∑

𝑘=1

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑘,𝑙
(𝑦
𝑙
) −

𝑏

𝜆
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
.

(34)

Now, consider a Lyapunov function for the whole system as

𝑉 =

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑉
𝑖,𝑗
=

𝑁

∑

𝑖=1

(
1

2
𝑦
2

𝑖
+

𝑛𝑖

∑

𝑗=2

1

2
𝑧
2

𝑖,𝑗
+

𝑏

2𝜆
𝑖

𝜃
2

𝑖
) . (35)

Then, combining (24) together with (30) and (34), one has

𝑉̇ ≤

𝑁

∑

𝑖=1

𝑦
𝑖
{ℎ
𝜇𝑖,1
𝛼
𝑖,1
+ 𝑓
𝑖,1
(𝑥
𝑖,1
, 0) +

1

2
𝑦
𝑖

+
1

2
𝑦
𝑖

𝑁

∑

𝑙=1

𝑛𝑙

∑

𝑠=1

𝑠

∑

𝑘=1

𝜑
2

𝑙,𝑘,𝑖
(𝑦
𝑖
)}

+

𝑁

∑

𝑖=1

𝑛𝑖−1

∑

𝑗=2

𝑧
𝑖,𝑗
{ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+ ℎ
𝜇𝑖,𝑗
𝑧
𝑖,𝑗−1

+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) −

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)

+
1

2
𝑧
𝑖,𝑗
+
1

2
𝑧
𝑖,𝑗

𝑗−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

)

2

}

+

𝑁

∑

𝑖=1

𝑧
𝑖,𝑛𝑖
{ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
)

+ 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0) −

𝑛𝑖−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)

+
1

2
𝑧
𝑖,𝑛𝑖

𝑛𝑖−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

)

2

+
1

2
𝑧
𝑖,𝑛𝑖
}

−

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
−

𝑁

∑

𝑖=1

𝑏

𝜆
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
,

(36)

where the fact of

1

2

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑠=1

𝑠

∑

𝑘=1

𝑁

∑

𝑙=1

𝑦
2

𝑙
𝜑
2

𝑖,𝑘,𝑙
(𝑦
𝑙
)

=
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑙=1

𝑛𝑙

∑

𝑠=1

𝑠

∑

𝑘=1

𝑦
2

𝑖
𝜑
2

𝑙,𝑘,𝑖
(𝑦
𝑖
)

(37)

has been used in above inequality.
By using adaptive laws defined in (18) and rearranging

sequence, we can obtain

−

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖

= −

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

(

𝑛𝑖

∑

𝑘=1

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘
− 𝛾
𝑖
𝜃
𝑖
)

=

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝛾
𝑖
𝜃
𝑖

−

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝑗−1

∑

𝑘=1

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘

−

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝑛𝑖

∑

𝑘=𝑗

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘

≤

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝛾
𝑖
𝜃
𝑖

−

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝑧
𝑖,𝑗

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝑗−1

∑

𝑘=1

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘

+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=2

𝜆
𝑖

2𝑎
2

𝑖,𝑗

𝑧
2

𝑖,𝑗
(

𝑗

∑

𝑘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑖,𝑘

𝜕𝛼
𝑖,𝑘−1

𝜕𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(38)

Taking |𝑑
𝑖
(V
𝑖
)| ≤ 𝑝

∗

𝑖
into account, one has

𝑧
𝑖,𝑛𝑖
ℎ
𝜇𝑖,𝑛𝑖

𝑑
𝑖
(V
𝑖
) ≤

1

2
𝑧
2

𝑖,𝑛𝑖

ℎ
2

𝜇𝑖,𝑛𝑖

+
1

2
𝑝
∗2

𝑖
. (39)
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By substituting (38) and (39) into (36), it follows

𝑉̇ ≤

𝑁

∑

𝑖=1

𝑦
𝑖
(ℎ
𝜇𝑖,1
𝛼
𝑖,1
+ 𝐹
𝑖,1
(𝑋
𝑖,1
))

+

𝑁

∑

𝑖=1

𝑛𝑖−1

∑

𝑗=2

𝑧
𝑖,𝑗
(ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+ 𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
))

+

𝑁

∑

𝑖=1

𝑧
𝑖,𝑛𝑖
(ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+ 𝐹
𝑖,𝑛𝑖
(𝑋
𝑖,𝑛𝑖
))

