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Abstract: Physical inactivity increases the risk of many adverse health conditions, including the
world’s major non-communicable diseases, such as coronary heart disease, type 2 diabetes, and breast
and colon cancers, shortening life expectancy. There are minimal medical care and personal trainers’
methods to monitor a patient’s actual physical activity types. To improve activity monitoring, we
propose an artificial-intelligence-based approach to classify physical movement activity patterns.
In more detail, we employ two deep learning (DL) methods, namely a deep feed-forward neural
network (DNN) and a deep recurrent neural network (RNN) for this purpose. We evaluate the two
models on two physical movement datasets collected from several volunteers who carried tri-axial
accelerometer sensors. The first dataset is from the UCI machine learning repository, which contains
14 different activities-of-daily-life (ADL) and is collected from 16 volunteers who carried a single
wrist-worn tri-axial accelerometer. The second dataset includes ten other ADLs and is gathered
from eight volunteers who placed the sensors on their hips. Our experiment results show that the
RNN model provides accurate performance compared to the state-of-the-art methods in classifying
the fundamental movement patterns with an overall accuracy of 84.89% and an overall F1-score of
82.56%. The results indicate that our method provides the medical doctors and trainers a promising
way to track and understand a patient’s physical activities precisely for better treatment.

Keywords: classification; deep learning; health; machine learning; accelerometer data; sensors;
physical activity; feed-forward neural network; DNN; recurrent neural network; RNN; UCI

1. Introduction

Physical activity (PA) is defined as “any bodily movement produced by skeletal mus-
cles that result in energy expenditure above resting level” [1]. Physical activity recognition
has been required by several real-life applications, such as monitoring older people, life-
long systems for monitoring energy expenditure and supporting weight-loss programs,
and digital assistants for weightlifting exercises, etc. [2]. It is well known that physical inac-
tivity is a risk factor for a variety of chronic diseases, particularly diabetes, cardiovascular
disease, obesity, and depression [3–6]. There are minimal methods for medical care and
personal trainers to monitor a patient’s actual physical activity types and training diaries
where they commonly use logs. Today’s de facto method is personal diaries, of which the
accuracy and credibility can be put into question, as these could be either intentionally or
unintentionally subject to social desirability and recall bias [3]. Therefore, a reliable and
objective movement registration method is vital.
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In recent years, much research has been done to recognize the PA based on inertial
sensor data from body-worn and smartphone sensors accelerometer, and gyroscope [2].
This paper focuses on the use of body-worn tri-axial accelerometers to collect activities and
movement patterns where the raw data is converted into activity count variables, which is
further used to classify physical activity intensity and energy expenditure [3].

There is a myraid of human activity recognition algorithms in the literature [7–11]
many of which can recognize complex activities from wearable sensors. Still, the accuracy
and precision of the algorithms depend on the number of activities, activity type, and data
collection available. Static activities (e.g., sitting, standing) can be easily be separated from
dynamic activities (e.g., running, jogging). However, many algorithms struggle with high
precision, especially when there is overlap in the feature space, such as the separation
between climbing stairs and descending stairs, and the separation between brushing teeth
and combing hair. This is challenging because of the high similarity in the feature space
and their related action pattern [7].

This paper explores the use of dense and recurrent deep learning techniques for ac-
tivity recognition by using two datasets. The first dataset is the publicly available dataset
which contains labeled accelerometer data recordings acquired from UCI Machine learn-
ing Repository [12]. It is a dataset for activities-of-daily-life (ADL) collected through
wrist-worn accelerometers. The dataset has five categories and 13 daily living activi-
ties. The second dataset is collected ourselves from eight voluntary participants wearing
hip-worn accelerometers, which contains labeled accelerometer data recordings of ten
movement patterns of ADL, where some of the movement patterns are different variations
of a movement. In contrast to most literature, our approach copes with activities with
overlapping feature space, i.e., similar activities, and yields an overall higher precision than
comparable algorithms. A system with precision is desirable for both high-performance
systems and general monitoring systems in general since accurately detecting particular
activities is of utmost importance. This is especially true in rehabilitation when whether or
not a patient does particular activities and for how long (e.g., brushing your teeth, walking
up stairs, walking down stairs) is highly relevant [10,11,13,14].

The rest of the paper is organized as follows. Section 2 provides the existing litera-
ture in the field of human activity recognition from the body-worn accelerometer data.
The considered research methodology, including data acquisition process, use of different
classifiers’ network architecture, and the descriptions of the publicly available dataset
and the acquired dataset are presented in Section 3. Section 4 presents and discusses the
experimental results obtained using two datasets. Finally, a conclusion and future research
developments are given in Section 5.

2. Related Work

In the literature many researchers have applied deep learning in health care for clas-
sification [15–19], prediction [20,21] and diagnosis [22]. If we consider the literature on
classification, recognizing, and predicting physical activities from body-worn accelerom-
eter data, many attempts have been made over the past years. So, this section presents
the existing literature on the use of deep learning for classifying physical activity using
wearable sensor-based accelerometer data recordings from both wrist-worn and hip-worn
accelerometers along with UCI HAR dataset which was acquired from UCI Machine
learning repository.

2.1. UCI Har Dataset

Ronald et al. [23] proposed a deep learning model called iSPLInception which was
based on Inception-ResNet architecture from Google to classify 6 activities of UCI HAR
dataset. The activities include three static postures (standing, sitting, lying), and three
dynamic activities (walking, walking downstairs and walking upstairs). Through experi-
ments their proposed model achieved the highest test accuracy of 95.09% and F1 score of
95% performance. However, not all the 14 specific activities in UCI dataset are classified.
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Steven Eyobu et al. [24], used a deep long term short term memory (LSTM) neural
network architecture to check how feature representations and the augmentations on
activity recognition accuracy can influence. To check that, the authors proposed a feature
extraction approach combined with the data augmentation ensemble and used UCI HAR
dataset to classify three activities (standing, sitting and walking). Their experimental
results showed that the proposed extraction approach provided the best performance
improvement in accuracy of 52.77%.

Chen et al. [25], proposed a feature fusion framework to combine handcrafted fea-
tures with automatically learned features by a deep algorithm for HAR. Then, taking
the regular dynamics of human behavior into consideration, they developed a maximum
full a posteriori algorithm (MFPA) to further enhance the performance of HAR. Their
experimental results showed that the proposed approach achieved 96.44% overall accuracy
for 6 activities (Walking, upstairs, downstairs, sitting, standing, and laying) of UCI HAR
dataset and 98.67% on 6 activities (Walking, fast walking, walking upstairs, walking down
stairs, running, static) of their self-collected data set.

Shaohua Wan et al. [26], designed a deep learning architecture based on a smartphone
inertial accelerometer for HAR. In this architecture, whenever the participants perform
typical daily activities, a smartphone collects the sensory data sequence, extracts the high-
efficiency features from the original data, and then obtains the user’s physical behavior
data through multiple three-axis accelerometers. In addition, a real-time human activity
classification method based on a convolutional neural network (CNN) was proposed,
which uses a CNN for local feature extraction. Finally, CNN, LSTM, BLSTM, MLP and
SVM models were applied on 6 activities (Walking, walking upstairs, walking down stairs,
sitting, standing, and laying ) of the UCI HAR dataset. The experimental results showed
that 1D CNN, 2D CNN, 2 layer LSTM, 3-layer LSTM, Bidirectional LSTM, 1D CNN+ LSTM
achieved the overall accuracy of 65%, 76%, 85%, 91%, 93%, 77%, 76%, respectively.

