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We address the observer-based𝐻
∞
controller design problem for networked control LPV (NC LPV) systems, which are network-

based systems that depend on unknown but measurable time-varying parameters. According to the analysis of the special issues
brought by introducing network into LPV systems and the state reconstruction based on the observer, a new augmented model
is established with two independent time-varying delays, which can carry out the controller and observer collaborative design
effectively. Based on the parameter-dependent Lyapunov stability theory, a sufficient condition is proposed to ensure that the closed-
loop system is asymptotically stable with a guaranteed𝐻

∞
performance level 𝛾, in which the coupling between Lyapunov function

matrices and the systemmatrices existed. By using the Projection Lemma and introducing a slackmatrix, the decoupling is achieved
successfully, which refers to reducing conservatism. In the present study, the condition for stability analysis and control synthesis is
formulated in terms of the parameterized linear matrix inequality (PLMI), which is infinite-dimensional and can be transformed
into finite by using the basis function method and gridding technique. A numerical example is given to demonstrate the high
validity and merit of the proposed approach.

1. Introduction

Thecontrol systems inwhich the control loops are closed over
a real-time network are called the networked control systems
(NCSs). It is well known thatNCSs have been finding applica-
tions in a broad range of areas such as automotive, aerospace,
mobile sensor networks, and industrial manufacture [1–3].
The existing researches on NCSs are mainly focused on
linear systems [4], uncertain systems [5], time-delay systems
[6, 7], stochastic systems [8], and so forth. Among these
works, the 𝐻

∞
model reference tracking control problem

for linear NCSs with a constant or time-varying sampling
period was discussed in [4], where the LMI-based method
and a multiobjective optimization methodology were used.
The LMI method was also adopted to stabilize a class of
delay plants based on NCSs [6] and further extended as
recursive LMIs in the literature [9]. More specifically, [6]
introduced some free matrices to obtain the stability criteria.
Different from the previous method, [7] presented a new
approach on stability and𝐻

∞
performance for systems with

two successive delay components in the state by exploiting
a new Lyapunov-Krasovskii functional. Moreover, another
control scheme was also developed by using the stochastic
ways to describe the variations of the delays for NCSs [8].
However, to the best of the authors’ knowledge, the study
on the linear parameter-varying plant under the network
environment is uncommon in recent years.

The traditional LPV systems constitute a class of linear
systems whose dynamics depends on time-varying parame-
ters that are real-time measurable, which have attracted lots
of attention [10–13]. To mention a few, a delay-independent
analysis and synthesis for LPV systems were discussed by
using parameter-dependent Lyapunov-Krasovskii function-
als in [10]. The result is easy to check while the absence of
information on the delay may cause conservativeness from
another perspective. Then the delay-dependent conditions
were provided to reduce it [11] and further highlighted by
the recent researches [12, 13]. It is worth pointing out that
the conventional analysis and synthesis theories are not
suitable when considering LPV systems under the network
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Figure 1: A new structure of the NC LPV systems.

environment, since it is required to deal with not only the
parameter varying problems but also the issues such as delays,
packet dropouts, and time sequence confusion that are caused
by the insertion of the communication network. Therefore,
it is significant to revalue these previous results and develop
some new propermethods that can be applied to the NC LPV
systems.

In the current researches, there exist different strategies
for systems analysis, such as state feedback control [14],
output feedback control [15, 16], slidingmode control [17, 18],
and filtering [19]. However, it is impossible or prohibitively
expensive to measure all of the state variables in many
practical engineering systems. This is an essential issue to
be considered for NC LPV systems. For the purpose of
stability analysis and control synthesis, the state estimation
is an important task, which can be achieved by designing an
observer. There have been some nice results available dealing
with observer-based control problem [20, 21]. The work [20]
discussed the observer-based H-infinity controller design
problem for NCSs with packet dropouts in the multiple
channels case, and [21] was concerned with the continuous-
time networked control system with random sensor delays.
From these results, it is noted that very few efforts have been
paid on the study of the NC LPV systems with the states that
cannot bemeasured completely, whichmotivates this present
study.

In this present work, our attention is focused on looking
forward to designing an observer-based 𝐻

∞
controller for

NC LPV systems. The first concern of this paper is to
construct a new network-based structure by taking full con-
sideration of the sensor-to-controller channel and controller-
to-actuator channel, in which the network-induced delays
and packet dropouts are treated to be equivalent to two time-
varying delays. It is shown that a new closed-loop system
model is established by augmenting the original system
with an observer-based controller. Afterwards, a parameter-
dependent Lyapunov-Krasovskii functional is used for sta-
bility analysis and 𝐻

∞
controller design, which can avoid

the conservatism introduced by the bounding of cross-terms.
The process is accomplished by using the Projection Lemma
and introducing slack matrix. The important point is that
the problem of stability analysis and control synthesis is
formulated in the form of the PLMI, which is infinite-
dimensional and can be transformed into finite by using the
basis function method and gridding technique.

The notation used in this paper is standard. R𝑛 denotes
the 𝑛-dimensional real Euclidean space. R𝑛×𝑚 is the set of

𝑛 × 𝑚 real matrices. N denotes the natural numbers set. The
notations𝑋𝑇 and𝑋−1 denote its transpose and inverse when
it exists, respectively. Given a symmetric matrix 𝑋 = 𝑋

𝑇,
the notation 𝑋 > 0 (𝑋 ≥ 0) means that the matrix 𝑋

is real positive definiteness (semidefiniteness). By diag we
denote a block diagonal matrix with its input arguments on
the diagonal. 𝐼 denotes the identity matrix. The symbol ∗
within a matrix represents the symmetric entries. ‖ ⋅ ‖ stands
for either the Euclidean vector norm or its induced matrix 2-
norm.

