
Modeling, Identification and Control, Vol. 35, No. 3, 2014, pp. 159–168, ISSN 1890–1328

Robust H∞ Filtering for Networked Control
Systems with Markovian Jumps and Packet

Dropouts

Fangwen Li 1 Peng Shi 23 Xingcheng Wang 1 Hamid Reza Karimi∗ 4

1College of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China. E-mail:
lifangwen2007@163.com, dmuwxc@dlmu.edu.cn

2College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China. E-mail:
peng.shi@adelaide.edu.au

3School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005 Australia. E-mail:
peng.shi@adelaide.edu.au

4Faculty of Engineering and Science, University of Agder, N-4898 Grimstad, Norway. E-mail:
hamid.r.karimi@uia.no

Abstract

This paper deals with the H∞ filtering problem for uncertain networked control systems. In the study,
network-induced delays, limited communication capacity due to signal quantization and packet dropout
are all taken into consideration. The finite distributed delays with probability of occurrence in a random
way is introduced in the network.The packet dropout is described by a Bernoulli process. The system
is modeled as Markovian jumps system with partially known transition probabilities. A full-order filter
is designed to estimate the system state. By linear inequality approach, a sufficient condition is derived
for the resulting filtering error system to be mean square stable with a prescribed H∞ performance level.
Finally, a numerical example is given to illustrate the effectiveness and efficiency of the proposed design
method.
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1 Introduction

Networked control systems (NCSs) with Markovian
jumps are typical complex stochastic dynamic systems,
which can describe many real world systems, and much
attention have been paid on stability analysis and con-
trol synthesis of this kind of complex stochastic dy-
namic systems, see for example Li et al. (2013b) and
the references therein. Networked control systems be-
come an important way to study complex systems due
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to their low cost, simple installation, maintenance and
high reliability. Communication channels can reduce
the cost of cables and power, simplify the installation
and maintenance of the whole systems, and increase
the reliability compared to the traditional point-to-
point wiring system. NCSs have many applications
such as remote surgery, unmanned aerial, vehicles and
communication network, etc. Now, more and more ef-
forts have been devoted to both the stability and the
control of the NCSs. On the other hand, note that
some inevitable phenomena when the control signals
transmitted through the communication network, sev-
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eral challenging issues will appear such as time-delay,
packet dropouts, quantization and so on, which may
influence system performance and have been primarily
highlighted in Seiler and Sengupta (2005); Zhao et al.
(2011); Li et al. (2012); Peng and Tian (2007); Kim
and Kumar (2013).

In practice, due to the limited transmission capacity of
the network and some devices in closed-loop systems,
signals should be quantized before they are sent to the
next network node. In order to get better system per-
formance, more effects of quantization in NCSs should
be taken into consideration. The quantizer can be re-
garded as a coder which converts the continuous signal
into piecewise continuous signal taking values in a finite
set, which is usually employed when the observation
and control signals are sent via limited communication
channel. A number of results have been reported on
the quantization problems in recent years, see for ex-
ample Fu and Xie (2005); Tian et al. (2007); Li et al.
(2013b,a); Garcia and Antsaklis (2013) and the refer-
ences therein.

In NCSs, one of the important scheduling issues to
treat is the effect of the network-induced delay on the
system performance. For NCSs with different schedul-
ing protocols, the network-induced delay may be con-
stant, time-varying, or even stochastic values. There
have been lots of works concerned with the analysis and
synthesis problems for NCSs with network-induced de-
lay, see for example, Karimi (2009); Li et al. (2014),
and the references therein. It should be noticed that,
in the network environment, the traditional methods
for deterministic time delays cannot be directly em-
ployed to deal with NCSs. New approaches are desir-
able to be presented to cope with the effect of network-
induced delay. In the literature, Markovian chains and
Bernoulli process are adopted in describing stochas-
tic time-delay in Markov systems. Among them, the
stochastic time-delay NCSs modeled as Markov chains
in NCSs have received much attention, see for instance
Shi and Yu (2009); Liu et al. (2005); Wang et al. (2012);
Shi et al. (1999); Zhang and Boukas (2009); Zhang
et al. (2008) and the references therein. Different with
the above methods, in order to model a realistic com-
plex NCSs, finite distributed time delay with a certain
probability is proposed in this paper, and the stochas-
tic time delay is an independent Bernoulli process.

