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We present an application of𝐿
1
adaptive output feedback control design towind turbine collective pitch control and loadmitigation.

Our main objective is the design of an 𝐿
1
output feedback controller without wind speed estimation, ensuring that the generator

speed tracks the reference trajectory with robustness to uncertain parameters and time-varying disturbances (mainly the uniform
wind disturbance across the wind turbine rotor).Thewind turbinemodel CART (controls advanced research turbine) developed by
the national renewable energy laboratory (NREL) is used to validate the performance of the proposed 𝐿

1
adaptive controller using

the FAST (fatigue, aerodynamics, structures, and turbulence) code. A comparative study is also conducted between the proposed
controller and the most popular methods in practice: gain scheduling PI (GSPI) controls and disturbance accommodating control
(DAC) methods. The results show better performance of 𝐿

1
output feedback controller over the other two methods. Moreover,

based on the FAST software and LQR analysis in the reference model selection of 𝐿
1
adaptive controller, tradeoff can be achieved

between control performance and loads mitigation.

1. Introduction

Wind turbine power output should be maintained at a rated
value when operating in region 3 [1]. For a variable-speed
machine, a constant torque is applied to the generator,
and the turbine rotational speed is maintained at a desired
value through blade pitching. As wind turbines become
larger and more flexible, the degree of coupling between
flexible modes increases. It is important to look for advanced
control strategies to achieve increased performance in pitch
control.

One of the most popular pitch control strategies used
in large commercial wind turbines is the gain scheduling
proportional integral (GSPI) control [2–5]. However, the
disadvantage of this classical control method is that multiple
control loopsmust be used to simultaneously stabilize several
flexible turbinemodes. If these control loops are not designed
carefully, they may interfere with or even excite each other,
eventually leading to divergence.

Another popular pitch control strategy is the disturbance
accommodating control (DAC) method. Based on state-
space model, DAC can reject wind disturbance and mitigate
loads by increasing the damping of the first front-aft tower
vibration mode and the drive chain torsion mode [4, 5].
However, since the operating environments are time varying,
control performance will not be guaranteed when the turbine
is not working near the selected operating points where the
DAC controller is designed.

As opposed to linear control methods, adaptive control
allows for performance over a wider uncertain operating
environment. The main nonlinearities in a wind turbine
model come from the nonlinear aerodynamic loads on the
turbine, making it extremely difficult to create an accurate
model of its dynamical characteristics. In addition, wind
turbines operate in highly turbulent and unpredictable con-
ditions. These complex aspects of wind turbines make them
attractive candidates for the application of adaptive control
methods [6–8].
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There are several applications of adaptive methods to
wind turbine pitch control. Nonlinear memory-based pitch
controller was presented in [1], which did not require the
estimation of wind speed and worked well under model-
ing uncertainties and external disturbances. However, this
method requires knowing several system parameters and it
does not consider the effort of system loads. Model predictive
control was presented in [9, 10], which estimated states and
switched between different MPC controllers. Direct adaptive
collective pitch controller was designed in [2, 3, 11], which
can adaptively handle uncertain parameters and reject step
disturbances. Some advanced controllers such as𝐻

∞
are also

used to deal with the load mitigation [12, 13]. However, to
the authors’ knowledge, 𝐿

1
adaptive control has not yet been

applied to the wind turbine control problem.
𝐿
1
adaptive control has some key characteristics that

make it an appealing control strategy [14–16]. One character-
istic is that it has guaranteed robustness in the presence of
fast adaptation, which is necessary for accommodating rapid
variations in uncertainty and achieving desired performance.
This is obtained by formulating the control objective in a
manner that takes into consideration that the uncertainties
in any real world system can only be compensated for within
the available bandwidth of the control channel. Thus, it is
possible to decouple the adaptation from the control of the
system. In the case of 𝐿

1
adaptive control, fast adaptation is

beneficial both for robustness and performance. 𝐿
1
adaptive

control has been successfully used in UAV systems [17–20],
drilling systems [21], and other industry systems.

The focus of this paper is on designing a wind turbine
pitch control strategy using 𝐿

1
adaptive output feedback

control, which ensures stable performance in the presence
of model uncertainties, achieves desired reference tracking
objectives, and is capable of adapting rapidly to variations in
systemmodel parameters. By carefully choosing the reference
model based on LQR technology, tradeoff between control
performance and loads mitigation can be achieved. The
adaptive controller was implemented in the FAST simulation
of the CART and tested with step wind inflow and turbulent
wind inflow. Comparisons of the normalized generator speed
errors were then made among the three controllers: 𝐿

1

adaptive controller, GSPI, and DAC pitch controllers.

2. Wind Turbine Modeling

Nonlinear dynamic model of a wind turbine is difficult to
build. If the model is too simple, important dynamics will
be excluded, possibly leading to reduced performance or
even unstable closed-loop system. On the other hand, an
overly complex model will make it rather complicated and
difficult to design, implement, and test the control system in
practice. The FAST software provides feasible wind turbine
model, assuming that the most important turbine dynamics
can be modeled with about 22 degree of freedoms [22]. The
beauty of FAST is that different DOFs can be switched on
or off. This means that linear models containing a subset of
the total DOFs modeled with FAST can be extracted. Based
on these models, classical control methods can be easily

used to design controllers that render a stable closed-loop
system. Furthermore, adaptive controllers can be designed
to compensate for time-varying parameters and external
disturbances.

The linearization process using FAST code consists of two
steps: computing a periodic steady state operating point for
the DOFs and numerically linearizing the FASTmodel at this
operating point to obtain periodic state matrices.

2.1. Periodic Steady State Solution. The first step in lineariza-
tion is to determine an operating point about which FAST
calculates linearized state matrices. An operating point is
a set of values of displacements, velocities, accelerations,
control inputs, and wind inputs that characterize a steady
condition of the wind turbine. For a wind turbine operating
in steady wind, this operating point is periodic: values of
the operating point depend on the rotor azimuth orientation.
This periodicity is driven by aerodynamic loads, which
depend on the rotor azimuth position in the presence of
prescribed shaft tilt, wind shear, yaw error, or tower shadow.
Gravitational loads also drive the periodic behavior when
there is a prescribed shaft tilt or appreciable deflection of
the tower due to thrust loading. For control design, periodic
linearmodels are generated at several points around the rotor
disk and averaged with respect to blade azimuth position to
obtain a state-space model [22]. The periodic steady state
computation diagram is shown in Figure 1.

2.2. Model Linearization. Once a periodic steady-state solu-
tion is found, FAST will numerically linearize the complete
nonlinear model at this operating point.

The complete nonlinear aeroelastic equations of motion
modeled in FAST can be written as

𝑀(𝑞, 𝑢, 𝑡) ̈𝑞 + 𝑓 (𝑞, ̇𝑞, 𝑢, 𝑢
𝑑
, 𝑡) = 0, (1)

where 𝑀 is the mass matrix, 𝑓 is the nonlinear “forcing
function” vector, 𝑞 is the vector of displacements, ̇𝑞 and ̈𝑞

are the velocities and accelerations, 𝑢 is the vector of control
inputs, 𝑢

𝑑
is the vector of wind input “disturbances,” and

𝑡 is time. Note that in the steady state solution, only the
displacement, velocity, and acceleration vectors are periodic
with the rotor azimuth position. The vector of control inputs
and the vector of wind disturbances are not periodic.

FAST numerically linearizes the aeroelastic equations of
motion by perturbing (represented by aΔ) each of the system
variables about their respective operating point (op) values:

𝑞 = 𝑞op + Δ𝑞, ̇𝑞 = ̇𝑞op + Δ ̇𝑞, ̈𝑞 = ̈𝑞op + Δ ̈𝑞,

𝑢 = 𝑢op + Δ𝑢, 𝑢
𝑑
= 𝑢dop + Δ𝑢

𝑑
.

(2)

Substituting these expressions into equations of motion (1)
and performing Taylor expansions, ignoring higher order
terms, an approximate second-order linearized equation of
motion is obtained as

𝑀Δ ̈𝑞 + 𝐶Δ ̇𝑞 + 𝐾Δ ̇𝑞 = 𝐹Δ𝑢 + 𝐹
𝑑
Δ𝑢
𝑑
, (3)

where 𝑀 = 𝑀|op is the mass matrix, 𝐶 = (𝜕𝑓/𝜕 ̇𝑞)op is the
damping matrix, 𝐾 = [(𝜕𝑀/𝜕𝑞) ̈𝑞 + 𝜕𝑓/𝜕𝑞]op is the stiffness
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Figure 1: Periodic steady state computation.

