Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish

Craig Longmore, Clive N. Trueman, Francis Neat, Per Erik Jorde, Halvor Knutsen, Sergio Stefanni, Diana Catarino, James A. Milton, Stefano Mariani

This is the author's version of an article published in the journal:

Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71(9), 1312-1323

Oceanic scale connectivity and life cycle reconstruction in a deep-sea fish

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Canadian Journal of Fisheries and Aquatic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>cjfas-2013-0343.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Jan-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Longmore, Craig; University of Southampton, National Oceanography Centre, Ocean & Earth Sciences
Trueman, Clive; University of Southampton, National Oceanography Centre
Neat, Francis; Marine Scotland—Science, The Marine Laboratory,
Jorde, Per Erik; Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Department of Biosciences, University of Oslo; Institute of Marine Research,
Knutsen, Halvor; Institute of Marine Research; Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Department of Biosciences, University of Oslo; Institute of Marine Research,
Stefanni, Sergio; LARSys – Associated Laboratory & Centre of IMAR of the University of the Azores, Department of Oceanography and Fisheries
Catarino, Diana; LARSys – Associated Laboratory & Centre of IMAR of the University of the Azores, Department of Oceanography and Fisheries
Milton, James; University of Southampton, National Oceanography Centre
Mariani, Stefano; The University of Salford, School of Environment & Life Sciences |
| Keyword: | Deep-sea ecology, POPULATION STRUCTURE < General, Otolith microchemistry. GENETICS < General, Stable isotope analysis |

http://mc06.manuscriptcentral.com/cjfas-pubs
Oceanic scale connectivity and life cycle reconstruction in a deep-sea fish

Longmore C.*, Trueman C. N.a, Neat F.b, Jorde P.E.c, d, Knutsen H.c, d,e, Stefani S.f, Catarino D.f, Milton J. A.a & Mariani S.g

a: Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton S014 3ZH, UK
b: Marine Scotland—Science, The Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
c: Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316 Oslo, Norway
d: Institute of Marine Research, Flødevigen, N-4817 His, Norway
e: University of Agder, Department of Natural Sciences N4604 Kristiansand, Norway
f: LARSyS – Associated Laboratory & Centre of IMAR of the University of the Azores, Department of Oceanography and Fisheries, 9901-862 Horta, Azores, Portugal.
g: School of Environment & Life Sciences, The University of Salford, Greater Manchester M5 4WT, UK

* Corresponding author: c.longmore@hotmail.com
Abstract

As human exploration and harvesting moves to the high seas, ecological understanding of the deep-sea has become a priority, especially in those commercially exploited species whose life cycle, habitat use and demographic structure remain poorly understood.

Here we combine otolith trace element and stable isotope analyses with microsatellite data to investigate population structure and connectivity in the migratory deep-sea black scabbardfish, *Aphanopus carbo*, sampled along a latitudinal gradient spanning much of the known species range in the north-east Atlantic.

In each sampled life stage, otolith trace element and oxygen isotope compositions are similar between fish from different capture locations, but otolith compositions vary greatly between life stages. Oxygen isotope compositions indicate ontogenetic migrations from relatively warm water conditions during larval growth to cooler waters with increasing age. Analysis of microsatellite DNA also suggests lack of genetic structure between the areas sampled.

The multidisciplinary approach employed collectively suggests that *A. carbo* individuals undergo an ocean-scale ontogenetic migration, beginning with spawning in southern, warm water Macaronesian areas (potentially dominated by Madeira), followed by a large proportion of immature fish moving to and feeding on the continental slope in northern areas.

The results lend the first conclusive evidence for defining the life-history circuit of this species and the perception of its stock structure across the north Atlantic.

http://mc06.manuscriptcentral.com/cjfas-pubs
Keywords: Deep-sea ecology, population structure, habitat use, otolith microchemistry, stable isotope analysis, stock identification.
Introduction

For most deep-sea fish, there is rather limited information on general ecology, life cycles and population structure (Begg et al. 1999). In particular, the extent of large-scale migrations in deep-sea fish has not been well documented (Beamish et al. 2005), mainly due to the challenges associated with sampling and tracking (Starr et al. 2000). Lack of data on fish life history and ecology is particularly concerning when species are commercially exploited, and managed on a stock-specific basis.

The assessment of stock structure in marine fish populations should take into account processes acting at different spatial and temporal scales, including larval transport, recruitment, feeding, spawning, adaptation and past geographic isolation (Begg and Waldman 1999, Waples and Gaggiotti 2006). Molecular genetics has been used successfully to define management units (Hauser and Carvalho 2008, Waples et al. 2008), however, when used in isolation, genetic methods can struggle to resolve local demographic and life-history patterns over ecological time scales (Lowe and Allendorf 2010). Complementary methods exploit variation in the physiological and chemical make-up of an individual, providing insight into patterns of spatial structuring over time scales relevant to individual movements (Begg et al. 2005). Two such methods employ trace element concentrations and stable isotopes in the otolith as natural tags (Campana 2005, Elsdon et al. 2008).

Trace element analysis of otoliths for stock discrimination is based on the incorporation of minor and trace elements from the surrounding waters in the metabolically inert otolith, which becomes a permanent record of the chemical characteristics of the environment inhabited by the fish (Elsdon and Gillanders 2003, Stransky et al. 2005 Sturrock et al., 2012). Thus, the chronological properties of the
Otolith can also be exploited by conducting spatially and temporally resolved chemical analyses, effectively producing a record of variation in water chemistry experienced throughout the entire life of the sampled individual. From this information it is possible to infer location, migration, spawning events and habitat use (Campana et al. 1994, Sturrock et al., 2012). Similarly, the stable oxygen isotope composition of the otolith (commonly expressed as δ¹⁸O values) preserves an indirect record of ambient water temperature and salinity, and thus depth inhabited by the fish throughout its life (Kalish 1991, Hoie et al. 2004, Sherwood and Rose 2003, Thorrold et al. 1997). Consequently, the isotopic composition of otolith aragonite can be employed to reveal temperature-related aspects of fish location retrospectively and thus infer ontogenetic migratory behaviour (Ashford and Jones 2007, Longmore et al. 2011, Rooker et al. 2008, Trueman et al. 2012).

Recent studies in the North Atlantic suggest that otolith microchemistry can be an effective tool in detecting patterns of spatial and temporal stock structuring in deep-sea species (Shephard et al., 2007, Carlsson et al., 2011, Longmore et al. 2011), which can complement and add insights to population genetic data (Knutsen et al. 2012). While several previous studies have used various combinations of genetic, trace element and stable isotope data to infer movements or stock structure (e.g. Smith and Campana, 2010; Carlsson et al., 2011, Longmore et al. 2011), we know of no studies that have combined employed genetic, trace elements and stable isotope analyses on the same individual fish to infer movements and stock structure. The use of natural markers such as otolith trace elements, stable isotopes and multi-locus genotypes can provide a wealth of information spanning different temporal scales. The trace element composition of otolith aragonite is influenced both by the fish's surrounding...
environment and physiology (Elsdon et al. 2008, Sturrock et al. 2012). As the otolith is an incremental structure, spatially resolved sampling provides a record of individual movements and life history over the lifetime of an individual fish.

Genotypic markers on the other hand, are inherited and do not change during an individual's life, so genotypic variation accumulates over several generations as a result of microevolutionary forces (Lowe and Allendorf 2010). Genetic divergence in deep sea fishes is generally low or nearly absent, e.g. the slender armourhead Pseudopentaceros wheeleri (Martin et al. 1992), wreckfish Polyprion americanus (Ball et al. 2000) and the alfonsino Beryx splendens (Akimoto et al. 2006). However, although most deep sea fish display low values of genetic divergence, some do display significant genetic structure, like the roundnose grenadier Coryphaenoides rupestris (Knutsen et al. 2012) and bluemouth Helicolenus dactylopterus (Aboim 2005). Genetic structure in deep sea fishes may also reveal cryptic patterns. For example no evidence of population structure could be found in the orange roughy (Hoplostethus atlanticus) in the North Atlantic (White et al. 2009). This was suggestive of high dispersal of adults which may not show any homing behaviour but aggregate for spawning as the cause of a panmictic population. However, Carlsson et al. (2011) recently identified fine scale population structure in Hoplostethus atlanticus between raised and flat regions of the Porcupine Slope, corresponding to differences in behaviour inferred from otolith stable isotope analyses.

Used in tandem, otolith and genetic markers can provide complementary information, which may give a deeper insight into the stock structure, movement and lifecycle of fish. Here, our aim is to assess population structure and test migratory hypotheses in the black scabbardfish, Aphanopus carbo (Lowe, 1839); a deep-sea predatory fish of significant commercial importance (approximately 7000 tonnes in
European waters in the last decade (ICES, 2008)).

A. carbo has a wide distribution across the North Atlantic, recorded on both sides
of the Atlantic. It occurs only sporadically north of the Scotland-Iceland-Greenland
ridges. In the North Atlantic it inhabits the continental slopes, seamounts and ridges,
between 200 and 1800m depth (Nakamura and Parin 1993). The early life stages of *A.
carbo* are assumed to be mesopelagic (Nakamura and Parin 1993), with a lifestyle that
becomes more benthopelagic as the fish grows, with vertical feeding migrations
reported at night (Merrett and Haedrich 1997). In the North Atlantic, *A. carbo* spawns
between the Macaronesian islands of Madeira (Figueiredo et al. 2003, Neves et al.
2009), the Canaries (Pajuelo et al. 2008) and, as recently found, the Azores (Stefanni,
pers. obs.). Generally, specimens caught in this area are larger, with all stages of
maturity represented, whereas the majority of fish found in more northern areas are
immature or in a post spawning state; in Rockall and around North-western Scotland, *A.
carbo* are smaller (61-117cm) (Figueiredo et al. 2003) and immature (Anon 2000, Kelly
et al. 1998).

Despite the uncertainties about population biology, the fishery in the NE Atlantic
is currently managed as two separate stocks, one in the south (ICES sub-area IX) and
one in the north (ICES sub-areas V, VI, VII and XII), although this is presently being
reconsidered (ICES 2012). It has been hypothesized that *A. carbo* in the North-east
Atlantic may comprise one single stock, with a southern spawning area (around
Madeira and the Canary islands) and a northern feeding ground (Swan et al. 2003),
connected by large scale migrations (Figueiredo et al. 2003). Such a hypothesis implies
an extensive migration across the NE Atlantic that could potentially cross a variety of
water masses with different physicochemical properties (Barbero et al. 2010, van Aken
2000). Indeed, the salinity and temperature regime differs significantly from warm
southern regions (Madeira, Azores, Portugal slope) to that of cold Northern areas
(Rockall). Southern localities are particularly susceptible to the outflow of high salinity
Mediterranean water, whereas Rockall is influenced by the North Atlantic current and
waters originating in the Labrador sea (Paillet et al. 1998).

Studies of genetic structure of *A. carbo* populations are presently either
inconclusive (Quinta et al. 2004) or focused on phylogeographic history (Stefanni and
Knutsen 2007), and recent multidisciplinary efforts to discriminate individuals
recovered from different areas focused only on the southern north east Atlantic (Gordo
et al. 2009). Therefore, the specific aims of this study were to: i) assess the patterns of
area and habitat use across the life cycle of *A. carbo*, using otolith chemistry; ii) use
genotypic data to extrapolate the long-term connectivity implications of the
reconstructed life-history strategy; iii) Use collective evidence to reappraise the
population structure in this oceanic species.
Materials and Methods

Sampling and laboratory procedures

Black scabbardfish (*Aphanopus carbo*) were collected from seven locations across the North Atlantic: Rockall (including the Anton Dohrn Seamount), the western Irish Slope, the Hebridean Shelf, the Bay of Biscay, Madeira, the Azores and the Portuguese slope off Sesimbra, (Fig. 1, Table. 1). All fish from Rockall, Anton Dohrn, Irish Slope, Hebrides and Bay of Biscay, were caught by bottom trawling and therefore from approximately 5 m above the seabed. Fish from the three southern locations were caught by long-line.

All fish ranged in size from 63 to 135 cm total length (TL). Maturity was assessed by gonad visual assessment, with maturity level assigned on a scale of 1-5 (0: immature 1: resting, 2: developing, 3: mature, 4: Spawning, 5: post spawning) (Figueiredo et al. 2003). All fish were measured to the nearest 0.5 cm (TL), weighed to the nearest 1 g, and otoliths collected on board from the Rockall, Madeira, Azores, and Portuguese Slope areas.

For DNA isolation, white skeletal muscle or gill tissue was taken from fresh specimens and either preserved in 96% ethanol at sea, or newly caught fish were frozen immediately on board the ship and, subsequently prepared in the laboratory.

Trace element analyses

Between 23 and 25 individuals per location were randomly selected (over all years sampled) for otolith trace element analysis. Before elemental analysis, otoliths
were weighed using a Mettler Toledo microbalance to the nearest 0.001 g. Elemental
data were acquired using a New Wave UP193FX (Electro Scientific Industries Europe
Ltd, Cambridge, UK) laser ablation system coupled to a Thermo Scientific X-Series II
ICP-MS (Thermo Scientific, Bremen, Germany). The following element/isotopes were
quantified: \(^{7}\)Li, \(^{24}\)Mg, \(^{43}\)Ca, \(^{44}\)Ca, \(^{55}\)Mn, \(^{59}\)Co, \(^{60}\)Ni, \(^{65}\)Cu, \(^{66}\)Zn, \(^{88}\)Sr, \(^{137}\)Ba, \(^{238}\)U. The analysis
parameters were as follows: spot size: 35 \(\mu\)m, pulse rate: 20 Hz, energy: 60%
(optimised), sweeps: 105, channels per mass: 1, channel: 0.02amu, acquisition time: 20
seconds, dwell time: 10ms, "wash" time between shots: 40 seconds. Standard reference
materials SRM 612 and SRM 610 produced by the National Institute of Standards and
Technology (NIST) were used for calibration and to monitor reproducibility. All data
were internally normalised to counts on \(^{44}\)Ca to control for variable ablation efficiency
between otolith regions with relatively high and low organic contents. \(^{43}\)Ca counts were
used as a post-normalization check. Typical LODs were as follows: \(^{7}\)Li (3.53), \(^{24}\)Mg
(3.62), \(^{43}\)Ca, \(^{44}\)Ca (705.39), \(^{55}\)Mn (12.57), \(^{59}\)Co (0.72), \(^{60}\)Ni (1.16), \(^{65}\)Cu (1.89), \(^{66}\)Zn (5.05),
\(^{88}\)Sr (0.20), \(^{137}\)Ba (0.60), \(^{238}\)U (0.01).

A line of spots method was used to ablate each otolith, bisecting the annuli from
primordium to the edge (late adult stage) of the otolith to form a life history transect
(Supplementary material: Fig. S1.1). Following analysis, the laser pits were then
assigned to a life history stage based on otolith increment analyses (Morales-Nin et al.
2002). Laser pits were assigned to primordium (early larval), core (late larval),
transition (juvenile – end of year 1), and edge (late adult) stages. Fish from Rockall were
significantly younger (and smaller) overall than those captured from all other locations,
with their otolith radii on average approximately 80% of the size of those from the
other three locations. Therefore, the outer-edge data of Rockall fish were considered to
be representative of a “mid-life” life stage. To provide a comparison between fish caught

http://mc06.manuscriptcentral.com/cjfas-pubs
in Rockall and fish of a similar age and size caught in Azores, Madeira and Portugal slope areas, the radii of all otoliths were measured. A zone encompassing 80% +/-10% of the length of each otolith radius was identified and the laser shots within this zone were averaged for each fish to achieve a "mid-life" value comparable to otolith edge in fish caught in Rockall. For other life stages, the elemental concentrations from all spots falling within each designated life stage area in the otolith were averaged (Supplementary material: Fig. S1.1). The last three spots at the edge of each otolith in the Azores, Madeira and Portugal slope were thought representative of the latest adult phase (covering approx. 1-2 annuli) and the most recent environment inhabited by each fish and the last three spots of Rockall fish thought representative of a mid-life value.