2. Problem Statement

Consider a LPV system described as follows:

�̇� (𝑡) = 𝐴 (𝜌 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝜌 (𝑡)) 𝑢 (𝑡) + 𝐵
1
(𝜌 (𝑡)) 𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
(𝜌 (𝑡)) 𝑥 (𝑡) ,

𝑧 (𝑡) = 𝐶
2
(𝜌 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝜌 (𝑡)) 𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R𝑚 are the system state vector
and control input vector, respectively. 𝑦(𝑡) ∈ R𝑟 is the meas-
ured output of the plant, 𝑧(𝑡) is the controlled output, and
𝜔(𝑡) ∈ 𝐿

2
[0,∞) is the disturbance input with finite ener-

gy. The system matrices 𝐴(𝜌(𝑡)), 𝐵(𝜌(𝑡)), 𝐵
1
(𝜌(𝑡)), 𝐶

1
(𝜌(𝑡)),

𝐶
2
(𝜌(𝑡)), and 𝐷(𝜌(𝑡)) are assumed to be known continuous

functions of a time-varying parameter vector 𝜌(𝑡). It is noted
that the parameter vector𝜌(𝑡) = [𝜌

1
(𝑡), 𝜌

2
(𝑡), . . . ,𝜌

𝑠
(𝑡)]

𝑇, 𝜌
𝑖
(𝑡)

is assumed to be measurable in real-time and ̇𝜌
𝑖
(𝑡) = 𝜐

𝑖
(𝑡) ∈

[𝜐
𝑖
, 𝜐

𝑖
], 𝑖 = 1, 2, . . . , 𝑠. For convenient description, we write

𝜌(𝑡), ̇𝜌(𝑡) as 𝜌, ̇𝜌 in the following context.
Under the network environment, both of the sensor-

to-controller channel and controller-to-actuator channel are
taken into account. A new structure of the NC LPV system
with an observer-based controller is constructed in Figure 1.
Taking into consideration the network-induced delays and
making the estimation error as small as possible, we design a
dynamic observerwith the following construction to estimate
the states of the plant:

�̇�
𝑜
(𝑡) = 𝐴 (𝜌) 𝑥

𝑜
(𝑡) + 𝐵 (𝜌) 𝑢

𝑜
(𝑡) + 𝐿 (𝜌) (𝑦 (𝑡) − 𝑦

𝑜
(𝑡)) ,

𝑦
𝑜
(𝑡) = 𝐶

1
(𝜌) 𝑥

𝑜
(𝑡) ,

(2)

where 𝑥
𝑜
(𝑡) is the state of the observer, 𝑢

𝑜
(𝑡) is the input of

the observer, and 𝐿(𝜌) is the observer gain.
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As shown in Figure 1, themeasured output𝑦(𝑡) is sampled
with periodic sampling interval ℎ and transferred over the
sensor-to-controller channel. In the case of no dropouts, the
sampling signals arrive the controller at the instant𝑚

𝑘
ℎ+𝜏

𝑠𝑐

𝑚𝑘

where 𝜏
𝑠𝑐

𝑚𝑘

is the sensor-to-controller delay and 𝑚
𝑘
(𝑘 =

1, 2, . . .) are time-stamps of packets that successfully reach the
controller.

Thus, for 𝑡 ∈ [𝑚
𝑘
ℎ + 𝜏

𝑠𝑐

𝑚𝑘

, 𝑚
𝑘+1

ℎ + 𝜏
𝑠𝑐

𝑚𝑘+1

), we have

�̇�
𝑜
(𝑡) = 𝐴 (𝜌) 𝑥

𝑜
(𝑡) + 𝐵 (𝜌) 𝑢

𝑜
(𝑡)

+ 𝐿 (𝜌) (𝑦 (𝑚
𝑘
ℎ) − 𝑦

𝑜
(𝑚

𝑘
ℎ)) ,

𝑦
𝑜
(𝑚

𝑘
ℎ) = 𝐶

1
(𝜌) 𝑥

𝑜
(𝑚

𝑘
ℎ) .

(3)

The control signals are sent at times 𝑛
𝑘
ℎ and arrive at the

plant at times 𝑛
𝑘
ℎ + 𝜏

𝑐𝑎

𝑛𝑘

, where 𝑛
𝑘
∈ N are time-stamps of

control signals received by the actuator. Then, for 𝑡 ∈ [𝑛
𝑘
ℎ +

𝜏
𝑐𝑎

𝑛𝑘

, 𝑛
𝑘+1

ℎ + 𝜏
𝑐𝑎

𝑛𝑘+1

), we have

𝑢 (𝑡) = 𝑢
𝑜
(𝑡) = 𝐾 (𝜌) 𝑥

𝑜
(𝑛

𝑘
ℎ) , (4)

where𝐾(𝜌) is the controller gain.

Remark 1. Assume that the delays 𝜏𝑠𝑐

𝑚𝑘

and 𝜏
𝑐𝑎

𝑛𝑘

are both less
than one sampling period. For the control input used by the
plant 𝑢(𝑡) and the control input used by the observer 𝑢

𝑜
(𝑡),

since 𝑢(𝑡) is constructed from data sent by the controller, in
general, 𝑢(𝑡) = 𝑢

𝑜
(𝑡).

Remark 2. Since delays and packet dropouts may occur
in both the sensor-to-controller channel and controller-to-
actuator channel, we have {𝑛

𝑘
}
∞

𝑘=1
⊆ {𝑚

𝑘
}
∞

𝑘=1
⊆ N.

Defining 𝜂
1
(𝑡) = 𝑡 − 𝑚

𝑘
ℎ, 𝜂

2
(𝑡) = 𝑡 − 𝑛

𝑘
ℎ, then 𝑚

𝑘
ℎ =

𝑡 − 𝜂
1
(𝑡), 𝑛

𝑘
ℎ = 𝑡 − 𝜂

2
(𝑡). Thus, (3) and (4) can be rewritten as

�̇�
𝑜
(𝑡) = 𝐴 (𝜌) 𝑥

𝑜
(𝑡) + 𝐵 (𝜌) 𝑢 (𝑡)

+ 𝐿 (𝜌) (𝑦 (𝑡 − 𝜂
1
(𝑡)) − 𝑦

𝑜
(𝑡 − 𝜂

1
(𝑡))) ,

𝑦
𝑜
(𝑡 − 𝜂

1
(𝑡)) = 𝐶

1
(𝜌) 𝑥

𝑜
(𝑡 − 𝜂

1
(𝑡)) ,

𝑢 (𝑡) = 𝐾 (𝜌) 𝑥
𝑜
(𝑡 − 𝜂

2
(𝑡)) ,

(5)

where

𝜂
1
(𝑡) ∈ [𝜏

𝑠𝑐

𝑚𝑘

, (𝑚
𝑘+1

− 𝑚
𝑘
) ℎ + 𝜏

𝑠𝑐

𝑚𝑘+1

] ,

𝜂
2
(𝑡) ∈ [𝜏

𝑐𝑎

𝑛𝑘

, (𝑛
𝑘+1

− 𝑛
𝑘
) ℎ + 𝜏

𝑐𝑎

𝑛𝑘+1

] , ∀𝑘 ∈ N.

(6)

Remark 3. By the above definition, 𝜂
1
(𝑡) is a piecewise

continuous function, which changes whenever the sensor
signal reaches the controller. The derivative of 𝜂

1
(𝑡) is always

equal to one, except at the transition point. In this paper, the
delays are assumed to be bounded; that is, 𝜂

𝑗
(𝑡) ∈ [0, 𝜂

𝑗
] and

̇𝜂
𝑗
(𝑡) ≤ 𝜇

𝑗
, 𝑗 = 1, 2.