matrix, 𝐹 = −[(𝜕𝑀/𝜕𝑢) ̈𝑞 + 𝜕𝑓/𝜕𝑢]op is the control input
matrix, and 𝐹

𝑑
= −(𝜕𝑓/𝜕𝑢

𝑑
)op is the wind input disturbance

matrix.
The subscript “|op” is used to signify that the partial

derivatives are taken at the operating point. Along with
the linearized equations of motion, FAST also develops a
linearized system associated with output measurements Δ𝑦.
The system output is written as follows:

Δ𝑦 = Vel𝐶 ⋅ Δ ̇𝑞 + Dsp𝐶 ⋅ Δ𝑞 + 𝐷Δ𝑢 + 𝐷
𝑑
Δ𝑢
𝑑
, (4)

where Vel𝐶 is the velocity output matrix, Dsp𝐶 is the dis-
placement output matrix,𝐷 is the control input transmission
matrix, and 𝐷

𝑑
is the wind input disturbance transmission

matrix.
Let Δ𝑥 = [Δ𝑞 Δ ̇𝑞]

𝑇, which leads to a state-space model:

Δ𝑥̇ = 𝐴Δ𝑥 + 𝐵Δ𝑢 + 𝐵
𝑑
Δ𝑢
𝑑
,

Δ𝑦 = 𝐶Δ𝑥 + 𝐷Δ𝑢 + 𝐷
𝑑
Δ𝑢
𝑑
.

(5)

The state matrix 𝐴, control input matrix 𝐵, wind input dis-
turbance matrix 𝐵

𝑑
, and output state matrix 𝐶 are computed

as

𝐴 = [
0 𝐼

−𝑀
−1
𝐾 −𝑀

−1
𝐶
] , 𝐵 = [

0

𝑀
−1
𝐹
] ,

𝐵
𝑑
= [

0

𝑀
−1
𝐹
𝑑

] , 𝐶 = [Dsp𝐶 Vel𝐶] ,
(6)

where 𝐼 is the identity matrix and 0 is a matrix of zeros.
Since the operating point is periodic with the rotor

azimuth position, the linearized representation of the model
is also periodic. FAST uses a special averaging tool described
in [22] to obtain a more accurate model.

3. 𝐿
1

Adaptive Pitch Controller

This section presents an overview of the 𝐿
1
adaptive output

feedback controller and its application to above generic
flexible wind turbine model. The 𝐿

1
adaptive control archi-

tecture was first presented by Cao and Hovakimyan in [15]
for systems with constant unknown parameters using a
state feedback approach. An output feedback extension was
then presented for a class of uncertain systems allowing
for tracking arbitrary reference systems, without imposing
an SPR-type requirement on its input-output transfer func-
tion. The 𝐿

1
adaptive controller ensures uniform transient

performance for system’s input and output, independent of
the unknown nonlinearities and system model. Unlike many
other adaptive control strategies, in the 𝐿

1
adaptive control,

the adaptation rate is decoupled from robustness, leading
to easier tradeoff between performance and robustness by
choosing appropriate low pass filter on adaptive control
signals. It is this particular architecture that is employed in
this paper to address the control challenge of the flexible wind
turbine model.

Consider the following single-input single-output (SISO)
system:

𝑦 (𝑠) = 𝐴 (𝑠) (𝑢 (𝑠) + 𝑑 (𝑠)) , (7)

where 𝑢(𝑡) ∈ R is the control input, 𝑦(𝑡) = R is the
system output, 𝐴(𝑠) is a strictly proper unknown transfer
function of unknown relative degree 𝑛

𝑟
for which only a

known lower bound 1 < 𝑑
𝑟
≤ 𝑛
𝑟
is available, and 𝑑(𝑠) is

the Laplace transform of the time-varying uncertainties and
disturbances 𝑑(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), where 𝑓(⋅) is an unknown,
possibly nonlinear function, representing the deviations of
the plant from the model 𝐴(𝑠).

Let 𝑟(𝑡) be a given bounded continuous reference input
signal. The objective is to design an adaptive output feedback
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controller 𝑢(𝑡) such that the system output 𝑦(𝑡) tracks the
reference input 𝑟(𝑡) following a desired model:

𝑦
𝑑
(𝑠) = 𝑀 (𝑠) 𝑟 (𝑠) , (8)

where 𝑀(𝑠) is a minimum-phase stable transfer function of
relative degree 𝑑

𝑟
> 1. The system equations in terms of the

desired model can be rewritten as

𝑦 (𝑠) = 𝑀 (𝑠) (𝑢 (𝑠) + 𝜎 (𝑠)) , (9)

where

𝜎 (𝑠) =
((𝐴 (𝑠) − 𝑀 (𝑠)) 𝑢 (𝑠) + 𝐴 (𝑠) 𝑑 (𝑠))

