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Classifier fusion is used to combinemultiple classification decisions and improve classification performance.While various classifier
fusion algorithms have been proposed in literature, average fusion is almost always selected as the baseline for comparison. Little
is done on exploring the potential of average fusion and proposing a better baseline. In this paper we empirically investigate the
behavior of soft labels and classifiers in average fusion. As a result, we find that; by proper sampling of soft labels and classifiers,
the average fusion performance can be evidently improved. This result presents sampling based average fusion as a better baseline;
that is, a newly proposed classifier fusion algorithm should at least perform better than this baseline in order to demonstrate its
effectiveness.

1. Introduction

Object classification is an important task in pattern recog-
nition. Due to the difference in lighting conditions, viewing
angles and occlusions, and so forth, there usually exist large
intraclass diversity and interclass similarity in real image
datasets. This presents great challenges to designing practical
object classification systems. While many feature detectors,
descriptors, and classification algorithms have been proposed
in literature, it is evident that none of these algorithms is
able to generate satisfactory classification results for real
image datasets. In this case, classifier fusion and feature
combination [1] are proposed to combine the decisions
of multiple complementary classifiers and produce better
performance than any single classifier. In this paper we focus
on classifier fusion.

Majority voting is one of the most simple algorithms in
classifier fusion. This algorithm uses only the class labeling
and discards the probability information of the labels and
thus may lead to performance loss. In order to make use of
the class probability, average fusion combines the posterior
probability of all training classes, that is, the soft labels.
Some popular algorithms in this aspect also include weighted
sum [2], logistic regression [3], Dempster-Shafer rules [4],
and neural networks [5]. In this paper we focus on image

classification. However, the classifier fusion algorithms are
also applicable to other domains [6–8].

In proposing a new classifier fusion algorithm, research-
ers usually choose to compare it with average fusion to
show the advantage of the new algorithms. While being
simple, average fusion assigns equal weights to all classifiers
regardless of their powerfulness. Intuitively this harms the
discriminative power of this algorithm and then makes
the claimed advantage of newly proposed classifier fusion
algorithms less convincing. With this consideration in mind,
in this paper we empirically investigate the impact of soft
labels and classifiers on classifier fusion performance. As a
result, we find that the behaviors of soft labels and classifiers
in average fusion can be explained in the framework of kNN
classification. This framework gives rise to a sampling based
average fusion algorithm, which is shown to outperform the
ordinary average fusion evidently in experiments on four
diverse image datasets. This result enables us to believe that
our sampling based average fusion algorithm explores the
potential of average fusion and qualifies as a better baseline.
A newly proposed algorithm should be compared with this
new baseline to demonstrate its advantage.

The remainder of this paper is organized as follows.
In Section 2 we introduce the experimental setups used in
our classifier fusion experiments. Sections 3 and 4 present
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the details of our work on investigating the behaviors of
soft labels and classifiers in average fusion, respectively.
In Section 5 we present the sampling based average fusion
algorithm based on the experimental results in Sections 3 and
4. Finally, Section 6 concludes the paper.

2. Experimental Setups

We use SVM in classification experiments on four diverse
datasets. The regulation parameter 𝐶 is fixed to be 1000 and
the multiclass SVM is trained in a one-versus-all manner. In
all experiments we test with 10 different training-testing splits
and report the average of recognition rates.

2.1. Datasets. We use the following four datasets in experi-
ments.

The Event-8 dataset [10] contains images from 8 cate-
gories of sports events. Each category is composed of 130 to
250 images with different lighting conditions and postures
and so forth. Following the experimental setup in [10], we
randomly select 70 images per class as training and another
60 images as testing and report the overall recognition rate.

The Scene-15 dataset [11] is composed of images from 15
scene categories with 200 to 400 images in each category. We
use the same experimental setup as in [15], that is, randomly
selected 100 images per class as training and all the others as
testing, and report the mean recognition rate per class.

Oxford Flower-17 dataset [16] consists of 1360 flower
images evenly distributed in 17 categories. Similar as in [16],
we randomly select 40 images per class as training examples
and 20 images as testing images. The overall accuracy is
reported as the results.

With the well-known Caltech-101 dataset [15], we use 30
images per class for all the 102 classes in training, and select up
to 15 images per class in the remaining for testing. The mean
recognition rates per class are reported as the results.

2.2. Features. We use the following features to build the
kernels used in SVMclassification.These features are popular
due to their discriminative power in object classification, for
example, in [13, 17, 18]. This makes our conclusions drawn
from experiments convincing and meaningful.

PHOG Shape Descriptor. We construct oriented (20 bins) and
unoriented (40 bins) PHOG descriptors [19] from level 0 to 3
and obtain 8 descriptors in total. Unlike the implementation
in [19], in this paper the descriptor in level 𝐿 is formed only
by its 2𝐿 windows.