Bruno et al. [27] proposed a framework for the recognition of motion primitives by
using Gaussian Mixture Modeling and Gaussian Mixture Regression models. These models
were used to classify 7 activities such as climbing the stairs, drinking from a glass, getting
up from the bed, pouring water in a glass, sitting down on a chair, standing up from a chair,
and walking. The experimental results showed the classification accuracy for climbing
the stairs was 93.34%, drinking from a glass was 83.34%, getting up from the bed was
66.67%, pouring water in a glass was 80%, sitting down on a chair was 93.34%, standing
up from a chair was 83.34%, and walking was 70% with using dynamic time warping
and mahalanobis distance. Whereas, with only mahalanobis distance, the classification
accuracy for climbing the stairs was 85.78%, drinking from a glass was 86.59%, eating with
fork and knife was 96.67%, getting up from the bed was 61.64%, pouring water in a glass
was 71.55%, sitting down on a chair was 100%, standing up from a chair was 93.96% and
walking was 79.91%.

Nilay Tufek et al. [28], developed an activity recognition system by using accelerometer
and gyroscope data. Deep learning methods such as Convolutional Neural Network(CNN),
Long-Short Term Memory (LSTM), few classical machine learning algorithms and their
combinations were implemented in this work. The experimental results show that the on
the UCI HAR dataset, with using 3 layer LSTM model, 97.4% accuracy rate was achieved for
the overall classification of 7 activities (Walking, jogging, lying, standing, falling, upstairs,
down-stairs).

Murad et al. [29], proposed LSTM-based deep RNNs (DRNNs) to build human activity
recognition models for classifying activities and developed architectures based on deep
layers of unidirectional and bidirectional RNNs. These models were then tested on the
benchmark datasets UCI-HAD, USC-HAD, Opportunity, Daphne FOG, Skoda to validate
their performance and generalizability for a large range of activity recognition tasks.
The study results on the UCI-HAD dataset showed that the unidirectional DRNN model
achieved the 96.7% classification accuracy, CNN got 95.2%, SVM got 96.0%, sequential
extreme learning machine got 93.3%.
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Hassan et al. [30], the researchers’ goal was to accurately and automatically recognize
and classify physical activity through wearable sensors by utilizing a Deep Belief Network
(DBN) model. The authors used a publicly available dataset from the UCI machine learning
repository for the experiments. For the comparison purpose, they used the SVM model.
The experimental results showed that the DBN model achieved an overall accuracy of
97.5% with 40 hidden units for 12 activities (standing, sitting, lying, walking, walking
downstairs and walking upstairs, stand to sit, sit to stand, sit to lie, lie to sit, stand to lie, lie
to stand ). At the same time, SVM achieved an accuracy of 94.12%.

2.2. Self-Collected Datasets from Wrist-Worn and Hip-Worn Accelerometers

Trost et al. [31], implemented logistic regression model for predicting physical ac-
tivities of wrist-worn and hip-worn accelerometer data. The collected data was from
52 children and adolescents who completed 12 activity trials that were categorized into
7 activity classes: Lying down, sitting, standing, walking, running, basketball, and dancing.
In their study, features were extracted from 10-s windows and fed to the model. The study
results showed the classification accuracy for the hip and wrist was 91.0% ± 3.1% and
88.4% ± 3.0%, respectively.

Mannini et al. [32], worked on classifying physical activities such as sitting, walking,
lying, stair climbing, standing, running, cycling using on-body accelerometer data using
single-frame classification algorithms: Naïve Bayesian (NB), SVM, Binary decision tree
(C4.5), Gaussian Mixture Model (GMM), Logistic classifier, Nearest mean (NM), k-NN,
parzen classifier, and ANN (multi-layer perceptron). The study results showed the classi-
fication accuracy for the NB model was 97.4%, GMM model was 92.2%, Logistic model
was 94.0%, Parzen model was 92.7%, SVM model was 97.8% , NM model was 98.5%, k-NN
model was 98.3%, ANN model was93.0%, C4.5 model was 93.0%.

Allen et al. [33] investigated two classification methods based on Gaussian mix-
ture model (GMM) and a heuristic rule-based method to identify standing, sitting, lying,
and walking using a triaxial accelerometer attached to the waist. The experimental results
showed that GMM system was found to achieve a mean accuracy of 91.3%, distinguishing
between three postures (sitting, standing and lying) and five movements (sit-to stand,
stand-to-sit, lie-to-stand, stand-to-lie and walking), compared to 71.1% achieved by the
Heuristic system. In this work, heuristic rule-based methods had problems in identifying
sitting and standing as well as the transition between the two positions, GMM method also
had problems in identifying the standing.

Sani et al. [34], presented an analysis of deep and shallow feature representations
for accelerometer data on human activity recognition (HAR) with data collected from the
wrist and thigh with activities such as walking, jogging, up Stairs, Down Stairs, Standing,
and Sitting. They considered the three types of representations hand-crafted, frequency
transform, and deep features, including two-hybrid approaches for HAR, and used CNN
and introduced CNN hybrid approaches, i.e., CNN-SVM CNN-kNN. The classification per-
formance of the models was measured using the F1-score. The results obtained show that
the classification performance with data collected from the wrist got the highest F1-scores
at 0.850 with CNN-SVM and 0.845 with CNN-kNN, respectively, and 0.839 with CNN.

Unlike the above works, our work in this paper classifies PAs using two different
deep learning algorithms, i.e., DNN and RNN. In addition, when compared to the results
mentioned above, we divided the raw data into three other sliding windows, such as three,
five, and ten second windows. Further, in [29], the researchers used the RNN algorithm
for the classification. However, the datasets they used are different from the datasets we
used in this paper. Moreover, not all the authors classified all the 14 specific activities of
the UCI HAR dataset. Further, the feature extraction methods are different from what we
have used in our work.
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3. Materials and Methods

In this section, we present the considered methodology including data collection and
the used classifiers’ network architecture. Figure 1 summarizes the different steps of our
adopted approach.

Wearable sensor
selection/placement

Data
acquisition

Feature
extraction/selection

Feature
speci�cation

Feature
selection and

extraction

Training phase: 
feature selection
and extraction

DNN and RNN
classi�cation
algorithms

Training phase: DNN
and RNN classi�cation

algorithms

Performance
Evaluation

test set

training
set

Figure 1. Research Methodology.

3.1. Data Collection

In this study, the classification of movement patterns is done on two datasets. The first
is a publicly available dataset which contains labelled accelerometer data recordings ac-
quired from UCI Machine learning Repository [12]. It is a dataset for activities-of-daily-life
(ADL) collected through wrist-worn accelerometers including 5 categories and 13 daily
living activities namely brushing teeth, combing hair, climbing stairs, descend stairs, walk-
ing, drinking from glass, pouring water into glass, eating with knife and fork, eating with
spoon, using telephone, getting out of the bed, lying down in the bed, standing up from
chair, sitting down on chair. This data set is here by referred to as the wrist-worn dataset.