Another significant issue inevitably emerged in NCSs
is the possibility that the data may be lost due to the
limited capacity in transit through the network. Packet
dropout can be modeled as stochastic or deterministic
phenomena. The main stochastic method to deal with
the packet dropout is by modeling the packet dropout
process as an independently and identically distributed

Bernoulli process. For this reason, the state estimation
over networks cannot be ignored in order to achieve
better performance in applications such as remote sens-
ing, space exploration and sensor networks. Therefore,
a lot efforts have been devoted to the filtering prob-
lem, see for example Zhang and Yu (2008); Li and Shi
(2014); Wu and Chen (2007); Sun et al. (2008); Wang
et al. (2007); Niu et al. (2009); Sun (2012); Yashiro
and Yakoh (2014) and the references therein. How-
ever, so far, the filtering problem for NCSs with mixed
stochastic delays, quantization and packet dropout has
not been fully investigated, which motivates us for this
study.

Among the existing results of NCSs, many works have
been done either on time-delay modeled as Markov
chains or quantization. But in practice, network
stochastic delay and quantization are both quite of-
ten. However, there has been very limited work that
has taken such type of multiple network-induced phe-
nomenon into account. To the best of the authors’
knowledge, up to now, little attention has been focused
on NCSs with quantization, time-delay and packet
dropout modeled as Markov jump system. From both
theoretical and practical points of view, we should con-
sider the problem of robust stability and immeasura-
bilty of network simultaneously.

The goal of this paper is to study robust H∞ filtering
problem for uncertain NCSs with quantization, time-
delays and packet dropout. Partially unknown transi-
tion probabilities of Markov chain is used to model the
system. The desired filter is designed by linear ma-
trix inequality (LMI) approach. Sufficient conditions
are proposed to ensure the resulting filtering error sys-
tems to be robustly mean square stable with a given
H∞ performance level. Finally, a numerical example is
provided to illustrate the effectiveness of the proposed
design technique.

2 Problem Formulation

Consider the following networked control systems:

x(k + 1) =A(r(k))x(k) +Bw(r(k))w(k)

+Ad(r(k))

p∑
i=1

λ{Tm = τi}x(k − i)

y(k) =C(r(k))x(k)

z(k) =E(r(k))x(k)

x(j) =ϕ(j), −∞ < j ≤ 0

(1)

where for k ∈ Z, x(k) ∈ Rn is the state vector,
y(k) ∈ Rm is the measured output, w(k) ∈ Rp is the
disturbance input which belongs to L2[0,∞), z(k) ∈ Rq
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is the state to be estimated. ϕ(j), −∞ < j ≤ 0, are
the initial conditions.

The distributed time delays have a certain probabil-
ity. Each time delay Tm, m ∈ {1, 2 . . . , p} is denoted
as follows:

λ{Tm = τi} =

{
1, Tm = τi
0, Tm 6= τi

(2)

Prob{Tm = τi} = E{λ{Tm = τi}} = βi, i = 1, 2 . . . , p.

where E{·} stands for the mathematics statistical ex-
pectation of the stochastic process. 0 ≤ βi ≤ 1, and∑p
i=1 βi = 1.

The parameter r(k) represents a discrete-time homo-
geneous Markov chain taking values in a finite set
I = {1, 2, · · · , N} with the associated transition prob-
ability matrix Λ ∈ RN×N , whose elements are given
by pij = Pr{r(k + 1) = j|r(k) = i}, where 0 ≤ pij ≤
1, ∀i, j ∈ I, and

∑
N
j=1pij = 1, ∀i ∈ I.

In addition, the transition probabilities in Markov
chain are considered to be partially available, that is,
some elements in matrix Λ are unknown. For instance,
system (1) with four modes, the transition probability
matrix Λ may be represented in the following form:

Λ =


p11 ? ? ?
p21 ? ? ?
? p32 ? ?
? ? p43 ?

 (3)

where ”?” stands for the unknown element. For nota-
tion clarity, we denote that for any i ∈ I

Iik , {j : pij is known}, Iiuk , {j : pij is unknown}.
(4)

To ease the presentation, in the follow-
ing, we denote A(r(k)), r(k) = i by Ai.
The same notation will also be used for
Ad(r(k)), B(r(k)), Bw(r(k)), C(r(k)) andE(r(k)).

Consider the uncertainties in system (1), we assume
that

A(r(k)) = Ā(r(k)) + ∆A(r(k))

Ad(r(k)) = Ād(r(k)) + ∆Ad(r(k))

where Ā(r(k)) and Ād(r(k)), for r(k) = i, i ∈ I, are
known real-valued constant matrices of appropriate
dimensions that describe the nominal system. While
∆A(r(k)) and ∆Ad(r(k)), are unknown matrices rep-
resenting the time-varying parameter uncertainties
satisfying the following form:

(∆A(r(k)) ∆Ad(r(k)))

= G1(r(k))∆r(k)(H1(r(k)) H2(r(k)))

where G1(r(k)), H1(r(k)) and H2(r(k)) are known
real constant matrices and ∆r(k) are unknown time-
varying matrices satisfying the following conditions:

‖∆r(k)‖ ≤ I, ∀k ∈ Z and ∀r(k) = i, i ∈ I
Consider the quantization effect, it is assumed that
the measurement signals will be quantized before they
are transmitted via the networks wherever data packet
dropout or not.
The set of quantized levels is described as U =
{±ui, ui = ρiu0,±1,±2, . . .} ∪ {0}, 0 < ρ < 1, u0 > 0,
and the logarithmic quantizer q(·) as in Fu and Xie
(2005) is applied

q(v) =


ui, if 1

1+δρ
iu0 < v ≤ 1

1−δρ
iu0;

0, if v = 0;
−q(−v), if v < 0.