In this paper, the packet dropouts are treated as a delay
which grow beyond the defined bounds. Then the original

system with delays and packet dropouts is equivalent to a
system with time-varying delays which satisfy

𝜂
1
(𝑡) ∈ [min

𝑘

𝜏
𝑠𝑐

𝑚𝑘

, (𝑚
𝑘+1

− 𝑚
𝑘
) ℎ +max

𝑘

𝜏
𝑠𝑐

𝑚𝑘+1

] ,

𝜂
2
(𝑡) ∈ [min

𝑘

𝜏
𝑐𝑎

𝑛𝑘

, (𝑛
𝑘+1

− 𝑛
𝑘
) ℎ +max

𝑘

𝜏
𝑐𝑎

𝑛𝑘+1

] , ∀𝑘 ∈ N.

(7)

By introducing the estimation error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥
𝑜
(𝑡),

we get the following augmented system:

̇
𝜉 (𝑡) = 𝐴 (𝜌) 𝜉 (𝑡) + 𝐴

1
(𝜌) 𝜉 (𝑡 − 𝜂

1
(𝑡))

+ 𝐵 (𝜌) 𝜉 (𝑡 − 𝜂
2
(𝑡)) + 𝐵

1
(𝜌) 𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝜌) 𝜉 (𝑡) + 𝐷 (𝜌) 𝜔 (𝑡) ,

(8)

where 𝜉𝑇(𝑡) = [𝑥
𝑇

(𝑡) 𝑒
𝑇

(𝑡)] and the system matrices are

𝐴 (𝜌) = [

𝐴 (𝜌) 0

0 𝐴 (𝜌)
] , 𝐴

1
(𝜌) = [

0 0

0 −𝐿 (𝜌) 𝐶
1
(𝜌)

] ,

𝐵 (𝜌)=[

𝐵 (𝜌)𝐾 (𝜌) −𝐵 (𝜌)𝐾 (𝜌)

0 0
] , 𝐵

1
(𝜌)=[

𝐵
1
(𝜌)

𝐵
1
(𝜌)

] ,

𝐶 (𝜌) = [𝐶
2
(𝜌) 0] , 𝐷 (𝜌) = 𝐷 (𝜌) .

(9)

This paper aims to design an observer-based 𝐻
∞

con-
troller such that the closed-loop system (8) satisfies the
following properties simultaneously.

(I) The closed-loop system (8) is asymptotically stable.

(II) Subjected to the zero initial condition and all nonzero
𝜔(𝑡), the controlled output 𝑧(𝑡) satisfies ‖𝑧(𝑡)‖

2

2
≤

𝛾
2

‖𝜔(𝑡)‖
2

2
.

Then, the closed-loop system (8) is said to be asymptoti-
cally stable with𝐻

∞
performance level 𝛾.

Lemma 4 (Projection Lemma). Given a symmetric matrix
Ψ ∈ R𝑚×𝑚 and two matrices E and F of column dimension
𝑚, there exists anX such that the following LMI holds:

Ψ +E
𝑇

X
𝑇

F +F
𝑇

XE < 0 (10)

if and only if the following projection inequalities with respect
toX are satisfied:

N
𝑇

EΨNE < 0,

N
𝑇

FΨNF < 0,

(11)

whereNE andNF denote arbitrary bases of the null space of
E andF, respectively.
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Lemma 5. For any matricesR > 0, 𝛿 > 0 andW : [−𝛿, 0] →

R𝑛, there has

𝛿∫

0

−𝛿

W
𝑇

(𝑠)RW (𝑠) 𝑑𝑠

≥ (∫

0

−𝛿

W (𝑠) 𝑑𝑠)

𝑇

R(∫

0

−𝛿

W (𝑠) 𝑑𝑠) .

(12)

3. Main Results

In this section, we will first present a sufficient condition
for the existance of the observer-based 𝐻

∞
controller that

guarantees the closed-loop system to be asymptotically

stable with 𝐻
∞

performance level 𝛾 by constructing a
parameter-dependent Lyapunov functional.Then, the Projec-
tion Lemma is applied to realize the decoupling between the
Lyapunov function matrices and system matrices. Lastly, the
solution to the observer-based𝐻

∞
controller design problem

is obtained by using appropriate basis functions and gridding
technique.

Theorem 6. For the given positive constants 𝜂
1
, 𝜂

2
, 𝜇

1
, and

𝜇
2
, if there exist a continuously differentiable matrix function

𝑃(𝜌) > 0, matrices 𝑄
𝑗
> 0, 𝑅

𝑗
> 0, 𝑗 = 1, 2, and a scalar 𝛾 > 0

such that the following PLMI holds for all 𝜌, then the closed-
loop system (8) is asymptotically stable with 𝐻

∞
performance

level 𝛾:

[

[

[

[

[

[

[

[

[

[

[

[

[

Π
11

Π
12

Π
13

𝑃 (𝜌) 𝐵
1
(𝜌) 𝐶

𝑇

(𝜌) 𝜂
1
𝐴

𝑇

(𝜌) 𝑅
1
𝜂
2
𝐴

𝑇

(𝜌) 𝑅
2

∗ Π
22

0 0 0 𝜂
1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝜂
2
𝐴

𝑇

1
(𝜌) 𝑅

2

∗ ∗ Π
33

0 0 𝜂
1
𝐵

𝑇

(𝜌) 𝑅
1

𝜂
2
𝐵

𝑇

(𝜌) 𝑅
2

∗ ∗ ∗ −𝛾
2

𝐼 𝐷

𝑇

(𝜌) 𝜂
1
𝐵

𝑇

1
(𝜌) 𝑅

1
𝜂
2
𝐵

𝑇

1
(𝜌) 𝑅

2

∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝑅
1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (13)

where

Π
11
= 𝑃 (𝜌)𝐴 (𝜌) + 𝐴

𝑇

(𝜌) 𝑃 (𝜌)

+

𝑠

∑

𝑖=1

(𝜐
𝑖

𝜕𝑃 (𝜌)

𝜕𝜌
𝑖

) + 𝑄
1
+ 𝑄

2
− 𝑅

1
− 𝑅

2
,

Π
12
= 𝑃 (𝜌)𝐴

1
(𝜌) + 𝑅

1
,

Π
13
= 𝑃 (𝜌) 𝐵 (𝜌) + 𝑅

2
,

Π
22
= − (1 − 𝜇

1
) 𝑄

1
− 𝑅

1
,

Π
33
= − (1 − 𝜇

2
) 𝑄

2
− 𝑅

2
.