The second dataset is collected ourselves through hip-worn accelerometers called
ActiGraph, model GT3X+ from eight voluntary participants which contains labelled ac-
celerometer data recordings of ten movement patterns of free-living ADL, where some of
the movement patterns are different variations of a movement, such as different speeds
of walking. The collected movement patterns are cycling, jogging, laying still, sitting,
sitting in a vehicle, sitting relaxed, walking stairs, standing, walking fast, and walking
normal. Before using the accelerometers, the participant were given instructions to perform
activities in their own way without specific constraints. The second dataset is here by
referred to as the hip-worn dataset.

3.2. Data Pre-Processing

In this study, we used the sliding window technique to extract features from raw
data. The raw data is divided into three types of sliding windows of three-, five-, and ten
second windows, respectively. More details on the sliding window process is described in
Sections 3.2.1 and 3.2.2.

3.2.1. Wrist-Worn Dataset

The wrist-worn dataset consists of 14 different motion primitives which were per-
formed by 16 volunteers. To test and examine the performance of the used algorithms, these
motion primitives are divided into broader, less complex, ADL categories. The correlation
between these ADL categories and the motion primitives are shown in Table 1.

The distribution of the data-points for these ADL’s and motion primitives are shown
in Figures 2 and 3, where the ADL distribution is on the left and the motion primitives
on the right. When we looked at the ADL distribution, it can be seen that it is not evenly
distributed as three categories; mobility (1), feeding (2) and functional transfers (4) which
consists of above 100,000 data-points each. While personal hygiene (0) and communication
(3) only consists of about 50,000 and 20,000 data-points, respectively. The overall distribu-
tion of the movement primitives can be considered somewhat even, with the exceptions
of walking, eating with spoon, and lying down, as most of them are within the range of
20,000 to 40,000 data-points.
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As mentioned above, the raw data is divided into sliding windows, i.e., a three
second, a five second- and a ten second- sliding window in order to be used for training
the algorithms. Whenever the accelerometers gather the data, it collects 32 data points
each second.

Table 1. Correlation between ADL categories and Motion primitives.

ADL Motion Primitives

Personal hygiene Brush teeth
Comb Hair

Mobility
Climb Stairs

Descend Stairs
Walk

Feeding

Drink from glass
Pour water into glass

Eat with knife and fork
Eat with spoon

Communication Use telephone

Functional transfers

Get out of bed
Lie down in bed

Stand up from chair
Sit down on chair

Figure 2. Basic Raw data distribution for the wrist-worn dataset.
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Figure 3. Specific raw data distribution for the wrist-worn dataset.

In the sliding windows, the three second sliding window differs from the other two
sliding windows, as the shift for each window also is set to three seconds. It is created by
collecting three seconds of data (which is a total of 96 data-points) then sliding three seconds
to create the next sliding window. Thus, there is no overlapping of data points within this
type of sliding window. Dividing the dataset into these three second sliding windows yields
a dataset consisting of approximately 4000 sliding windows distributed.When generating
the five second sliding windows, the shift for each window is set to one second. Thus, each
sliding window contains an overlap of four seconds to the previous window. This yields a
dataset of approximately 10,000 sliding windows.

The final type of sliding window is ten seconds of data, also sliding by one second for
each window. This creates a dataset consisting of approximately 6000 sliding windows.

3.2.2. Hip-Worn Dataset

The hip-worn dataset consists of ten movement patterns performed by eight volun-
teers, where some of the movement patterns are different variations of a movement in-
cluding different speeds of walking. The collected movement patterns are cycling, jogging,
laying still, sitting, sitting in a vehicle, sitting relaxed, walking stairs, standing, walking fast,
and walking normal. This dataset consists of 1.6 million data-points distributed among the
categories as shown in Figure 4.
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Figure 4. Raw data distribution for the hip-worn dataset.

Similar to the wrist-worn dataset, the hip-worn dataset is also divided into three types
of sliding windows, i.e., three-, five-, and ten-second windows, respectively. The hip-worn
dataset is unevenly distributed and most of the data-points are in the relaxing categories
lying down, and sitting. This pattern in the distribution is carried over to the sliding
window datasets. Generating the dataset for three second sliding windows is done same
as the wrist-worn, three seconds of data shifting is done with three seconds. However,
the accelerometers used on this dataset collects 30 data-points each second, giving the three
second sliding window dataset around 15,000 sliding windows with the distribution.

The dataset is created with five- and ten- second sliding windows with a shift of one
second, the same as for the wrist-worn dataset. Both types of sliding window creates a
dataset with approximately 54,000 sliding windows. After the data pre-processing, the data
is fed to the deep learning algorithms. The description of the used deep learning networks
architecture can be seen in the below Section 3.3.

3.3. Deep Learning Networks Architecture

In this paper, two deep learning algorithms DNNs and RNNs are used for classifying
the activity movement types. The network structure of both used DNNs and RNNs is
described below.

The first used network structure is the deep feed-forward network which is shown in
Figure 5. The model consists of five layers i.e, an input and output layer, and three hidden
layers. The three hidden layers have a constant number of cells, more specifically, the first
hidden layer has 512 cells, the second hidden layer has 258 cells, and the last hidden layer
has 128 cells. While the input and the output layer adapt to the dataset. The input layer
always fit the length of the samples, while the output layer always have n cells, where n is
the number of classes that need to be classified.
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Figure 5. Structure of the Deep Neural Network model.

During the training phase, the input data is split up into smaller batches of 100 ele-
ments. The model predicts a label for each element and the weights and biases are adjusted
from the sum of the errors between the predicted labels and true labels. The testing dataset
is not split up into smaller batches. Thus, the entire testing dataset is used for calculating
the performance metrics.

The second considered network structure is the recurrent neural network which
consists of two components, the recurrent element of the network and a fully connected
network. The first component, the recurrent element, consists of cells which in our case are
Gated Recurrent Unit’s (GRU). Each of these cells are connected to each other and they all
have a fixed number of states. The number of cells, and the number of states each cell has
is provided as a parameter to the network. The recurrent element of the network returns
two values the current state of the recurrent network St, and the output of each state Ot.
The output of each state be an array of length t, where t is the number of items in the
time-series that is sent into the network.

The last element of the outputs is used and sent forward to the fully connected network.
The fully connected network is much smaller than the previous model and only consists
of two layers. The input layer, which takes the input from the recurrent network and an
output layer that is used to predict the class. A simplified illustration of the recurrent
neural network model is shown in Figure 6.
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Figure 6. Structure of the Recurrent Neural Network model.

4. Results

The results of our used models are presented and discussed in this section. The results
are compared to other state-of-the-art methods. In this work, our experiments were con-
ducted on Intel i7 7700K @ 4.2 GHz CPU, Nvidia GeForce GTX 1070 GB GPU, and Corsair
16 GB GB @ 3000 MHz RAM and several types of experiments were done by using four
different learning rates, i.e., 0.1, 0.01, 0.001 and 0.0001. These learning rates are tested
in combination with three well known optimizers, i.e., Adagrad, Adam and Stochastic
Gradient Descent (SGD). Furthermore, these combinations of optimizers and learning rates
are tested for all three types of sliding windows, i.e., three, five and ten seconds, both for the
basic and specific movement categories. Considering the number of data-points available
in the datasets, all experiments are stopped after 2000 training steps. Thus, reducing the
chance of over-fitting through repeatedly training on the same data.