(5)

where the parameter ρ is termed as quantization den-
sity, and δ = 1−ρ

1+ρ . From Fu and Xie (2005) we have

q(v) = (1 +4k)v (6)

where 4k ∈ [−δ, δ], which is a suitable model for the
logarithmic quantizer q(v) with parameter δ.

Consider the quantizing effects are transformed into
sector bounded uncertainties, associated to system (1),
the quantized output with the packet dropout yc(k) is
designed as

yc(k) = θkq(y(k)) = θk(I + ∆k)y(k) (7)

where the matrix ∆k , diag{∆1,∆2 . . .} satisfies
‖∆k‖ ≤ δ. Let θk = 1 indicate the the packet con-
taining the measurement y(k) has been successfully
delivered to the state estimation center; while θk = 0
corresponds to the dropout of the packet, and θk is in-
dependent Bernoulli distributed with probability dis-
tribution as follows:

Prob{θk = 1} = E{θk} = θ

In this paper, we assume that the accurate value of the
system mode is available. The full-order Markov jump
linear filter is given as follows:

x̂(k + 1) = Afix̂(k) +Bfiyc(k)

ẑ(k) = Efix̂(k)
(8)

where x̂(k) ∈ Rn is the filter state; ẑ(k) ∈ Rq is the
filter output; Afi, Bfi and Afi are filter matrices to
be determined. Combining (1), (7) and (8), the filter
error system is obtained as follows:

ξ(k + 1) =Ãiξ(k) + Ãdi

p∑
i=1

λ{Tm = τi}x(k − τi)

+ B̃wiw(k)

z̃(k) =Ẽiξ(k)

(9)
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where

ξ(k) =
[
x(k)T x̂(k)T

]T
, z̃(k) = z(k)− ẑ(k)

Ãi =

[
Ai 0

θkBfi(I + ∆k)Ci Afi

]
, Ãdi =

[
Adi
0

]
B̃wi =

[
Bwi

0

]
, Ẽi =

[
Ei −Efi

]
.

In order to proceed with the main results, we first
introduce the following definitions and lemmas, which
will be essential for the development of our main
results.

Definition 1. Shi et al. (1999) System (9) is expo-
nentially mean square stable if for every initial state
(x(0), r(0)), there exist constants 0 < α < 1 and β > 0
such that for all k ≥ 0

E{‖x(k)‖2|x(0), r(0)} ≤ βαk‖x(0)‖2 (10)

Definition 2. Given the disturbance input w(k) ∈
L2, a scalar γ > 0, system (9) is exponentially mean
square stable and with an H∞ performance level γ if
the following two conditions are satisfied:

1. When w(k) = 0, system (9) is exponentially mean
square stable in the sense of Definition 1.

2. When w(k) 6= 0, under zero initial conditions ,the
following inequality holds

E{
∞∑
k=0

‖z̃(k)‖2} < γ2‖w(k)‖2 (11)

Hence, the main objective of this paper is to design the
Markov jump filter for networked control system (1),
such that the filter error system (9) is exponentially
mean square stable with an H∞ performance level γ in
the presence of output quantization, distributed delay
and packet dropout.

Lemma 1. For any vectors x, y ∈ Rn, matri-
ces D,E andF with appropriate dimensions, and any
scalar ε > 0, if FTF ≤ I, then

DFE + ETFTDT ≤ εDDT + ε−1ETE (12)

3 Main Results

In this section, we first present, sufficient conditions to
ensure system (9) is exponentially mean square stable.

Theorem 1. Considering system (9), when w(k)=0,
for a given quantization density 0 < ρ < 1 and packet

dropout rate 0 < θ < 1, it is exponentially mean square
stable, if there exist matrices Afi, Bfi, Efi, Pi > 0,
i ∈ I and Q > 0 satisfying:

Φi =

[
φ11i ∗
φ21i φ22i

]
< 0 (13)

where

φ11i = diag{−Pi +Q,−Pi,−Q}

φ21i =

[
Ai 0 Adi

θBfi(I + ∆k)Ci Bfi 0

]
φ22i = diag{−P̄i

−1
,−P̄i

−1}, P̄i =

N∑
j=1

pijPj .