+
1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖
−
1

2

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑧
2

𝑖,𝑗
−

𝑁

∑

𝑖=1

𝑏

𝜆
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
,

(40)

where the packaged functions 𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
), 𝑖 = 1, 2, . . . , 𝑁, are

specified as

𝐹
𝑖,1
(𝑋
𝑖,1
) = 𝑓
𝑖,1
(𝑥
𝑖,1
, 0) + 𝑦

𝑖
+
1

2
𝑦
𝑖

𝑁

∑

𝑙=1

𝑛𝑙

∑

𝑠=1

𝑠

∑

𝑘=1

𝜑
2

𝑙,𝑘,𝑖
(𝑦
𝑖
) ,

𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
) = ℎ
𝜇𝑖,𝑗
𝑧
𝑖,𝑗−1

+ 𝑓
𝑖,𝑗
(𝑥
𝑖,𝑗
, 0) −

𝑗−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)

+ 𝑧
𝑖,𝑗
+
1

2
𝑧
𝑖,𝑗

𝑗−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑗−1

𝜕𝑥
𝑖,𝑘

)

2

+

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝛾
𝑖
𝜃
𝑖

−

𝜕𝛼
𝑖,𝑗−1

𝜕𝜃
𝑖

𝑗−1

∑

𝑘=1

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘

+
𝜆
𝑖

2𝑎
2

𝑖,𝑗

𝑧
𝑖,𝑗
(

𝑗

∑

𝑘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑖,𝑘

𝜕𝛼
𝑖,𝑘−1

𝜕𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

𝑗 = 2, . . . , 𝑛
𝑖
− 1,

𝐹
𝑖,𝑛𝑖
(𝑋
𝑖,𝑛𝑖
) = 𝑓
𝑖,𝑛𝑖
(𝑥
𝑖,𝑛𝑖
, 0) −

𝑛𝑖−1

∑

𝑘=1

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

𝑓
𝑖,𝑘
(𝑥
𝑖,𝑘+1

)

+
1

2
𝑧
𝑖,𝑛𝑖

𝑛𝑖−1

∑

𝑘=1

(

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝑥
𝑖,𝑘

)

2

+
1

2
𝑧
𝑖,𝑛𝑖
ℎ
2

𝜇𝑖,𝑛𝑖

+ 𝑧
𝑖,𝑛𝑖

+

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝜃
𝑖

𝛾
𝑖
𝜃
𝑖
−

𝜕𝛼
𝑖,𝑛𝑖−1

𝜕𝜃
𝑖

𝑛𝑖−1

∑

𝑘=1

𝜆
𝑖

2𝑎
2

𝑖,𝑘

𝑧
2

𝑖,𝑘
𝜙
𝑇

𝑖,𝑘
𝜙
𝑖,𝑘

+
𝜆
𝑖

2𝑎
2

𝑖,𝑛𝑖

𝑧
𝑖,𝑛𝑖
(

𝑛𝑖

∑

𝑘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑖,𝑘

𝜕𝛼
𝑖,𝑘−1

𝜕𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) .

(41)

Because 𝑓
𝑖,𝑗
, ℎ
𝜇𝑖,𝑗
, and 𝜑

𝑙,𝑘,𝑖
are unknown smooth functions,

𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛

𝑖
cannot be used to

define the virtual control input 𝛼
𝑖,𝑗
and the real controller 𝑢

𝑖
.

Then, RBF neural network 𝑊𝑇
𝑖,𝑗
𝜙
𝑖,𝑗
(𝑋
𝑖,𝑗
) is utilized to model

𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
), such that for a given positive constant 𝜀

𝑖,𝑗
,

𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
) = 𝑊

𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
(𝑋
𝑖,𝑗
) + 𝛿
𝑖,𝑗
(𝑋
𝑖,𝑗
) , (42)

where 𝛿
𝑖,𝑗
(𝑋
𝑖,𝑗
) is approximation error and satisfies

|𝛿
𝑖,𝑗
(𝑋
𝑖,𝑗
)| < 𝜀

𝑖,𝑗
. Subsequently, by Young’s inequality,

one has

𝑧
𝑖,𝑗
𝐹
𝑖,𝑗
(𝑋
𝑖,𝑗
)

= 𝑧
𝑖,𝑗

𝑊
𝑇

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
𝑊
𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩

𝜙
𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
𝑊
𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
+ 𝑧
𝑖,𝑗
𝛿
𝑖,𝑗
(𝑋
𝑖,𝑗
)

≤
𝑏

2𝑎
2

𝑖,𝑗

𝑧
2

𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
+
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝑧
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
,

(43)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛
𝑖
and the unknown

constant 𝜃
𝑖
= max{(1/𝑏)‖𝑊

𝑖,𝑗
‖
2

; 𝑗 = 1, 2, . . . , 𝑛
𝑖
}.