𝑀 (𝑠)
. (10)

Next we introduce a closed-loop reference system, defin-
ing an achievable control objective for the 𝐿

1
adaptive

controller.
The closed-loop reference system is given by

𝑦ref (𝑠) = 𝑀 (𝑠) (𝑢ref (𝑠) + 𝜎ref (𝑠)) ,

𝜎ref (𝑠) =
((𝐴 (𝑠) − 𝑀 (𝑠)) 𝑢ref (𝑠) + 𝐴 (𝑠) 𝑑ref (𝑠))

𝑀 (𝑠)
,

𝑢ref (𝑠) = 𝐶 (𝑠) (𝑟 (𝑠) − 𝜎ref (𝑠)) ,

(11)

where 𝐶(𝑠) is a low pass filter with DC gain 𝐶(0) = 1 and
𝑑ref(𝑡) = 𝑓(𝑡, 𝑦ref(𝑡)).

The selection of 𝐶(𝑠) and𝑀(𝑠)must ensure that

𝐻(𝑠) =
𝐴 (𝑠)𝑀 (𝑠)

(𝐶 (𝑠) 𝐴 (𝑠) + (1 − 𝐶 (𝑠))𝑀 (𝑠))
(12)

is stable and the following 𝐿
1
norm condition is satisfied:

‖𝐻 (𝑠) (1 − 𝐶 (𝑠))‖
𝐿
1

𝐿 < 1. (13)

Then, the reference system in (8) is stable.
Elements of the 𝐿

1
adaptive controller are introduced

next.

State Predictor. Let (𝐴
𝑚

∈ R𝑛×𝑛, 𝑏
𝑚

∈ R𝑛, 𝑐
𝑚

∈ R𝑛)
be the minimal realization of 𝑀(𝑠). Hence, (𝐴

𝑚
, 𝑏
𝑚
, 𝑐
𝑚
) is

controllable and observable with 𝐴
𝑚
being Hurwitz. Then,

the system in (7) can be rewritten as

𝑥̇ (𝑡) = 𝐴
𝑚
𝑥 (𝑡) + 𝑏

𝑚
(𝑢 (𝑡) + 𝜎 (𝑡)) ,

𝑦 (𝑡) = 𝑐
𝑇

𝑚
𝑥 (𝑡) .

(14)

The state predictor is given by

̇̂𝑥 (𝑡) = 𝐴
𝑚
𝑥 (𝑡) + 𝑏

𝑚
𝑢 (𝑡) + 𝜎̂ (𝑡)

𝑦 (𝑡) = 𝑐
𝑇

𝑚
𝑥 (𝑡) ,

(15)

where 𝜎̂(𝑡) ∈ R is the vector of adaptive parameters. Notice
that in the state predictor equations 𝜎̂(𝑡) is not in the span of

𝑏
𝑚
, while in (14) 𝜎̂(𝑡) is in the span of 𝑏

𝑚
. Further, let 𝑦(𝑡) =

𝑦(𝑡) − 𝑦(𝑡).

Adaptation Law. Let 𝑃 be the solution of the following
algebraic Lyapunov equation:

𝐴
𝑇

𝑚
𝑃 + 𝑃𝐴

𝑚
= −𝑄, (16)

where 𝑄 > 0. From the properties of 𝑃 it follows that there
always exists a nonsingular√𝑃 such that

𝑃 = √𝑃
𝑇
√𝑃. (17)

Given the vector 𝑐𝑇
𝑚
(√𝑃)
−1, let𝐷 be the (𝑛−1)×𝑛 dimensional

null space of 𝑐𝑇
𝑚
(√𝑃)
−1; that is,

𝐷(𝑐
𝑇

𝑚
(√𝑃)

−1

)

𝑇

= 0, (18)

and further let

Λ = [

[

𝑐
𝑇

𝑚

𝐷√𝑃

]

]

∈ R
𝑛×𝑛

. (19)

From the definition of the null space, it follows that

Λ(√𝑃)
−1

= [

[

𝑐
𝑇

𝑚
(√𝑃)
−1

𝐷

]

]

(20)

is full rank, and hence Λ−1 exists.
Let 𝑇
𝑠
be an arbitrary positive constant, which can be

associated with the sampling rate of available CPU, 1
1

=

[1, 0, . . . , 0]
𝑇
∈ R, and 𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡). Then, the update

law for 𝜎̂(𝑡) is given by

𝜎̂ (𝑡) = 𝜎̂ (𝑖𝑇
𝑠
) , 𝑡 ∈ [𝑖𝑇

𝑠
, (𝑖 + 1) 𝑇

𝑠
) ,

𝜎̂ (𝑖𝑇
𝑠
) = −Φ

−1
(𝑇
𝑠
) 𝜇 (𝑖𝑇

𝑠
) , 𝑖 = 1, 2, . . . ,

(21)

where

Φ(𝑇
𝑠
) = ∫

𝑇
𝑠

0

𝑒
Λ𝐴
𝑚
Λ
−1
(𝑇
𝑠
−𝜏)

Λ𝑑𝜏,

𝜇 (𝑖𝑇
𝑠
) = 𝑒
Λ𝐴
𝑚
Λ
−1
𝑇
𝑠1
1
𝑦 (𝑖𝑇
𝑠
) , 𝑖 = 1, 2, . . .

(22)

Control Law. The control law is defined via the output of the
low pass filter:

𝑢 (𝑠) = 𝐶 (𝑠) 𝑟 (𝑠) −
𝐶 (𝑠)

𝑀 (𝑠)
𝑐
𝑇

𝑚
(𝑠𝐼 − 𝐴

𝑚
)
−1

𝜎̂ (𝑠) . (23)

The complete 𝐿
1
adaptive controller consists of the state

predictor in (15), the adaptation law in (21), and the control
law in (23), with the 𝐿

1
-norm condition in (13). Performance

bounds of the 𝐿
1
adaptive controller are given by [15]

lim
𝑇→0

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝐿
∞

= 0,

lim
𝑇→0

󵄩󵄩󵄩󵄩𝑦 − 𝑦ref
󵄩󵄩󵄩󵄩𝐿
∞

= 0,

lim
𝑇→0

󵄩󵄩󵄩󵄩𝑢 − 𝑢ref
󵄩󵄩󵄩󵄩𝐿
∞

= 0,

(24)

where 𝑇 is the sampling time.
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Figure 2: Closed-loop system with the GSPI controller.

Note that the 𝐿
1
reference system depends on the uncer-

tainties, which implies that this reference system cannot
be used in implementation. It is only used for analysis
purposes. We see that 𝐿

1
reference system compensates

for the uncertainties and the difference between 𝐴(𝑠) and
𝑀(𝑠) within the bandwidth of the low pass filter 𝐶(𝑠). If
𝐶(𝑠) = 1, then the reference system becomes identical to
the desired system. The tracking error is uniformly bounded
by a decreasing function of 𝑇, implying that during the
transient phase, one can achieve arbitrary improvement of
tracking performance by uniformly reducing 𝑇. Reducing 𝑇
imposes hardware (CPU) requirements, indicating that the
performance limitations are consistent with the hardware
limitations.

4. Simulation

To validate the performance of the proposed method, we
conducted numerical simulations on CART based on FAST.
Comparisons were then made among the GSPI control, DAC
control, and 𝐿

1
adaptive control.

The FAST simulations of the CART were run from time 0
to 250 s with an integration step size of 5ms.The first flapwise
blade mode DOF, the drive chain rotational-flexibility DOF,
and the generator DOF switches were turned on. The rest
DOF switches were turned off. The wind turbine had fixed-
yawwith no yaw control. Aerodynamic forces were calculated
during the runs. The parametric information for the FAST
simulator is available in [5].

4.1. Torque Control. The demanded generator torque 𝜏 is
given by [5]

𝜏 =

{{{{{{

{{{{{{

{

0 region 1

𝑘opt𝜔
2 region 2

𝜏
1
+

𝜏rated − 𝜏
1

𝜔rated − 𝜔
1

(𝜔 − 𝜔
1
) region 2 −

1

2

𝜏rated region 3,

(25)

where𝜔 is the generator speed, 𝑘opt = 0.0008992 is the torque
constant, 𝜏rated = 3524.36Nm is the rated torque, 𝜔rated =

1781.98 rpm is the rated speed, 𝜔
1
= 1691.98 rpm, and 𝜏

1
=

2574.23 Nm is the region 2 torque corresponding to 𝜔
1
.

4.2. Model Linearization for Pitch Control. Here, FAST lin-
earization was done at the operating point, where wind speed
𝜐
0
= 18m/s, rotor speed 𝜔

0
= 41.7m/s, and pitch angle

𝜃
0

= 11 deg with the first flapwise blade mode DOF, the
drive train rotational flexibility DOF, and the generator DOF
switched on. The system model is obtained as follows:

Δ𝑥̇

=

[
[
[
[
[

[

0 0 0 1 0

0 0 0 0 1

419.8 0 −0.55026 0 0

−507.1 0.97075 0.48494 −0.06538 0.00479

730.26 −197.76 −11.681 −11.681 −7.3153

]
]
]
]
]

]

Δ𝑥

+

[
[
[
[
[

[

0

0

1.4741𝑒 − 07

1.3971

−932.5646

]
]
]
]
]

]

Δ𝑢 +

[
[
[
[
[

[

0

0

3.7591𝑒 − 09

0.0184

13.025

]
]
]
]
]

]

Δ𝑢
𝑑
,

Δ𝑦 = [0 0 412.2 0 0]
𝑇

Δ𝑥.

(26)

It is worthmentioning that this is a time-invariantmodel,
and we use it for DAC design. However, in the design of 𝐿

1

adaptive controller, it is only used for theoretical analysis and
selection of a reasonable reference model and low pass filter
to tradeoff control performance and load mitigation.

4.3. GSPI Control. At the operating point 𝜐
0

= 18m/s,
𝜔
0
= 41.7m/s, 𝜃

0
= 2.62 deg; the PI controller gains were

chosen as 𝐾
𝑝
= 0.2438, 𝐾

𝑖
= 0.1358. The pitch angle was

limited within [−1, 90] deg ([−0.0175, 1.5708] rad) and pitch
rate within [−10, 10] deg/s. The scheduling gain was defined
as𝐾GS = 1/(1 + 𝜃/2.62) and the antiwindup gain𝐾aw was set
to 6. Readers can refer to [4] for details. The block diagram is
shown in Figure 2.

4.4. Disturbance Accommodating Control. Based on the lin-
earized model in Section 4.2, a disturbance accommodating
controller was designed based on LQR and linear control
technologies which moved the poles further to the left in the
complex plane to improve damping and transient response.
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Figure 3: Closed-loop system with the DAC controller.

Plant

State predictorAdaptation law

Control law

L1 adaptive output controller

r(t)

ỹ(t)

−

y(t)

ŷ(t)

u(t)

𝜎̂(t)

𝜎̂(t)

y(t) = cTmx(t)

ŷ(t) = cTmx̂(t)

u(s) = C(s)r(s) −
C(s)

M(s)
cTm(sI − Am)

−1𝜎̂(s)

𝜎̂(iT) = −Φ−1(T)𝜇(iT)

x̂(t) = Amx̂(t) + bm(u(t) + 𝜎̂(t))

x(t) = Amx(t) + bm(u(t) + 𝜎(t))

Figure 4: Closed-loop system with the 𝐿
1
adaptive output feedback controller.

The resulting gain matrix 𝐺 was [−14.25 0.04922 0.70936
−0.12904 0.00668] and 𝐺

𝑑
0.01397. Details can be found in

[4]. The control diagram is shown in Figure 3.

4.5. 𝐿
1
Adaptive Output Feedback Control. Following the

outline in Section 3, the 𝐿
1
adaptive output feedback control

architecture is presented in Figure 4.
Selections of the reference model𝑀(𝑠) and low pass filter

𝐶(𝑠) have significant impacts on stability and performance
of the closed-loop system. This can be seen from the sta-
bility criterion of the 𝐿

1
adaptive output feedback control

formulation, specifically (12) and (13). For wind turbine pitch
control problem,𝑀(𝑠) should be selected considering trade-
off between tracking errors and loads. Since DAC controller
design is based on LQR technology, we can use the model
of its closed-loop control system as the desired model 𝑀(𝑠)

for the 𝐿
1
adaptive control design ignoring the disturbance

item. Once 𝑀(𝑠) was determined, 𝐶(𝑠) was then selected
to minimize control chatter by filtering out high frequency
components of the control signal.
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Mathematical Problems in Engineering 7

0 50 100 150 200 250

14

16

18

20

22

24

Time (s)

W
in

d 
sp

ee
d 

(m
/s

)

(a)

0 50 100 150 200 250

1850

1840

1830

1820

1810

1800

1790

1780

1770

1760

Time (s)

G
en

er
at

or
 sp

ee
d 

(r
pm

)

GSPI control
DAC control

L1 control

(b)

0 50 100 150 200 250

Time (s)

GSPI control
DAC control

20
18
16
14
12
10
8
6
4
2
0

Pi
tc

h 
an

gl
e (

de
g)

L1 control

(c)

0 50 100 150 200 250

Time (s)

GSPI control
DAC control

5.5

5

4.5

4

3.5

3

2.5

2

1.5 120.5 121.5 122.5 123.5 124.5 125.5

3.7
3.65
3.6
3.55
3.5
3.45
3.4

H
ig

h-
sp

ee
d 

sh
aft

L1 control

to
rq

ue
 (k

N
·m

)

(d)

Figure 6: Wind speed, generator speed, pitch angle, and high speed shaft torque under the step wind.

Final tuning of 𝑀(𝑠) and 𝐶(𝑠) was then performed
manually until satisfactory performance was achieved. 𝑀(𝑠)

has the following form:

𝑀(𝑠) = 𝐾
𝑚
⋅

𝜔
𝑚1

𝑠 + 𝜔
𝑚1

⋅
𝜔
2

𝑚2

𝑠
2
+ 2𝜁
𝑚2
𝜔
𝑚2
𝑠 + 𝜔
2

𝑚2

⋅
𝜔
2

𝑚3

𝑠
2
+ 2𝜁
𝑚3
𝜔
𝑚3
𝑠 + 𝜔
2

𝑚3

,

(27)

where 𝐾
𝑚
= −5641.6, 𝜔

𝑚1
= 0.2 rad/sec, 𝜔

𝑚2
= 22.7 rad/sec,

𝜁
𝑚2

= 0.1, 𝜔
𝑚3

= 13.95 rad/sec, 𝜁
𝑚3

= 0.3. 𝜔
𝑚1

corresponds
to the generator speed mode, 𝜔

𝑚2
and 𝜁
𝑚2

correspond to the
first drive chain torsion mode, and 𝜔

𝑚3
and 𝜁
𝑚3

correspond
to the first rotor symmetric flapping mode.

The filter 𝐶(𝑠) was selected to be of the form

𝐶(𝑠)=(
𝜔
2

𝑐1

𝑠
2
+ 2𝜁
𝑐1
𝜔
𝑐1
𝑠 + 𝜔
2

𝑐1

)

2

⋅
𝜔
2

𝑐2

𝑠
2
+ 2𝜁
𝑐2
𝜔
𝑐2
𝑠 + 𝜔
2

𝑐2

, (28)

with selected values of 𝜔
𝑐1

= 18 rad/sec, 𝜔
𝑐2

= 22.5 rad/sec,
and 𝜁
𝑐1
= 𝜁
𝑐2
= 0.95.

Figure 5 shows frequency responses of 𝐴(𝑠), 𝑀(𝑠), and
𝐶(𝑠).

Simulations were run with two types of wind inflow to
the FAST simulator: stepwind and turbulent wind. Generator

Table 1: Normalized generator speed error of the three control
methods.

Wind speed GSPI DAC L1
Step wind 0.0483 rpm 0.1224 rpm 0.0183 rpm
14.5m/s turbulence wind 0.1042 rpm 0.1576 rpm 0.0908 rpm
19m/s turbulence wind 0.0924 rpm 0.0885 rpm 0.0413 rpm

speed error of each controller was evaluated. The generator
speed error is the difference between the generator speed and
the rated generator speed, which is 1800 rpm for the CART
operating in region 3. A normalized generator speed error
for each simulation was then the root mean square (RMS) of
speed error from the rated speed [3]. The normalized errors
from simulations under different wind speeds are listed in
Table 1.

4.6. Step Wind. All figures related to the simulations started
at time 20 s, after the transients due to system startup are
attenuated. The first simulations described in this part had
the step wind inflow, which is shown in Figure 6. All of
the step wind inflow resulted in region 3 turbine operation.
For the step wind, the GSPI, DAC, and 𝐿

1
adaptive con-

troller had normalized generator speed errors of 0.0483 rpm,
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Figure 7: Wind speed, generator speed, pitch angle, and high speed shaft torque under the 14.5m/s turbulence wind.

0.1224 rpm, and 0.0183 rpm, respectively. Since the GSPI and
DAC controllers are based on linear control methods, from
Figures 6(c) and 6(d), we can find that based on GSPI
controller, the generator speed and the high speed shaft
torque oscillate heavily with large overshoot, twice the 𝐿

1

controller. Under the DAC controller, due to variation of the
operational points and external disturbances, the generator
speed is not kept about 1800 rpm and even not bounded
technically. However, under the 𝐿

1
controller, the system

is stable and the generator speed is bounded with good
transitions.