Proof:

Construct the following Lyapunov functional candidate
for system (9) as

V (x(k), r(k)) = V1(x(k), r(k)) + V2(x(k), r(k))

V1(x(k), r(k)) = ξT (k)P (r(k))ξ(k)

V2(x(k), r(k)) =

P∑
i=1

λ{Tm = τi}
k−1∑

s=k−τi

xT (s)Qx(s)

(14)

Take the mathematical expectation E{∆V (k)} ,
E{V (x(k + 1), r(k + 1))|x(k), r(k)} − V (x(k), r(k)),
then for each r(k) = i, i ∈ I, we obtain

E{∆V1(k)} = (Ãiξ(k) + Ãdi

p∑
i=1

βix(k − τi))Tφ−1
22i

× (Ãiξ(k) + Ãdi

p∑
i=1

βix(k − τi))

− ξT (k)Piξ(k)

E{∆V2(k)}

=

p∑
i=1

βix
T (k)Qx(k)−

p∑
i=1

βix
T (k − τi)Qx(k − τi)

≤ xT (k)Qx(k)−
p∑
i=1

βix
T (k − τi)Q

p∑
i=1

βix
T (k − τi)

(15)

A combination of (15) leads to

E{∆V (k)} ≤ ηT (k)Φ̄iη(k)
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where

ηT (k) =
[
ξT (k)

∑p
i=1 βix

T (k − τi)
]

Φ̄i = φ11i + φT21iφ
−1
22iφ21i

by Schur Lemma, we can get Φ̄i ≤ Φi, that means

E{∆V (k)} ≤ 0

Let α , 1−minr(k)∈I{ λmin(Φ(r(k)))
λmax(Φ(r(k)))} < 1, thus

E{V (x(k + 1), r(k + 1))|x(k), r(k)} − V (x(k), r(k))

V (x(k), r(k))

≤ α− 1

Note that Φi < 0, that is, 0 < α < 1, such that

E{V (x(k + 1), r(k + 1))|x(k), r(k)} ≤ αV (x(k), r(k))

from [13], let β , maxi,j∈I{λmax(Φi)
λmin(Φj)} < 1, we have

E‖x(k)‖2 ≤ αkβ‖x(0)‖2

Therefore, by Definition 1, it can be verified that when
w(k) = 0, system (9) is exponentially mean square
stable. This completes the proof.

Remark 1. Although a sufficient condition is given
by Theorem 1 to ensure system (9) is exponentially
mean square stable, it is difficult to apply it into sys-
tem (9) with partially unknown transition probabili-
ties. In the following, a technique will be developed
to cope with such problem for system (9) with par-
tially unknown transition probabilities. Whatever for
any i ∈ I, Iiuk = Ø, the considered system is the
one with completely known transition probabilities, or
i ∈ I, Iik = Ø , all the transition probabilities are unac-
cessible in the considerer system, the condition is still
valid.

Lemma 2. Consider system (9) with partially un-
known transition probabilities, when w(k)=0, for a
given quantization density 0 < ρ < 1 and packet
dropout rate 0 < θ < 1, system (9) is expo-
nentially mean square stable, if there exist matrices
Afi, Bfi, Efi, Pi > 0, i ∈ I and Q > 0 satisfying:

Φ̃i =

[
φ11i ∗
φ̃21i φ̃22i

]
< 0 (16)

where

φ̃22i = diag{−P̃i
−1
,−P̃i

−1}

P̃i =

N∑
j∈Iik

pijPj + (1−
N∑

j∈Iik

pij)

N∑
j∈Iiuk

Pj .

Proof:

The desired result can be worked out by the following
fact

P̄i =

N∑
j=1

pijPj =

N∑
j∈Iik

pijPj +

N∑
j∈Iiuk

pijPj ≤ P̃i. (17)

Next we will present a condition to ensure system
(9) to be exponentially mean square stable with a
given performance level.

Theorem 2. Considering system (9), for a given
quantization density 0 < ρ < 1, packet dropout rate
0 < θ < 1 and γ > 0, it is exponentially mean square
stable with an H∞ performance level γ under zero ini-
tial condition, if there exist matrices Afi, Bfi, Efi,
Pi > 0, i ∈ I and Q > 0, scalars ε1i > 0 and ε2i > 0,
i ∈ I satisfying:

Ωi =


ψ11i ∗ ∗ ∗
ψ21i ψ22i ∗ ∗
ψ31i ψ32i ψ33i ∗
ψ41i ψ42i 0 ψ44i

 < 0 (18)

where

ψ11i = diag{−Pi +Q,−Pi,−Q,−γ2I}

ψ22i = diag{−P̃i
−1
,−P̃i

−1
,−I}

ψ21i =

 Ai 0 Adi Bwi
θBfiCi Afi 0 0
Ei Efi 0 0


ψ31i =

[
ε1iH1i 0 ε1iH2i 0

0 0 0 0

]
ψ32i =

[
0 0 0
GT1i 0 0

]
ψ41i =

[
ε2iθCi 0 0 0

0 0 0 0

]
, ψ42i =

[
0 0 0
0 BTfi 0

]
ψ33i = diag{−ε1i,−ε1i}, ψ44i = diag{−ε2i,

−ε2i

δ2
I}

Proof:

