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1 Introduction
Let Λ = (λk)∞k=0 be a strictly increasing sequence of non-negative real numbers and letM(Λ) = span{tλk}∞k=0 ⊂
C[0, 1] where C[0, 1] is the space of real valued continuous functions on [0, 1] endowed with the max-norm.
We will callM(Λ) a Müntz space provided

∑∞
k=1 1/λk < ∞. The name is justi�ed by Müntz’ wonderful discov-

ery that if λ0 = 0 then M(Λ) = C[0, 1] if and only if
∑∞

k=1 1/λk = ∞.
It is well known that C[0, 1] contains isometric copies of c0 (see e.g. [1, p. 86] how to construct them) and

that its dual space is isometric to an L1(µ) space for some measure µ. The aim of this paper is to demonstrate
that Müntz spaces inherit quite a bit of structure from C[0, 1] in that they always contain asymptotically
isometric copies of c0, and that their dual spaces are always octahedral. (An L1(µ) space is octahedral. See
below for an argument.) Let us proceed by recalling the de�nitions of these two concepts and put them into
some context.

De�nition 1.1. [2, Theorem 2] A Banach space X is said to contain an asymptotically isometric copy of c0 if
there exist a sequence (xn)∞n=1 in X and constants 0 < m < M < ∞ such that for all sequences (tn)∞n=1 with
�nitely many non zero terms

m sup
n
|tn| ≤

∥∥∥∥∥∑n tnxn

∥∥∥∥∥ ≤ M sup
n
|tn|,

and

lim
n→∞

‖xn‖ = M.

R. C. Jamesproved a long timeago (see [3]) that X contains an almost isometric copyof c0 as soonat is contains
a copy of c0. Note that containing an asymptotically isometric copy of c0 is a stronger property, see e.g. [2,
Example 5].

De�nition 1.2. A Banach space X is said to be octahedral if for any �nite-dimensional subspace F of X and
every ε > 0, there exists y ∈ SX with

‖x + y‖ ≥ (1 − ε)(‖x‖ + 1) for all x ∈ F.
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This concept was introduced by G. Godefroy and B. Maurey (see [4, p. 118]), and in [5] the following result can
be found on page 12:

Theorem 1.3 (Deville-Godefroy). Let X be a Banach space. Then X* is octahedral if and only if every �nite
convex combination of slices of BX has diameter 2.

By a slice of BX we mean a set of the form

S(x*, ε) := {x ∈ BX : x*(x) > 1 − ε, ε > 0, x* ∈ SX*}.

Remark 1.4. As we have mentioned, Theorem 1.3 can be found, but without proof, in [5]. Deville had proven
in [4, Theorem 1 and Proposition 3] that if X is octahedral, every �nite convex combination of w*-slices of BX*
has diameter 2. In the same paper he asks if the converse is true (Remark (c) on page 119). Since there is no
proof included in [5], new proofs appeared, independently, in [6] and [7], in connection with a new study of
spaces where all �nite convex combination of slices of BX has diameter 2.

When we show that the dual of Müntz spaces are octahedral we will use Theorem 1.3 and establish the equiv-
alent property stated there. Note that an L1(µ) space is octahedral. Indeed, the bidual of such a space can
be written L1(µ)** = L1(µ) ⊕1 X for some subspace X of L1(µ)** (see e.g. [8, IV. Example 1.1]). From here the
octahedrality of L1(µ) is a straightforward application of the Principle of Local Re�exivity.

The main reference concerning Müntz spaces is [9]. But there most of the phenomena that are studied
are linked to spreading properties of Λ and not general results concerning all Müntz spaces.

We do not know of much research in the direction of our results. But we would like to mention a paper
of P. Petráček ([10]), where he demonstrates that Müntz spaces are never re�exive and asks whether they
can have the Radon-Nikodým property. Since the Radon-Nikodým property implies the existence of slices of
arbitrarily small diameter, we now understand that Müntz spaces rather belong to the “opposite world” of
Banach spaces.

See also Remark 2.9 for some more related results.

2 Results
De�nition 2.1. We will say that a strictly increasing sequence of non-negative real numbers (λk)∞k=0 has the
Rapid Increase Property (RIP) if λk+1 ≥ 2λk for every k ≥ 0.

We will call a function of the form

p(x) = xα − xβ ,

where 0 ≤ α < β, a spike function.

Remark 2.2. If α > 0 it should be clear that any spike function p satis�es p(0) = p(1) = 0, attains its norm on a
unique point xp, is strictly increasing on [0, xp], and strictly decreasing on [xp , 1]. To visualize the arguments
that come, we think it is a good idea at this stage to draw the graphs of e.g. x100 − x200 and x1000 − x20000.

We will need the following result below.

Lemma 2.3. Let (λk)∞k=0 be an RIP sequence and (pk)∞k=0 the sequence of corresponding spike functions pk(x) =
xλk − xλk+1 . Then infk ‖pk‖ ≥ 1/4. Moreover, the sequence (pk/‖pk‖)∞k=1 converges to 0 weakly in M(Λ).

Proof. We want to �nd the norm of the spike function de�ned by

pk(x) = xλk − xλk+1 .
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Observe that rk(x) := xλk − x2λk ≤ pk(x) for all x ∈ [0, 1]. Now, by standard calculus, rk attains its maximum
at xk where xkλk = 1

2 . Thus

‖pk‖ ≥ rk(xk) = 1
2 −

(
1
2

)2
= 1

4 .

As (pk)∞k=1 converges pointwise to 0 and infk ‖pk‖ ≥ 1/4, the sequence (pk/‖pk‖)∞k=1 converges pointwise
to 0 and thus weakly to 0 as it is bounded.

Remark 2.4. By standard calculus one can show that the point at which pk in Lemma 2.3 obtains its norm is
x̄k = (λk/λk+1)1/(λk+1−λk). For su�ciently large λk it is straightforward to show that

yk := 1/(λk+1 − λk)1/(λk+1−λk) ≤ x̄k ,

that yk is strictly monotone, and that yk converges to 1 (λk ≥ 3 is su�cient).

Theorem 2.5. The dual of any Müntz space is octahedral.

Proof. Let M(Λ) be a Müntz space. Let

C =
n∑
j=1

µjS(x*j , εj),

where
∑n

j=1 µj = 1, µj > 0, and S(x*j , εj), 1 ≤ j ≤ n, is a slice of BM(Λ). We will show that the diameter of C is 2
(cf. Theorem 1.3). To this end, start with some f ∈ C and write f =

∑n
j=1 µjg

j, where gj ∈ S(x*j , εj). Let (λk)∞k=0
be an RIP subsequence of Λ (which is possible as

∑∞
k=1 1/λk < ∞) and put

hj+k = gj + (1 − gj(xk)) pk
‖pk‖

hj−k = gj − (1 + gj(xk)) pk
‖pk‖

where (pk)∞k=0 is the sequence of spike functions corresponding to (λk)∞k=0 and xk the (unique) point where pk
attains its norm. We will prove that, for any ε > 0, there exists a K = K(ε) such that whenever k ≥ K we have

1
1+2ε h

j+
k ,

1
1+2ε h

j−
k ