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Abstract – This paper presents a system architecture for mapping and

real-time monitoring of a relatively large industrial robotic environment of

size 10 m × 15 m × 5 m. Six sensor nodes with embedded computing power

and local processing of the 3D point clouds are placed close to the ceiling.

The system architecture and data processing is based on the Robot Operating

System (ROS) and the Point Cloud Library (PCL). The 3D sensors used are

the Microsoft Kinect for Xbox One and point cloud data is collected at 20 Hz.

A new manual calibration procedure is developed using reflective planes. The

specified range of the used sensor is 0.8 m to 4.2 m, while depth data up to

9 m is used in this paper. Despite the fact that only six sensors are used and

that the Kinect sensors are operated beyond the specified range, a benchmark

of the accuracy compared with a Leica laser distance meter demonstrates an

accuracy of 10 mm or better in the final 3D point cloud.

A.1 Introduction

The use of 3D sensors in robotics and coordinated machine control applications is growing.

Some applications are the detection of humans in hazardous areas as well as collision

detection and avoidance for multi-machine control. Many state-of-the-art 3D sensors

generate large datasets in forms of point clouds. For example, the Microsoft Kinect for

Xbox One (Kinect V2) sensor and the RealSense camera from Intel. These sensors have a

limited range and field of view. Hence, in order to cover a larger volume, several of these

sensors must be used to cover the entire volume, see for example [1]. One challenge with

3D sensors and point clouds is the large datasets generated. For example, the Kinect V2

sensor requires a bandwidth of several gigabits per second, and there is a limitation on

how many such sensors can be connected to one computer via USB3. Hence, there is a

need for embedded solutions which process data locally at the sensor nodes. Then, these

nodes only transmit reduced, processed data to a central node which in turn collects the

information from all the sensor nodes. The central node can then build up the global 3D

map and perform the application-specific tasks.

3D sensors based on structured light are not suitable for use in applications requiring

multiple sensor nodes, because of interference of the emitted structured light between the

sensor nodes. In [2] a solution was presented where vibration motors were attached to

each sensor to mitigate the problem. However, this solution reduces the accuracy of the

sensors as well as increases complexity. In our work 3D sensors based on structured light

are avoided and sensors based on the time-of-flight principle are used instead.





    
   

3D mapping using multiple depth sensors is an intensively active area of research.

However, much of the research is currently focused on non-stationary sensors, i.e. typically

for automotive use such as [3]. Other proposed methods consist of fixed position sensors

where only the orientation is updated to increase the total field of view of the sensor such

as [4], where a 2D Light Detection And Ranging (LiDAR) sensor is reoriented during

capture. However, increasing field of view in this manner also reduces the frame rate.

Multiple RGB-D cameras at fixed positions and orientations for environment mapping at

short range are used by [5] and [6].

In [7], a potential industrial use-case is described for the work presented in this paper.

Offshore drilling rigs are using increasingly more automated control systems to reduce

the number of operators needed on the drill floor. The distance between the well centers

such as described in [7] is typically ten to twelve meters, which matches well with the

distances considered in this paper. Accurate and real-time 3D point cloud data would

enable the development of new applications. For example, people detection on the drill

floor, detecting failure of encoders used for machine positioning and thus redundancy for

autonomous control systems.

This paper will use RGB-D sensors beyond specified recommended range to see if they

still provide enough accuracy for low-resolution industrial safety applications.

A.2 Experimental Setup

A.2.1 Environment

In this paper, the industrial environment to be mapped is one of the Robotics Labs at the

University of Agder depicted in Figure C.1. This lab functions as a large robotic cell where

both industrial robots and humans need to operate. Thus, it is crucial that the positions

of the human workers are known so that safety systems can be developed for the robots. A

map of the space without equipment is shown in Figure A.4 where it can be seen that the

floor space is approximately 10 m× 15 m. Subtracting walls yields a polygon shaped floor

surface of approximately 137 m2. The ceiling height is above five meters, but the focus of

this paper is to detect personnel at walking height. Thus, the volume from the floor up to

approximately two meters should be fully mapped. To cover the entire worker if arms are

raised, or if the person is jumping, climbing or similar is currently not part of the scope.

