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Sammendrag 
 

I dette studiet ble sesongvariasjonen blant dyreplanktonsamfunnet gjennom vår og sommer i 

2019 ved Midtfjordsskjær (MFS), Sør-Norge, undersøkt. Dyreplanktonprøver ble samlet inn 

ved bruken av et finmasket plankton-nett (60 µm) og dyreplankton ble identifisert ved bruken 

av mikroskopering av 5 ml stikkprøver. Den totale abundansen (antall dyreplankton) til 

dyreplankton varierte fra 754 – 1620 ind. m-3 og høyest abundans ble funnet i mai. 

Holoplankton dominerte vår- og sommersamfunnene ved MFS og utgjorde mellom 85,6 – 

98,8% av total andel dyreplankton. Hoppekreps (copepoder) utgjorde mesteparten av 

dyreplanktonsamfunnet ved MFS gjennom vår og sommer med en abundans mellom 707 – 

1474 ind. m-3 (85,3 – 96,4%) av den totale dyreplankton-abundansen. Copepoder ble funnet i 

alle livsstadier både om våren og om sommeren. Copepode nauplius-larver var en viktig del 

av den totale abundansen til copepodene og utgjorde mellom 21,4 – 74,7% gjennom vår og 

sommer. Cyclopoide copepoder var den mest abundante gruppen om våren og var dominert 

av Oithona spp.. Calanoide copepoder ble mer abundante blant copepodene om sommeren og 

var dominert av Acartia spp. og Paracalanus/Pseudocalanus spp. copepoditter. Microsetella 

spp. dominerte blant de harpacticoide copepodene og ble hovedsakelig funnet om våren. 

Andelen av Meroplankton var lav gjennom hele studieperioden og utgjorde på det meste 

14,4% av den totale mengden dyreplankton. Flerbørstemarker (Polychaeta) og rankeføttinger 

(Cirripedia) dominerte blant meroplanktonet om våren, mens Polychaeta og snegler 

(Gastropoda) dominerte om sommeren. En klyngeanalyse av prøvene basert på Bray-Curtis 

likhet indikerte en inndeling av dyreplanktonsamfunnene i tre hovedperioder; tidlig vår 

(mars), som korresponderte til pre-blomstringsfasen i fytoplanktonsamfunnet, vår (april – 

mai) som korresponderte til oppblomstringen – sen-oppblomstringsfasen av 

fytoplanktonsamfunnet og sommer (juni – juli) som representerte en periode med lav 

algebiomasse.  
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Abstract 
 

In this study the seasonality of the mesozooplankton community in spring and summer of 

2019 at Midtfjordsskjær (MFS), South Norway, was investigated. Zooplankton samples were 

collected using a fine mesh sized plankton net (60 µm) and zooplankton were identified by 

microscopy based on 5 ml subsamples. Total zooplankton abundance ranged from 754 – 1620 

ind. m-3 and peak abundance was found in May. Holoplankton dominated spring and summer 

communities at MFS constituting between 85,6 – 98,8% of total zooplankton. Copepods were 

the biggest contributors to the zooplankton community at MFS during spring and summer 

with abundance ranging between 707 – 1474 ind. m-3 (85,3 – 96,4%) of total zooplankton 

abundance. All copepod life stages were found in spring and summer and copepod nauplii 

were an important part of total copepod abundance and constituted between 21,4 – 74,7% in 

spring and summer. Cyclopoid copepods were the most abundant group in spring and were 

dominated by Oithona spp.. Calanoid copepods became more abundant among the copepods 

in summer and were dominated by Acartia spp. and Paracalanus/Pseudocalanus spp. 

copepodites. Microsetella spp. dominated among the harpacticoid copepods and was mostly 

found in spring. Meroplankton abundance was low throughout the study period and 

constituted maximum 14,4% of total zooplankton abundance. Polychaeta and Cirripedia 

dominated the meroplankton in spring, while Polychaeta and Gastropoda dominated in 

summer. A cluster analysis based on Bray-Curtis similarities among samples indicated a 

division of the zooplankton communities in three main periods; early spring (March), which 

corresponded to the pre-bloom phase in the phytoplankton community, spring (April – May) 

which corresponded to the bloom – late bloom phase of the phytoplankton community and 

summer (June – July) which represented a period of low algal biomass. 
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1 Introduction 
 

Zooplankton can be found in lakes, oceans and across coastlines worldwide and are important 

grazers of phytoplankton (Calbet, 2001; Calbet & Landry, 2004; Lampert et al., 1986). 

Additionally, zooplankton have proven to influence the abundances of lower trophic levels in 

plankton communities (Ventelä et al., 2002; Wiackowski et al., 1994). Moreover, zooplankton 

serve as a key link between primary producers and fish in the pelagic food web (Cushing, 

1989) as they are important prey for larval and post-larval fish (Baier & Purcell, 1997; 

Fossum & Ellertsen, 1994; Lebour, 1920).  

Mesoplankton is one of several size categories in which metazooplankton resides and 

specifies the size class 0,2 – 20 mm (Sieburth et al., 1978). Mesozooplankton comprise two of 

the main plankton groups found in coastal aeras: holoplankton and meroplankton (Lee et al., 

2006). Holoplankton are organisms that spend their entire lifecycle as plankton in the water 

column, while meroplankton are usually larval stages of larger benthic invertebrates. 

Copepods (Arthropoda: Crustacea) are the most common holoplanktonic taxon, and is 

dominated by adults and juvenile copepodites (Sieburth et al., 1978). Additionally, 

abundances of water fleas (Crustacea: Cladocera) can regularly be found in coastal 

zooplankton communities (Nielsen & Andersen, 2002; Viñas et al., 2007). Furthermore, filter-

feeders such as appendicularians (Chordata) and predators like arrow worms (Chaetognatha) 

can at times also be important taxa among the zooplankton (Eloire et al., 2010). Moreover, 

comb jellies (Ctenophora) and jellyfish (Cnidaria) are also a part of the zooplankton 

community. In terms of meroplanktonic taxa, larvae of mussels (Mollusca: Bivalvia), snails 

(Mollusca: Gastropoda) and bristle worms (Annelida: Polychaeta) are commonly found 

(Michelsen et al., 2017a; Silberberger et al., 2016; Stübner et al., 2016). And during certain 

seasons, the abundances of barnacle larvae (Crustacea: Cirripedia) and larvae of sea urchins 

or sea stars (Echinodermata) can be high (Stübner et al., 2016; Van Ginderdeuren et al., 

2014). Finally, larvae of moss animals (Bryozoa) and horseshoe worms (Phoronida) as well as 

zoea larvae of lobsters and crabs (Crustacea: Decapoda) are usually less commonly found in 

zooplankton communities (Selifonova, 2012; Stübner et al., 2016).  

Copepods undergo a complex life cycle which includes multiple naupliar and copepodite 

stages before they reach adult life (Landry, 1983). During development different lifestyle 

strategies are utilized, from lecithotrophic (non-feeding) seen in early nauplii stages to 

heterotrophic (feeding) performed by all life stages (Landry, 1983). In estuaries and coastal 
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waters Cladocera can quickly become an important part of the holoplankton or the total 

plankton community when waters become stratified (Allan, 1976; Gieskes, 1971; Viñas et al., 

2007). The first occurring cladocerans are overwintering females and females hatched from 

resting eggs and later matured (Allan, 1976), hence resting eggs produced by marine 

cladocerans are important for successful seasonal recruitment (Onbé, 1985).   