(14)

Proof. Construct a Lyapunov-Krasovskii functional as

𝑉 (𝜉
𝑡
, 𝜌) = 𝑉

1
(𝜉, 𝜌) + 𝑉

2
(𝜉

𝑡
, 𝜌) + 𝑉

3
(𝜉

𝑡
, 𝜌) , (15)

where 𝑃(𝜌) > 0, 𝑄
𝑗
> 0, 𝑅

𝑗
> 0, 𝑗 = 1, 2, and

𝑉
1
(𝜉, 𝜌) = 𝜉

𝑇

(𝑡) 𝑃 (𝜌) 𝜉 (𝑡) ,

𝑉
2
(𝜉

𝑡
, 𝜌) =

2

∑

𝑗=1

(∫

𝑡

𝑡−𝜂𝑗(𝑡)

𝜉
𝑇

(𝛼)𝑄
𝑗
𝜉 (𝛼) 𝑑𝛼) ,

𝑉
3
(𝜉

𝑡
, 𝜌) =

2

∑

𝑗=1

(∫

0

−𝜂
𝑗

∫

𝑡

𝑡+𝜃

̇
𝜉
𝑇

(𝛽) 𝜂
𝑗
𝑅

𝑗

̇
𝜉 (𝛽) 𝑑𝛽𝑑𝜃) .

(16)

Taking the time derivative of 𝑉
1
, 𝑉

2
, and 𝑉

3
, respectively, we

can obtain

�̇�
1
(𝜉, 𝜌) =

̇
𝜉
𝑇

(𝑡) 𝑃 (𝜌) 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡) �̇� (𝜌) 𝜉 (𝑡) + 𝜉
𝑇

(𝑡) 𝑃 (𝜌)
̇
𝜉 (𝑡) ,

�̇�
2
(𝜉

𝑡
, 𝜌) = 𝜉

𝑇

(𝑡) (𝑄
1
+ 𝑄

2
) 𝜉 (𝑡)

−

2

∑

𝑗=1

{[1 − ̇𝜂
𝑗
(𝑡)] 𝜉

𝑇

(𝑡 − 𝜂
𝑗
(𝑡))𝑄

𝑗
𝜉 (𝑡 − 𝜂

𝑗
(𝑡))}

≤ 𝜉
𝑇

(𝑡) (𝑄
1
+ 𝑄

2
) 𝜉 (𝑡)

−

2

∑

𝑗=1

{(1 − 𝜇
𝑗
) 𝜉

𝑇

(𝑡 − 𝜂
𝑗
(𝑡))𝑄

𝑗
𝜉 (𝑡 − 𝜂

𝑗
(𝑡))} ,

�̇�
3
(𝜉

𝑡
, 𝜌) =

2

∑

𝑗=1

∫

0

−𝜂
𝑗

[
̇
𝜉
𝑇

(𝑡) 𝜂
𝑗
𝑅

𝑗

̇
𝜉 (𝑡)

−
̇
𝜉
𝑇

(𝑡 + 𝜃) 𝜂
𝑗
𝑅

𝑗

̇
𝜉 (𝑡 + 𝜃)] 𝑑𝜃

≤

2

∑

𝑗=1

{𝜂
2

𝑗

̇
𝜉
𝑇

(𝑡) 𝑅
𝑗

̇
𝜉 (𝑡)−𝜂

𝑗
∫

𝑡

𝑡−𝜂𝑗(𝑡)

̇
𝜉
𝑇

(𝑠) 𝑅
𝑗

̇
𝜉(𝑠) 𝑑𝑠}.

(17)

Applying Lemma 5 to �̇�
3
,

�̇�
3
(𝜉

𝑡
, 𝜌) ≤

2

∑

𝑗=1

{𝜂
2

𝑗

̇
𝜉
𝑇

(𝑡) 𝑅
𝑗

̇
𝜉 (𝑡)

−

𝜂
𝑗

𝜂
𝑗
(𝑡)

(∫

𝑡

𝑡−𝜂𝑗(𝑡)

̇
𝜉 (𝑠) 𝑑𝑠)

𝑇

× 𝑅
𝑗
(∫

𝑡

𝑡−𝜂𝑗(𝑡)

̇
𝜉 (𝑠) 𝑑𝑠)}
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≤

2

∑

𝑗=1

{𝜂
2

𝑗

̇
𝜉
𝑇

(𝑡) 𝑅
𝑗

̇
𝜉 (𝑡)

− [𝜉 (𝑡) − 𝜉 (𝑡 − 𝜂
𝑗
(𝑡))]

𝑇

× 𝑅
𝑗
[𝜉 (𝑡) − 𝜉 (𝑡 − 𝜂

𝑗
(𝑡))] } .

(18)

For 𝜔(𝑡) ≡ 0, gathering all the derivative terms, we have

�̇� ≤ 𝜀
𝑇

(𝑡) Υ𝜀 (𝑡) = 𝜀
𝑇

(𝑡)
[

[

Υ
11

Υ
12

Υ
13

∗ Υ
22

Υ
23

∗ ∗ Υ
33

]

]

𝜀 (𝑡) , (19)

where

𝜀
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜂
1
(𝑡)) 𝜉

𝑇

(𝑡 − 𝜂
2
(𝑡))] ,

Υ
11
= 𝑃 (𝜌)𝐴 (𝜌) + 𝐴

𝑇

(𝜌) 𝑃 (𝜌)

+

𝑠

∑

𝑖=1

(𝜐
𝑖

𝜕𝑃 (𝜌)

𝜕𝜌
𝑖

) + 𝑄
1
+ 𝑄

2
− 𝑅

1
− 𝑅

2

+ 𝜂
2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐴 (𝜌) + 𝜂

2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐴 (𝜌) ,

Υ
12
= 𝑃 (𝜌)𝐴

1
(𝜌) + 𝑅

1

+ 𝜂
2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐴

1
(𝜌) + 𝜂

2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐴

1
(𝜌) ,

Υ
13
= 𝑃 (𝜌) 𝐵 (𝜌) + 𝑅

2

+ 𝜂
2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐵 (𝜌) + 𝜂

2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐵 (𝜌) ,

Υ
22
= − (1 − 𝜇

1
) 𝑄

1
+ 𝜂

2

1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝐴

1
(𝜌)

+ 𝜂
2

2
𝐴

𝑇

1
(𝜌) 𝑅

2
𝐴

1
(𝜌) − 𝑅

1
,

Υ
23
= 𝜂

2

1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝐵 (𝜌) + 𝜂

2

2
𝐴

𝑇

1
(𝜌) 𝑅

2
𝐵 (𝜌) ,

Υ
33
= − (1 − 𝜇

2
) 𝑄

2
+ 𝜂

2

1
𝐵

𝑇

(𝜌) 𝑅
1
𝐵 (𝜌)

+ 𝜂
2

2
𝐵

𝑇

(𝜌) 𝑅
2
𝐵 (𝜌) − 𝑅

2
.