A.2.2 Hardware

To map the volume described above, multiple sensors must be used. In this experiment, six

Kinect V2 are used. These are RGB-D cameras that give depth measurements based on

an active Infra Red (IR) sensor using the time-of-flight principle. The depth cameras have

a specified operating range of 0.8 m to 4.2 m, an optical field of view of 70◦(H)× 60◦(V)

and an image resolution of 512 px× 424 px [8]. Even if it is well beyond the specified

range, the sensors are used with a range up to nine meters in the experiment presented

in this paper so that the entire required volume can be mapped. Note that the specified

range of the Kinect V2 sensor applies to reliable human joint tracking. However, in [9] it





         

Figure A.1: A Robotics Lab at the University of Agder is used as the example case of an

industrial environment. The lab consists of two rail-mounted ABB IRB4400 robots, one

ABB IRB2400 robot mounted on a GÜDEL gantry and a processing facility.

is documented that point cloud data is obtainable even at larger distances. Further, [9]

states that the standard deviation of the depth measurements increase rapidly from nine

meters and that darker colors yield lower depth accuracy than brighter colors in general,

as expected for this type of sensor.

Each of the described cameras are connected to an NVIDIA Jetson TX2 Development

board. These boards process the sensor data before sending a compressed stream via

Gigabit Ethernet to a Personal Computer (PC). This PC is equipped with an Intel Core

i5-2500 Central Processing Unit (CPU), 8 GiB system memory and an NVIDIA GeForce

GTX TITAN Graphics Processing Unit (GPU), which in turn has 2688 CUDA Cores and

6 GiB memory.

A.2.3 Software framework

The communication between the sensor nodes and the central PC is handled by the

open-source Robot Operating System (ROS) [10] running on Ubuntu 16.04. An illustration

of how the ROS topics and nodes are connected is given in Figure A.2. The ROS package

IAI Kinect2 [11] handles the sensor input in the node /snN where N is the sensor number.

It uses the rectified depth image- and camera information topic to generate the point

cloud topic /snN/sd/points nocolor. This point cloud topic is read by a compression node,

/snN compression. As described in [12], the compression node transforms the point cloud

into the global coordinate system using the given position and orientation of the IR camera.

Further, it filters the data using a crop filter to remove non-relevant points before applying

an octree-based compression scheme. This returns the topic /snN/wp3/pc2 compressed

which is a serialized point cloud that also contains an intensity value representing the





    
   

point density in the octree leaf nodes. On the master node, all the compressed streams are

received by the /decompressor node. This node reconstructs the point clouds including the

intensity value. These point clouds are output as the topics /master/snN/pc2 decompressed.

SensorNode6
...

SensorNode2

Master

SensorNode1

/sn1 /sn1/sd/camera info

/decompressor /master/sn1/pc2 decompressed /gpuvoxel

/sn1/wp3/pc2 compressed

/sn1 compression/sn1 ir optical frame /tf

/sn1/bond

/sn1 points xyz

/sn1 bridge
/sn1/sd/image depth rect

/sn1/sd/points nocolor

/master/sn2/pc2 decompressed

/master/sn6/pc2 decompressed

node topic

...

Figure A.2: Software setup using ROS architecture.

A.3 Sensor Placement and Calibration

The local coordinate system used for the Kinect V2 in this paper has its origin in the

center of the IR sensor. The X-axis increases to the sensor’s right, Y increases down and

Z increases out from the sensor. Traditionally, the rotations around the X-, Y- and Z-axis

are Roll, Pitch, and Yaw respectively. However, it is more intuitive seen from the local

camera coordinates to use the order Pitch, Yaw, and Roll as the Z-axis is pointing forward.

Therefore, to avoid confusion it is decided to only use the terms RotX, RotY and RotZ





         

for rotations around the X-, Y- and Z-axis of the Kinect V2 body frame as shown in

Figure A.3.

Y

X

Z RotY

RotZ

RotX

Figure A.3: The Kinect V2 coordinate system used. Illustration based on Xbox-One-Kinect,

courtesy of Evan-Amos, Wikimedia Commons 2014.

The RGB-D Sensors are mounted with an approximate initial orientation of zero

degrees RotZ and =150 degrees RotX. That is, facing 60 degrees downwards. Initial RotY

is set dependent on sensor position. This initial sensor position (X,Y,Z) is measured using

the Laser Distance Meter (LDM) Leica Disto D4a BT. With all sensors tilted 60 degrees

down from horizontal, a vertical field of view between =90 and =30 degrees is obtained.

Assuming a horizontal distance between two facing sensors of ten meters yields sensor

overlap after five meters horizontally. Thus, the highest point of the intersection between

the two cameras is

h = Zs −
10m

2
· tan(30◦) = 5 m− 2.887 m = 2.113 m (A.1)

where Zs is the mounting height of the sensors and h is the fully covered height. This

height is sufficient to cover the described volume. However, to increase the coverage of the

central working area between the robots, most sensors are tilted up approximately ten

degrees giving a RotX of approximately =140 degrees.