Substituting (42) into (40) and using (43) produces

𝑉̇ ≤

𝑁

∑

𝑖=1

𝑧
𝑖,1
(ℎ
𝜇𝑖,1
𝛼
𝑖,1
+

𝑏

2𝑎
2

𝑖,1

𝑧
𝑖,1
𝜃
𝑖
𝜙
𝑇

𝑖,1
𝜙
𝑖,1
)

+

𝑁

∑

𝑖=1

𝑛𝑖−1

∑

𝑗=2

𝑧
𝑖,𝑗
(ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
+

𝑏

2𝑎
2

𝑖,𝑗

𝑧
𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
)

+

𝑁

∑

𝑖=1

𝑧
𝑖,𝑛𝑖
(ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
+

𝑏

2𝑎
2

𝑖,𝑛𝑖

𝑧
𝑖,𝑛𝑖
𝜃
𝑖
𝜙
𝑇

𝑖,𝑛𝑖

𝜙
𝑖,𝑛𝑖
)

+
1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖
+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

(
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
) −

𝑁

∑

𝑖=1

𝑏

𝜆
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
.

(44)

Now, construct the virtual control signals 𝛼
𝑖,𝑗

= −𝑘
𝑖,𝑗
𝑧
𝑖,𝑗
−

(1/2𝑎
2

𝑖,𝑗
)𝑧
𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
, where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛

𝑖
,

and 𝛼
𝑖,𝑛𝑖

= 𝑢
𝑖
. Then, by using (9), we can obtain

𝑧
𝑖,𝑗
ℎ
𝜇𝑖,𝑗
𝛼
𝑖,𝑗
≤ −𝑘
𝑖,𝑗
𝑏𝑧
2

𝑖,𝑗
−

𝑏

2𝑎
2

𝑖,𝑗

𝑧
2

𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
,

𝑗 = 1, . . . , 𝑛
𝑖
− 1,

𝑧
𝑖,𝑛𝑖
ℎ
𝜇𝑖,𝑛𝑖

𝐾
𝑇

𝑖
(𝑡) Φ
𝑖
(𝑡) V
𝑖
≤ −𝑘
𝑖,𝑛𝑖
𝑏𝑧
2

𝑖,𝑛𝑖

−
𝑏

2𝑎
2

𝑖,𝑛𝑖

𝑧
2

𝑖,𝑛𝑖

𝜃
𝑖
𝜙
𝑇

𝑖,𝑛𝑖

𝜙
𝑖,𝑛𝑖
,

(45)

where 𝑖 = 1, 2, . . . , 𝑁.
Substituting (45) into (44) and using adaptive laws ̇𝜃

𝑖
in

(18) result in

𝑉̇ ≤

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑧
𝑖,𝑗
(−𝑘
𝑖,𝑗
𝑏𝑧
𝑖,𝑗
+

𝑏

2𝑎
2

𝑖,𝑗

𝑧
𝑖,𝑗
𝜃
𝑖
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
)

+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

(
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
) +

1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖

−

𝑁

∑

𝑖=1

𝑏

𝜆
𝑖

𝜃
𝑖
(

𝑛𝑖

∑

𝑗=1

𝜆
𝑖

2𝑎
2

𝑖,𝑗

𝑧
2

𝑖,𝑗
𝜙
𝑇

𝑖,𝑗
𝜙
𝑖,𝑗
− 𝛾
𝑖
𝜃
𝑖
)
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≤ −

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝑘
𝑖,𝑗
𝑏𝑧
2

𝑖,𝑗
+

𝑁

∑

𝑖=1

𝛾
𝑖
𝑏

𝜆
𝑖

𝜃
𝑖
𝜃
𝑖

+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

(
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
) +

1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖

≤ −

𝑁

∑

𝑖=1

(

𝑛𝑖

∑

𝑗=1

𝑘
𝑖,𝑗
𝑏𝑧
2

𝑖,𝑗
+
𝛾
𝑖
𝑏

2𝜆
𝑖

𝜃
2

𝑖
)