(20)

By using the Schur Complement Lemma, inequality (13)
implies Υ < 0 and system (8) is asymptotically stable. And
then we will discuss the𝐻

∞
performance of the closed-loop

system.
To establish the prescribed 𝐻

∞
performance level 𝛾, we

define

𝐽
𝑧𝜔

= ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡. (21)

Under zero initial condition, 𝑉(0) = 0 and 𝑉(∞) ≥ 0.
Thus,

𝐽
𝑧𝜔

≤ ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + �̇� (𝑡)] 𝑑𝑡. (22)

For any nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞),

𝐽
𝑧𝜔

≤ ∫

∞

0

𝜍
𝑇

(𝑡) Ξ𝜍 (𝑡) 𝑑𝑡

= ∫

∞

0

𝜍
𝑇

(𝑡)

[

[

[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
14

∗ Ξ
22

Ξ
23

Ξ
24

∗ ∗ Ξ
33

Ξ
34

∗ ∗ ∗ Ξ
44

]

]

]

]

𝜍 (𝑡) 𝑑𝑡,

(23)

where

𝜍
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜂
1
(𝑡)) 𝜉

𝑇

(𝑡 − 𝜂
2
(𝑡)) 𝜔

𝑇

(𝑡)] ,

Ξ
11
= Π

11
+ 𝜂

2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐴 (𝜌)

+ 𝜂
2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐴 (𝜌) + 𝐶

𝑇

(𝜌) 𝐶 (𝜌) ,

Ξ
12
= Π

12
+ 𝜂

2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐴

1
(𝜌)

+ 𝜂
2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐴

1
(𝜌) ,

Ξ
13
= Π

13
+ 𝜂

2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐵 (𝜌)

+ 𝜂
2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐵 (𝜌) ,

Ξ
14
= 𝜂

2

1
𝐴

𝑇

(𝜌) 𝑅
1
𝐵

1
(𝜌)

+ 𝜂
2

2
𝐴

𝑇

(𝜌) 𝑅
2
𝐵

1
(𝜌) + 𝐶

𝑇

(𝜌)𝐷 (𝜌) ,

Ξ
22
= − (1 − 𝜇

1
) 𝑄

1
+ 𝜂

2

1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝐴

1
(𝜌)

+ 𝜂
2

2
𝐴

𝑇

1
(𝜌) 𝑅

2
𝐴

1
(𝜌) − 𝑅

1
,

Ξ
23
= 𝜂

2

1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝐵 (𝜌) + 𝜂

2

2
𝐴

𝑇

1
(𝜌) 𝑅

2
𝐵 (𝜌) ,

Ξ
24
= 𝜂

2

1
𝐴

𝑇

1
(𝜌) 𝑅

1
𝐵

1
(𝜌) + 𝜂

2

2
𝐴

𝑇

1
(𝜌) 𝑅

2
𝐵

1
(𝜌) ,

Ξ
33
= − (1 − 𝜇

2
) 𝑄

2
+ 𝜂

2

1
𝐵

𝑇

(𝜌) 𝑅
1
𝐵 (𝜌)

+ 𝜂
2

2
𝐵

𝑇

(𝜌) 𝑅
2
𝐵 (𝜌) − 𝑅

2
,

Ξ
34
= 𝜂

2

1
𝐵

𝑇

(𝜌) 𝑅
1
𝐵

1
(𝜌) + 𝜂

2

2
𝐵

𝑇

(𝜌) 𝑅
2
𝐵

1
(𝜌) ,

Ξ
44
= 𝜂

2

1
𝐵

𝑇

1
(𝜌) 𝑅

1
𝐵

1
(𝜌)

+ 𝜂
2

2
𝐵

𝑇

1
(𝜌) 𝑅

2
𝐵

1
(𝜌) + 𝐷

𝑇

(𝜌)𝐷 (𝜌) − 𝛾
2

𝐼.

(24)

Applying the Schur Complement Lemma to (13) leads to
Ξ < 0. Using the zero initial condition,

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 < ∫

∞

0

𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡. (25)

We have ‖𝑧(𝑡)‖2
2
≤ 𝛾

2

‖𝜔(𝑡)‖
2

2
; namely, the system has a

prescribed𝐻
∞

performance level 𝛾. The proof is completed.



6 Mathematical Problems in Engineering

Remark 7. Traditional Lyapunov functional is generally
selected as

𝑉 (𝜉
𝑡
, 𝜌) = 𝑉

1
(𝜉, 𝜌) + 𝑉

2
(𝜉

𝑡
, 𝜌) , (26)

where

𝑉
1
(𝜉, 𝜌) = 𝜉

𝑇

(𝑡) 𝑃𝜉 (𝑡) ,

𝑉
2
(𝜉

𝑡
, 𝜌) = ∫

𝑡

𝑡−𝜂(𝑡)

𝜉
𝑇

(𝛼)𝑄𝜉 (𝛼) 𝑑𝛼.

(27)

The Lyapunovmatrix𝑃 is invariant for all varying parameters
𝜌 and the obtained results based on this Lyapunov function
are delay-independent, which lead to more conservativeness.
In this paper, the Lyapunov functional matrix𝑃(𝜌) is selected

as a parameter-dependent matrix that varies with the varying
parameters and the delay-dependent term of 𝑉

3
(𝜉

𝑡
, 𝜌) is also

added, which can reduce the conservation of the results.
However, the drawback of the condition given byTheorem 6
is that the PLMI (13) involves multiple product terms of
the Lyapunov function matrices and system matrices. This
indicates that inequality (13) is nonlinear and makes the con-
troller design difficult.Therefore, a slackmatrix is introduced
to eliminate the coupling between the parameter-dependent
Lyapunov function matrices and the system matrices.

Theorem 8. For the given positive constants 𝜂
1
, 𝜂

2
, 𝜇

1
, and

𝜇
2
, if there exist a continuously differentiable matrix function

𝑃(𝜌) > 0, matrices 𝑄
𝑗
> 0, 𝑅

𝑗
> 0, 𝑗 = 1, 2, 𝑈, and a

scalar 𝛾 > 0 such that the following PLMI holds for all 𝜌,
then the closed-loop system (8) is asymptotically stable with
𝐻

∞
performance level 𝛾:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
11

Φ
12

𝑈
𝑇

𝐴
1
(𝜌) 𝑈

𝑇

𝐵 (𝜌) 𝑈
𝑇

𝐵
1
(𝜌) 0 𝑈

𝑇

𝜂
1
𝑅

1
𝜂
2
𝑅

2

∗ Φ
22

𝑅
1

𝑅
2

0 𝐶

𝑇

(𝜌) 0 0 0

∗ ∗ − (1 − 𝜇
1
) 𝑄

1
− 𝑅

1
0 0 0 0 0 0

∗ ∗ ∗ − (1 − 𝜇
2
) 𝑄

2
− 𝑅

2
0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷

𝑇

(𝜌) 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 (𝜌) 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (28)

where

Φ
11
= − (𝑈 + 𝑈

𝑇

) ,

Φ
12
= 𝑃 (𝜌) + 𝑈

𝑇

𝐴 (𝜌) ,

Φ
22
= −𝑃 (𝜌) + 𝑄

1
+ 𝑄

2
− 𝑅

1
− 𝑅

2
+

𝑠

∑

𝑖=1

(𝜐
𝑖

𝜕𝑃 (𝜌)

𝜕𝜌
𝑖

) .

(29)

Proof. The first 7 × 7 diagonal subparameter linear matrix
inequality of (28) can be rewritten as

Ψ + 𝐸
𝑇

𝑈𝐹 + 𝐹
𝑇

𝑈
𝑇

𝐸 < 0 (30)

with

Ψ =

[

[

[

[

[

[

[

[

[

[

[

[

0 𝑃 (𝜌) 0 0 0 0 0

∗ Φ
22

𝑅
1

𝑅
2

0 𝐶

𝑇

(𝜌) 0

∗ ∗ − (1 − 𝜇
1
) 𝑄

1
− 𝑅

1
0 0 0 0

∗ ∗ ∗ − (1 − 𝜇
2
) 𝑄

2
− 𝑅

2
0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷

𝑇

(𝜌) 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 (𝜌)

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐸 = [−𝐼 𝐴 (𝜌) 𝐴
1
(𝜌) 𝐵 (𝜌) 𝐵

1
(𝜌) 0 𝐼] ,

𝐹 = [𝐼 0 0 0 0 0 0] .

(31)
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The null-spaces of 𝐸 and 𝐹 are

N
𝐸
=

[

[

[

[

[

[

[

[

[

[

𝐴 (𝜌) 𝐴
1
(𝜌) 𝐵 (𝜌) 𝐵

1
(𝜌) 0 𝐼

𝐼 0 0 0 0 0

0 𝐼 0 0 0 0

0 0 𝐼 0 0 0

0 0 0 𝐼 0 0

0 0 0 0 𝐼 0

0 0 0 0 0 𝐼

]

]

]

]

]

]

]

]

]

]

,

N
𝐹
=

[

[

[

[

[

[

[

[

[

[

0 0 0 0 0 0

𝐼 0 0 0 0 0

0 𝐼 0 0 0 0

0 0 𝐼 0 0 0

0 0 0 𝐼 0 0

0 0 0 0 𝐼 0

0 0 0 0 0 𝐼

]

]

]

]

]

]

]

]

]

]

.

(32)

Applying the Projection Lemma, we obtain the following
two inequalities which are equivalent to (30):

N
𝑇

𝐸
ΨN

𝐸
< 0, (33)

N
𝑇

𝐹
ΨN

𝐹
< 0. (34)

SubstitutingN
𝐸
and Ψ into (33), we obtain

[

[

[

[

[

[

[

[

[

𝑃 (𝜌)𝐴 (𝜌) + 𝐴

𝑇

(𝜌) 𝑃 (𝜌) + Φ
22

𝑃 (𝜌)𝐴
1
(𝜌) + 𝑅

1
𝑃 (𝜌) 𝐵 (𝜌) + 𝑅

2
𝑃 (𝜌) 𝐵

1
(𝜌) 𝐶

𝑇

(𝜌) 𝑃 (𝜌)

∗ − (1 − 𝜇
1
) 𝑄

1
− 𝑅

1
0 0 0 0

∗ ∗ − (1 − 𝜇
2
) 𝑄

2
− 𝑅

2
0 0 0

∗ ∗ ∗ −𝛾
2

𝐼 𝐷

𝑇

(𝜌) 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝑃 (𝜌)

]

]

]

]

]

]

]

]

]

< 0. (35)

It is shown that (35) is equivalent to the first 5 × 5 diagonal
subparameter linear matrix inequality of (13). Similarly, (34)
leads to an inequality which is included in (35).

Defining Δ
1

= [
N𝑇
𝐸

0

0 𝐼

] and performing congruence
transformations to (28), we can obtain (13) inTheorem 6.The
proof is completed.

Remark 9. By applying the Projection Lemma to (13) and
introducing slack matrix 𝑈, the parameter-dependent Lya-
punov functional matrices and the system matrices are

decoupled inTheorem 8.This technique can bring additional
flexibility in the controller synthesis problem and results
in far less conservative conditions than with customary
approaches. The further solving process is given as follows.

Theorem10. For the given positive constants 𝜂
1
, 𝜂

2
,𝜇

1
, and𝜇

2
,

if there exist a scalar 𝛾 > 0 andmatrices𝑋(𝜌) > 0,𝑌
𝑗
> 0,𝑍

𝑗
>

0, 𝐺, 𝐻, 𝑈
21
, 𝑀

1
, 𝑀

𝑎
(𝜌), 𝑀

𝑙𝑐
(𝜌), 𝑁

𝑏
(𝜌), 𝑆

𝑏
(𝜌), 𝑁

𝑔
(𝜌), 𝑆

𝑔
(𝜌)

such that the following PLMI holds for all 𝜌, then the closed-
loop system (8) is asymptotically stable with 𝐻

∞
performance

level 𝛾:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
11

Γ
12

Γ
13

Γ
14

Γ
15

0 Γ
17

Γ
18

Γ
19

∗ Γ
22

Γ
23

Γ
24

0 Γ
26

0 0 0

∗ ∗ Γ
33

0 0 0 0 0 0

∗ ∗ ∗ Γ
44

0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

(𝜌) 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ
77

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
23

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γ
24

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (36)

where

Γ
11
= [

− (𝐺 + 𝐺
𝑇

) − (𝐻 + 𝐺
𝑇

+𝑀
1
)

∗ − (𝐻 + 𝐻
𝑇

)

] ,

Γ
12
= [

𝑋
1
(𝜌) + 𝐺

𝑇

𝐴 (𝜌) 𝑋
2
(𝜌) + 𝐺

𝑇

𝐴 (𝜌) +𝑀
𝑎
(𝜌)

𝑋
𝑇

2
(𝜌) + 𝐻

𝑇

𝐴 (𝜌) 𝑋
3
(𝜌) + 𝐻

𝑇

𝐴 (𝜌)

] ,

Γ
13
= [

0 −𝑀
𝑙𝑐
(𝜌)

0 0
] ,

Γ
14
= [

𝑁
𝑏
(𝜌) 𝑁

𝑏
(𝜌) − 𝑁

𝑔
(𝜌)

𝑆
𝑏
(𝜌) 𝑆

𝑏
(𝜌) − 𝑆

𝑔
(𝜌)