Bag-of-SIFT. The SIFT descriptors [20] on patches of radius
𝑟 with spacing of 8 pixels are extracted and quantized into a
500-bin vocabulary, and we select 𝑟 = 4, 8, 12, 16 to allow for
scalability. These descriptors are extracted in gray space for
Scene-15 datasetwhich contains only gray images and, in gray,
HSV andCIE-Lab spaces for Flower-17, Event-8, andCaltech-
101.Webuild the visualwords histograms from level 0 to 2 and
obtain 3 or 9 descriptors.

Locally Binary Patterns. The histograms of the basic locally
binary patterns (LBP) [21] are adopted from level 0 to 2.

GistDescriptor.We extract the global gist descriptor [22] from
level 0 to 1.

Self-Similarity Descriptor. The self-similarity descriptors [23]
of 30 dimensions (10 orientations and 3 radial bins) are
extracted and used to build a 500-bin vocabulary. The
histograms are then built from level 0 to 2.

Gabor and RFS Filters. We use two texture features, that is,
Gabor and RFS filters [23], to build histograms of 500 bins
from level 0 to 2.

Gray Value Histogram. We also use the 64-bin gray value
histograms from level 0 to 3.

For all these features, we use 𝜒2 distance to build kernels
in the form of 𝑘(𝑥, 𝑦) = exp(−𝑑−1

0
𝑑(𝑥, 𝑦)), where 𝑑 is the

pairwise distances and 𝑑
0
is the mean of pairwise distances.

Here 𝜒2 distance is selected due to its great distinctive power,
as illustrated in [13, 24–26].

3. Behavior of Soft Labels

In majority voting, each classifier assigns only one label
with the largest probability to the testing image. We count
the times of each label being selected and adopt the label
with the maximum times as the correct one. This approach
discards the probability of each label, which may be useful
in classifier fusion. Therefore soft labels, that is, the posterior
probability of each training label, are proposed to be used in
classifier fusion. Between the two extremes, that is, using only
the most probable label and using all soft labels in fusion,
we are interested to know if it is possible to achieve better
performance by adopting a sample of all soft labels.

We evaluate the impact of soft labels sampling on average
fusion performance as follows. For each classifier, we sort all
labels in descending order according to their posterior prob-
ability. Then we use in average fusion only the top 𝑘 labels,
that is, the labels corresponding to 𝑘 largest probabilities,
where 𝑘 ranges from 1 to the number of all training labels.
The experimental results are reported in Figure 1.

It is evident from Figure 1 that, for average fusion, neither
adopting only the most probable label nor using all the soft
labels is the best choice. Instead, several most probable soft
labels generate the best classification results. This is a little
similar to the 𝑘NN classification framework as the top 𝑘most
probable soft labels produce the best classification results.
Although the best 𝑘 is different for 4 datasets, 𝑘 = 2 seems
an appropriate option as it produces the best or near-best
performance for all 4 datasets.

Another interesting observation is that, with the increase
of object categories, the performance gain obtained using 𝑘
most probable soft labels instead of all soft labels is enlarged.
From Event-8 to Caltech-101, the performance gain ranges
from 0.1 to 10 roughly. This indicates the importance of
soft labels sampling, especially for large datasets with a
large number of object categories. On the other hand, this
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Figure 1: Recognition rates from classifier fusion with different numbers of most probable soft labels.

observation highlights the necessity of exploring the potential
of average fusion and proposing a better baseline algorithm.

4. Behavior of Classifiers

As classifier fusion is to use multiple classifiers to improve
classification performance, another problem of interest is
if more classifiers definitely lead to better average fusion
performance.

We evaluate the impact of the amount of classifiers on
average fusion performance as follows. Firstly, we use the
recognition rate of 10-fold cross-validation to estimate the
powerfulness of each classifier. In the second step, we sort the
classifiers in descending order according to the powerfulness.
Then we add the classifiers into fusion one by one and record
the fusion performance. The performance with different
amounts of classifiers is reported in Figure 2. Note that, in
this experiment, we firstly fuse the classifiers from different
levels of the same features, for example, all 3 levels of LBP,

and regard the fused decision as of one single classifier. In
this way we have 11 classifiers for Caltech-101, Event-8, and
Flower-17 and 9 classifiers for Scene-15. This is to compare
different classifiers (features) more evidently.

Similar as in the case of soft labels, Figure 2 shows that
with average fusion, the best performance is obtained with
several most powerful classifiers. Adding more classifiers
of less powerfulness into fusion only decreases the final
classification performance. It is easy to see that 𝑘 = 4 can
be an appropriate selection for the number of classifiers.