Meroplanktonic larvae are primarily produced by benthic invertebrates with low mobility to 

help with dispersion of young individuals to suitable areas (Mileikovsky, 1971) and can 

undergo morphological changes during their development (Crisp, 1962; Mileikovsky, 1971). 

Production of these larvae is important as they may settle as new recruits to communities or 

populations (Mileikovsky, 1971). Spawning of meroplankton larvae by adults can take place 

over longer periods of time or can happen in one or several short intense spawning events 

(Mileikovsky, 1971). During release events of meroplanktonic larvae meroplankton may 

reach high abundances and even constitute most of total zooplankton in the area (Stübner et 

al., 2016). Depending on environmental conditions or their taxonomic group, meroplankton 

may spend hours to months living planktonic, and during this time larvae and early juvenile 

stages of meroplankton may either utilize a heterotrophic or lecithotrophic lifestyle 

(Mileikovsky, 1971; Thorson, 1950). Meroplanktonic larvae may travel far to colonize new or 

existing areas far from their place of origin depending on their time spent as plankton, the 

hydrography and currents (Mileikovsky, 1968).  

The plankton communities along the Norwegian Skagerrak coast have changed throughout 

the last decades (Johannessen et al., 2012). While phytoplankton spring blooms usually 

occurred in March followed by lower algal biomass during summer and a distinct autumn 

bloom in the 1990s, the data indicated that the phytoplankton blooms of the 2000s occurred in 

late February, with higher biomass than earlier followed by summer blooms of lower biomass 

and with autumn blooms almost gone (Johannessen et al., 2012). In terms of zooplankton 

communities, copepod data showed no specific trends for most species/groups, but the two 

most abundant groups, Paracalanus/Pseudocalanus spp. and Oithona spp., have decreased 

drastically after 2002 (Johannessen et al., 2012). The seasonality of 

Paracalanus/Pseudocalanus spp. showed an increase in abundance in early May, followed by 

a decrease, and then a huge increase resulting in maximum abundance in July (Johannessen et 

al., 2012). 

Outside of Plymouth, the abundance of copepods compared to other taxa is at its highest 

during autumns and winters and can make up as much as 90% of the total zooplankton 
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abundance during winter months (Eloire et al., 2010). The study also showed that copepods 

on average make up over 60% of the total zooplankton abundance between 1988 and 2007 

with calanoid copepods being the biggest contributor of 37%, followed by cyclopoids (23%) 

and harpacticoids (1%) (Eloire et al., 2010). 

The seasonality of the zooplankton community in the northern part of Kattegat showed that 

copepods make up about 70% of the zooplankton community in February-April and averaged 

46% in May-November (Olsson & Ölundh, 1974). Additional results from the same study 

showed that meroplankton comprised the main part of the zooplankton community during 

summer and in October-November, and on an average made up 33% of the total zooplankton 

abundance between May-November. Comparably, holoplankton other than copepods 

accounted for 21% during the same period. Peak copepod abundance occurred in June, July 

and September with Acartia longiremis, A. clausi, Pseudocalanus elongatus, Paracalanus 

parvus and Oithona similis being the most common taxa (Olsson & Ölundh, 1974).  

In Sandsfjord, located on the southwestern coast of Norway, the plankton community 

structure was investigated across a transect in the summer. Results from Nielsen and 

Andersen (2002) showed that copepods dominated the mesozooplankton and that total 

copepod biomass seemed to increase towards the mouth of the fjord. Oithona spp. (mainly 

Oithona similis) and Microsetella norvegica were the two most abundant copepod taxa, with 

Oithona spp. comprising about 60% of copepod abundance at all stations, while Calanus 

finmarchicus was most important in terms of biomass (Nielsen & Andersen, 2002). 

Additionally, Evadne nordmanni was the dominating cladoceran, while Podon sp. were much 

less abundant. Finally, meroplankton biomass increased across the transect towards the mouth 

dominated by bivalve and gastropod veligers, polychaete larvae and cirriped nauplii. They 

were and mostly found in the upper 10 meters of the water column.  
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2 Study aims 
 

The aims of this study are to: (1) establish which zooplankton taxa, based on microscopy, are 

present at the Midtfjordsskjær (MFS) station during the spring and summer period of 2019 

using a fine mesh size plankton net (60 µm); (2) investigate the abundance of the different 

taxa throughout the sampled period; (3) study the seasonal variability of the sampled 

zooplankton taxa. 
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3 Methodology 
 

Sampling site 

Midtfjordsskjær, hereafter shortened to MFS, sampling station (58˚08’54’’N 6˚83’09’’E) in 

Inner Spindsfjorden, Farsund, South Norway is 106 m deep and a part of Lister 

Oceanographic and Biologic Station for Education and Research time series. The station is 

located slightly west of the border between Skagerrak and North Sea. It is a semi-enclosed 

basin with several sills around 30 m and sheltered by outer skerries (Figure 1). The MFS 

station was accessible for sampling using a small vessel and all collections were done using 

manually held gear (or a winch when available) which could be handled by 1-2 people.  

 

 

Figure 1 – MFS sampling station (red dot) located in Inner Spindsfjorden, Farsund (58˚08’54’’N 

6˚83’09’’E) in South Norway. 

 

Zooplankton sampling method  

A plankton net from KC Denmark with 0,5 m ring diameter and 60 µm mesh size attached to 

a filtering cod end was used to collect the zooplankton material from March 30th to July 29th 

2019. The water column (90 – 0) was sampled by lowering the net before hauling it back up 

at 0,5 – 1 m/s. All zooplankton samples were put in a temporary placeholder (i.e. bucket with 
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a lid) until they were brough to the lab where the samples were filtered through a 63 µm sized 

sieve before they were fixated in 70 % ethanol and then stored at 4 ˚C. Re-fixation of samples 

happened 2 – 14 days after each sample originally had been fixated. All samples were filled 

so each container held 200 ml and stored at 4 ˚C until further use. 

Zooplankton identification 

Samples were homogenized via turning the samples carefully hundred times. 5 ml of the 

sample (1 ml in the case of the March 30th sample) was then taken out as a subsample using a 

pipette. To make sure plankton did not get stuck during pipetting, the tip of the pipette was 

cut at an angle to increase the size of the opening. The complete subsample was counted, and 

plankton were identified to the lowest taxonomic level possible using a Olympus SZX16 

stereomicroscope. Identification of the zooplankton were based on available literature, and 

photos were taken during identification using an Olympus SC50 camera. Larger gelatinous 

plankton belonging to Ctenophora and Cnidaria were mostly removed from samples prior to 

fixation and were not counted. Plankton identified as hydrozoans were counted and their 

abundance estimated for each sample. They were, however, not included in the figures 

because of uncertainty as to which degree they could have been removed at some sampling 

points together with the larger gelatinous plankton. Similarly, small individuals that could not 

be identified to any major taxon were counted but are not included in the study because of 

uncertainties regarding them belonging to the plankton community. Furthermore, zooplankton 

samples between early May and late June were not collected due to a broken net, thus leaving 

a gap in the data set between May 6th and June 26th. 

Zooplankton was identified to the lowest taxonomic unit possible, either to species, cf. 

species, genus or phylum. Copepodites of Paracalanus sp. and Pseudocalanus sp. are 

grouped together as “Para/Pseudocalanus cop” due to the difficulty in distinguishing the two. 