Stable isotope analyses

From each area, five fish sampled for both genetic and trace element data were chosen randomly, and otoliths analysed for stable isotope compositions. Aragonite powder was micromilled from three regions, representing the core, mid and edge of the otolith representing larval, mid-life and late adult stages of life (Supplementary material: Fig. S1.1). Stable isotope analyses were performed on a Geo Instruments mass spectrometer at the University of Southampton following the procedure detailed in Longmore et al. (2011). Analytical errors (standard error on repeat analyses of standards) were < 0.1‰ for both $\delta^{13}C$ and $\delta^{18}O$ values.

Data analysis and statistical methods

Initial screening of trace element data and statistical analysis closely follow those
of Longmore et al. (2011). Elements found to be correlated with each other were included in further multivariate analyses but were subject to strict tolerance limits (Berk 1977), which measures multicollinearity within the model (Tabachnick and Fidell 2001). Ba/Ca values were found to be correlated with otolith weight; however, the slope of the relationship between otolith weight and the elemental concentration did not vary among locations and so this was adjusted for by subtracting the product of otolith weight and the common within-group slope from the elemental concentration (DeVries et al. 2002, Tuset et al. 2006).

A initial 'repeated measures' ANOVA approach (Chambers and Miller 1995) was used to account for non-independence of transect data sampled within each otolith for both microchemical and isotope data and to test in an easily interpreted approach whether the mean elemental and isotope ratios differed among sampling locations and between designated life stage data. Further details of the repeated measures analysis can be found in the supplementary material.

Based on overall chemical values, a stepwise discriminant function analysis (DFA) of the element/Ca ratios for each life stage was used to assess the ability of otolith trace element chemistry to assign individuals to the area of origin at each point in their life. The DFA was jack-knifed to determine the discrimination success between the sample areas using SYSTAT 8 (SYSTAT Software, 2002). Scatterplots of the first two canonical variable scores were then drawn to visualize this separation.

Linear mixed effects models using data from all laser spots were used to compare ontogenetic trends in the elemental concentration of otoliths from the four sample locations, and to explore the effect of environmental (location) and biological influences (age, sex, distance from core) on the ontogenetic element patterns. The
relationship between element/Ca ratios and otolith distances approximates a logarithmic trend, so element/Ca ratios were log$_{10}$ transformed and linear mixed effects models (lme4 package in R) fitted to partition variance in ontogenetic patterns to specific physiological and environmental variables.

Initially, for each elemental response variable, a 'global model' was built (equation 1), including all single fixed effects and their first order interactions (indicated by the "*" command below). Categorical factor variables are underlined.

\[
(E/\text{Ca}) = f (D_p + \text{Loc} \cdot \text{LS} + S + (D_p \text{*Loc}) + (D_p \text{*LS}) + (D_p \text{*S}) + (\text{Loc} \text{*LS}) + (\text{Loc} \text{*S}))
\]

where E/\text{Ca} is element/Ca, D$_p$ is distance from primordium, Loc is location caught, LS is life stage and S is sex.

Fish identity was coded as a random effect to account for non-independence and autocorrelation of the response variables (element/Ca). Models were run using the maximum likelihood (ML) method, and optimal models indicated by stepwise removal of variables and interaction terms, with model performance assessed through Akaike information criterion (AIC) values (Crawley 2007). The performance of the final model was assessed through residuals analysis including normality, homogeneity and autocorrelation.

Reconstructing depth from otolith stable isotope data

Following methods in Shepherd et al (2007); Longmore et al (2011) and Trueman et al (2013), depth profiles of water temperature and salinity for each
sampled location were recovered from the BODC data repository. Profiles of otolith oxygen isotope ($^{\delta^{18}O}_{\text{oto}}$) values expected at given depths were calculated using the algebraic relationships between temperature, salinity and otolith oxygen isotopes specifically adapted for deep water fishes (Longmore et al 2011, Trueman et al 2013). Measured $^{\delta^{18}O}_{\text{oto}}$ values were compared to the corresponding $^{\delta^{18}O}_{\text{oto}}$ profiles to estimate likely water depths (see Supplementary material: Fig. S1.2).

Genetic analyses

Genomic DNA isolation and screening of 11 microsatellite loci was carried out on a total of 651 individuals from seven sample locations, following published protocols. Some individuals failed to satisfactorily amplify at several loci and were considered to be partly degraded. For this reason, we elected to exclude all individuals from further considerations that failed at four or more loci. Due to the closely related, and morphologically similar, A. intermedius coexisting with A. carbo in the southern part of the study area, we screened the Azores and Madeira samples with species diagnostic mtDNA RFLP primers (Stefanni et al. 2009) and excluded all individuals identified as A. intermedius.

Population substructure in A. carbo was quantified by average F_{ST} over the 11 microsatellite loci (with 95% confidence limits calculated by jackknifing over loci), and tested for with log-likelihood allele frequency heterogeneity tests ("exact G-test" in GENEPOP '007). Robustness of genetic divergence (F_{ST}) estimates to potential confounding factors, including genotype scoring errors and intermixing with A. intermedius in the samples, was evaluated by linear regression of deviations from
expected (under Hardy-Weinberg equilibrium) genotype proportions (estimated by Wright’s fixation index, \(F_{ST} \)) on estimated \(F_{ST} \) within loci. Genetic similarities among individuals and population samples were visualized by Principal Component Analysis (PCA) and plotted in the multivariate space identified by the first two eigenvectors.

Integration of microchemical and genetic data: a combined approach

Between 23 and 25 individuals from Rockall, the Azores, Madeira and Portugal slope had both otolith trace element and genotypic information. For these individuals, all otolith and genetic markers were combined and analysed together to aid in the stock discrimination process. As otolith and genetic data represent different temporal scales, the chemistry for the pre-hatching/early larval stage was chosen for inclusion because in a migratory species such as A. carbo, the earliest life stage should most closely approximate the breeding population in the sample area.

Firstly a PCA using a correlation matrix was used to represent data with all variables included. In total, 88 individuals with multi-marker information were examined. Secondly, a non-parametric analysis of similarities, ANOSIM (Clarke 1993), was then performed using the program PAST v1.89 (Hammer et al. 2001) to test for the differentiation among the sampled groups. The ANOSIM rank-orders the values of a distance matrix among all observations (in our case, the Euclidean distance among individuals) and derives an \(R \) statistic, which expresses the ratio between the mean rank of between-group (\(R_b \)) and within-group (\(R_w \)) distances. To test for the significance of positive values of \(R \), the observed value is compared to the 95% confidence interval of a simulated distribution (in our case generated through 10,000
randomisations). R values were also generated and tested for significance for each pairwise comparison.

In addition, a Bayesian classification approach designed to combine different information types (Smith and Campana 2010) was applied to perform a stock classification simultaneously using the otolith mid-life trace element and genetic data. The Bayesian framework developed by Smith and Campana (2010) (performed using R and WINBUGS via the mixFish package) classifies a mixed population of unknown origin into one of several base populations of known origin (and the parameter values of the classified mixed samples are also used to refine the classification). In the case of A. *carbo*, we expect (based on previous data analysis) that there is a strong migratory component to the stock, and thus expect to find no distinct structure between the baseline populations, and poor classification. Non-informative priors were used for otolith element means, and pseudo-Bayes estimates of informative priors used for allele frequencies as described in Smith and Campana (2010). We set the juvenile aggregation in Rockall as the mixed sample to be partitioned among the Azores, Madeira and Portugal slope potential spawning areas.
Results

Otolith chemical life-history reconstruction

Single element values

Overall differences in mean elemental ratios among locations were not significant but all were highly significant between life stages (Table S1.1). Untransformed elemental ratios averaged by life stage and location can be viewed in the Supplementary material: Table S1.2.