5. Sampling Based Average Fusion

In the last two sections we find that using a small sample of
most probable soft labels and most powerful classifiers sepa-
rately helps produce the best fusion performance. Although
the optimal number of soft labels, that is, 2, and the optimal
number of classifiers, that is, 4, are obtained empirically,
they are applied to all the four datasets without special



4 Mathematical Problems in Engineering

1 2 3 4 5 6 7 8 9 10 11
84

85

86

87

88

89

Number of features

Re
co

gn
iti

on
 ra

te

(a) Event-8

1 2 3 4 5 6 7 8 9
78

80

82

84

86

88

Number of features

Re
co

gn
iti

on
 ra

te

(b) Scene-15

1 2 3 4 5 6 7 8 9 10 11
65

68

71

74

77

80

83

Number of features

Re
co

gn
iti

on
 ra

te

(c) Flower-17

1 2 3 4 5 6 7 8 9 10 11

57

59

61

63

65

67

69

71

73

75

Number of features

Re
co

gn
iti

on
 ra

te

55

(d) Caltech-101

Figure 2: Recognition rates from classifier fusion with different numbers of most powerful classifiers.

tuning to individual datasets. Now we test the combined
performance of the sampling of both soft labels and classifiers.
In experiments on the four datasets, we compare the average
fusion performance with and without sampling of soft labels
and classifiers and show the results in Tables 1 and 2. In the
tables “average1”means recognition rates from average fusion
with all classifiers and all soft labels, whereas “average2”
indicates corresponding results with sampling of soft labels
and classifiers, that is, 2 most probable soft labels and 4 most
powerful classifiers. We also compare our algorithm with the
state-of-the-art ones on these datasets.

From the comparison we see that, with average fusion,
using a small sample of soft labels and classifiers always
produces a significant improvement in object classification
performance. This means that the sampling based average
fusion (SBAF) can serve as a better baseline than ordinary
average fusion. Our algorithm performs also comparably to
the state-of-the-art ones on these datasets. In fact, on Event-
8 and Scene-15 our algorithm produces better results than

Table 1: Event-8 and Scene-15 recognition rates and comparison.

Event-8 Scene-15
Method Accuracy Method Accuracy
Best single 84.6 ± 1.7 Best single 79.3 ± 0.7

Average1 86.4 ± 1.7 Average1 84.2 ± 0.4

Average2 87.9 ± 1.3 Average2 85.0 ± 0.5
[9] 84.2 ± 1.0 [9] 84.1 ± 0.5

[10] 73.4 [11] 81.4 ± 0.5

the state-of-the-art ones, and on Flower-17 and Caltech-
101 our results are close to the best ones to date. Noticing
that in experiments we only use simple features and average
fusion, we believe that this is a very encouraging result which
validates the effectiveness of our SBAF algorithm. Since in
this paper we present SBAF as a better baseline but not a novel
fusion method, we only compare this algorithm with the
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Table 2: Flower-17 and Caltech-101 recognition rates and compari-
son.

Flower-17 Caltech-101
Method Accuracy Method Accuracy
Best single 75.1 ± 1.5 Best single 66.2 ± 1.2

Average1 77.5 ± 1.7 Average1 58.8 ± 1.7

Average2 86.0 ± 1.5 Average2 71.0 ± 1.2

[12] 88.3 ± 0.3 [13] 77.8 ± 0.4
[13] 85.5 ± 3.0 [14] 66.2 ± 0.5

ordinary average fusion and not with other fusion methods,
for example, [2, 4].

Another observation from experiments is that the behav-
iors of soft labels and classifiers can be explained in the frame-
work of 𝑘NN classification. Regarding the most probable soft
labels and most powerful classifiers as the nearest neighbors,
we can explain all the observations from experiments based
on the 𝑘NN framework easily. This framework provides
theoretical support to our following conclusions. Firstly, the
best performance of average fusion is not achieved with
all soft labels and all classifiers, but with a sample of most
probable soft labels and most powerful classifiers. This gives
rise to SBAF as a better baseline. Secondly, with a dataset of
tens to hundreds of categories, the performance gain of SBAF
over average fusion can be rather large (over 10 for Caltech-
101). Since inmodern time there is an explosive increase in the
amounts and categories of images, this observation highlights
the importance of soft label and classifier sampling and the
necessity to adopt SBAF as the baseline.

Although in this paper we focus our work on image
classification, the idea of classifier fusion is also useful to some
other related domains, for example, document classification,
speech recognition, and fault diagnosis [27–29]. In the next
step we plan to explore the possibility of extending the work
to more domains [30–32].

6. Conclusion

In this paper we investigated the impact of soft labels and
classifiers sampling on average classifier fusion performance
through experiments on four diverse datasets. As a result,
we found that the behaviors of soft labels and classifiers in
average fusion can be elegantly explained in the framework
of 𝑘NN classification. This framework further gives rise to a
sampling based average fusionmethod, that is, using a sample
of most probable soft labels and most powerful classifiers in
fusion to obtain the best performance. Experiments indicate
that this sampling based average fusion performs evidently
better than the ordinary one and thus can serve as a better
baseline to be comparedwith. Our results on the four datasets
are also comparable to the state of the art in literature. As
the 𝑘NN framework elegantly captures the behaviors of soft
labels and classifiers in classifier fusion, we believe that it can
be helpful in designing novel classifier fusion methods.
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