The group “Calanoida non det” consists of one individual identified as calanoid which could 

not be identified to a lower taxonomic level due to being damaged. Centropages spp. consist 

of copepodites of Centropages cf. typicus, Centropages hamatus males and Centropages sp. 

copepodites which were grouped together because of their low abundance. “Cyclopoida non 

det” consist of individuals identified as cyclopoids but being too damaged for any lower 

taxonomic identification. Harpacticoid adults and copepodites could not be distinguished 

properly and were placed in the group “Harpacticoida non det”. 
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Environmental sampling 

A hand-held CTD profiler (SAIV model 204; SAIV AS) with added sensors to measure 

fluorescence, turbidity and/or dissolved oxygen was used for collecting vertical 

oceanographic and environmental data. The probe was adjusted to the sea water condition for 

one minute before being lowered towards the seabed at a pace of 0,5m/s. After reaching the 

required depth (ca. 90 m), the profiler was pulled upwards again with the same speed. Ocean 

Data View (ODV) was used to visualize the data collected by the CTD probe (Schlitzer, 

2018). 

Data visualization and analysis 

Zooplankton abundances were calculated and plotted using Excel. Similarity among samples 

was analyzed using PRIMER7 (Clarke & Gorley, 2015). The Basic multivariate analysis 

wizard was run using square root transformation and Bray-Curtis similarity resemblance. The 

branch support was analyzed using SIMPROF (999 permutations and 5% significance level). 

The Cophenetic Correlation Coefficient was calculated to estimate the goodness-of-fit of the 

clustering. Additionally, a non-metric Multi-Dimensional Scaling (nMDS) analysis was run 

also based on Bray-Curtis similarities (figure not included as it showed a similar result to the 

clustering analysis).  
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4 Results 
 

Total zooplankton abundance  

Total zooplankton abundance (Figure 2) peaked on Mai 6th 2019 with 1620 individuals per  

m-3. The lowest amount of zooplankton abundance was found on the July 29th 2019, with 754 

individuals per m-3. 905 individuals per m-3 were found on March 30th, while 1028 individuals 

per m-3 were found April 6th, 2019. On April 26th, the total zooplankton abundance was 1213 

individuals per m-3. The abundance of zooplankton was still high in late June (26th) of 2019, 

with 1404 individuals per m-3. On July 12th, total zooplankton abundance had decreased to 

854 individuals per m-3.  

 

 

Figure 2 – Total zooplankton abundance (ind. m-3) found between March 30th and July 29th, 2019. 

Each bar represents a different sampling date and total zooplankton abundance is written at the top of 

each bar. 
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Holoplankton vs. meroplankton  

Holoplankton constituted most of the zooplankton in each sample (85,6 - 98,8%, Figure 3). 

85,6% of the March 30th sample was holoplankton, while meroplankton constituted the 

remaining 14,4%. The sample from April 6th was also dominated by holoplankton (89,3%). 

Holoplankton continued to dominate in the sample from April 26th (92,0%), and peaked on 

May 6th, both in terms of abundance (1601 ind. m-3) and contribution (98,8%). Samples from 

June and July were continuously dominated by holoplankton, with June 26th, July 12th and 

July 29th each consisting of 97,9%, 95,1% and 95,5% holoplankton respectively.   

 

 

Figure 3 – The relative abundance of holoplankton (cream) and meroplankton (red) in each sample 

during spring and summer of 2019. Note that the scaling starts at 50% (to make the relative abundance 

of meroplankton more visible). 
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Dominant taxa  

Copepoda constituted most of the zooplankton found, making up roughly 85 – 96% of the 

samples (Figure 5).  On March 30th Polychaeta made up 11,9% of the sample, while 

Copepoda made up 85,3%. Gastropoda, Bivalvia and Appendicularia made up the rest of the 

sample contributing with 0,9%, 1,5% and 0,3% respectively. In the sample from April 6th the 

number of taxa increased and Copepoda continued to dominate (89,6%). Echinodermata 

(2,9%) and Cirripedia (2,0%) were found for the first time on this date and Cladocera made 

up a small part of the sample contributing 0,1%. Finally, Polychaeta (1,95%), Gastropoda 

(1,7%) and Bivalvia (1,9%) also contributed to the April 6th sample. Chaetognatha was first 

found on April 26th and constituted only 0,09% of the sample. Polychaeta (0,9%), 

Echinodermata (0,4%), Gastropoda (0,3%) and Bivalvia (0,4%) were also present in the 

sample in lesser amounts. Except for Copepoda which made up most of the sample (96,4%), 

Cirripedia contributed the most to the April 26th sample making up 1,9%. On May 6th, the 

abundance of Cladocera was 127 ind. m-3 which constituted 7,8% of the sample. Cirripedia 

(0,6%), Polychaeta (0,4%), Gastropoda (0,1%) and Echinodermata (0,1%) were present in the 

sample in small amounts, while Copepoda continued to dominate (91%). On June 26th, 

Copepoda constituted 95,9%, with Cladocera being the second highest contributor (1,9%). 

The rest of the taxa found, Polychaeta (0,8%), Bivalvia (0,5%), Gastropoda (0,4%), Bryozoa 

(Cyphonautes larvae 0,4%) and Cirripedia (0,1%) all constituted little to the sample. Both 

samples from July were heavily dominated by Copepoda, making up 89,6% and 93,7% on 

July 12th and July 29th, respectively. Polychaeta and Cladocera were present in both samples 

but were more prevalent in the July 12th sample (3,4% and 5,4%) than in the July 29th sample 

(0,8% and 1,7%). Cirripedia and Gastropoda were also found on both dates, with Cirripedia 

only making up 0,4% and 0,1% on each respective date, while Gastropoda constituted 0,6% 

and 2,8%. Bryozoa, Decapoda and Phoronida showed up in the July 12th sample, with their 

respective percentages being 0,2%, 0,1% and 0,4%. Finally, Bivalvia was found on July 29th 

and constituted 0,7% of the sample.   
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Figure 4 – Some of the taxa identified by microscopy at the MFS station between March 30th and July 

29th, 2019. Photos are taken using an Olympus SC50 camera. 

 

 

Figure 5 – Abundance (ind. m-3) of every major taxon identified in samples from MFS in spring and 

summer of 2019. Each major taxon is represented by a different color. 
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Copepod order abundance 

All three copepod orders contributed relatively equal amounts to the late March sample, 

where Calanoida constituted 37,8% and Cyclopoida and Harpacticoida 31,6% and 30,7%, 

respectively (Figure 6). Cyclopoida dominated the samples from April and May and had their 

peak abundance on June 26th with 411 ind. m-3. Harpacticoida abundance ranged from 5,65 

ind. m-3 in late July to 178,8 ind. m-3 on May 6th. Calanoida dominated in both samples from 

July and their abundance ranged between 84,9 – 376,9 ind. m-3 throughout the sampling 

period.  

 

 

Figure 6 – Abundance (ind. m-3) of the three main copepod orders in the 2019 spring and summer 

samples. Calanoida (blue), Cyclopoida (red), and Harpacticoida (green) are presented in different 

colors. 
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with abundance ranging from 4,5 – 19,8 ind. m-3. Between the adult sexes, females usually 

had a higher abundance peaking on June 26th (13,58 female ind. m-3). Pseudocalanus cf. 

elongatus and Paracalanus sp. consisted of adults and occurred in all samples, except for 

Paracalanus sp. which did not occur in the March 30th and April 6th samples. Females were 

identified more often than males in both groups. Relatively low abundance was seen in spring 

samples, while summer samples contained the highest abundance found in both groups: 13,58 

ind. m-3 for Paracalanus sp. and 22,07 ind. m-3 for Pseudocalanus cf. elongatus. Calanus cf. 

finmarchicus was only found in the summer samples of June and July in very low numbers. 

All individuals were identified as copepodites and abundance ranged from 1,7 – 7,9 ind. m-3. 

Centropages spp. occurred in the sample from March 30th and in all three summer samples, 

although in low numbers.  

 

 

Figure 7 – Abundance (ind. m-3; top) and relative abundance (bottom) of calanoid copepods in March 

– July 2019 at MFS station. The different taxa are represented in different colors (right side). 
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Abundance of cyclopoid copepods 

Oithona cf. similis and Oithona cf. nana as well as Oithona spp. copepodites were the most 

abundant groups among the cyclopoids (Figure 8). Oithona cf. nana was present in all 

samples and dominated in the late March sample and on May 6th. On May 6th, they also 

reached their peak abundance (227,5 ind. m-3) with adult females and copepodites 

contributing the most. Oithona cf. similis was mostly found as copepodites and as adult 

females. Abundances ranged from about 59 – 158 ind. m-3 and peaked on June 26th. 

Copepodites of Oithona spp. ranged from 34 – 190 ind. m-3 and were found in all samples 

except on March 30th. A small number of Corycaeus anglicus was found in each sample 

except July 29th where Corycaeus sp. were found.  

 

 

Figure 8 – Abundance (ind. m-3; top) and relative abundance (bottom) of cyclopoid copepods in March 

– July 2019 at MFS station. The different taxa are represented in different colors (right side). 
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Abundance of harpacticoid copepods 

Harpacticoids consisted mainly of Microsetella spp. which were most abundant on May 6th 

(136,4 ind. m-3, Figure 9). In the samples from June and July very low numbers of 

harpacticoids were found, among which was one individual of the genus cf. Parathalestris on 

July 29th. Furthermore, there was one single finding of a specimen of the genus Tisbe on April 

6th.  

 

 

Figure 9 – Abundance (ind. m-3) of harpacticoid copepods in March – July 2019 at MFS station. 

Microsetella spp. is represented in blue, Tisbe and cf. Parathalestris were found in very low 

abundance and are included the group Harpacticoida non det (red). 

 

Abundance of copepod life stages 

Copepod nauplii abundance varied from 161 ind. m-3 to 775 ind. m-3 throughout the sampling 

period, with lowest abundance on July 12th and highest on May 6th (Figure 10). Copepodite 

abundance was low on March 30th (178 ind. m-3) and highest in the June 26th sample (635 ind. 

m-3). Adult copepods consisted of adult cyclopoid and calanoid copepods, with most of them 

being female. Peak abundance of adult copepods was found on June 26th (119 ind. m-3) and 

the lowest amount was found on March 30th (45 ind. m-3). Adult and copepodite harpacticoids 

were of low abundance and not included in the figure.  
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Figure 10 – Abundance (ind. m-3) of different copepod life stages identified from the MFS station in 

March – July 2019. Different stages are shown in by different colors, nauplii (green), copepodites 

(light blue), and adults (red). 

 

Abundance of meroplankton taxa 

Polychaeta occurred most consistently among the meroplankton and constituted roughly 18 – 

83% (Figure 11). Cirripedia first occurred April 6th and were a relatively substantial part of 

the meroplankton in April and May. In June and July Cirripedia were found in lower amounts, 

with abundance ranging from 0,57 – 3,40 ind. m-3 and on July 29th no cirriped nauplii were 

found, only cirriped cyprid larvae (Figure 4). Gastropoda and Bivalvia were found in all 

samples except for Bivalvia on two occasions (May 6th, and July 12th). Gastropoda peak 

abundance was on July 29th (20,9 ind. m-3), while Bivalvia had a peak abundance on April 6th 

with 18,7 ind. m-3. Echinodermata peak abundance was on April 6th (30 ind. m-3) which 

constituted 28,6% of the sample. Phoronida and Decapoda were found only on July 12th, 

Phoronida with an abundance of 2,8 ind. m-3, while only a single decapod zoea larva was 

found. Bryozoa were found in low abundances on June 26th (5 ind. m-3) and July 12th (1,7 ind. 

m-3).  
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Figure 11 – Abundance (ind. m-3; top) and relative abundance (bottom) of meroplankton in March – 

July 2019 at MFS station. The different taxa are represented in different colors (right side). 

 

Sample comparisons   

Results from the cluster analysis indicated that there were three main sample groups (Figure 

12). The first group was in early spring (March 30th), another group was found containing the 

April and May samples, and the last group consisted of the summer samples (June – July). 

With a Cophenetic Correlation Coefficient of 0,88, the clustering can be considered as a good 

fit.  
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Figure 12 – Dendrogram showing the result from cluster analysis between samples based on Bray-

Curtis similarities. The similarity scale is shown on the left, scaling from 50 – 100, indicating how 

similar samples are. There were three main groups of samples: early spring (late March sample), mid- 

to late spring (April – May) and summer (June – July). Black lines indicate divisions with statistical 

support, whereas red lines indicate sub-structures with no statistical support. 

 

Environmental data 

From early April a distinct bloom transpired, whereas throughout May slightly increased 

values in fluorescence can be seen and in July a deeper bloom at about 20 m occurred (Figure 

13c). Haloclines were formed in the upper-most water layers throughout the sampling period, 

while deeper haloclines occurred in April and June (Figure 13b). The water temperature 

started to increase in the upper water layers in June (Figure 13a), and an additional halocline 

can be seen in June. In July the water temperature reached maximum values, while the deeper 

haloclines became less distinct.  
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Figure 13 – Visualization of the vertical profiles of temperature (a), salinity (b), and fluorescence (c) 

obtained from the CTD profiler. Depth (y axis) is measured in meter. Color scales (right side) indicate 

the level of each measurement (temperature, salinity or fluorescence). Horizontal lines are present for 

40 m and 80 m depth, and vertical lines indicate when CTD profiles were taken.  
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5 Discussion 
 

Copepods comprised between 85 – 96% of total zooplankton in spring and summer samples 

from 2019 at the MFS station (Figure 5). They are the most abundant group of zooplankton 

found in both the North Sea (Johns & Reid, 2001; Williams et al., 1994) and in Skagerrak 

(Kiørboe & Nielsen, 1994). Furthermore, in Skagerrak, a diatom bloom occur in March – 

April, a dinoflagellate bloom in August – September, and a mixed dinoflagellate-diatom 

bloom in November – December. All these blooms are dominated by small-sized food 

particles and help sustaining the copepod abundances in Skagerrak (Kiørboe & Nielsen, 

1994). In June and July, during the period between blooms, the food particles are larger and 

egg production by copepods is low, however, total copepod biomass is at maximum in June – 

July in Skagerrak (Kiørboe & Nielsen, 1994). Paracalanus/Pseudocalanus spp. and Oithona 

spp. abundances in southern Norway have drastically dropped since 2002, however, they still 

remain the two most dominant copepod taxa in Skagerrak, southern Norway (Johannessen et 

al., 2012), as observed in spring and summer of 2019 at the MFS station. 