Although not showing significant overall differences, some elemental ratios showed some variation among locations at each life stage. Within the primordial zone of the otolith (representing the prehatching/early larval phase), the Zn/Ca and Ba/Ca ratios differed most among locations (Fig. 2). Microchemical analysis of the late larval (core) zone of the otolith found that only Zn/Ca was variable between sample locations (Fig. 2). Variations among locations in the transitional zone of the otoliths were found for the Li/Ca, Mn/Ca and Ba/Ca ratios. Adult region (edge) microchemistry of the otolith revealed that the ratios Zn/Ca, and Ba/Ca were most variable among locations. Although a weak pattern of elemental variability among some pairs of locations at each life stage was found, ontogenetic changes in chemistry within locations were much more pronounced (Fig. 2), particularly for Li/Ca, Mn/Ca and Zn/Ca ratios, with values decreasing gradually from early larval to transitional phases with a large decrease into the adult stages. Details of variation in all elements/Ca ratios between sample locations and life stages can be found in the Supplementary material: Table S1.1 and Table S1.2.
Overall spatial and temporal patterns in otolith chemistry

Based on initial overall patterns of spatial variation in elemental concentration among locations, the ratios Li/Ca, Mn/Ca, Zn/Ca and Ba/Ca were chosen for preliminary inclusion in the DFA. The elemental ratios contributing most to classification differed depending on life stage. The DFA of early larval stage otolith chemistry was mostly driven by Li/Ca, Zn/Ca and Ba/Ca, and gave an overall jack-knifed classification success of 41% (Fig. 3). For core (late larval) otolith data, the overall jack-knifed classification success was also 41%, with Zn/Ca and Ba/Ca values contributing most to the classification. For the transitional phase, classification success was 40%, with Li/Ca and Ba/Ca values contributing most to classification (see Supplementary material: Table S1.3). A 42% classification was found at the late adult stage, with highest classification in Rockall (57%) and lowest in the Azores (21%)(Fig. 3). As Rockall individuals are considerably smaller than the other three locations, their “late adult” stage (otolith edge) would correspond to a “mid-life” range in fish from the other three locations. However, Rockall individuals were included in the “late adult” DFA as the edge chemistry represents the most recent environment of the fish and so would be useful to assess assignment of individuals to the area of origin based on area specific chemistry.

Linear mixed effect models were carried out to examine which physiological and/or environmental variables best explained ontogenetic variations in otolith element concentrations, using fish identity as a random effect. For each element, a model of element/Ca ratio as a function of linear distance from the otolith core was built for all fish. Residuals for each model were evenly spread but frequently departed from normality. This was a reflection of the relatively constant and high values of most element/Ca ratios in the otolith cores. Li/Ca, Zn/Ca, and Cu/Ca varied from primordium
to otolith edge indicating strong ontogenetic influences on otolith chemistry (Supplementary material: Fig S1.3-1.5). All ratios showed high concentrations in the core, followed by a prominent decrease and eventual stabilization in concentration with distance from the primordium (age). Sr/Ca values in all locations showed a similar pattern of an initial decrease in ratio values up to \(\sim 400-600 \ \mu m \) (age 1-2) from the primordium, which was followed by consistent, gradual increases in ratio values. Ba/Ca values show a gradual decline in early life (Fig. S1.5) up to approximately 700 \(\mu m \) from the primordium (age 2-3). Elemental profiles from all locations then show a stabilization of Ba/Ca followed a gradual increase in concentration after mid life and into the adult life stage. The linear mixed model identified location and sex as important variables influencing ontogenetic patterns in Li/Ca, Zn/Ca, and Cu/Ca.

Ontogenetic trends in Mg/Ca and Mn/Ca ratios are summarized in Fig. 4, as these ratios in particular showed evidence for variable life-history trends in Madeiran fish. The ontogenetic pattern of Mg/Ca values in fish from Madeira is extremely variable in early life with concentrations spanning the range from the other three locations (Fig. 4). Mg/Ca values are relatively stable in individual otoliths over the main portion of life but between-individual variance is greater in otoliths collected from Madeira than from the other three locations (Mg/Ca SD (\(\mu \text{mol mol}^{-1} \)): Rockall = 5.6, Madeira = 6.1, Azores = 4.6, Portugal slope = 3.2 (Fig. 4). Location contributed to variance in ontogenetic patterns in the mixed model analyses, but no influence of sex was detected on Mg/Ca values. Again adult fish recovered from Madeira showed more variability in Mn/Ca values in early life stages than fish collected from any of the other locations (Fig. 4). Location and sex were identified as variables that were strongly influencing ontogenetic patterns in Mn/Ca values.
Oxygen Isotope Analysis: water temperature reconstruction

Individuals from all locations show a common ontogenetic pattern of increasing δ¹⁸O values with age (Fig. 5, Supplementary material: Table S1.4). δ¹⁸O values indicate an average equivalent temperature of 13 (± 1) °C in the larval phase, 11.5 (± 1) °C in mid-life and 9 (± 1) °C in the adult stage. Among locations, there was no significant difference in δ¹⁸O values with the adjusted alpha of 0.005 (repeated measures ANOVA, F (3, 5) = 0.361, p = 0.78). Between life stages, differences were highly significant (repeated measures ANOVA, F (1.34, 6.7) = 21.03, p = 0.002).

Fish caught in the Rockall area show δ¹⁸O values corresponding to surrounding waters of 14 (± 1), 11 (± 1) and 10 (± 1) °C for early life stage, mid-life and adult phases respectively (Fig. 5). Estimated ontogenetic ambient water temperatures for fish caught on the Portuguese slope range from 13 (± 1), 12 (± 1) and 11 (± 1) °C, while for the Azores were 13 (± 1), 11 (± 1) and 6 (± 1) °C for early life stage, mid-life and adult phases respectively. Recovered values for Madeiran fish were 13 (± 1), 10 (± 1) and 8 (± 1) °C for early life stage, mid-life and adult phases.
Genetic Structure

The 11 microsatellite loci uncovered a near absence of genetic population structure over the sample area. The average F_{ST} over loci across the four focal locations was just 0.0004 with a 95% confidence interval (CI) of -0.0006 to 0.0013, thus broadly overlapping zero. Including additional samples (and pooling the two replicate Rockall samples) did not modify the overall picture of low spatial divergence, and average F_{ST} increased only marginally, to 0.0008 (95%CI: 0.0000 to 0.0015). No connection was found between deviations from Hardy-Weinberg genotype proportions (F_{IS}: data not shown) and F_{ST} among samples (linear regression, $R^2 = 0.055$, $P = 0.49$), nor when comparing F_{IS} within A. carbo to F_{ST} between A. carbo and A. intermedius ($R^2 = 0.0013$, $P = 0.55$), indicating robustness of our estimates to potential genotyping errors (null alleles and allele drop-out) and/or intermixing of species (Wahlund effect).

Considering pairs of samples, only the Azores-Madeira pair displayed a nominal statistically significant difference, however with a very low estimate of F_{ST} between them (0.0017: Table 2). Nine of the 28 (i.e., a third) pairwise F_{ST} estimates were zero or negative, and indicating an absence of genetic divergence among the samples. The remaining estimates were positive (range 0.0001 to 0.0043) and several of these must be judged statistically significant, also after applying the False Discovery Rate correction (Benjamini & Hochberg 1995). The temporal replicate samples from Rockall (ROC) were not different from each other, giving some indication of temporal stability at least over the short term (3 years).

PCA ordination of samples from the four focal locations (422 individuals, Fig. 6A)
and all locations (Fig. 6B) provided a picture of remarkable overlap among genotype
distributions, with virtually no appreciable differences among locations.