First, by Theorem 1, system (9) with w(k) = 0 is ex-
ponentially mean square stable, So what we need to
do is to show when w(k) 6= 0, system (9) has an H∞
performance level γ.
According to Theorem 1, we can obtain

E{z̃T (k)z̃(k)} − γ2wT (k)w(k)

< E{z̃T (k)z̃(k)} − γ2wT (k)w(k) + E(∆V (k))

< E{ẼTi ξ(k)Ẽiξ(k)} − γ2wT (k)w(k) + ξT (k)Φiξ(k)
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by Schur Lemma, Define

δT (k) =
[
ξT (k)

∑p
i=1 βix

T (k − τi) wT (k)
]

by (15), we can obtain

E{z̃T (k)z̃(k)} − γ2wT (k)w(k) < δT (k)Ω̄iδ(k)

where

Ω̄i =


φ11i ∗ ∗ ∗

0 −γ2I ∗ ∗
φ21i B̃wi φ22i ∗
Ẽi 0 0 −I

 (19)

According to (17), we obtain the following one holds,

Ω̄i < Ω̃i =


φ11i ∗ ∗ ∗

0 −γ2I ∗ ∗
φ21i B̃wi −φ̃22i ∗
Ẽi 0 0 −I

 (20)

Bearing in mind all admissible uncertainties of system
(9), Ω̃i can be written as

Ω̃i =

[
ψ11i ∗
ψ21i ψ22i

]

+



0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗

G1i∆iH1i 0 G1i∆iH2i 0 0 ∗ ∗
θBfi∆kCi 0 0 0 0 0 ∗

0 0 0 0 0 0 0


(21)

In view of Lemma 1, we obtain that (20) holds, if and
only if there exist scalars ε1i > 0 and ε2i > 0, such
that

Ω̃i < Ω̂i =

[
ψ11i ∗
ψ21i ψ22i

]
+ ε−1

1i

[
0 0 0 0 GT1i 0 0

]T
×
[

0 0 0 0 GT1i 0 0
]

+ ε1i

[
H̃1i 0 H2i 0 0 0 0

]T
×
[
H̃1i 0 H2i 0 0 0 0

]
+ ε−1

2i

[
0 0 0 0 0 BTfi 0

]T
×∆2

k

[
0 0 0 0 0 BTfi 0

]
+ ε2i

[
θCi 0 0 0 0 0 0

]T
×
[
θCi 0 0 0 0 0 0

]
(22)

due to
∆2
k ≤ δ2

By Schur Lemma, if matrix inequality (22) holds, Ωi <
0 is equivalent to Ω̂i < 0. Then

E{z̃T (k)z̃(k)} − γ2wT (k)w(k) < δT (k)Ω̄iδ(k) < 0
(23)

Taking sum of both sides of (23) from k = 0 to∞, and
recalling that x(0) = 0, the following inequality holds

E{
∞∑
k=0

z̃T (k)z̃(k)} < γ2
∞∑
k=0

wT (k)w(k)

Therefore, by Definition 2, system (9) with distributed
delay, quantization and packet dropout is robust expo-
nentially mean square stable with an H∞ performance
level γ.

It is noted that the matrix (18) in Theorem 2 is not a
linear one, thus it cannot be solved directly by Matlab
LMI Toolbox. To this end, we will convert (18) into
an LMI. Also the sufficient condition for the robust
H∞ filter gain matrices Afi and Bfi will be designed
in the following Theorem.

Theorem 3. Considering system (9), for a given
quantization density 0 < ρ < 1, packet dropout rate
0 < θ < 1 and γ > 0, it is exponentially mean square
stable with an H∞ performance level γ under zero
initial condition, if there exist matrices Y1i, Y2i, Efi,
Pi > 0, i ∈ I and Q > 0, scalars ε1i > 0 and ε2i > 0,
i ∈ I satisfying:

Ωi =


ψ11i ∗ ∗ ∗
ψ̄21i ψ̄22i ∗ ∗
ψ31i ψ̄32i ψ33i ∗
ψ41i ψ̄42i 0 ψ44i

 < 0 (24)

where

ψ̄22i = diag{−P̃i,−P̃i,−I}

ψ̄21i =

 P̃iAi 0 P̃iAdi P̃iBwi
θY2iCi Y1i 0 0
Ei Efi 0 0


ψ̄32i =

[
0 0 0

GT1iP̃i
T

0 0

]
, ψ̄42i =

[
0 0 0
0 Y T2i 0

]