Figures A.4 and A.5 show how the sensors cover the described volume using the updated

RotX. All sensors are mounted at near five meters height and tilted down. Thus, the

colored shapes in Figure A.4 indicate the approximate coverage of the individual sensor

disregarding equipment shadows as seen from above. An arc and a line illustrate the far

and near floor coverage limits respectively. The sensors are limited to a measurement

depth of nine meters and the arcs show where this distance is reached at zero elevation.

The lines close to the sensors illustrate where the lower field of view reaches the floor. The

same field of view is illustrated vertically for sensor 1 to 4 in Figure A.5.

Calibration of the intrinsic parameters for all the cameras is covered in [13] where

also an automatic calibration scheme for extrinsic parameters is developed. Meanwhile,

calibration of the extrinsic parameters is performed manually. The motivation is to align

the point clouds received from the cameras with each other and with the global reference

system. Thus, the following manual calibration steps have been performed for each camera:

� Set initial transformations to values measured with the Leica LDM and set all

rotations to zero.





    
   

� Place at least three white tables, or similar reflective surfaces with a known offset

from the floor, behind each other at the bottom, middle and top of the camera’s

field of view. The planes should be horizontally centered in the camera image.

� Tune the RotX so that the depth measurements of the table surfaces are horizontally

aligned. Then adjust the Z offset so the measurements match the actual table

heights.

� Move the tables beside each other on the left, center and right of the camera’s field

of view. The planes should preferably be vertically centered in the image.

� Tune RotY so that the planes align horizontally. Verify that the heights of the tables

are still correct and adjust Z offset if needed.

� Update RotZ, X, and Y to align with known coordinates and lines in the environment.

An example can be seen in Figures A.7 and A.11 where yellow lines correspond to

X=2 m, Y=2 and X=7 at height Z=0 in global coordinates.

Note that the RotX, RotY, and RotZ will affect each other unless calibrated in the

described order. When all cameras are calibrated, the tables and other known geometries

are used for verification of point cloud alignment between the sensor nodes.

1

2

3

4

5

6

Figure A.4: Orthogonal map illustrating final placement and orientation of sensor 1 to 6.

The global origin is located at the bottom right and the grid size is 1 m.

A.4 Experimental Results

It is possible to map most of the described volume using only six depth cameras limited

at nine meters. The chosen placements and orientations yield acceptably small blind spots
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Figure A.5: A perspective of the mapped volume illustrating vertical coverage of sensor 1

to 4. Sensor 5 and 6 are omitted from the illustration for clarity. The blue area indicates

the height found in Equation (A.1). A 1.8 m tall person is included for reference.

below the sensors. This can also be seen in Figures A.4 and A.5. The complete list of

calibrated camera poses is given in Table A.1. Note that ROS static transform rotation

order is RotZ, RotY, RotX according to Fig. A.3

Table A.1: Manually calibrated sensor positions in meter and orientations in degrees.

N X Y Z RotZ RotY RotX

1 9.975 0.260 4.898 44.977 -0.859 -138.598

2 0.247 0.285 4.960 -46.696 -1.146 -139.573

3 9.850 7.555 4.950 88.064 -1.375 -139.630

4 0.138 7.437 4.930 -89.668 -0.573 -148.396

5 6.395 13.550 4.954 154.870 -0.745 -138.255

6 0.087 14.660 4.990 -131.207 0.000 -134.645

The Kinect V2 cameras have rather noisy depth measurements at the implemented

range. Thus, only a visual estimation of the experienced overall system accuracy is made.

Here, the distance between the two gantry tracks and the two robot tracks are measured

in both ends using the Leica LDM. These four distances cover multiple sensors and are

in the region of particular interest. The same distances are evaluated in the point cloud

data. Figure A.6 shows how the measurement positions are read from the combined

accumulated point clouds. A cross, made with a two-centimeter wide retroreflective tape

on a black plastic plate, is placed at the point to measure. As the black background is

mostly invisible to the depth cameras, the retroreflective cross is easily found by visual

estimation of the two crossing lines. It is also noted that the high reflectivity of the tape

reduces noise in the depth measurements. This is observed as stable repeatable points

at the tape position whilst other surfaces have more noise. The plates are also visible in

Figures A.11(c) to A.11(f).