Integration of otolith-genetic data: a combined approach

Examining the PCA ordination of combined otolith-genetic data from the four
focal locations, it is clear that the general trend of overlapping variance is maintained
(Fig. 6C). The ANOSIM results (Table 3.) show that between-group variance is not
significantly greater than the within-group variance (hence an R-value close to zero).
Pairwise comparisons had no significant results, indicating lack of differentiation among
sample locations based on this multi-marker approach. The Bayesian analysis similarly
yielded poor classification success: using otolith element data alone, 75% credible
intervals on the posterior estimates of group proportions overlap, indicating a lack of
elemental differentiation between potential base populations. Using either the genetic
data or a combined approach, there is some suggestion of differentiation between the
Portugal slope (Sesimbra) and Macaronesian samples, but 95% credible intervals
overlap, again suggesting that any apparent distinction between populations is poorly
supported (Fig S1.6).

All variables (alleles or elements) for which more than 5 individuals had missing
data were removed, and any individuals with further missing data were also removed.
Therefore the Bayesian analysis had a sample of 11 fish from Azores, 14 from Madeira
and 22 from the Portugal slope (Sesimbra). It should be noted that the fact that
Sesimbra appears potentially more similar to Rockall than the others (genetically) may
reflect this differing sample size (especially as assigned individuals from the mix case
are used to define the characters of the base populations within the Bayesian method.
Discussion

Otolith microchemistry: Reconstructing patterns of area and habitat use

At all life stages, a strong overlap in otolith elemental composition was evident across locations. This suggests either overall panmixia in this highly mobile deep-sea species or that the physicochemical environments of these locations are similar. The former is more likely as it has been shown that the more southern locations of this study differ significantly in temperature and salinity (which affect elemental uptake) to that of the Northern location (Ellett and Martin 1973, van Aken 2000). Similarly, the stable physico-chemical water parameters of the deep-sea (Pörtner et al. 2004) and the large geographic range of samples presumes greater variation in water chemistry among locations than from year to year. Thus, differences in otolith chemistry among years of capture should be relatively stable, as it was indeed detectable in another deep sea species with a similar distribution range (Longmore et al. 2011). A similar study of the otolith microchemistry of the macrourid fish, C. rupestris, from four locations in the NE Atlantic (two of which broadly correspond to two of the focal locations investigated here) demonstrated strong location-specific variation in otolith chemistry at all life stages (Longmore et al. 2011). Furthermore, in the present study, oxygen isotopic values recovered for the larval portion of otoliths from A. carbo caught at Rockall appear to correspond to water temperatures that are nearly twice as high as those typical of the Rockall area, suggesting that Northern fish caught in Rockall have a larval phase in southern (warmer) waters. This indicates that a significant number of juvenile A. carbo make a northerly migration from southern waters. What was not clear, however, is whether any of the adult A. carbo sampled in Maderian waters had migrated back from Rockall; their isotopic and elemental signatures were simply indistinguishable from all

http://mc06.manuscriptcentral.com/cjfas-pubs
areas.

The strong influence of life stage on element patterns suggests common ontogenetic changes in either physiology or ambient water chemistry. All elements showed significant ontogenetic changes in chemistry (Supplementary material: Figs S1.3-1.5) with a general pattern of a longitudinal decrease in elemental ratios. Ontogenetic physiological influences are likely to be responsible for changes in elemental ratios such as Mg/Ca (Sturrock 2012), but currently the influence of physiological processes on trace element partitioning throughout ontogeny is not fully understood.

Some elemental profiles reveal trends that may be related to variation in life history trajectories. Mn/Ca and especially Mg/Ca identify the Madeiran fish as having unusually varied concentrations in the larval/early juvenile portion of otoliths. This variability appears to stabilize at the same period as fish from the other three locations (Fig. 4). This may be indicative of Madeira containing fish that were spawned in a variety of locations. Therefore Madeiran waters may not only act as a source in the NE Atlantic as a major spawning site, it may also be a sink for individuals from other spawning aggregations. The pattern of otolith microchemistry observed reflects ontogenetic migrations both laterally and vertically. Based on the consistent ontogenetic increase in δ18O values in all locations, fish from all regions appear to be migrating to deeper waters at similar times, thus the highly variable chemistry in Madeiran fish in particular is more likely to reflect a degree of lateral migratory behaviour. However, the possibility of a more complex water column around Madeira may also play a role (van Aken 2000).
Reconstructing a life-history circuit

Previous studies have suggested a single stock unit of *A. carbo* in the NE Atlantic, with a spawning ground in the south (e.g. Madeira) and a sub-adult feeding ground in the north (i.e. Rockall), but none were able to rigorously test the idea. Swan et al. (2003) found small differences between the overall chemical values of the otoliths from these study areas. A study on the reproductive cycle of *A. carbo* in the NE Atlantic showed that the largest specimens caught were from Madeira, where all stages of maturity were present, and the smallest specimens were found in the Rockall region (Figueiredo et al. 2003). This length separation between North and South was also found by a similar separate study with an expanded length dataset (Carvalho and Figueiredo 2001). Furthermore, life circuit continuity between North and South was inferred based on the gonadal maturation cycle (Santos et al. 2013).

The hypothesis of a life history migration of *A. carbo* with a southern spawning ground (Madeira, Azores and Canaries area) and a Northern feeding ground (Rockall region) (Figueiredo et al. 2003) was supported by a number of results achieved by this study. Examining the DFA results in more detail, classification accuracy in the Madeira sample increased gradually from 45% in the primordium, to 71% in the transitional phase, indicating that a large proportion of fish stay resident in this area in early life. However, in the adult phase, classification accuracy decreased to a minimum (38%). This further supports the view that Madeiran waters contain a mix of fish from several locations at the adult stage, indicating partial migration, whereby both migratory and resident individuals (Chapman et al. 2012) can be found in what probably represents a critical spawning ground for the species. Although not reflected in the DFA results, *A. carbo* has been reported to be present all year round in the Azores suggesting there are 25
also resident fish around this location (Stefanni, pers. obs.). Comparing the early-stage elemental and isotope values from all sample locations revealed an indistinguishable chemistry. Although this suggests that all fish hatched in a similar environment, it is not possible to infer whether they all effectively hatched around Madeira, or rather some were spawned somewhere else that had similar environmental conditions.

The δ^{18}O data recovered also provided valuable information on the movements and habitat use of this species. In situ average sea water temperatures for the capture depth (and years) of fish at each location also matched the recovered temperature estimates from δ^{18}O$_{oto}$ values to within 2°C. Oxygen shows a common life-history trend in all locations from warmer waters (shallow) in core regions (<2 years) to colder waters (deeper) in later life. In the NE Atlantic, temperature varies significantly with depth (van Aken 2000) and the changes in temperature observed throughout the lifecycle of *A. carbo* most likely reflect a vertical depth migration. As stressed above, δ^{18}O$_{oto}$ values recovered for the larval portion of otoliths from fish caught in Rockall correspond to high water temperatures, consistent with a southerly origin. This indicates that *A. carbo* makes a northerly (feeding) migration from southern waters before the onset of maturity.

Long-term connectivity implications of the reconstructed life-history strategy

Genetic data suggested an absence of population structure across most of the distribution area of this species, indicating that the life cycle of this species may be conducive to panmixia. Microsatellite DNA results were congruent with the findings from trace elements and isotope analysis in indicating a lack of substructure, and
absence of distinct biological populations. While low levels of genetic divergence are
sometimes associated with distinct biological populations (Knutsen et al. 2011, Ryman
et al. 1979), the present estimate ($F_{ST} = 0.0008$ or lower) is at least an order of
magnitude lower still, and its confidence interval overlap zero. In simplified theoretical
models (Wright's island model), this level of divergence (or lack thereof) indicates that
putative populations are effectively exchanging several hundred or more individuals
per generation (Waples and Gaggiotti 2006). Closer inspection of table 3 indicates that
genetic differences, if any, follow a complex pattern. There was little agreement among
methods (F_{ST} or G-test) as to which pairs that differ (indicated by asterisks in table 2),
and only three "significant" pairs are in common between methods. Two of these pairs
involve the HE sample, and because this sample is quite old (year 1999), we cannot
exclude the possibility that it reflects temporal, rather than spatial, divergence.