Furthermore, if the above conditions have feasible
solutions, the H∞ filter parameters Afi, Bfi, Efi can
be computed via the following:

Afi = P̃i
−1
Y1i, Bfi = P̃i

−1
Y2i, Efi = Eifeas
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Proof:

We define the following matrices

Y1i = P̃iAfi and Y2i = P̃iBfi (25)

where Y1i and Y2i are non-singular matri-
ces with appropriate dimensions. Multiplying
diag{I, I, I, I, P̃i, P̃i, I, I, I, I, I} and its transpose
on the left-hand and the right-hand side of (18),
respectively, and rewrite the parameters in Theorem 2.
Hence, from (25), the filter parameters can be solved

as Afi = P̃i
−1
Y1i and Bfi = P̃i

−1
Y2i. This completes

the proof.

Remark 2. Both Theorems 2 and 3 provide conditions
to design a filter which can guarantee the resulting fil-
tering error system to be exponentially mean square
stable with a prescribed H∞ performance level. Due
to the uncertainties and unknown transition probabil-
ities, only sufficient conditions are derived, which has
certain conservativeness, and should be further looked
at in our future work.

4 Examples

In this section, a numerical example is given to show
the usefulness of the results obtained in the previous
section.

Consider system (9) with the following parameters.
There are four modes of distributed time delays in the
system, their probabilities are Prob{τ1 = 1} = β1 =
0.3, P rob{τ2 = 2} = β2 = 0.4, P rob{τ3 = 3} = β3 =
0.2, and Prob{τ4 = 4} = β4 = 0.1. Assume that the
quantization density ρ = 0.4, and the disturbance is a
Gaussian white noise. The initial condition is selected
as x(0) = [0, 0]T and x̂(0) = [0.1, 0.1]T .

In addition, the system has three modes that means
I = {1, 2, 3}, and the mode switching governed by par-
tially unknown transition probabilities is supposed to
be

 0.1 ? ?
0.4 ? ?
0.5 ? ?



and the other parameters are set as follows:

Ā1 =

[
−2 0
0.6 −1

]
Ā2 =

[
−1 1
−0.6 −3.3

]
Ā3 =

[
−1.5 0.2
0.5 −1.1

]
Ād1 =

[
−1 0.3
−1 −1

]
Ād2 =

[
−1 −1.3
0.7 −2.1

]
Ād3 =

[
−0.8 0.6
0.8 0.8

]
Bw1 =

[
0.1 0.1
0 0.1

]
Bw2 =

[
0.1 0.1
0 0.1

]
Bw3 =

[
0.1 0
0.1 −0.1

]
C1 =

[
3 −7

2.4 3.9

]

C2 =

[
3.1 4.1
−1.1 5.4

]
C3 =

[
2.4 −2.1
1.1 3.1

]
E1 =

[
−0.1 −0.2

]
E2 =

[
0.1 −1.1

]
E3 =

[
−0.7 −0.3

]
H11 =

[
0.1 0
0.1 0.1

]
H12 =

[
0.1 0
0.1 −0.1

]
H13 =

[
0.1 0
0.1 −0.1

]
H21 =

[
0.4 0.1
−0.1 0.1

]
H22 =

[
0.4 0.1
0 −0.1

]
H23 =

[
0.4 0.1
−0.1 −0.1

]
G11 =

[
0 0
0 0.1

]
G12 =

[
0 0

0.1 0

]
G13 =

[
0 0
0 0.1

]

By applying Theorem 3, the optimal value for H∞ per-
formance γ = 1.2492, and the filter matrices can be
computed as:

Af1 =

[
2.5998 −0.4516
−0.8804 0.9342

]
Af2 =

[
3.4982 −4.6226
−2.5060 16.3507

]
Af3 =

[
8.7629 1.4122
−0.0883 0.9118

]
Bf1 =

[
1.6173 −0.6481
−0.6706 1.9519

]
Bf2 =

[
2.9926 −0.3111
−0.9038 0.4789

]
Bf3 =

[
2.5831 −1.9722
−2.2534 2.6240

]
Ef1 =

[
0.0011 0.0017

]
Ef2 =

[
−0.0005 0.0043

]
Ef3 =

[
−0.0068 0.0015

]
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The simulation result of Markov chain is shown in
Fig.1. There are three modes in the results, which are
stochastic with partially unknown probabilities. The
system state x(k) and the filtering state x̂ are plot-
ted in Fig.2. It should be pointed out that the results
reported in Yang and Han (2013), time-delay, quanti-
zation and packet drop out are not all considered in
systems. In our current work, we have shown that the
system with these practical multiple network-induced
phenomenon is still mean square stable under some rea-
sonable conditions. In addition, we also consider the
system modeling error in design, so our results have
better robustness at the same time. Fig.3 displays the
filtering error z̃(k) converges to zero. The output y(k)
and quantized output q(y(k)) are shown in Fig.4. From
these figures, it can be seen that the designed filter
meets the specified requirements. At the same time it
can also be seen that our approach is able to deal with
multiple network-induced phenomenons.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
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Figure 1: Parameters change of r(k)
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Figure 2: The system state x(k) and the filtering state
x̂.
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Figure 3: The filtering error z̃(k).
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Figure 4: The output y(k) and the quantized output
q(y(k)).