+

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

(
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
+
𝛾
𝑖
𝑏

2𝜆
𝑖

𝜃
2

𝑖
) +

1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖
,

(46)

where 𝜃
𝑖
𝜃
𝑖
≤ −(1/2)𝜃

2

𝑖
+ (1/2)𝜃

2

𝑖
has been used in the above

inequality.
Define

𝑎
0
= min {2𝑘

𝑖,𝑗
𝑏, 𝛾
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛

𝑖
} ;

𝑏
0
=

𝑁

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

(
1

2
𝑎
2

𝑖,𝑗
+
1

2
𝜀
2

𝑖,𝑗
+
𝛾
𝑖
𝑏

2𝜆
𝑖

𝜃
2

𝑖
) +

1

2

𝑁

∑

𝑖=1

𝑝
∗2

𝑖
,

(47)

we have

𝑉̇ ≤ −𝑎
0
𝑉 + 𝑏
0
, 𝑡 ≥ 0. (48)

Furthermore, multiplying (48) by 𝑒𝑎0𝑡 yields

𝑑

𝑑𝑡
(𝑉𝑒
𝑎0𝑡) ≤ 𝑏

0
𝑒
𝑎0𝑡. (49)

Integrating (49) over [0, 𝑡] gives

0 ≤ 𝑉 (𝑡) ≤
𝑏
0

𝑎
0

+ (𝑉 (0) −
𝑏
0

𝑎
0

) 𝑒
−𝑎0𝑡, (50)

which implies that

𝑉 (𝑡) ≤ 𝑉 (0) +
𝑏
0

𝑎
0

, ∀𝑡 > 0, (51)

whichmeans that all the signals in the closed-loop system are
semiglobally uniformly ultimately bounded.

Furthermore, it is easily obtained that

𝑉 (𝑡) ≤
𝑏
0

𝑎
0

, 𝑡 󳨀→ +∞. (52)

Therefore, based on the definition of 𝑉 in (50), the error
signals 𝑧

𝑖,𝑗
and 𝜃
𝑖
eventually converge to the compact set Ω

𝑠
,

which is specified as

Ω
𝑠
= {𝑧
𝑖,𝑗
, 𝜃
𝑖
|
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
≤ √2

𝑏
0

𝑎
0

,
󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖

󵄨󵄨󵄨󵄨󵄨
≤ √

2𝜆
𝑖

𝑏

𝑏
0

𝑎
0

,

1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛
𝑖
} .

(53)

At the present stage, adaptive decentralized control pro-
cedure has been completed via backstepping technique. The
above design procedures and stable analysis are summarized
in the following theorem.

Theorem 8. Under Assumptions 1–6, consider the closed-
loop nonlinear system consisted of (1), unknown dead zone
nonlinearities (2), controller (17), and adaptive law (18).
Under the action of controller (17), for any initial conditions
[𝑧
𝑇

𝑖
(0), 𝜃
𝑖
(0)]
𝑇

∈ Ω
0
(where Ω

0
is an appropriately chosen

compact set), all the signals in the closed-loop system are
semiglobally uniformly ultimately bounded in the sense ofmean
square, and the error signals 𝑧

𝑖,𝑗
and 𝜃
𝑖
eventually converge to

the compact set Ω
𝑠
in (53).