4.1. Deep Artificial Neural Network

Throughout this section, a detailed explanation of the best performing results with
regards to the overall F1-score is given. For each type of sliding window (three-, five- and
ten- seconds), the best performing combination of optimizer and learning rate be given for
both the basic and specific movement categories.

Low learning rates are shown to be more suited for movement recognition, for both
the Adagrad- and the Adam-optimizer. When using a high learning rate of 0.1, both the
Adagrad and Adam optimizer get a low F1-score. The recall of these results shows that the
algorithm guesses “randomly”. The probable cause of this might be the high learning rate.
Thus, the algorithm diverges from the global minimum, which prevents it from learning
the patterns of the movements. Furthermore, the result of the SGD optimizer is to some
extent unexpected. However, the result can be explained through the used structure of the
DNN. The model uses Rectified Linear Unit (ReLU) as its activation function. Using ReLU
with SGD often leads to vanishing gradients, which stagnates the learning of the algorithm.

4.1.1. Experiments with Wrist-Worn Dataset—Basic Movement

Three seconds sliding window: Testing the different hyper-parameter combinations
on the three second sliding window shows the highest achieved overall accuracy and
F1-score are 80.94% and 78.46%, respectively. This result is reached when using a low
learning rate 0.0001 with the Adam optimizer.

Figure 7b shows a confusion matrix for the results of each movement type. This matrix
is created to evaluate the algorithm, and to interpret why the algorithm achieved its results
and where the incorrect classifications occurs. The recall (R), precision (P), and F1-score (F1)
percentages about the classification of the movement types with 3-s window are shown in
Table 2.
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Figure 7. Confusion matrix of the best result for basic movement 3, 5 and 10-s window using DNN.
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Table 2. Best result of basic and specific movement of wrist-worn dataset 3, 5, 10-s window using DNN .

Category

Basic Movement with DNN

3-W 1 5-W 2 10-W 3

R a P b F1 c R a P b F1 c R a P b F1 c

Hygiene 73.7% 83.61% 78.35% 89.69% 84.33% 86.93% 84.1% 96.49% 89.87%

Mobility 89.33% 88.7% 89.01% 94.53% 89.38% 91.88% 95.95% 97.51% 96.72%

Feeding 87.13% 84.44% 85.76% 98.37% 83.69% 90.43% 95.87% 93.67% 94.75%

Communication 66.23% 79.69% 72.34% 71.72% 72.82% 72.26% 91.3% 70.59% 79.62%

F-Transfer 67.57% 64.6% 66.05% 50.54% 88.89% 64.44% 87.74% 81.4% 84.45%

Specific Movement with DNN

3-W 1 5-W 2 10-W 3

R a P b F1 c R a P b F1 c R a P b F1 c

Brush teeth 81.29% 90.0% 85.42% 93.49% 91.56% 92.52% 94.77% 98.82% 96.75%

Climb stairs 48.07% 39.55% 43.39% 16.95% 32.72% 22.33% 4.9% 35.0% 8.59%

Comb hair 61.82% 79.07% 69.39% 17.29% 79.31% 28.4% 57.26% 84.81% 68.37%

Descend stairs 46.15% 57.69% 51.28% 17.29% 79.31% 28.4% 2.17% 33.33% 4.08%

Drink 52.74% 64.63% 58.08% 79.06% 59.97% 68.2% 68.28% 60.77% 64.3%

Eat w/knife&fork 90.0% 60.71% 72.51% 83.3% 74.58% 78.7% 93.01% 82.06% 87.19%

Eat w/ spoon 44.44% 59.26% 50.79% 44.44% 59.26% 50.79% 95.79% 93.81% 94.79%

Get out bed 43.75% 49.46% 46.43% 51.93% 68.18% 58.96% 85.66% 83.27% 84.44%

Lie down bed 9.52% 66.67% 16.67% 23.42% 37.68% 28.89% 29.55% 61.9% 40.0%

Pour water 72.14% 52.73% 60.92% 63.38% 80.12% 70.77% 66.48% 85.21% 74.69%

Sit down 34.12% 46.03% 39.19% 38.06% 68.6% 48.96% 62.5% 60.61% 61.54%

Stand up 39.58% 39.58% 39.58% 40.67% 49.19% 44.53% 52.78% 55.88% 54.29%

Telephone 44.87% 77.78% 56.91% 78.26% 66.12% 71.68% 85.54% 58.44% 69.44%

Walk 72.75% 67.41% 69.98% 87.47% 64.0% 73.91% 96.55% 83.3% 89.44%
1 Three-second window, 2 Five-second window, 3 Ten-second window, a Recall, b Precision, c F1-score.

The classification inaccuracies for three second sliding windows are understandable
considering the data distribution. The most distinct pattern in the matrix is that each
category is to some extent inaccurately recognized as a functional transfer, even without it
being the category with the largest amount of data-points. However, the probable cause of
this pattern is the fact that the data is collected through a wrist-worn accelerometer. Each
of the 14 participants might have different personal traits when moving, especially hand
movements. This could affect the classification. Thus, giving F-transfer a lower precision
score and can be seen in Table 2.

The ADL category which is inaccurately classified the most is the communication
category, which contains the least amount of data-points. This is in line with what we
expect, given the nature of the activities and placement of the sensor. Furthermore, when
it is incorrectly classified, it is often interpreted as similar movement patterns, either
hygiene or feeding. F-transfer is the category with the second highest percentage of
inaccurate classification. Again, some of these classification might be affected by traits
of the participants, thus classifying it as feeding. On the other hand, F-transfer are often
classified as mobility, which is a more comparable category with regards to the movement
types in those categories.
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Five second sliding window: Using the Adam optimizer combined with a low learn-
ing rate of 0.0001, on the five second sliding window, the DNN achieves an overall accuracy
of 86.01% and an overall F1-score of 82.37% and can be seen in Table 5. There are clear
patterns in the inaccurate classifications of the ADL categories shown in the confusion
matrix in Figure 7a. The recall (R), precision (P), and F1-score (F1) percentages about the
classification of the movement types with 5-s window are shown in Table 2.

The DNN model incorrectly classifies the communication data as feeding (20% of the
time), similar to the three second sliding window. Considering the resemblance in the
movement patterns when using a telephone and eating, this confusion is understandable,
especially when seeing the difference in the data distribution.

Explaining the miss-classification of the functional transfer category is partially based
on assumptions. The two most commonly classified classes are mobility and feeding.
As mentioned for the three second sliding window, the specific movement types in the
mobility class and the functional transfer class (see Table 1) are comparable. It is under-
standable that getting up from a chair or the bed is interpreted as one of the mobility
movements. However, looking at possible reasons for the DNN to interpret functional
transfers as feeding, the most reasonable explanation would, as mentioned, be the place-
ment of the accelerometer.