5 Conclusion

In this paper, we have presented a new approach on
H∞ filtering problem for uncertain network control sys-
tem with distributed delay, quantization and packet
dropout. The occurrence probability of each time delay
is considered in the system, and the output signals are
quantized before they are communicated. The packet
dropout have Bernoulli distributions. Markovian jump
linear systems with the partially unknown transition
probabilities are adopted to model the system. Based
on the new model, sufficient conditions are developed
for the robust mean square stability of the filtering er-
ror system with a given H∞ performance. Then the
robust Markov jump H∞ filter is derived in terms of
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strict LMIs. A numerical example shows the effective-
ness of the obtained approach. Further research work
will be focused on developing methods to NCSs with
nonlinear plant, possibly by fuzzy modeling approach.

Acknowledgments

This work was partially supported by the Australian
Research Council (DP140102180, LP140100471) and
the 111 Project (B12018).

References

Fu, M. and Xie, L. The sector bound ap-
proach to quantized feedback control. IEEE
Trans. Automat. Contr., 2005. 50(11):1698–1711.
doi:10.1109/TAC.2005.858689.

Garcia, E. and Antsaklis, P. Model-based event-
triggered control for systems with quantization
and time-varying network delays. IEEE Transac-
tions on Automatic Control, 2013. 58(2):422–434.
doi:10.1109/TAC.2012.2211411.

Karimi, H. Robust H∞ filter design for uncer-
tain linear systems over network with network-
induced delays and output quantization. Model-
ing Identification and Control, 2009. 30(1):27–37.
doi:10.4173/mic.2009.1.3.

Kim, K. and Kumar, P. Real-time middleware
for networked control systems and application to
an unstable system. IEEE Transactions on Con-
trol Systems Technology, 2013. 21(5):1898–1906.
doi:10.1109/TCST.2012.2207386.

Li, F., Wang, X., and Shi, P. Quantized H∞ control
for networked control systems. ICIC Express Letters,
2013a. 7(3(B)):1099–1105.

Li, F., Wang, X., and Shi, P. Robust quantized H∞
control for network control systems with Marko-
vian jumps and time delays. International Journal
of Innovative Computing Information and Control,
2013b. 9(12):4889–4902.

Li, F., Wang, X., Shi, P., and Liu, G. Control for
network control systems with partially known tran-
sition probabilities. ICIC Express Letters Part B:
Applications, 2012. 3(6):1565–1574.

Li, H., Jing, X., and Karimi, H. R. Output-feedback-
based H∞ control for vehicle suspension systems
with control delay. IEEE Trans. Ind. Electron., 2014.
61(1):436–446. doi:0.1109/TIE.2013.2242418.

Li, H. and Shi, Y. Network-based predictive control
for constrained nonlinear systems with two-channel
packet dropouts. IEEE Trans. Ind. Electron., 2014.
61(3):3318–3327. doi:10.1109/TIE.2013.2261039.

Liu, L., Tong, C., and Zhang, H. Analysis and de-
sign of networked control systems with long de-
lays based on Markovian jump model. Proceed-
ings of 2005 International Conference on Machine
Learning and Cybernetics, 2005. pages 953–959.
doi:10.1109/ICMLC.2005.1527081.

Niu, Y., Jia, T., Wang, X., and Yang, F. Output
feedback control design for NCSs subject to quan-
tisation and dropout. Information Science, 2009.
179(21):3804–3813. doi:10.1016/j.ins.2009.07.006.

Peng, C. and Tian, Y. Networked H∞ con-
trol of linear systems with state quantization.
Information Sciences, 2007. 177(24):5763–5773.
doi:10.1016/j.ins.2007.05.025.

Seiler, P. and Sengupta, R. An H∞ approach to net-
worked control. IEEE Trans. Automat. Contr., 2005.
50(3):356–364. doi:10.1109/TAC.2005.844177.

Shi, P., Boukas, E., and Agarwal, R. Control of
Markovian jump discrete-time systems with norm
bounded uncertainty and unknown delay. IEEE
Trans. Automat. Contr., 1999. 44(11):2139–2144.
doi:10.1109/9.802932.