The sample similarities indicated three distinct clusters of zooplankton communities relating 

to phytoplankton blooms; 1) early spring (late March sample) corresponded to the pre-bloom 

phase and showed similar abundances of all copepod orders as well as the highest 

meroplankton abundances, 2) spring (April – May) which corresponded to the bloom- late 

phytoplankton bloom and late-bloom phase and Cyclopoida dominated among the copepods, 

Acartia spp. and Paracalanus/Pseudocalanus spp. copepodites dominated among calanoid 

copepods and Cirripedia and Echinodermata dominated the meroplankton community, and 3) 

summer (June – July) with generally low phytoplankton biomass and Calanoid copepods were 

much more important, particularly Paracalanus/Pseudocalanus spp. copepodites, Acartia spp. 

and Pseudocalanus cf. elongatus. During summer harpacticoid copepods were found in very 

low abundances and the meroplankton community was mainly consisted of Polychaeta and 

Gastropoda. 
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Holoplankton 

Calanoid copepods 

The dominance of the calanoid copepods Paracalanus/Pseudocalanus spp., Acartia spp. and 

Temora cf. longicornis at the MFS station in South Norway corresponds to findings from the 

northern North Sea (Johns & Reid, 2001). Among the adult Paracalanus sp., females were 

more common, which is also observed in other Paracalanus populations where females 

constitute 66 – 99% of total adult abundance (Jang et al., 2013). Pseudocalanus elongatus is 

known to reach maximum egg production rate at the start of June in the northern North Sea 

(Drif et al., 2010), making it plausible that Pseudocalanus copepodites make up a substantial 

portion of the Paracalanus/Pseudocalanus spp. copepodites in June and July as this group 

had an increase in abundance after the sample from May.  

Copepodites of Calanus cf. finmarchicus were found only in the summer samples in very low 

abundance (Figure 7). Calanus spp. are usually more abundant in open waters and get carried 

into fjords by inflow of surface water (Lindahl & Hernroth, 1988) In Gullmarfjorden, 

Sweden, variable numbers of Calanus spp. were transported into the fjord where they 

descended into deeper water, however, in winter or spring little to no Calanus spp. could be 

found due to them being washed out over the sill by the annual renewal of deep water 

(Lindahl & Hernroth, 1988). Across the fjord transect in Sandsfjorden, southwestern Norway, 

Calanus spp. decreased in abundance towards the innermost part of the fjord decreasing 

tenfold in the integrated biomass (Nielsen & Andersen, 2002). Adult and pre-adult Calanus 

finmarchicus overwinter in the Norwegian Trench (Heath et al., 2004) and are found in 

highest numbers in the Norwegian Sea around mid-May during outburst of nauplii, however, 

young copepodites can be observed as early as mid-April (Hirche et al., 2001).  

During unfavorable conditions Acartia spp. can produce resting eggs (Belmonte, 1997; Uye, 

1985) which may sink and be stored in the sediments before hatching when conditions are 

favorable (Marcus et al., 1994). Furthermore, resting eggs are important as they help maintain 

endemic copepod populations against strong flushing of copepods (Uye, 1980). Growth in 

Acartia spp. is isochronal (Miller et al., 1977), however, the development time of Acartia spp. 

life stages are affected by temperature (Landry, 1975). Acartia spp. are well adapted hunters 

capable of utilizing multiple prey and hunting strategies (Gismervik & Andersen, 1997; Saiz 

& Kiørboe, 1995). Additionally, Acartia tonsa is efficient in transforming food into eggs and 

can rapidly adapt to a changing diet and breed despite a low abundance of potential prey 

(Kiørboe et al., 1985).  
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The contribution to Temora cf. longicornis by adults and copepodites at MFS differed in 

spring and summer. Copepodites were the main source of contribution during the spring 

months (March – May), while adults, mainly females, made up most of the taxon in summer 

(June – July). These results in accordance with findings from the Baltic Sea where 

copepodites reach high abundance in May before adults start to dominate in summer with 

highest abundance in the June – July shift (Dutz et al., 2010). Development time of T. 

longicornis is shorter in spring than in summer when the development of nauplii and 

copepodite may be 27 – 43, days and it is suggested that the increased development time is 

due to a smaller food supply in summer (Bakker & van Rijswijk, 1987). While samples taken 

at MFS include individuals from the entire water column, T. longicornis in Sandsfjorden, 

Norway, accumulated in the pycnocline and an increase in biomass was found along the 

transect towards the mouth of the fjord (Nielsen & Andersen, 2002). This suggests that the 

species could be more common further out from the MFS sampling station.  

Low numbers of Centropages spp. were found with Centropages hamatus and copepodites of 

Centropages cf. typicus being identified. Both species can be found around the southern coast 

of Norway (Barnard et al., 2004) and the low numbers may be explained as peak abundance 

of C. typicus in the North Sea occur in mid-September (Lindley & Reid, 2002). 

 

Cyclopoid copepods 

In the North Sea, Oithona similis make up the majority of Oithona spp. biomass (Nielsen & 

Sabatini, 1996). Oithona spp. were the most common cyclopoid copepods (minimum 86% in 

all samples) in samples from MFS from 2019, which is in line with other studies from the 

northern North Sea (Johns & Reid, 2001). The seasonal variation in abundance of copepodite 

and adult Oithona cf. nana found at MFS was similar to other reports of the species 

(Temperoni et al., 2011), where copepodites on average represent most of O. nana abundance, 

followed by adult females throughout the season. Oithona cf. nana at MFS station was found 

most abundant at the end of March and in early May and the CTD data showed relatively 

similar profiles at those times (Figure 13). In the study by Temperoni et al. (2011) the 

abundances of O. nana were not significantly related to temperature or Chl a, and all life 

stages of O. nana were present year-round, whereas in Kattegat, egg production by Oithona 

spp., and hence later abundances of copepodites and adults, appear to be limited by food 

(Kiørboe & Nielsen, 1994).  
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Oithona spp. has been found to spend much of its time motionless in the water column 

capable of feeding on a wide size range of prey organisms (Lampitt & Gamble, 1982). 

Additionally, adults of O. nana may utilize a carnivorous feeding behavior preying on 

copepod nauplii (Lampitt, 1978). Oithona cf. similis was among the most abundant of the 

Oithona taxa found at MFS (Figure 7). This ambush feeding species is capable of reacting to 

hydromechanical signals produced by prey (Svensen & Kiørboe, 2000). Studies show that O. 

similis primarily selects for ciliates while other forms of food become important when ciliate 

abundance is low (Castellani et al., 2005; Zamora-Terol et al., 2013). Additional results from 

Zamora-Terol et al. (2013) show that O. similis on the west coast of Greenland actively feeds 

during winter and can successfully reproduce in winter, suggesting that these occurrences of 

Oithona spp. succeeding even under unfavorable conditions might explain the genus’ success 

in marine environments worldwide. Furthermore, Oithona spp. being able to live off small-

sized food particles makes for an advantage and allow populations to remain stable (Nielsen 

& Sabatini, 1996). 

 

Harpacticoid copepods 

Microsetella spp. was the most common of the harpacticoid copepods at the MFS station in 

2019 and was found most abundant in early May (Figure 9). In a fjord system in southwestern 

Norway, Microsetella norvegica was found to be among the most abundant copepods in July 

and having the third highest biomass of all copepods found (Andersen & Nielsen, 2002). 

These findings are very different from the results in this study as Microsetella spp. was found 

in very low abundance in samples from July. As previously stated, samples used in this study 

looked at individuals collected from the entire water column. Further results from Andersen 

and Nielsen (2002) saw M. norvegica to be evenly distributed in the photic zone and having 

highest biomass below the pycnocline. The vertical distribution of M. norvegica in the waters 

of Skagerrak and North Sea also show that the species accumulates within or just below the 

pycnocline (Maar et al., 2006). Additionally, M. norvegica seems to avoid turbulent water 

layers levels near the surface by actively migrating down in the water column (Maar et al., 

2006), where the authors assume M. norvegica may rely on remote chemical detection for 

food. M. norvegica in the Inland Sea of Japan are thought to mainly feed on nano-sized 

particles that range from 2 – 20 µm (Uye et al., 2002).  