We find no consistent, significant pattern of spatial genetic divergence among
samples of *A. carbo* covering most of its distribution range in the eastern and middle
North Atlantic. Based on lines of evidence from otolith chemistry, we are inclined to
believe that this reflects lack of phylopatry, and a migratory/ dispersal strategy that
guarantees re-mixing of genotypes over generations.

The very subtle signal of $F_{ST} = 0.0017$ between Madeira and the Azores might
underlie the existence of isolated pockets of independent spawning aggregations
further away from Madeira. However, collective, multidisciplinary evidence indicates
that the large scale feeding migrations of *A. carbo* result in demographic mixing across
generations, with younger cohorts returning from northern areas without natal homing,
and with the Madeiran aggregation being composed of individuals likely hatched in
different southern areas of the north Atlantic. Such diversity of individual life history
trajectories may function as an ‘adaptive insurance’ on fitness, much in the way that has
been proposed for some well-studied stocks of coastal/shelf species (McQuinn 1997).

Reappraisal of the perceived population structure in A. carbo

Our study is the first time that both otolith chemistry and population genetics
have been used to test the hypotheses regarding stock structure and the migratory cycle
of A. carbo. Individually, the analyses of otolith microchemistry and genetics (alone or
combined in a multi-marker framework) revealed a lack of any
differentiation/structure in A. carbo recovered from distinct locations over the North-
East Atlantic. Otolith stable isotopes revealed the existence of southern origin for A.
carbo recovered in Rockall, strongly suggesting that at least a proportion of the
population for this species is migratory. In agreement with other work (Figueiredo et al.
2003, Santos et al. 2013, Swan et al. 2003), this multidisciplinary study is suggestive of
large-scale migration in the NE Atlantic, resulting in functional near-panmixture in the
black scabbardfish A. carbo.

Current fisheries management considers the A. carbo stock in the NE Atlantic as
comprised of two components (North and South), but the findings of this study suggest
that assessing Rockall and Macaronesian fisheries separately may be biologically
unjustified, primarily because northern fish are originated from a southerly spawning
stock. However, we cannot rule out the existence of hitherto unrecognized complexities
in other spawning aggregations, especially the southerly aggregation in the Canary
Islands (Pajuelo et al. 2008). The recent finding of spatial overlap in southern Azorean
waters, between A. carbo and its more southerly sister species, A. intermedius (Stefanni
and Knutsen 2007), leaves open possibilities to yet more discoveries on this taxon.

Acknowledgements

Part of this study includes work from C.L’s PhD studies, financially supported by the European Science Foundation (EuroDEEP), the Irish Research Council and the MARECO network. We are very grateful to all scientific and commercial fishing expeditions that provided samples, including cruises by Scottish, Irish, Portuguese and Norwegian crews. We would like to thank Gui Menezes (DOP) and the research project PESCPROF, project co-financed by EU Interreg III B program who generously donated otolith samples from the Azores. S.S. is a researcher contracted by IMAR/DOP under the “Ciência 2007” recruitment program funded by FCT (Foundation for Science and Technology, Portugal). We are especially grateful to all members of the DEECON project (www.imr.no/deecon) for the many fruitful discussions on life history of A. carbo. Finally, we would also like to thank the two reviewers and subject editor for their valuable and constructive criticism.
References

Chambers, R.C., and Miller, T.J. 1995. Evaluating fish growth by means of otolith

http://mc06.manuscriptcentral.com/cjfas-pubs

doi: 110.3989/scimar.2009.3973s2089

http://mc06.manuscriptcentral.com/cjfas-pubs

http://mc06.manuscriptcentral.com/cjfas-pubs

http://mc06.manuscriptcentral.com/cjfas-pubs

Table 1. Details of *A. carbo* samples used for both chemical and genetic analyses. Total sample includes both otolith and genetic samples. TL stands for ‘Total Length’ and represents TL for the total sample.

Table 2. Pairwise measure of differentiation among *A. carbo* samples. Below diagonal: F_{ST} (asterisks indicate that the lower 5% confidence level was greater than zero). Above diagonal: P-value for exact G tests on allele frequencies, summed over loci with Fisher’s method (asterisks indicate statistically significant at the 5% level or better under the FDR approach to multiple testing’s). AZO: Azores, MAD: Madeira, PTS: Portugal slope, BB: Bay of Biscay, IRS: Irish slope, HE: Hebrides, ROC: Rockall.

Table 3. ANOSIM output for the four sample locations. Pairwise R-values below the diagonal, p-values above. ANOSIM R: 0.023, Anosim P-value: 0.1 (within group variance 18.81, between group variance 1925).
Table 1.

<table>
<thead>
<tr>
<th>Location</th>
<th>N (Otoliths)</th>
<th>N (Total)</th>
<th>Year</th>
<th>Depth (m)</th>
<th>TL (cm)</th>
<th>Sex ratio (F/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockall</td>
<td>23</td>
<td>163</td>
<td>2006/2008</td>
<td>750-850</td>
<td>42-108</td>
<td>2.7:1</td>
</tr>
<tr>
<td>Madeira</td>
<td>23</td>
<td>91</td>
<td>2008</td>
<td>1100</td>
<td>106-135</td>
<td>3.5:1</td>
</tr>
<tr>
<td>Azores</td>
<td>24</td>
<td>72</td>
<td>2002-2008</td>
<td>1115-1525</td>
<td>77-133</td>
<td>2.7:1</td>
</tr>
<tr>
<td>Portugal slope</td>
<td>24</td>
<td>96</td>
<td>2008</td>
<td>800-1200</td>
<td>95-125</td>
<td>1.22:1</td>
</tr>
<tr>
<td>Hebrides</td>
<td>0</td>
<td>60</td>
<td>1999</td>
<td>975-1420</td>
<td>80-117</td>
<td>-</td>
</tr>
<tr>
<td>Bay of Biscay</td>
<td>0</td>
<td>84</td>
<td>1999</td>
<td>1160</td>
<td>87-123</td>
<td>-</td>
</tr>
<tr>
<td>Irish slope</td>
<td>0</td>
<td>85</td>
<td>2006</td>
<td>-</td>
<td>72-115</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>AZO</th>
<th>MAD</th>
<th>PTS</th>
<th>BB</th>
<th>IRS</th>
<th>HE</th>
<th>ROC6</th>
<th>ROC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZO</td>
<td>-</td>
<td>0.0010*</td>
<td>0.3474</td>
<td>0.0009*</td>
<td>0.0001*</td>
<td>0.0019*</td>
<td>0.0121</td>
<td>0.0027</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0017*</td>
<td>-</td>
<td>0.1172</td>
<td>0.1225</td>
<td>0.0001*</td>
<td>0.0009*</td>
<td>0.1748</td>
<td>0.0187</td>
</tr>
<tr>
<td>PTS</td>
<td>-0.0015</td>
<td>0.0004</td>
<td>-</td>
<td>0.1532</td>
<td>0.0415</td>
<td>0.0019</td>
<td>0.0902</td>
<td>0.2262</td>
</tr>
<tr>
<td>BB</td>
<td>0.0022</td>
<td>0.0012</td>
<td>0.0011</td>
<td>-</td>
<td>0.1908</td>
<td>0.0828</td>
<td>0.6177</td>
<td>0.0101</td>
</tr>
<tr>
<td>IRS</td>
<td>0.0013</td>
<td>0.0011</td>
<td>-0.0002</td>
<td>-0.0008</td>
<td>-</td>
<td>0.0000*</td>
<td>0.0914</td>
<td>0.0824</td>
</tr>
<tr>
<td>HE</td>
<td>0.0037*</td>
<td>0.0040*</td>
<td>0.0043*</td>
<td>-0.0002</td>
<td>0.0014</td>
<td>-</td>
<td>0.0171</td>
<td>0.0050</td>
</tr>
<tr>
<td>ROC6</td>
<td>0.0016</td>
<td>0.0005</td>
<td>0.0016</td>
<td>-0.0004</td>
<td>-0.0005</td>
<td>0.0021</td>
<td>-</td>
<td>0.0266</td>
</tr>
<tr>
<td>ROC8</td>
<td>0.0007</td>
<td>0.0000</td>
<td>-0.0004</td>
<td>0.0003</td>
<td>-0.0011</td>
<td>0.0017*</td>
<td>0.0001</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>ROC</th>
<th>AZO</th>
<th>MAD</th>
<th>PTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC</td>
<td>0</td>
<td>0.2241</td>
<td>0.6067</td>
</tr>
<tr>
<td>MAD</td>
<td>0.0174</td>
<td>0</td>
<td>0.0675</td>
</tr>
<tr>
<td>AZO</td>
<td>-0.01457</td>
<td>0.05598</td>
<td>0</td>
</tr>
<tr>
<td>PTS</td>
<td>0.0302</td>
<td>0.01291</td>
<td>0.04495</td>
</tr>
</tbody>
</table>
Fig. 1. Northeast Atlantic, showing study locations (Circles) where *A. carbo* were sampled. ROC: Rockall, HE: Hebrides, IRS: Irish slope, BB: Bay of Biscay, PTS: Portugal slope, MAD: Madeira, AZO: Azores.

Fig. 2. Mean elemental ratios (μmol mol⁻¹ Log₁₀ transformed) and standard deviations for *A. carbo* otoliths from each of four sample sites and life stages. Any locations not sharing a common letter are significantly different from each other (p < 0.005).

Fig. 3. Ordination plots of *A. carbo* individuals using the first two canonical variates extracted via stepwise discriminant function analysis of elemental ratios. Colour-coding and shape identifies sampling locations. Ellipses are for visualization purposes only. Abbreviations as in Figure 1. Early larval stage (a), Late larval stage (b), Transitional stage (c) and Adult stage (d).

Fig. 4. Elemental profile of Mg/Ca and Mn/Ca as a function of distance from Primordium. F: Female (Black), M: Male (Red).

Fig. 5. Mean Oxygen isotope (bars) per life stage with equivalent water temperature (lines). (a) Rockall, (b) Madeira, (c) Azores and (d) Portugal slope.

Fig. 6. PCA ordinations of (a) genetic data for the four locations (including a temporal repeat of Rockall) sharing otolith analyses. Colour-coding and shape identifies sampling locations. Abbreviations as in Figure 1, (b) genetic data for all localities sampled. ROC: Rockall, HE: Hebrides, IRS: Irish slope, BB: Bay of Biscay, PTS: Portugal slope, MAD: Madeira, AZO: Azores. ROC - 08 and ROC - 06 are temporal repeats of the same locality and (c) combined otolith and genetic data for the four focal locations. Colour-coding and shape identifies sampling locations as in (a).
The following Supplementary material is available for this article online

Table S1.1. Repeated measures ANOVA (Greenhouse-Geisser) results of elemental profiles across *A. carbo* otoliths collected at four locations across the NE Atlantic. Bracketed numbers indicate degrees of freedom.

Table S1.2 *Aphanopus carbo*. Mean untransformed concentrations and standard error (in brackets) of trace elements standardised to Ca (μmol mol⁻¹) per sample location and life stage.

Table S1.3 Jack-knifed classification matrices for discriminant function analysis of early larval (EL), late larval (LL), transition phase (T) and late adult (A) elemental ratios of *A. carbo* among the four sites. Overall summary and relative proportions are reported in the final eight columns.

Table S1.4 Mean Oxygen and Carbon stable isotope values of *A. carbo* otoliths per location. J: Juvenile, ML: Mid-Life, A: Adult. PTS: Portugal slope, MAD: Madeira, ROC: Rockall and AZO: Azores.

Fig. S1.1 *Aphanopus carbo* (Black scabbardfish) otoliths showing (Top image) otolith microchemistry analysis zones corresponding to the Primordial zone (P) representing the early larval phase, the core zone (C) representing the late larval phase, the transitional zone (T), the mid-life zone (M – in otoliths from the Azores, Madeira and Portugal slope) and the late adult phase (A – referred to as edge in the main manuscript) representative of most recent environment of the fish. Lower image: otolith
isotope analysis zones (laser spots are for microchemistry only, not stable isotopes),
corresponding to the juvenile zone (J) encompassing early/late larval phases, the mid-
life stage (M) and the late adult phase (A), representative of most recent environment of
the fish.

Fig. S1.2 Predicted otolith δ¹⁸O (δ¹³Ootto) values calculated from CTD profiles of
temperature and salinity for four sample locations of A. carbo in the North Atlantic.

Fig. S1.3 Elemental profile of Li/Ca as a function of distance from Primordium.

Fig. S1.4 Elemental profile of Sr/Ca as a function of distance from Primordium.

Fig. S1.5 Elemental profile of Ba/Ca as a function of distance from Primordium.

Fig. S1.6 Bayesian posterior estimates of the proportional group membership for
Rockall juveniles (+75% credible intervals) using otolith only, genetic only or combined
data.
Supplementary Material

The primordial zone (pre-hatching/early larval stage) of the otolith was only faintly visible in most sections (Fig. S1.1). In those sections where the primordium was not clearly visible an estimation of its location was made. Typically the primordium was located on the distal side of the core (which was usually clearly visible) opposite the sulcus indent (Morales-Nin et al. 2002; Vieira et al. 2009).

Repeated measures Analysis

A ‘repeated measures’ ANOVA approach (Chambers and Miller 1995) was used to account for non-independence of transect data sampled within each otolith for both microchemical and isotope data and to test whether the mean elemental and isotope ratios differed among sampling locations and between designated life stage data. Residuals of these analyses were tested for normality and homogeneity of variance using Kolmogorov-Smirnov and Levene’s tests respectively (Zuur et al. 2007).

Due to values not conforming to the required assumptions of normality and homogeneity of variance, data were log_{10} transformed after which values were normal but did not have homogeneity of variance (Mn/Ca). Thus, a more conservative alpha level of 0.005 was used to determine significance for all tests (Underwood 1997), which would also lower the possibility of a type I error occurring. Furthermore, Greenhouse-Geisser and Bonferroni corrections were included to adjust the degrees of freedom and the α-level for significance in multiple testing, respectively. Sr/Ca and Mg/Ca were removed from the repeated measures analysis, as their concentrations in otoliths may vary under physiological control (Brown & Severin 2009). In any case, in our study,
otolith Mg/Ca and Sr/Ca values were not found to significantly vary among sites ($p < 0.05$). All the above analyses were done using PASW Statistics 18, using the General Linear Model module (full factorial), with life stage as the within-subjects factor (repeated measure) and location as the between subjects factor.

Isotope depth profiles

Measured depth profiles of temperature and salinity for the sample locations were obtained for the year and month of capture of fish from each sample site from oceanographic data collected under the project DEECON (www.imr.no/decon). Values of $\delta^{18}O_w$ (SMOW) were then estimated from known salinities according to the equation $\delta^{18}O_w$ (PDB) = ($-21.2 + 0.61S$)$\times 0.97002 - 29.9$, and profiles of predicted $\delta^{18}O_{ato}$ as a function of depth were produced (Fig. S1.2).
References

Brown, R.J. & Severin, K.P. (2009) Otolith chemistry analyses indicate that water Sr:Ca is
the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish

Morales-Nin, B., Canha, A., Casas, M., Figueredo, I., Gordo, L.S., Gordon, J.D.M., Gouveia, E.,
59, 352-364.

using analysis of variance. Cambridge University Press.

Gordo, L.S. (2009) Age and growth of black scabbardfish (Aphanopus carbo Lowe,
1839) in the southern NE Atlantic. Sci. Mar., 73 (S2), 33-46 doi:
10.3989/scimar.2009.3973s2033.

Tables and Figures

Table S1.1

<table>
<thead>
<tr>
<th>Element</th>
<th>Location (F, df, p)</th>
<th>Life stage (F, df, p)</th>
<th>Loc*Life stage (F, df, p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Ca</td>
<td>2.67 (3, 82) = 0.053</td>
<td>283.13 (3, 246) < 0.001</td>
<td>1.60 (9) = 0.11</td>
</tr>
<tr>
<td>Mn/Ca</td>
<td>1.64 (3, 89) = 0.18</td>
<td>521.7 (2.46, 219) < 0.001</td>
<td>0.93 (7.38) = 0.49</td>
</tr>
<tr>
<td>Cu/Ca</td>
<td>0.86 (3, 87) = 0.46</td>
<td>133.5 (3, 261) < 0.001</td>
<td>0.77 (9) = 0.64</td>
</tr>
<tr>
<td>Zn/Ca</td>
<td>4.22 (3, 88) = 0.008</td>
<td>81.05 (3, 264) < 0.001</td>
<td>2.80 (9) = 0.004</td>
</tr>
<tr>
<td>Ba/Ca</td>
<td>3.34 (3, 89) = 0.02</td>
<td>73.89 (3, 267) < 0.001</td>
<td>3.35 (9) < 0.001</td>
</tr>
</tbody>
</table>
Table S1.2

<table>
<thead>
<tr>
<th>Site</th>
<th>Mean Concentration</th>
<th>Li/Ca</th>
<th>Mn/Ca</th>
<th>Zn/Ca</th>
<th>Ba/Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Early Larval</td>
<td></td>
<td>Late Larval</td>
<td>Transition</td>
</tr>
<tr>
<td>ROC</td>
<td>0.38 (0.08)</td>
<td>0.84 (0.17)</td>
<td>4.76 (0.99)</td>
<td>2.19 (0.45)</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>0.36 (0.08)</td>
<td>0.79 (0.16)</td>
<td>5.35 (1.11)</td>
<td>3.15 (0.65)</td>
<td></td>
</tr>
<tr>
<td>AZO</td>
<td>0.37 (0.07)</td>
<td>0.85 (0.17)</td>
<td>2.57 (0.53)</td>
<td>2.09 (0.42)</td>
<td></td>
</tr>
<tr>
<td>PTS</td>
<td>0.39 (0.08)</td>
<td>0.84 (0.17)</td>
<td>1.85 (0.37)</td>
<td>2.49 (0.51)</td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>0.37 (0.08)</td>
<td>0.75 (0.16)</td>
<td>3.26 (0.71)</td>
<td>2.26 (0.48)</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>0.32 (0.07)</td>
<td>0.67 (0.14)</td>
<td>2.52 (0.52)</td>
<td>2.84 (0.59)</td>
<td></td>
</tr>
<tr>
<td>AZO</td>
<td>0.34 (0.07)</td>
<td>0.72 (0.14)</td>
<td>2.07 (0.42)</td>
<td>2.11 (0.43)</td>
<td></td>
</tr>
<tr>
<td>PTS</td>
<td>0.36 (0.07)</td>
<td>0.70 (0.14)</td>
<td>1.40 (0.28)</td>
<td>2.41 (0.49)</td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>0.32 (0.07)</td>
<td>0.61 (0.13)</td>
<td>2.29 (0.48)</td>
<td>1.59 (0.33)</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>0.26 (0.05)</td>
<td>0.50 (0.11)</td>
<td>1.25 (0.26)</td>
<td>2.90 (0.60)</td>
<td></td>
</tr>
<tr>
<td>AZO</td>
<td>0.29 (0.06)</td>
<td>0.55 (0.11)</td>
<td>1.68 (0.34)</td>
<td>1.87 (0.38)</td>
<td></td>
</tr>
<tr>
<td>PTS</td>
<td>0.31 (0.06)</td>
<td>0.48 (0.09)</td>
<td>0.85 (0.17)</td>
<td>2.48 (0.51)</td>
<td></td>
</tr>
<tr>
<td>ROC</td>
<td>0.22 (0.05)</td>
<td>0.27 (0.05)</td>
<td>1.79 (0.37)</td>
<td>1.29 (0.27)</td>
<td></td>
</tr>
<tr>
<td>MAD</td>
<td>0.19 (0.04)</td>
<td>0.23 (0.05)</td>
<td>0.74 (0.15)</td>
<td>1.52 (0.31)</td>
<td></td>
</tr>
<tr>
<td>AZO</td>
<td>0.18 (0.04)</td>
<td>0.25 (0.05)</td>
<td>1.48 (0.30)</td>
<td>1.54 (0.31)</td>
<td></td>
</tr>
<tr>
<td>PTS</td>
<td>0.20 (0.04)</td>
<td>0.24 (0.05)</td>
<td>0.74 (0.15)</td>
<td>1.61 (0.33)</td>
<td></td>
</tr>
</tbody>
</table>

http://mc06.manuscriptcentral.com/cjfas-pubs
<table>
<thead>
<tr>
<th>True Group</th>
<th>Classified to:</th>
<th>Rockall</th>
<th>Madeira</th>
<th>Azores</th>
<th>Portugal Slope</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>LL</td>
<td>T</td>
<td>A</td>
<td>EL</td>
<td>LL</td>
</tr>
<tr>
<td>ROC</td>
<td></td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>MAD</td>
<td></td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>AZO</td>
<td></td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>PTS</td>
<td></td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Table S1.4

<table>
<thead>
<tr>
<th>Location</th>
<th>T ($^\circ$C) at capture</th>
<th>Salinity at capture</th>
<th>Season Of Capture</th>
<th>J $\delta^{18}O$ (%)</th>
<th>J $\delta^{13}C$ (%)</th>
<th>ML $\delta^{18}O$ (%)</th>
<th>ML $\delta^{13}C$ (%)</th>
<th>A $\delta^{18}O$ (%)</th>
<th>A $\delta^{13}C$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTS</td>
<td>11.4</td>
<td>36.2</td>
<td>Autumn</td>
<td>1.18</td>
<td>-5.71</td>
<td>1.50</td>
<td>-4.65</td>
<td>2.17</td>
<td>-2.54</td>
</tr>
<tr>
<td>MAD</td>
<td>8.9</td>
<td>35.7</td>
<td>Winter</td>
<td>1.34</td>
<td>-5.04</td>
<td>1.86</td>
<td>-3.93</td>
<td>2.34</td>
<td>-2.05</td>
</tr>
<tr>
<td>ROC</td>
<td>10.1</td>
<td>35.6</td>
<td>Autumn</td>
<td>0.91</td>
<td>-6.09</td>
<td>1.63</td>
<td>-4.71</td>
<td>2.19</td>
<td>-3.11</td>
</tr>
<tr>
<td>AZO</td>
<td>5.7</td>
<td>35.2</td>
<td>Summer</td>
<td>1.05</td>
<td>-5.69</td>
<td>1.35</td>
<td>-5.11</td>
<td>2.66</td>
<td>-2.04</td>
</tr>
<tr>
<td>Overall Mean</td>
<td>9.02</td>
<td>35.7</td>
<td>-</td>
<td>1.21</td>
<td>-5.44</td>
<td>1.56</td>
<td>-4.64</td>
<td>2.32</td>
<td>-2.40</td>
</tr>
</tbody>
</table>
Fig. S1.2

Predicted $\delta^{18}O_{\text{oto}}$

- Portugal slope
- Madeira
- Rockall
- Azores

Depths (m)

0 0.5 1 1.5 2 2.5 3
Fig. S1.6