] ,

Γ
15
= [

𝐺
𝑇

𝐵
1
(𝜌) + 𝑈

𝑇

21
𝐵

1
(𝜌)

𝐻
𝑇

𝐵
1
(𝜌)

] ,
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Γ
17
= [

𝐺
𝑇

𝐺
𝑇

+𝑀
1

𝐻
𝑇

𝐻
𝑇

] , Γ
18
= [

𝜂
1
𝑍

11
𝜂
1
𝑍

12

𝜂
1
𝑍

𝑇

12
𝜂
1
𝑍

13

] ,

Γ
19
= [

𝜂
2
𝑍

21
𝜂
2
𝑍

22

𝜂
2
𝑍

𝑇

22
𝜂
2
𝑍

23

] , Γ
23
= [

𝑍
11

𝑍
12

∗ 𝑍
13

] ,

Γ
24
= [

𝑍
21

𝑍
22

∗ 𝑍
23

] , Γ
26
= [

𝐶
𝑇

2
(𝜌)

𝐶
𝑇

2
(𝜌)

] ,

Γ
22
=
[

[

−𝑋 (𝜌) +

2

∑

𝑗=1

(𝑌
𝑗
− 𝑍

𝑗
) +

𝑠

∑

𝑖=1

(𝜐
𝑖

𝜕𝑋

𝜕𝜌
𝑖

)
]

]

,

Γ
33
= [

− (1 − 𝜇
1
) 𝑌

11
− 𝑍

11
− (1 − 𝜇

1
) 𝑌

12
− 𝑍

12

∗ − (1 − 𝜇
1
) 𝑌

13
− 𝑍

13

] ,

Γ
44
= [

− (1 − 𝜇
2
) 𝑌

21
− 𝑍

21
− (1 − 𝜇

2
) 𝑌

22
− 𝑍

22

∗ − (1 − 𝜇
2
) 𝑌

23
− 𝑍

23

] ,

𝑋 (𝜌) = [

𝑋
1
(𝜌) 𝑋

2
(𝜌)

∗ 𝑋
3
(𝜌)

] , 𝑌
𝑗
= [

𝑌
𝑗1

𝑌
𝑗2

∗ 𝑌
𝑗3

] ,

𝑍
𝑗
= [

𝑍
𝑗1

𝑍
𝑗2

∗ 𝑍
𝑗3

] .

(37)

Furthermore, the parameters of controller and observer are

𝐾(𝜌) = 𝐵
−1

(𝜌) 𝐺
−𝑇

𝑁
𝑏
(𝜌) ,

𝐿 (𝜌) = 𝑈
−𝑇

21
𝑀

𝑙𝑐
(𝜌) (𝑈

−𝑇

21
𝑀

1
𝐻

−1

)

−1

𝐻
−1

𝐶
−1

1
(𝜌) .

(38)

Proof. Introduce a partition of 𝑈 and its inverse𝑊 = 𝑈
−1 in

the following form:

𝑈 = [

𝑈
11

𝑈
12

𝑈
21

𝑈
22

] , 𝑊 = [

𝑊
11

𝑊
12

𝑊
21

𝑊
22

] . (39)

Without loss of generality, we assume that 𝑈
21

and 𝑊
21

are invertible and define

ϝ
𝑢
= [

𝑈
11

𝐼

𝑈
21

0
] , ϝ

𝑤
= [

𝐼 𝑊
11

0 𝑊
21

] . (40)

Thus, we can obtain

𝑊ϝ
𝑢
= ϝ

𝑤
, 𝑈ϝ

𝑤
= ϝ

𝑢
. (41)

Defining Δ
2
= diag{ϝ

𝑤
, ϝ

𝑤
, ϝ

𝑤
, ϝ

𝑤
, 𝐼, 𝐼, ϝ

𝑤
, ϝ

𝑤
, ϝ

𝑤
} and

applying the congruence transformation bymatrixΔ
2
to LMI

(28), we can easily infer the following inequality:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11

𝑃 (𝜌) + Ω
12

Ω
13

Ω
14

Ω
15

0 Ω
17

𝜂
1
𝑅

1
𝜂
2
𝑅

2

∗ Ω
22

𝑅
1

𝑅
2

0 Ω
26

0 0 0

∗ ∗ − (1 − 𝜇
1
) 𝑄

1
− 𝑅

1
0 0 0 0 0 0

∗ ∗ ∗ − (1 − 𝜇
2
) 𝑄

2
− 𝑅

2
0 0 0 0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷

𝑇

(𝜌) 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 (𝜌) 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (42)

where

Ω
11
= [

𝑈
11
+ 𝑈

𝑇

11
𝑈

21
+ 𝑈

𝑇

11
𝑊

11
+ 𝑈

𝑇

21
𝑊

21

∗ 𝑊
11
+𝑊

𝑇

11

] ,

Ω
12
= [

𝑈
𝑇

11
𝐴 (𝜌) 𝑈

𝑇

11
𝐴 (𝜌)𝑊

11
+ 𝑈

𝑇

21
𝐴 (𝜌)𝑊

21

𝐴 (𝜌) 𝐴 (𝜌)𝑊
11

] ,

Ω
13
= [

0 −𝑈
𝑇

21
𝐿 (𝜌)𝐶

1
(𝜌)𝑊

21

0 0

] ,

Ω
14
= [

𝑈
𝑇

11
𝐵 (𝜌)𝐾(𝜌) 𝑈

𝑇

11
𝐵 (𝜌)𝐾(𝜌)𝑊

11
− 𝑈

𝑇

11
𝐵 (𝜌)𝐾(𝜌)𝑊

21

𝐵 (𝜌)𝐾(𝜌) 𝐵 (𝜌)𝐾(𝜌)𝑊
11

− 𝐵 (𝜌)𝐾(𝜌)𝑊
21

] ,

Ω
15
= [

𝑈
𝑇

11
𝐵

1
(𝜌) + 𝑈

𝑇

21
𝐵

1
(𝜌)

𝐵
1
(𝜌)

] ,

Ω
17
= [

𝑈
𝑇

11
𝑈

𝑇

11
𝑊

11
+ 𝑈

𝑇

21
𝑊

21

𝐼 𝑊
11

] ,

Ω
22
= − 𝑃 (𝜌) + 𝑄

1
+ 𝑄

2

− 𝑅
1
− 𝑅

2
+

𝑠

∑

𝑖=1

(𝜐
𝑖

𝜕𝑃 (𝜌)

𝜕𝜌
𝑖

) ,

Ω
26
= [

𝐶
𝑇

2
(𝜌)

𝑊
𝑇

11
𝐶

𝑇

2
(𝜌)

] ,

𝑃 (𝜌) = ϝ
𝑇

𝑤
𝑃 (𝜌) ϝ

𝑤
,

𝑄
𝑗
= ϝ

𝑇

𝑤
𝑄

𝑗
ϝ
𝑤
, 𝑅

𝑗
= ϝ

𝑇

𝑤
𝑅

𝑗
ϝ
𝑤
.