Ten seconds sliding window: The Adam optimizer and a low learning rate of 0.0001
is again the best performing combination when testing it on ten second sliding windows.
Achieving an impressive overall accuracy of 92.4% and an overall F1-score of 89.43% (see
Table 5). Looking at the confusion matrix in Figure 7c, it is clear to see that the ten-second
sliding window allows the DNN model to observe and distinguish the differences between
these basic movement patterns. The probable cause of the lower F1-score of communication
is its low number of data-points which influences its precision score. Thus, predicting 5%
of the hygiene data-points as communication heavily affects the precision score. The recall
(R), precision (P), and F1-score (F1) percentages about the classification of the movement
types with 10-s window are shown in Table 2.

4.1.2. Experiments with Wrist-Worn Dataset—Specific Movement

As the number of movement types are increased in the specific movement distribution
of the UCI dataset, the complexity of recognizing them also increases. An important point
given that we ultimately want to predict all types of free-living (or at least the predominant
types) activities with acceptable precision. In addition, the distribution of data-points is
lower for each categories as they are no longer combined as for the basic distribution.

Three seconds sliding window: The best result achieved for three second sliding
windows for specific movement is an accuracy of 59.93% and a F1-score of 56.59% (see
Table 5). This result is achieved by the Adagrad optimizer with a learning rate of 0.01.
Analyzing the confusion matrix in Figure 8a, the most difficult movement to recognize
is lying down in bed. The recall (R), precision (P) and F1-score (F1) percentages about
the classification of the specific movement types with 3-s window are shown in Table 2.
Considering that it is the movement with the second lowest amount of sliding windows.
Thus, it is to some extent expected.

The other reasonable miss-classified movement patterns are full body movements.
Both climbing and descending stairs are often wrongly interpreted as walking, which is
understandable as walking is the largest category in terms of data-points and the move-
ments are comparable, which again is not surprising since, from a bio-mechanical view,
both sensor signals are very similar. In addition, the two functional transfers, sitting down
and standing up, are also interpreted as walking. Furthermore, descending stairs is either
wrongly recognized as either walking or descending stairs. The accelerometer registers the
g-forces, and as it is placed on the wrist. Thus, the patterns on climbing and descending
stairs are relatively equal as the axes changes when rotating the hand.
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Figure 8. Confusion matrix of the best result for specific movement 3, 5, 10-s window using DNN.
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Another conspicuous miss-interpretation is when the algorithm recognizes eating
with spoon as pouring water into a glass. The assumption here is that the collected data
of pouring water is from a mug. Thus, the resemblance in hand movements affects the
algorithm. As an example, when eating soup one slowly moves the spoon from the plate,
up towards the mouth before one tilts the spoon inside the mouth. The same pattern goes
for pouring water from a mug into a glass. First the mug is lifted, then tilted to pour
the water.

Five seconds sliding window: Testing the DNN on the five second sliding window,
the highest performing hyper-parameter combination is the Adagrad optimizer and a
learning rate of 0.01. Achieving an overall accuracy of 67.83% and an overall F1-score
of 62.11% (see Table 5). The results of the five second sliding window are similar to the
results of the three second sliding window, where most of the movement categories have a
slight increase in their recall score (see Table 2). As mentioned in the Section 3.2.1, each five
second sliding window consists of some overlapping data. Allowing the algorithm to more
easily recognize the patterns of the movements. However, the movements which were
miss-interpreted as walking are more frequently interpreted incorrect. This, pattern has
a correlation to the distribution, as these movement categories, climbing and descending
stairs, have fewer sliding windows for five seconds than for three seconds. Thus, the algo-
rithm has fewer samples to train on, which affects the result and this can be seen in the
confusion matrix results in Figure 8b.

Ten seconds sliding window: For ten second sliding window, Adagrad combined
with a learning rate of 0.01 gives an overall accuracy of 81.29% and an F1-score of 66.75%
(see Table 5). The recall (R), precision (P) and F1-score (F1) percentages about the classifica-
tion of the specific movement types with 10-s sliding window are shown in Table 2.

Looking at the results shown in the confusion matrix in Figure 8c, it follows the same
patterns as the five second sliding window. The recall score averagely increases due to the
increase of the window size. As the window size increase, the amount of sliding widows
decrease for the climbing- and descending- stairs movements. Thus, further decreasing
their recall score, as they are more consistently interpreted as walking. The most distinguish
pattern in the ten second sliding window confusion matrix is the miss-interpretation of
standing up. It is approximately 40% of the time interpreted as getting out of bed. Indicating
that the similarity of getting out of the bed, and standing up from a chair is quiet high
when monitoring ten seconds of those movements.

4.2. Recurrent Neural Network

In this section, we discuss the best results of the Recurrent Neural Network (RNN)
experiments. As for the DNN, a detailed explanation of the best combination of hyper-
parameters is given for each sliding window, for both the basic and specific movement
categories. In addition, the results for the secondary dataset, and the hip-worn data
are explained.

The hyper-parameters used for the RNN are same as the DNN. However, two ad-
ditional parameters are tested, i.e., number of cells in the RNN, and the size of the cells.
The RNN is run with four and eight cells for each of the learning rates. Furthermore, these
were both tested with two different sizes for the cells, i.e., 16 and 32 respectively.

Looking at the result overviews, lower learning rates often perform better than higher.
However, Adagrad performs surprisingly bad with the lowest learning rate. The assump-
tion here is that the number of training steps are to low for the Adagrad optimizer to learn
the patterns with such a low learning rate. The same pattern for the SGD optimizer are
shown for the RNN; SGD does not learn with the ReLU cells, except it is able to achieve
relatively impressive results with the lowest learning rate.
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4.2.1. Experiments with Wrist-Worn Dataset—Basic Movement

The best performing results with regards to the overall F1-score for the basic move-
ments for each sliding window type are explained below.

Three seconds sliding window: Running a RNN, consisting eight cells of size 32,
with the Adam optimizer and a low learning rate of 0.001, an overall accuracy of 84.89%
and an overall F1-score of 82.56% is achieved. When these results are compared to the
DNN results (see Table 2, there is an increase of approximately 4%.

Looking at the confusion matrix in Figure 9a, the results again show that whenever
a sliding window is miss-interpreted, it is often guessed as a hand movement. As an
example, the category with the lowest amount of sliding windows, i.e., communication, is
often guessed as feeding. This is understandable because of the similarity in movements,
and also due to the fact that feeding is the category with the second most sliding windows.

The other noticeable result is the interpretation of functional transfers (see Table 3).
As discussed in previous sections, the placement of the accelerometer can be used as an
explanation. Placing it at the wrist is probably affecting the movement pattern, as a small
hand gesture can have an influence on the algorithms. Thus, the assumption is that func-
tional transfers is classified as feeding due to the accelerometer placement. The recall (R),
precision (P), and F1-score (F1) percentages about the classification of the basic movement
types using RNN for 3-s sliding window are shown in Table 3.

Five seconds sliding window: Using a learning rate of 0.01 and the Adagrad opti-
mizer with the five second sliding window achieves an impressive 94.65% overall accuracy
and a 93.03% overall F1-score which is tabulated in Table 5. The recall (R), precision (P)
and F1-score (F1) percentages about the classification of the basic movement types using
RNN for 5-s window are shown in Table 3.

The only result standing out in the confusion matrix in Figure 9b is the communication
category. However, the “low” accuracy is explained by checking at the distribution which
consisting of the fewest sliding windows for communication which is expected to be the
hardest class to predict for the RNN.