4.7. Turbulence Wind: 14.5m/s. A 14.5m/s turbulent wind
inflow to the FAST simulator was used in the second set of
simulations; see Figure 7. The turbulent wind inflow speed
was below that of the linearization point (18m/s) in region
3. In this simulation, the GSPI, DAC, and 𝐿

1
adaptive con-

trollers had normalized generator speed errors of 0.1042 rpm,
0.1576 rpm, and 0.0908 rpm, respectively. Figure 7(c) shows
that when the wind speed is in region 2, under the GSPI
control, pitch angle is maintained at −1 deg, so the control
performance is good but the drive chain load is adverse;
under the DAC controller, the pitch angle is not at −1 deg,

so the control performance is not as good but the load is
improved; under the 𝐿

1
adaptive controller, the pitch angle

is almost maintained at −1 deg, with some necessary tuning
at certain points to compensate for the disturbance, which is
a good example of tradeoff between control performance and
loads mitigation.

4.8. Turbulence Wind: 19m/s. When the turbulent wind
inflow was above that of the operating point, simulation
results are shown in Figure 8. The GSPI, DAC, and 𝐿

1

adaptive controllers had normalized generator speed errors of
0.0924 rpm, 0.0885 rpm, and 0.0413 rpm, respectively. Com-
pared with GSPI and DAC controllers, under the 𝐿

1
adaptive

controller, the pitch angle changes a little more frequently
and its magnitude is a little larger, but still comparable. But
the magnitude of the pitch rate is below the limit of ±10∘/s
prescribed in the CART. Hence, it can compensate for wind
turbine uncertainties. In addition, Figure 8(d) indicates that
the high speed shaft torque under the 𝐿

1
adaptive controller

has less chattering than the other two methods.
Figure 9 shows the RMS of generator speed error of the

three controllers under turbulence winds with differentmean
speed. With the mean wind speed increasing, the relative
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Figure 8: Wind speed, generator speed, pitch angle, and high speed shaft torque under the 19m/s turbulence wind.
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speed control performance of the 𝐿
1
adaptive controller to

the GSPI controller improves continuously. Eventually it has
a significant performance improvements of up to 56% relative
to the GSPI controller at 22m/s. Moreover, it indicates that
near the linearization point (18m/s) the speed regulation per-
formance of the DAC controller is better than the 𝐿

1
adaptive

controller.The reason is that even though the referencemodel
of the 𝐿

1
adaptive controller is the closed-loop systemmodel

of the DAC controller, 𝐿
1
controller uses the adaptive laws to

deal with uncertainties and disturbances to ensure uniform
control performance and the low pass filter trades off control
performance against robustness. In addition, when the mean
wind speed (14m/s) is in the transition region from region
2 to region 3, the speed regulation performance of the 𝐿

1

controller is almost identical to the GSPI controller. Near the
transition region, the wind turbine model is quite different
from in region 3. In order to achieve a better tradeoff between
control performance and robustness in the entire operation
region, we choose a reasonable bandwidth for the low pass
filter, which might sacrifice some control performance in low
wind speed region.

The normalized results of the three controllers under
turbulence wind with mean speed of 18m/s are shown
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in Figure 10. Compared with the GSPI controller, the 𝐿
1

adaptive controller has almost identical power capture ability
and a 16% generator speed error reduction. Meanwhile, the
𝐿
1
adaptive controller also shows ability to reduce the HSS

DELs (10%) and blade flap DELs (16%). However, there is a
12% increase in pitch rate, mainly due to using the pitch angle
adjustment to compensate for the efforts of wind turbine
time-varying parameters and disturbances.

5. Conclusion

Theproposed 𝐿
1
adaptive output feedback controller uses the

generator speed only (no need for wind speed estimation)
and is robust to wind turbine parameter varying and external
wind disturbances. Compared with most existing methods,
the proposed one is more user-friendly in control design
and easier for real-time implementation. Simulation results
on CART model showed promise for improved generator
speed regulation. The adaptive pitch controller reduced the
generator speed errors compared with the GSPI and DAC
controllers in simulations with both step wind and turbulent
wind inflow. In further work, an 𝐿

1
network voltage control

system for large wind farm will be designed.
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