4. Simulation Example

In this section, in order to illustrate the effectiveness of the
proposed control scheme, consider the nonaffine intercon-
nected nonlinear system with dead zones as

𝑥̇
1,1

= (1 + 𝑥
2

1,1
) 𝑥
1,2
+ 𝑥
3

1,2
+ 𝑦
2
ln (1 + 𝑦2

1
) ,

𝑥̇
1,2

= (5 + sin (𝑥
1,1
𝑥
1,2
)) 𝑢
1
+ 0.2𝑢

5

1
+ sin (𝑦2

1
) 𝑦
2
,

𝑦
1
= 𝑥
1,1
,

𝑥̇
2,1

= (3 + sin (𝑥
2,1
)) 𝑥
2,2
+ 0.3𝑥

5
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1
cos (𝑦2

2
) ,

𝑥̇
2,2

= (2 + 𝑥
2

2,1
) 𝑢
2
+
1

5
sin (𝑢

2
) + 𝑦
3

2
𝑦
1
,

𝑦
2
= 𝑥
2,1
,

(54)

where 𝑢
𝑖
= 𝐷(V

𝑖
) is defined as

𝑢
1
= 𝐷 (V

1
) =

{{

{{

{

1.5 (V
1
− 2.5) , V

1
≥ 2.5,

0, −1 < V
1
< 2.5,

0.5 (V
1
+ 1) , V

1
≤ −1,

𝑢
2
= 𝐷 (V

2
) =

{{

{{

{

0.8 (V
2
− 2) , V

2
≥ 2,

0, −1.8 < V
2
< 2,
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2
+ 1.8) , V

2
≤ −1.8,

(55)

where 𝑥
1,1
, 𝑥
1,2
, 𝑥
2,1
, and 𝑥

2,2
are the state variables and 𝑦

𝑖

is the system output. 𝑢
𝑖
and V

𝑖
are the output and input of

the dead zone nonlinearity, respectively. It is obvious that the
system is of nonaffine structure and satisfiesAssumptions 1, 4,
and 6. By usingTheorem 8, the virtual control law, the actual
controller, and the adaptive laws are constructed as

𝛼
𝑖,1
= −𝑘
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(56)
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Figure 1: State variables 𝑥
1,1

and 𝑥
1,2
.
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Figure 2: State variables 𝑥
2,1

and 𝑥
2,2
.

where 𝑧
𝑖,1

= 𝑥
𝑖,1
, 𝑧
𝑖,2

= 𝑥
𝑖,2

− 𝛼
𝑖,1
, and 𝑖 = 1, 2.

The simulation is run under the initial conditions [𝑥
1,1
(0),

𝑥
1,2
(0), 𝑥
2,1
(0), 𝑥
2,2
(0)]
𝑇

= [0.4, −0.1, 0.2, 0.3]
𝑇, and [𝜃

1
(0),

𝜃
2
(0)]
𝑇

= [0.1, 0.2]
𝑇. In the simulation, design parameters

are taken as follows: 𝑘
1,1

= 𝑘
1,2

= 𝑘
2,1

= 𝑘
2,2

= 11, 𝑎
1,1

=

𝑎
1,2

= 𝑎
2,1

= 𝑎
2,2

= 3, 𝛾
1
= 𝛾
2
= 1, and 𝜆

1
= 𝜆
2
= 2.

The simulation results are indicated by Figures 1–4.
Figure 1 shows the state variables 𝑥

1,1
and 𝑥

1,2
of the first

subsystems. Figure 2 shows the second subsystems state
variables 𝑥

2,1
and 𝑥

2,2
. Figure 3 displays the control signals V

1

and V
2
, and Figure 4 shows the response curve of the adaptive

parameters 𝜃
1
and 𝜃

2
. Apparently, simulation results show
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Figure 3: The control signals V
1
and V

2
.
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Figure 4: Adaptive laws 𝜃
1
and 𝜃
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.

that good convergence performances are achieved and all the
signals in the closed-loop system are bounded.

5. Conclusion

In this paper, a robust decentralized adaptive neural control
approach has been developed for a class of large-scale
nonaffine nonlinear systems with dead zones. The proposed
decentralized controller can guarantee that all the signals
in the closed-loop systems are semiglobally uniformly ulti-
mately bounded in the sense of mean square, and the error
signals eventually converge to small neighborhood around
the origin. The main advantage of the proposed controller
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is that the prior knowledge of bounds of dead zone slopes
is not required. In addition, only one adaptive parameter
needs to be updated online for each 𝑛-order subsystem. In
this way, the computational burden is significantly alleviated.
Simulation results have been provided to further illustrate the
effectiveness of our results.

There are some problems remaining to be considered,
for example, how to generalize the result in this paper
to stochastic pure-feedback nonlinear systems with dead
zones and how to design an output-feedback adaptive neural
controller for original system (1).
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