Ten seconds sliding window: The highest performing combination of hyper-parameters
for ten second sliding window is also the highest performing result for basic movements
in general. Combining the Adam optimizer with a learning rate of 0.001, in a RNN with
four cells of size 32, an overall accuracy of 98.75% and an overall F1-score of 98.06% is
achieved (see Table 5. The recall (R), precision (P), and F1-score (F1) percentages about
the classification of the basic movement types using RNN for 10-s window are shown in
Table 3. Considering the overlapping of data-point in the sliding windows, and the fact
that RNN uses prior knowledge to improve, these results are expected. The few miss-
interpreted sliding windows are assumed to be caused by the “noise” from the placement
of the accelerometer. Figure 9c shows the confusion matrix of the best result for basic
movement of 10-s window using RNN.

4.2.2. Experiments with Wrist-Worn Dataset—Specific Movement

Throughout this section, we explain and discuss the results of the best performing
hyper-parameters for all three types of sliding windows for specific movement in the
wrist-worn dataset.

Three seconds sliding window: The results of the RNN for three second sliding
window are noticeably better than the DNN results. A RNN with four cells, with size 32,
a learning rate of 0.001 and the Adam optimizer, gives an overall accuracy of 70.39% and
an overall F1-score of 65.58% (see Table 5). One of the main differences between the results
of the RNN and the DNN are both descending and climbing the stairs. The recall (R),
precision (P) and F1-score (F1) percentages about the classification of the specific movement
types using RNN for 3-s window are shown in Table 3. Figure 10a shows that the RNN
has reduced the number of miss-interpretations of stair movements as walking. Thus, we
assume that the “memory” of the RNN are able to remember the small differences between
walking and moving upwards or downwards.
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Figure 9. Confusion matrix of the best result for basic movement 3, 5, 10-s window using RNN.
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Table 3. Best result of basic and specific movement of wrist-worn dataset 3, 5, 10-s window using RNN.

Category

Basic Movement with RNN

3-W 1 5-W 2 10-W 3

R a P b F1 c R a P b F1 c R a P b F1 c

Hygiene 84.81% 88.42% 86.58% 96.95% 93.73% 95.31% 99.85% 98.79% 99.32%

Mobility 88.62% 95.61% 91.98% 94.86% 98.36% 96.58% 99.58% 99.08% 99.33%

Feeding 93.12% 80.86% 86.56% 97.16% 95.66% 96.41% 99.66% 98.35% 99.0%

Communication 62.34% 85.71% 72.18% 83.33% 91.67% 87.3% 92.93% 99.42% 96.07%

F-Transfer 73.22% 73.53% 73.38% 90.85% 87.79% 89.29% 94.71% 98.27% 96.45%

Specific Movement with RNN

3-W 1 5-W 2 10-W 3

R a P b F1 c R a P b F1 c R a P b F1 c

Brush teeth 83.87% 86.09% 84.97% 96.01% 96.21% 96.11% 99.32% 99.77% 99.54%

Climb stairs 72.38% 71.2% 71.78% 88.78% 75.15% 81.4% 92.31% 85.71% 88.89%

Comb hair 69.09% 83.52% 75.62% 92.54% 92.23% 92.39% 98.72% 98.72% 98.72%

Descend stairs 75.38% 87.5% 80.99% 81.2% 81.82% 81.51% 91.3% 84.0% 87.5%

Drink 56.72% 73.08% 63.87% 90.42% 81.36% 85.65% 95.16% 94.65% 94.91%

Eat w/knife&fork 92.35% 73.02% 81.56% 92.9% 87.77% 90.26% 98.94% 99.36% 99.15%

Eat w/ spoon 63.89% 50.0% 56.1% 94.68% 89.9% 92.23% 100% 95.0% 97.44%

Get out bed 44.23% 57.86% 50.14% 79.23% 77.34% 78.27% 90.16% 94.02% 92.05%

Lie down bed 11.11% 36.84% 17.07% 52.25% 63.04% 57.14% 68.18% 85.71% 75.95%

Pour water 74.13% 65.35% 69.46% 88.03% 84.84% 86.41% 97.25% 95.68% 96.46%

Sit down 48.24% 45.56% 46.86% 72.9% 68.48% 70.62% 100% 88.89% 94.12%

Stand up 57.29% 37.67% 45.45% 57.33% 69.92% 63.0% 94.44% 85.0% 89.47%

Telephone 83.33% 66.33% 73.86% 54.11% 95.73% 69.14% 93.98% 93.98% 93.98%

Walk 86.15% 84.3% 85.22% 89.14% 93.84% 91.43% 97.49% 98.42% 97.95%

1 Three-second window, 2 Five-second window, 3 Ten-second window, a Recall, b Precision, c F1-score.

Many of the miss-interpreted movements are movements of similar types, mostly
different hand movements. Thus, some sliding windows are interpreted incorrectly as
another hand-movement. Examples of such miss-interpretations are drinking which may
be interpreted as pouring water, Eating with a spoon which may be interpreted as pouring
water. These movements are all hand-gestures which understandably can be confused
with each other, and not a mis-classification of high relevance since it is of little importance
to physical activity epidemiology.
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Figure 10. Confusion matrix of the best result for specific movement 3, 5 and 10-s window using RNN.
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The bad results of body movements from lying down, sitting down, and standing up
has a low precision score due to their low data distribution. Considering the low amount
of sliding windows, these classes are misinterpreted as a few different categories. However,
they are mostly interpreted as similar movements. Lying down as either getting out of
bed, sitting down or walking, sitting down as standing up, and standing up as getting out
of bed.

Five seconds sliding window: An overall accuracy of 85.6% and an overall F1-score
of 81.67% is the highest performing result of five second sliding window with RNN (see
Table 5). The RNN used to accomplish these results is a network consisting on 4 cells of
size 32. This network uses Adam as its optimizer and a learning rate of 0.01.

The results of the five second sliding window are overall increased compared to the
three second sliding window. This is probably due to the overlap in the sliding windows,
which further allows the network to recognize the differences in the movement patterns.
Again, the worst performing categories are the ones with the lowest distribution of sliding
windows. Thus, they are interpreted as movements with similar patterns to its own.
The recall (R), precision (P), and F1-score (F1) percentages about the classification of the
specific movement types using RNN for 5-s window are shown in Table 3. Figure 10b
shows the confusion matrix of the best result for specific movement five second window
using RNN.

Ten second sliding window: Ten second sliding windows are again the highest
performing distribution of the data-points. Achieving an overall accuracy of 96.52% and
an overall F1-score of 93.43%, when using Adam as the optimizer, a learning rate of 0.001
on a RNN consisting of 8 cells of size 32 and this is seen in Table 5. The recall (R), precision
(P), and F1-score (F1) percentages about the classification of the specific movement types
using RNN for 10-s window are shown in Table 3.

Figure 10c shows the confusion matrix of the best result for specific movement 10-s
window using RNN. Most miss-interpretations are eliminated with the exception of lying
down, the category with the fewest sliding windows. There are some concerns to these
results as the small shift of one second for each ten second sliding window might cause the
algorithms to over-fit during training. Thus, achieving such impressive results. The prob-
lem however is the size of the dataset, increasing the shift of the sliding window drastically
reduces the number of sliding windows in the dataset. Leading to poor training as the size
of the dataset would be low.