(43)

Defining 𝑉 = [
𝐼 0

0 𝑊
−1

11

] and performing congruence
transformations to (42) by Δ

3
= diag{𝑉, 𝑉, 𝑉, 𝑉, 𝐼, 𝐼, 𝑉, 𝑉, 𝑉},

we obtain the result of Theorem 10 with

𝑋(𝜌) = 𝑉
𝑇

𝑃 (𝜌)𝑉, 𝑌
𝑗
= 𝑉

𝑇

𝑄
𝑗
𝑉,

𝑍
𝑗
= 𝑉

𝑇

𝑅
𝑗
𝑉, 𝐺 = 𝑈

11
, 𝐻 = 𝑊

−1

11
,
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𝑀
1
= 𝑈

𝑇

21
𝑊

21
𝑊

−1

11
,

𝑀
𝑎
(𝜌) = 𝑈

𝑇

21
𝐴 (𝜌)𝑊

21
𝑊

−1

11
, 𝑁

𝑏
(𝜌) = 𝑈

𝑇

11
𝐵 (𝜌)𝐾 (𝜌) ,

𝑀
𝑙𝑐
(𝜌) = 𝑈

𝑇

21
𝐿 (𝜌) 𝐶

1
(𝜌)𝑊

21
𝑊

−1

11
,

𝑆
𝑏
(𝜌) = 𝑊

−𝑇

11
𝐵 (𝜌)𝐾 (𝜌) ,

𝑁
𝑔
(𝜌) = 𝑈

𝑇

11
𝐵 (𝜌)𝐾 (𝜌)𝑊

21
𝑊

−1

11
,

𝑆
𝑔
(𝜌) = 𝑊

−𝑇

11
𝐵 (𝜌)𝐾 (𝜌)𝑊

21
𝑊

−1

11
.

(44)
Thus, the controller and observer parameters can be

achieved. The proof is completed.

Remark 11. The parameter dependence refers to that (36) is
an infinite-dimensional PLMI. In order to solve this problem,
the appropriate basis functions and gridding technique are
used to transform it into finite-dimensional PLMI. Selecting
the appropriate basis functions as {𝑓

𝑖
(𝜌)}

𝑠

𝑖=1
, we have

Y (𝜌) =

𝑠

∑

𝑖=1

𝑓
𝑖
(𝜌)Y

𝑖
> 0. (45)

Remark 12. According to Theorem 10, if there exists feasi-
ble solution of (36), the observer-based controller can be
designed in the form of (5). In addition, we can also treat
𝛾 as optimization variable to obtain the optimal disturbance
attenuation level, that is, solving the following convex opti-
mization problem:

min 𝛾 subject to (36) , (45) . (46)
Remark 13. In reality, almost all real-time systems have time-
varying parameters, and this paper gives an approach to
the observer-based 𝐻

∞
controller design problem for LPV

systems under network environment. Recently, because of the
rapid development of network technologies, investigations on
the NCSs have been studied well and sensor networks are
proved to be a new research hot spot. In the context of sensor
networks, the network-induced phenomena become even
severe due primarily to the network size, communication
constraints, limited battery storage, strong coupling, and
spatial deployment [9, 22]. Therefore, the proposed results of
this paper can be also extended to the sensor networks, which
will be one of our future research directions.

4. Numerical Example

In this part, we will use a numerical example to demonstrate
the validity of the proposed approach. Consider system (1)
with

𝐴 = [

0 1 + 0.2𝜌 (𝑡)

−2 −3 + 0.1𝜌 (𝑡)
] ,

𝐵 = [

0.2𝜌 (𝑡)

0.1 + 0.1𝜌 (𝑡)
] , 𝐵

1
= [

0.2

0.2
] ,

𝐶
1
= [0 0.1] , 𝐶

2
= [

0 1

0 0
] , 𝐷 = [

0

1
] ,

(47)

where 𝜌(𝑡) = sin(𝑡) and 𝜌(𝑡) ∈ [−1, 1], ̇𝜌(𝑡) ∈ [−1, 1].
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Figure 2: The maximum singular value of the closed-loop system.

Selecting the appropriate basis functions as 𝑓
1
(𝜌) = 1,

𝑓
2
(𝜌) = 𝜌(𝑡), then

Y (𝜌) = Y
1
+ 𝜌 (𝑡)Y

2
. (48)

The maximum allowable delay is 𝜂
1
= 1.0, 𝜂

2
= 0.5.

Solving the PLMI problem in Theorem 10 we obtain an 𝐻
∞

performance level 𝛾 = 1.5123 with the parameter matrices of
controller and observer as follows:

𝐾(𝜌) = [2.1460 − 0.5151]

+ 𝜌 (𝑡) [−0.1367 − 0.1205] ,

𝐿 (𝜌) = [

−0.9208

−0.9081
] + 𝜌 (𝑡) [

−0.0362

−0.0363
] .

(49)

Given the initial condition 𝑥(0) = [0.1 0.25]
𝑇 and the

disturbance signal is

𝜔 (𝑡) = 4𝑒
(−0.01𝑡) sin (0.02𝜋𝑡) . (50)

Figure 2 shows the maximum singular value of the closed-
loop system by the obtained controller and observer (49) and
the simulation results of the state response and estimation
error are shown in Figures 3 and 4, which indicate that the
designed observer-based controller is well performed.

5. Conclusions

In this paper, a new network-based structure of LPV systems
is concerned by taking full consideration of the sensor-
to-controller channel and controller-to-actuator channel, in
which the network-induced delays and packet dropouts are
treated to be equivalent to two time-varying delays. The
design problem of an observer-based 𝐻

∞
controller for

NC LPV systems is investigated by augmenting the system
dynamics and transforming it to a time-varying delayed con-
troller and observer collaborative design problem. Key ideas
consist in the parameter-dependent Lyapunov-Krasovskii
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Figure 3: The state response of the closed-loop system.
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Figure 4: The estimation error of the state observer.

functional and the Projection Lemma as well as the introduc-
tion of slack matrix which permit eliminating the coupling
between the Lyapunov function matrices and the system
matrices. Thus, the corresponding analysis and synthesis
condition for stabilization and𝐻

∞
performance is expressed

in terms of the PLMI, which is infinite-dimensional and
can be transformed into finite by using the basis function
method and gridding technique. The delay-dependent result
refers to reduced conservatism in the synthesis condition
with the presented method. Simulation results are presented
to demonstrate the high validity and merit of the proposed
approach.
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