Shi, Y. and Yu, B. Output feedback stabi-
lization of networked control systems with ran-
dom delays modeled by Markov chains. IEEE
Trans. Autom. Control, 2009. 54(7):1668–1674.
doi:10.1109/TAC.2009.2020638.

Sun, S. Optimal linear estimators for discrete-time
systems with one-step random delays and multiple
packet dropouts. Acta Automatica Sinica, 2012.
38(3):349–356. doi:10.1016/S1874-1029(11)60295-4.

Sun, S., Xie, L., Xiao, W., and Soh, Y. C. Op-
timal linear estimation for systems with multiple
packet dropouts. Automatica, 2008. 44(5):1333–
1342. doi:10.1016/j.automatica.2007.09.023.

Tian, E., Yue, D., and Zhao, X. Quantized control
design for networked control systems. IET Con-
trol Theory and applicatons, 2007. 1(6):1693–1699.
doi:10.1049/iet-cta:20060499.

Wang, B., Shi, P., Karimi, H., and Dong, X. Stochastic
stability analysis for Markovian jump neutral non-
linear systems. Modeling Identification and Control,
2012. 33(4):131–139. doi:10.4173/mic.2012.4.2.

167

http://dx.doi.org/10.1109/TAC.2005.858689
http://dx.doi.org/10.1109/TAC.2012.2211411
http://dx.doi.org/10.4173/mic.2009.1.3
http://dx.doi.org/10.1109/TCST.2012.2207386
http://dx.doi.org/0.1109/TIE.2013.2242418
http://dx.doi.org/10.1109/TIE.2013.2261039
http://dx.doi.org/10.1109/ICMLC.2005.1527081
http://dx.doi.org/10.1016/j.ins.2009.07.006
http://dx.doi.org/10.1016/j.ins.2007.05.025
http://dx.doi.org/10.1109/TAC.2005.844177
http://dx.doi.org/10.1109/9.802932
http://dx.doi.org/10.1109/TAC.2009.2020638
http://dx.doi.org/10.1016/S1874-1029(11)60295-4
http://dx.doi.org/10.1016/j.automatica.2007.09.023
http://dx.doi.org/10.1049/iet-cta:20060499
http://dx.doi.org/10.4173/mic.2012.4.2


Modeling, Identification and Control

Wang, Z., Yang, F., Ho, D., and Liu, X. Robust
H∞ control for networked systems with random
packet losses. IEEE Trans. Systems Man and Cy-
bernetics, Part B: Cybernetics, 2007. 37(4):916–924.
doi:10.1109/TSMCB.2007.896412.

Wu, J. and Chen, T. Design of networked
control systems with packet dropouts. IEEE
Trans. Automat. Control, 2007. 52(7):1314–1319.
doi:10.1109/TAC.2007.900839.

Yang, F. and Han, Q. H∞ control for net-
worked systems with multiple packet dropouts.
Information Sciences, 2013. 252:106–117.
doi:10.1016/j.ins.2013.06.043.

Yashiro, D. and Yakoh, T. Feedback controller
with low-pass-filter-based delay regulation for net-
worked control systems. IEEE Transactions on
Industrial Electronics, 2014. 61(7):3744–3752.
doi:10.1109/TIE.2013.2287214.

Zhang, L. and Boukas, E. K. Stability and

stabilization of Markovian jump linear sys-
tems with partly unknown transition prob-
abilities. Automatica, 2009. 45(2):463–468.
doi:10.1016/j.automatica.2008.08.010.

Zhang, L., Boukas, E. K., and Lam, J. Analysis and
synthesis of of Markovian jump linear systems with
time-varying delays and partially known transition
probabilities. IEEE Trans. Automat. Contr., 2008.
53(10):2458–2464. doi:10.1109/TAC.2008.2007867.

Zhang, W. and Yu, L. Modelling and con-
trol of networked control systems with
both network-induced delay and packet-
dropout. Automatica, 2008. 44(12):3206–3210.
doi:10.1016/j.automatica.2008.09.001.

Zhao, Y.-B., Kang, Y., Liu, G.-P., and Rees, D.
Stochastic stabilization of packet-based networked
control systems. International Journal of Inno-
vative Computing Information and Control, 2011.
7(5(A)):2441–2456.

168

http://dx.doi.org/10.1109/TSMCB.2007.896412
http://dx.doi.org/10.1109/TAC.2007.900839
http://dx.doi.org/10.1016/j.ins.2013.06.043
http://dx.doi.org/10.1109/TIE.2013.2287214
http://dx.doi.org/10.1016/j.automatica.2008.08.010
http://dx.doi.org/10.1109/TAC.2008.2007867
http://dx.doi.org/10.1016/j.automatica.2008.09.001
http://creativecommons.org/licenses/by/3.0

	Introduction
	Problem Formulation
	Main Results
	Examples
	Conclusion