4.2.3. Experiments with Hip-Worn Dataset

In this section, we discuss the highest performing results for the RNN on the hip-
worn dataset which is collected ourselves from voluntary participants. This dataset is also
tested for each type of sliding windows, which are separately discussed throughout this
section. The hip-worn dataset is tested using only the RNN model, with the different hyper-
parameter combinations discussed above. The decision to not to run this dataset through
the DNN model is the fact that the results of the wrist-worn dataset shows that the RNN
model consistently outperforms the DNN for this type of time series movement patterns.

Three second sliding window: The highest performing result for the three second
sliding window gets an overall accuracy of 85.5%, and a F1-score of 84.04% (see Table 5).
Examining the results shown in the confusion matrix in Figure 11a, the wrongly interpreted
sliding windows are reasonable. Examples are laying down which is interpreted as sitting
relaxed, which in some cases might be a person almost lying in a sofa. Walking is sometimes
confused with walking fast, which might be explained by differences in walking speed
between participants. One person’s normal walking speed might be the same speed as
another person’s speed when walking fast. Thus, may be confusing the algorithm.
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Figure 11. Confusion matrix of the best result for 3, 5, 10-s window of hip-worn data using RNN.
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Looking at the categories which are shown in Table 4, and their individual perfor-
mances which are shown in Figure 11a, the lower performing category is sitting in a vehicle.
As there are multiple vehicle options, it can be hard to predict this category. For instance,
if one of the participants where sitting in a bus, then the three second sliding window has
a possibility to be when the bus is at a stop. Thus, making the algorithm believe it is a
person who is sitting still. The results explained above are achieved through a RNN with 4
cells, with cell sizes of 32, a learning rate of 0.1 and Adagrad as its optimizer. The recall
(R), precision (P), and F1-score (F1) percentages about the classification of the specific
movement types using RNN for 10-s window are shown in Table 3.

Table 4. Best result of 3, 5, 10-s window of hip-worn data using RNN.

Category

Movements in Hip-Worn Data with RNN

3-W 1 5-W 2 10-W 3

R a P b F1 c R a P b F1 c R a P b F1 c

Cycling 81.33% 82.99% 82.15% 78.08% 78.74% 78.41% 87.55% 89.67% 88.6%

Jogging 77.67% 94.28% 85.17% 85.82% 89.39% 87.57% 89.41% 96.54% 92.84%

Laying still 87.8% 86.82% 87.31% 90.61% 94.86% 92.69% 98.52% 82.88% 90.02%

Sitting 93.73% 83.56% 88.36% 94.84% 86.27% 90.35% 94.27% 87.44% 90.73%

Sitting in a vehicle 72.09% 98.53% 83.26% 76.81% 97.51% 85.93% 79.01% 98.36% 87.63%

Sitting relaxed 88.19% 85.55% 86.85% 96.19% 90.63% 93.33% 85.97% 96.12% 90.76%

Walking stairs 77.96% 83.04% 80.42% 68.61% 78.83% 73.37% 93.18% 94.41% 93.79%

Standing 83.27% 82.45% 82.85% 84.24% 80.89% 82.53% 85.09% 81.83% 83.43%

Walking fast 87.97% 81.27% 84.49% 74.51% 98.56% 84.86% 77.3% 98.55% 86.64%

Walking normal 75.63% 77.2% 76.41% 90.78% 70.02% 79.06% 94.69% 76.51% 84.63%

1 Three-second window, 2 Five-second window, 3 Ten-second window, a Recall, b Precision, c F1-score.

Five second sliding window: Using Adagrad as the optimizer for a RNN with four
cells, of size 32, combined with a 0.1 learning rate, an accuracy of 88.48% and a F1-score
of 85.29% is obtained (see Table 5). Again the category of sitting in a vehicle is among the
lowest performing categories, as different vehicles have different driving patterns which
might confuse it with other categories, and vibration from the vehicle and ground may
introduce noise and since the logs are self-reported, we cannot rule out that some reporting
is unreliable. However, looking at the results of both the category for walking stair and
walking fast, shown in the confusion matrix in Figure 11b, their recall score decreased
compared to the three second sliding window.

The recall (R), precision (P) and F1-score (F1) percentages about the classification of
the hip-worn data using RNN for 5-s window are shown in Table 4. We assume that the
patterns between walking stairs and walking in normal speed are easier to distinguish
when using three seconds of data compared to five. Thus, the results gets worse for five
second sliding window within this category.

Ten second sliding window: A clear pattern in the results is that ten second sliding
windows perform better compared to the three- and five- second sliding windows. Testing
the RNN with the hip-worn dataset is no exception. When combining a learning rate of 0.01
with a RNN with four cells, with a size of 32, and using Adam as the optimizer, an accuracy
of 89.31% with a F1-score of 89.36% is achieved (see Table 5).
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Table 5. Summary of the DNN and RNN results.

DNN

Dataset Sliding Window Accuracy F1 Score

Wrist Worn:
Basic Movement

3 s 80.94% 78.46%

5 s 86.01% 82.37%

10 s 92.4% 89.43%

Wrist-Worn:
Specific Movement

3 s 59.93% 56.59%

5 s 67.83% 62.11%

10 s 81.29% 66.75%

RNN

Wrist Worn:
Basic Movement

3 s 84.89% 82.56%

5 s 94.65% 93.03%

10 s 98.75% 98.06%

Wrist-Worn:
Specific Movement

3 s 70.39% 65.58%

5 s 85.6% 81.67%

10 s 96.52% 93.43%

Hip-Worn

3 s 85.5% 84.04%

5 s 88.48% 85.29%

10 s 89.31% 89.36%

The results shown in the confusion matrix in Figure 11c are impressively high. Most
categories are interpreted correctly more than 85% of the time with the exception of sitting
in a vehicle and walking fast. Other incorrectly interpreted sliding windows are confused
with related categories, such as standing interpreted as sitting, and sitting relaxed as laying
still. The recall (R), precision (P), and F1-score (F1) percentages about the classification of
the hip-worn data movement types using RNN for 10-s window are shown in Table 4.

5. Discussion

This paper has used and presented two deep learning models for the classification
of physical movement patterns from on-body accelerometer sensors. Our models were
trained on two on-body accelerometer sensor datasets.

For recognizing ADLs with DNNs, few categories are accomplished with good success.
The DNN achieve accuracies between 80–93% and F1-scores between 80–90% for basic
movements (see Table 6). When increasing the complexity of the dataset by using specific
movement categories, the accuracies significantly decrease. This is expected as there are
more categories to learn and recognize. The achieved accuracy for the specific movement
types, using DNN, is between 60–80%, while the F1-scores are between 55–65% (see Table 6).
Considering each experiment trained the model for 2000 training steps, then providing it
with unseen data to classify, the DNN is able to classify “unknown” data.

When different combinations of hyper-parameters are used, the performance is de-
pending on which categorization of the movement patterns was used. For the broad
categories, ADLs, low learning rates, and the Adam optimizer achieve the highest F1
scores, i.e., 78.5% for three seconds, 82.4% for five seconds, and 89.4% for ten second sliding
windows. Recognizing the specific movements, Adagrad, with a learning rate of 0.01 gets
the highest results, i.e., 56.6% for three seconds, 62.1% for five seconds, and 67.8% for ten
second sliding windows.