Results from a 5-year study from Greenland show M. norvegica constituting over 93% of 

total copepod abundance in July and August, clearly defining the summer months as the 
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period of maximum abundance for the copepods (Arendt et al., 2013). The same study 

observed M. norvegica dominate among the mesozooplankton during most of the year making 

up over 50% of total copepod abundance from July through December. Similar observations 

of M. norvegica dominance have also been seen in the Inland Sea of Japan where the species 

at some point accounted for 86,5% of the total copepod abundance (Uye et al., 2002). 

Microsetella spp. at MFS was not identified to species or life stage. Hence, no conclusion can 

be drawn about the relationship between copepodites and adults. In the Inland Sea of Japan, 

developmental duration of M. norvegica from egg to adult varied from 14,3 – 31,9 days 

depending on the temperature when food was not limited (Uye et al., 2002). 

 

Copepod nauplii 

Nauplii found at MFS station in 2019 outnumbered older life stages in multiple samples 

(Figure 10). In the northwest Mediterranean, copepod nauplii also constituted 59% of the total 

zooplankton abundance, ranging from 40 – 74% (Calbet et al., 2001). Castellani et al. (2007) 

showed that contribution to biomass by naupliar stages of Oithona spp. can be compared to 

that of copepodite stages. Furthermore, a positive correlation between the relative proportion 

of Oithona spp. nauplii in the population with depth and salinity in spring was seen 

(Castellani et al., 2007). Copepod nauplii found at the MFS station are most likely nauplii of 

the most common taxa found. Pseudocalanus elongatus peak relative abundance is in 

February in the Western Channel and has higher relative abundances between April – June, 

and while the relative abundance of Oithona spp. is less fluctuating than other taxa found in 

the Western Channel, relative abundance is highest in February – May (Eloire et al., 2010). 

This could suggest that the nauplii found from late March through May at MFS in 2019 

primarily belonged to Oithona spp. and Pseudocalanus spp.. Temperature has been found to 

influence growth rates in Oithona spp. nauplii, where increased temperature reduce time spent 

in all naupliar stages (Almeda et al., 2010). Even though Oithona cf. nana was the most 

common cyclopoid copepod on March 30th and on May 6th at MFS, Oithona cf. similis 

dominated in samples from April, suggesting that the nauplii abundances of these two taxa 

fluctuate in spring at the MFS station.  

In the Western Channel, Temora longicornis relative abundance is highest throughout the 

summer months (June - August), whereas Acartia clausi  has peak relative abundances in 

June and September, and while Paracalanus parvus reaches peak relative abundance in 

November, they can be found throughout the year (Eloire et al., 2010). Thus, nauplii found at 
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the MFS station in summer (June and July) likely also belong to the calanoid taxa Temora cf. 

longicornis, Acartia spp., and P. parvus. The duration of the different naupliar stages has 

been studied in calanoids, and Pseudocalanus sp., A. tonsa and P. parvus have seen their 

combined naupliar stages last 9,2 days, 9,8 days and about 8 days, respectively (Landry, 

1983). Landry (1983) described that the first two naupliar stages (N1 and N2) last for a 

relatively short duration and feeding by nauplii does not occur until after stage three (N3) is 

reached, except for in Acartia where feeding starts one stage earlier. 

 

Cladocera 

P. avirostris is commonly found in the neritic zone of tropical/subtropical waters (Atienza et 

al., 2008; Marazzo & Valentin, 2003). However, it was identified in a Norwegian fjord in the 

1990s (Båmstedt et al., 1998) and seems to be becoming more common in the North Sea due 

to increased water temperature (Johns et al., 2005), and production of resting eggs (Onbé, 

1985). P. avirostris occurring at MFS in late July when the temperature reached >16˚C 

(Figure 12a) seems acceptable as during the initial stages of establishment of P. avirostris 

populations, water temperature seemed to influence birth rates (Marazzo & Valentin, 2003). 

In Catalan Sea, high abundances of P. avirostris appear from July through September 

(Atienza et al., 2008) and the authors argue that resting eggs likely help them reestablish their 

population annually as they are practically absent in winter and spring.  

Evadne spp. and Podon sp. were the two most common cladocerans found at the MFS station, 

both are common in North Sea and other waters tied to the MFS station and may occur in high 

numbers under favorable conditions (Eriksson, 1974). The two genera were not present in 

early April, but were instead found in high abundances in May, becoming less common in 

June and July. Evadne nordmanni have previously been reported as being the most common 

species of Cladocera in Clyde Sea where they became most abundant in August, while Podon 

spp. reached maximum abundance in September (Cheng, 1947). Results on seasonal 

occurrence of Cladocera at the MFS station in 2019 are in agreement with findings from the 

coastal station outside of Plymouth, as E. nordmanni were more abundant than Podon spp., 

and both genera were most abundant in May (Eloire et al., 2010). 
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Meroplankton 

Meroplankton were found in all spring and summer samples, although in low abundance 

compared to holoplankton, and never exceeded 130 ind. m-3. Meroplankton abundances in 

other systems have reached much higher numbers (Arendt et al., 2013; Silberberger et al., 

2016; Van Ginderdeuren et al., 2014), and even surpassed holoplankton in terms of both 

abundance and in biomass during the productive season (Stübner et al., 2016). Time series 

from the western English Channel see meroplankton abundance peak in March and April, 

coinciding with the increased water temperature (Highfield et al., 2010). 

Cirripedia being among the most dominant groups of meroplankton at MFS is not surprising 

as Cirripedia have been known to constitute the majority in samples during spring (Michelsen 

et al., 2017a; Silberberger et al., 2016; Stübner et al., 2016). Increased levels of fluorescence 

were seen in the beginning of April (Figure 13c), indicating that the spring bloom started in 

early April. Cirriped larvae were first seen in the sample from April 6th which fits well as 

edible phytoplankton is known to stimulate the release of cirriped nauplii (Starr et al., 1991). 

Little is known about which species of barnacles inhabit the surrounding area of MFS and 

cirriped larvae were not identified to species level. Although cirriped larvae were first found 

in early April, cirriped nauplii peak abundance was observed in late April. A second peak in 

Cirripedia abundance has previously been seen in a high-Arctic fjord, which most likely was 

due to another species releasing their larvae (Stübner et al., 2016). In late July cyprid larvae 

were found, however, no nauplii occurred in the sample. In northern temperate waters, cyprid 

larvae of the barnacle Balanus balanoides settle over a short period in spring, mainly April, 

and while cyprid larvae can be found in March, they are most abundant in April (Pyefinch, 

1948). Cyprid larvae of Balanus crenatus have been shown to also occur in March and April, 

however, these larvae are thought to settle periodically between April and September 

(Pyefinch, 1948). 

Polychaeta were found in all samples and had highest abundances in late March and in mid-

July, with polychate larvae of the order Spionida constituting most of the Polychaeta found at 

MFS station. A seasonal study on the spionid polychaete Pygospio elegans in Scotland 

showed that heavy recruitment takes place twice a year, once during May and the second time 

during December (Bolam, 2004), however, new recruits could be found year-round. In fjords 

in northern Norway, polychaete abundances peak primarily around April – May (Michelsen et 

al., 2017a; Silberberger et al., 2016). These results are also similar to what is seen in high-

Arctic fjords (Stübner et al., 2016). Off the coast of Belgium, Polychaeta constituted a higher 



 33 

portion of the meroplankton in mid- and nearshore samples while being less common offshore 

(Van Ginderdeuren et al., 2014).  

The abundance of echinoderm larvae has increased in the North Sea (Lindley et al., 1995) and 

has been linked to the increase of sea surface temperatures (SST), particularly during winter 

and spring (Kirby et al., 2008; Kirby et al., 2007). Echinodermata (pluteus larvae) at MFS 

were found in samples from April and May but did not occur in any of the summer samples. 