In Table A.2, known distances measured with the Leica LDM are shown. Further, the

distance calculated between the estimated points in the combined accumulated point cloud

is given. The error between the measured distance and the estimation is between two





    
   

(a) Point clouds (b) Photo

Figure A.6: A reflective cross on a black background. Colorized combined point cloud

with a yellow dot that indicates current read point in (a) and a photo in (b).

and ten millimeters. This is less than the accuracy of the individual sensor and is likely

a result of visually estimating the coordinates in the combined point cloud as described.

Nevertheless, it shows that the sensors are fairly well aligned with each other as sub-pixel

accuracy is obtained.

Table A.2: Actual distance, DLDM, estimated distance, DPC and error in millimeters.

Description DLDM DPC Error

Distance between gantry tracks start 6732 6722 10

Distance between gantry tracks end 6684 6686 -2

Distance between robot tracks start 1476 1484 -8

Distance between robot tracks end 1555 1548 7

The angular resolution between measurements is given by

φ =
α

s
(A.2)

where α is the optical field of view and s is the amount of measurements captured by the

image sensor. Thus, the distance between two measurements forming an isosceles triangle

from the sensor is calculated by

r(z) = 2z · sin(φ
2
) (A.3)

where r(z) is the space between measurements and z is the distance from the sensor.

Examples are listed in Table A.3.

Table A.3: Resolution as described by Equations (A.2) and (A.3). r(z) is shown at

maximum rated and maximum used distance.

Direction α s φ r(4.2 m) r(9 m)

Horizontal 70◦ 512 px 0.137◦ 10.0 mm 21.5 mm

Vertical 60◦ 424 px 0.142◦ 10.4 mm 22.3 mm





         

Figure A.7: The combined (accumulated) point clouds of all sensor nodes with colorized

points. All six sensors are successfully aligned.

A.5 Discussion & Conclusions

In this paper, a relatively large industrial robot cell was mapped and monitored using six

3D sensor nodes. The sensor nodes were calibrated manually using white table planes

in various positions, and accuracy was benchmarked using retroreflective tape on black

background against measurements from a Leica laser distance meter. In [13], the sensor

calibration in the same volume was performed pairwise using the Iterative Closest Point

(ICP) algorithm. It turns out that the manual calibration procedure presented in this paper

results in a better overall calibration (by a factor of approximately 10, ie. approximately

10 mm vs 10 cm.) compared with an automatic ICP based procedure. One reason for this

result is the fact that the sensors have little overlap due to the relatively large volume and

Figure A.8: The combined (accumulated) point clouds of all sensor nodes with colorized

points. (Orientation is similar to Figure A.11(d).)





    
   

Figure A.9: The combined (accumulated) point clouds of all sensor nodes where points

from each node have a separate color.

Figure A.10: The combined filtered (accumulated) point clouds of all sensor nodes where

points from each node have a separate color. Intensity illustrates the number of points

within the 4 cm× 4 cm× 4 cm grid.

overlap is required by the ICP algorithm to achieve good calibration. Another reason is

the fact that the ICP algorithm works best when the angle between the sensor pair to be

calibrated is relatively small, while in the work presented in this paper this angle is large

(up to 180◦).

Manual calibration is time-consuming. In the work presented in this paper, the manual

calibration procedure took approximately two hours per sensor. In order to be able to

scale up the system to include many more sensor nodes an automatic or semi-automatic

procedure is desirable. In [12] it was found that the embedded processing solution of local

3D point cloud data was scalable up to a total of 440 sensor nodes using Gigabit Ethernet.

One approach to reduce the overall time required for calibration would be to use an ICP

based automatic calibration procedure as a starting point for the manual fine-tuning.

In this paper, the placement of the sensors was selected based on a manual judgment

and not based on an optimization procedure. Optimal placement of 3D sensors in a

volume is an area that requires more research. Especially if there are requirements such as

redundancy where certain areas must be covered by at least two sensors. For example,





         

(a) Node 1 (b) Node 2

(c) Node 3 (d) Node 4

(e) Node 5 (f) Node 6

Figure A.11: RGB image as seen from the respective sensor nodes

when the large GÜDEL gantry moves towards the middle of the workspace it casts large

shadows in the depth data. In order to overcome shadows, redundancy requirements must

be specified for the regions of particular interest. In [1] an optimization method based on

mixed integer linear programming and discretization of the volume into smaller cubes was

used. That solution suffered from a large number of variables when linearizing nonlinear

constraints.

Future work will focus on 3D sensor placement optimization, fast and accurate sensor

calibration, and use of the 3D point cloud data in applications such as collision detection

and avoidance.
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