If we compare whether the DNN model performs better than the state-of-the-art algo-
rithms, the state-of-the-art algorithms perform better at some categories such as drinking
from a glass, climbing stairs, pouring water into a glass, and standing up from a chair.
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In contrast, the DNN model performs better at the others getting out of bed, sitting down
on a chair, and walking. Additionally, the DNN model is trained to recognize all of the
categories in the wrist-worn dataset, not just a selection.

Table 6. Results of both DNN and RNN for specific movements of wrist-worn data.

cDNN
Results RNN Results

Category Recall Precision F1 Score Recall Precision F1 Score

Brush teeth 94.77% 98.82% 96.75% 99.32% 99.77% 99.54%

Comb hair 57.26% 84.81% 68.37% 98.72% 98.72% 98.72%

Climb stairs 4.9% 35.0% 8.59% 92.31% 85.71% 88.89%

Walk 96.55% 83.3% 89.44% 97.49% 98.42% 97.95%

Descend stairs 2.17% 33.33% 4.08% 91.3% 84.0% 87.5%

Drink from glass 68.28% 60.77% 64.3% 95.16% 94.65% 94.91%

Pour water into glass 66.48% 85.21% 74.69% 97.25% 95.68% 96.46%

Eat w/ fork and knife 93.01% 82.06% 87.19% 98.94% 99.36% 99.15%

Eat w/spoon 95.79% 93.81% 94.79% 100% 95.0% 97.44%

Use telephone 85.54% 58.44% 69.44% 93.98% 93.98% 93.98%

Get out of bed 85.66% 83.27% 84.44% 90.16% 94.02% 92.05%

Lie down in the bed 29.55% 61.9% 40.0% 68.18% 85.71% 75.95%

Stand up from chair 52.78% 55.88% 54.29% 94.44% 85.0% 89.47%

Sit down on chair 62.5% 60.61% 61.54% 100% 88.89% 94.12%

Table 6 shows results of both DNN and RNN for all 14 specific movements of wrist-
worn data. Analyzing Table 6, the DNN model achieves relatively good results considering
the complexity of the classification. Comparing it to [27], which classifies seven categories,
the DNN achieves comparable results using all 14 categories. Thus, we argue that the DNN
model, at the very least, matches the performance of the algorithm used in [27].

When comparing our RNN model to our DNN model, the accuracies are consistently
higher for the used RNN model. They are achieving accuracies between 85–99% and
F1-scores between 83–98% for the basic movement types. For the specific movement,
the accuracies are between 70–97%, while the F1-scores are between 65–94% (see Table 6).

In addition to the ADLs and specific movement types for the wrist-worn dataset, we
also tested the hip-worn dataset with the RNN. The results of this dataset are impressive
and the most important finding in this study from an epidemiological perspective, consid-
ering that it consists of movements of similar type, with different intensities in a free-living
setting. They are achieving accuracies between 85–90% and F1-scores of 84–90%. Thus,
showing that the RNN model is able to perform at a high level on new datasets.

Further, when we compare our results with the existing literature (see Table 7), for clas-
sifying the physical movement activities, our results show higher accuracy when RNN
is used, but compared with all other literature, they have a larger and different dataset,
making the results incomparable.

Table 7. Results ofboth DNN and RNN for specific movements of wrist-worn data.

LR Dataset Type Method Accuracy

[23] UCI HAR iSPLInception 95%

[24] UCI HAR LSTM 52.77%
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Table 7. Cont.

LR Dataset Type Method Accuracy

[25] UCI HAR LSTM 96.44%
MFAP 98.85%

[27] UCI HAR
GMM -
GMR -

[28] UCI HAR LSTM 97.4%

[26] UCI HAR

1D CNN 65%
2D CNN 76%

2-layer LSTM 85%
3-layer LSTM 91%

Bi-directional LSTM 93%
LSTM 77%

1D CNN+LSTM 76%

[29] UCI HAR

Uni-directional 96.7%
DRNN 95.2%
CNN 96%
SVM 93.3%

[30] UCI HAR DBN 97.5%
SVM 94.12%

[32] Wrist-worn

Na‘̀ive Bayesian 97.4%
SVM 97.8%
C4.5 93%

GMM 92.2%
Logistic classifier 94.0%

kNN 98.5%
Parzen classifier 92.7%

ANN 93%

[31] Wrist-worn Logistic regression 88.4% ± 3.0%
Hip-worn 91.0% ± 3.1%

[34] Wrist-worn CNN-SVM 0.850
Thigh CNN-kNN 0.845

[33] Hip-worn GMM 91.3%
Heuristic 71%

Our work

UCI- Basic DNN 92.4%
UCI- Specific DNN 81.29%

UCI- Basic RNN 98.75%
UCI- Specific RNN 96.52%

Hip-worn RNN 89.31%

6. Conclusions and Future Work

This paper presents two distinct deep learning approaches, i.e., DNN and RNN,
to classify physical movement patterns from body-worn tri-axial accelerometer data. We
performed numerous experiments with different combinations of hyper-parameters, opti-
mizers, and learning rates for the classification of the movement patterns. Both the models
were trained on two separate accelerometer datasets. The first dataset, from the UCI ma-
chine learning repository, contains 14 various activities of daily life (ADL) collected from
16 volunteers who carried a single wrist-worn tri-axial accelerometer. The second dataset,
collected by us, has ten different ADLs from eight volunteers who placed the sensors on
their hip and carried them out during their daily activities.

Through experiments, both the DNN and RNN models were evaluated under several
performance metrics such as precision, recall, F1-score, and accuracy. Our experimental re-
sults showed that the DNN model is able to recognize “unlabeled” data with an acceptable
overall recall percentage of 64%, using 14 categories, which is a 10% increase compared to
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the state-of-the-art algorithms, which has only a 54% overall recall score for seven types.
Whereas the RNN model performs significantly better on the time-series data, reaching an
overall recall score of 94%, which is a 40% increase compared to the DNN. The RNN model
results surpass the percentages for most categories compared to the state-of-the-art, even
when classifying all classes in the dataset. Furthermore, the RNN model is able to recognize
different movement patterns from a new dataset consisting of movement types of varying
intensities. Thus, our results show that the RNN model is the best-suited algorithm of the
discussed algorithms for movement pattern recognition.

As future work, we intend to extend this work to experiment with restructuring the
deep learning models first to recognize these broad ADL categories, then classify which
specific movement type within the ADL it is and test different optimizers in combination
with varying rates of learning and also experiment with different algorithms such as
Convolutional Neural Networks and Support Vector Machines.
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The following abbreviations are used in this manuscript:

DL Deep learning
DNN Deep feed-forward neural network
RNN Recurrent neural network
ADL activities-of-daily-life
PA Physical activity
SVM Support Vector Machine
CNN Convolutional Neural Networks
GMM Gaussian Mixture Model
NB Naïve Bayesian
LSTM Long Short-Term Memory
DBN Deep belief networks
HAR Human activity recognition
ANN Artificial neural networks
GRU Gated Recurrent Unit
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