The seasonality of Echinodermata has been studied in sub-Arctic to high-Arctic systems 

which lay further north than MFS is located (Michelsen et al., 2017a; Silberberger et al., 

2016; Stübner et al., 2016). In these high-altitude systems, echinoderms are usually abundant 

in May and can also be found in increased abundance during July. Outside of Belgium, 

different taxa of Echinodermata see their peak abundances at different times, ranging from 

May – September, and are found more abundant offshore where they can dominate total 

meroplankton abundance (Van Ginderdeuren et al., 2014). In spring (April) in northern 

Norway, Echinodermata can occur as one of the dominant taxa and are found most abundant 

at the inner and outer part of the fjord where meroplankton abundance was lower (Michelsen 

et al., 2017b). Additional results on the occurrence of Echinodermata in the same fjord show 

that they constitute the majority of meroplankton in June (Michelsen et al., 2017a). 

Gastropoda abundance at MFS during spring and summer closely resembled that of high-

Arctic studies, in which the abundance reached around 20 ind. m-3 in summer (Stübner et al., 

2016). Gastropoda were found in all samples and dominated among the meroplankton in late 

July. However, on July 29th, total meroplankton abundance was lower than in early April 

which was when Gastropoda abundance was found second highest. In studies on the 

seasonality of meroplankton, gastropods dominated during summer in northeastern Black Sea 

(Selifonova, 2012). Whereas in a sub-Arctic shelf system, gastropods seemingly became more 

abundant during late summer (Silberberger et al., 2016). Yet, during spring in northern 

Norway, Gastropoda were one of the dominating taxa at the inner and outer part across a fjord 

transect (Michelsen et al., 2017b). In other high-altitude systems Gastropoda showed a clear 

dominance during winter, representing on average 60% of the meroplankton community 

while only averaging 5% and 11% during spring and summer, respectively (Michelsen et al., 

2017a).  

Peaks in abundance of bivalve larvae are linked to changes in food availability (Brandner et 

al., 2017). Bivalvia abundance at MFS peaked in late June, but they were never the dominant 

taxon in the meroplankton community. This reflects what is seen off the coast of Belgium 
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where Bivalvia are more common nearshore but never quite dominant (Van Ginderdeuren et 

al., 2014). Svalbard studies show Bivalvia heavily dominating the meroplankton, capable of 

constituting between 81 and 85% of meroplankton in June and July (Brandner et al., 2017; 

Stübner et al., 2016). Similar observations were made in other high-latitude systems 

(Silberberger et al., 2016), where Bivalvia may represent between 39 – 72% of meroplankton 

in June and August (Michelsen et al., 2017a). In the northeastern Black Sea, different species 

of bivalves have been reported to dominate the meroplankton in spring and autumn 

(Selifonova, 2012). Bivalve veligers in Porsangerfjord were very uncommon in spring 

(Michelsen et al., 2017b), however, the authors contemplated it was due to the coarse mesh 

size used, as the use of coarser mesh size when sampling causes abundance loss of small 

plankton (Riccardi, 2010). The abundance of Bivalvia did not exceed 19 ind. m-3, despite the 

use of fine mesh size (60 µm) and sampling of the complete water column. Studies focusing 

on meroplankton show that the abundance of Bivalvia can differ substantially depending on 

which water layer is sampled (Stübner et al., 2016). An in-depth study on the seasonality of 

bivalve larvae was conducted in Adventfjorden, Svalbard (Brandner et al., 2017), where the 

authors successfully combined morphometric identification and DNA barcoding to identify 

the different bivalve larvae that inhabit the system. At MFS, none of the bivalve larvae were 

identified to species level, meaning knowledge is limited regarding the species and therefore 

their individual seasonality. Nevertheless, studies that provide successful in-depth results 

based on their methods, like Brandner et al. (2017), may prove valuable for future studies 

which focus on species specific seasonality. 

 

Evaluation of methods 

In this study, a fine plankton net mesh size (60 µm) was used to improve the collection of 

small individuals, as a coarser mesh size has proven to underestimate the abundance of small 

zooplankton taxa (Calbet et al., 2001; Riccardi, 2010), especially copepod nauplii (Makabe et 

al., 2012). However, when using a smaller ring diameter and a finer mesh size, larger, strong 

swimmers may be inaccurately sampled and the filtration efficiency may be lowered (Calbet 

et al., 2001; Miloslavić et al., 2014). Moreover, the heterogeneity of zooplankton by abiotic 

and biotic processes (Pinel-Alloul, 1995) is more likely to have affected the results seen in 

this study, as only one sample was taken on each sampling date and only one sampling station 

(MFS) was used. Likewise, only one subsample per sampling date could be counted due time 

constraints. Analysis of several subsamples could have increased the accuracy of the results. 
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6 Conclusion 
 

Results on zooplankton taxa occurring at the MFS station in spring and summer of 2019 are in 

agreement with previous studies on mesozooplankton in the North Sea (Johns & Reid, 2001; 

Williams et al., 1994), and in Skagerrak (Kiørboe & Nielsen, 1994). Furthermore, 

Paracalanus/Pseudocalanus spp. and Oithona spp. are known to dominate among the 

copepods despite heavily reduced abundances in the Norwegian coast of Skagerrak after 2002 

(Johannessen et al., 2012), and the same dominant taxa are also found at the MFS station in 

spring and summer of 2019. Larger zooplankton taxa were found in very low abundances 

from March 30th 2019 to July 29th 2019, and the use of a fine mesh size plankton net (60 µm) 

used to collect samples may have caused underestimation of the larger zooplankton (Calbet et 

al., 2001; Miloslavić et al., 2014). Generally, copepods and copepodites dominate among the 

mesoplankton (Sieburth et al., 1978). This was also the case at MFS station, whereas 

meroplankton abundances in spring and summer of 2019 at the MFS station were low 

compared to abundances of meroplankton from other studies (Silberberger et al., 2016; 

Stübner et al., 2016; Van Ginderdeuren et al., 2014). Heterogeneity of zooplankton by abiotic 

and biotic processes (Pinel-Alloul, 1995) causes zooplankton to be unevenly distributed. As 

only one sample was collected per sampling date and only one subsample was analyzed, 

results on the seasonal variability of the sampled zooplankton taxa at MFS station in spring 

and summer 2019 are more prone to uncertainties. Nevertheless, as indicated by the cluster 

analysis, the zooplankton community could be divided into three distinct groups. The periods 

of March, April – May and June – July corresponded to the phytoplankton pre-bloom, bloom 

and post-bloom phase. 
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Overview of tables and figures 

 

 

Figure 1 – Midtfjordsskjær (MFS) sampling station. 

 

Figure 2 – Total zooplankton abundance. 

 

Figure 3 – Holoplankton vs. meroplankton abundance. 

 

Figure 4 – Pictures of some identified taxa. 

 

Figure 5 – Abundance of each taxon. 

 

Figure 6 – Copepod order abundance. 

 

Figure 7 – Abundance of calanoid copepods and relative abundance of calanoids. 

 

Figure 8 – Abundance of cyclopoid copepods and relative abundance of cyclopoids. 

 

Figure 9 – Abundance of harpacticoid copepods. 

 

Figure 10 – Copepod life stage abundance. 

 

Figure 11 – Abundance of meroplankton taxa and relative abundance of meroplankton taxa. 

 

Figure 12 – Cluster analysis between samples. 

 

Figure 13 – Visualization of the vertical profiles of; a) temperature, b) salinity and c)       

fluorescence obtained from CTD profiler. 

 

Table 1 – Number of counted plankton individuals and sorted individuals taxonomically. 
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Appendix 
 

Table 1 – Table showing the number of counted plankton individuals (individuals per sample) morphologically identified at Midtfjordsskjær (MFS) sampling site 

at the different sampling dates in spring and summer 2019. WoRMS – World Register of Marine Species (Horton et al., 2021) was used to sort individuals 

taxonomically. Empty cells indicate that the taxonomic level was not available for the identified individuals.  

Phylum Class Subclass Order Genus/species stage 30.03 06.04 26.04 06.05 26.06 12.07 29.07 

Arthropoda Hexanauplia Copepoda Calanoida Acartia spp. female 0 14 2 2 16 13 14 

Arthropoda Hexanauplia Copepoda Calanoida Acartia spp. male 0 1 1 1 17 9 4 

Arthropoda Hexanauplia Copepoda Calanoida Acartia spp. cop 10 36 49 51 135 77 19 

Arthropoda Hexanauplia Copepoda Calanoida Calanus cf. finmarchicus cop 0 0 0 0 14 3 9 

Arthropoda Hexanauplia Copepoda Calanoida Centropages hamatus male 0 0 0 0 0 0 3 

Arthropoda Hexanauplia Copepoda Calanoida Centropages cf. typicus cop 0 0 0 0 1 2 0 

Arthropoda Hexanauplia Copepoda Calanoida Centropages spp. cop 5 0 0 0 0 1 10 

Arthropoda Hexanauplia Copepoda Calanoida Paracalanus sp. female 0 0 4 1 7 17 8 

Arthropoda Hexanauplia Copepoda Calanoida Paracalanus sp. male 0 0 0 0 4 7 8 

Arthropoda Hexanauplia Copepoda Calanoida Pseudocalanus cf. elongatus female 5 1 2 1 25 21 32 

Arthropoda Hexanauplia Copepoda Calanoida Pseudocalanus cf. elongatus male 10 1 0 0 7 6 7 

Arthropoda Hexanauplia Copepoda Calanoida Paracalanus/Pseudocalanus cop 170 89 239 116 339 483 233 

Arthropoda Hexanauplia Copepoda Calanoida Temora cf. longicornis female 0 1 7 1 24 20 4 

Arthropoda Hexanauplia Copepoda Calanoida Temora cf. longicornis male 0 6 1 0 3 4 2 

Arthropoda Hexanauplia Copepoda Calanoida Temora cf. longicornis cop 15 1 7 21 8 3 2 

Arthropoda Hexanauplia Copepoda Calanoida non det cop 0 0 1 0 0 0 0 

Arthropoda Hexanauplia Copepoda Cyclopoida Corycaeus anglicus female 0 0 0 0 0 1 0 
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Arthropoda Hexanauplia Copepoda Cyclopoida Corycaeus anglicus adult 0 2 0 0 0 0 0 

Arthropoda Hexanauplia Copepoda Cyclopoida Corycaeus anglicus cop 5 4 1 6 1 1 0 

Arthropoda Hexanauplia Copepoda Cyclopoida Corycaeus sp. adult 0 0 0 0 0 0 1 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. nana female 65 5 4 80 2 3 8 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. nana male 0 8 1 20 2 3 12 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. nana cop 90 5 19 302 82 31 35 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. plumifera female 0 0 0 0 0 0 1 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. similis female 0 62 66 50 95 74 61 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. similis male 0 4 2 1 8 8 5 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona cf. similis cop 0 39 94 112 176 133 109 

Arthropoda Hexanauplia Copepoda Cyclopoida Oithona spp. cop 0 108 335 153 331 128 60 

Arthropoda Hexanauplia Copepoda Cyclopoida non det male 0 0 0 0 0 0 1 

Arthropoda Hexanauplia Copepoda Cyclopoida non det cop 20 0 0 0 30 0 26 

Arthropoda Hexanauplia Copepoda Harpacticoida Microsetella spp. adult/ cop mix 170 57 120 241 13 8 2 

Arthropoda Hexanauplia Copepoda Harpacticoida cf. Parathalestris adult/cop mix 0 0 0 0 0 0 1 

Arthropoda Hexanauplia Copepoda Harpacticoida Tisbe sp. adult/cop mix 0 1 0 0 0 0 0 

Arthropoda Hexanauplia Copepoda Harpacticoida non det adult/cop mix 5 19 8 67 9 8 3 

Arthropoda Hexanauplia Copepoda Harpacticoida non det cop 0 4 2 8 5 1 4 

Arthropoda Hexanauplia Copepoda Harpacticoida 

 

nauplii 45 0 0 0 0 0 0 

Arthropoda Hexanauplia Copepoda 

  

nauplii 750 1152 1004 1370 1027 285 566 

Arthropoda Branchiopoda 

 

Cladocera Evadne spp. adult 0 1 0 201 32 68 7 

Arthropoda Branchiopoda 

 

Cladocera Penilia avirostris adult 0 0 0 0 0 0 9 

Arthropoda Branchiopoda 

 

Cladocera Podon sp. adult 0 1 0 24 15 14 7 

Arthropoda Malacostraca Eumalacostraca Decapoda 

 

brachyuran zoea larvae 0 0 0 0 0 1 0 

Arthropoda Thecostraca Cirripedia 

  

nauplii 0 35 38 16 1 6 0 
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Arthropoda Thecostraca Cirripedia 

  

cyprid larvae 0 0 0 0 0 0 2 

Annelida Polychaeta Errantia Phyllodocida Harmothoe larvae 0 1 0 0 0 0 0 

Annelida Polychaeta Errantia Phyllodocida Tomopteris adult 0 0 0 0 0 1 0 

Annelida Polychaeta Sedentaria Spionida Polydora larvae 0 0 0 0 1 0 0 

Annelida Polychaeta Sedentaria Spionida cf. Polydora larvae 0 0 0 0 0 20 0 

Annelida Polychaeta Sedentaria Spionida 

 

larvae 70 23 12 11 11 18 9 

Annelida Polychaeta 

   

trochophora larvae 55 1 1 1 0 1 1 

Annelida Polychaeta 

   

larvae non det 65 10 4 1 8 11 1 

Bryozoa 

    

cyphonautes larvae 0 0 0 0 9 3 0 

Chaetognatha Sagittoidea 

 

Aphragmophora Parasagitta sp. adult 0 0 1 0 0 0 0 

Chordata Tunicata Appendicularia Copelata Oikopleura cf. dioica adult 5 0 0 0 0 0 0 

Cnidaria Hydrozoa Hydroidolina Leptothecata cf. Clytia hemisphaerica medusa 0 9 0 0 0 0 0 

Cnidaria Hydrozoa Hydroidolina Leptothecata Obelia sp. medusa 0 0 28 0 0 0 0 

Cnidaria Hydrozoa 

   

medusa (small) 0 0 59 0 0 0 0 

Cnidaria Hydrozoa 

   

medusa (large) 0 0 11 0 0 0 0 

Echinodermata 

    

pluteus larvae 0 53 7 2 0 0 0 

Mollusca Bivalvia 

   

veliger larvae 25 33 6 0 13 0 9 

Mollusca Gastropoda  

   

veliger larvae 15 30 5 3 10 9 37 

Phoronida 

   

Phoronis cf. muelleri larvae 0 0 0 0 0 5 0 

Non det 

    

(maybe jellyfish) 0 0 2 0 0 0 0 

Non det 

    

(parasite of Acartia) 0 0 0 0 0 2 0 

 




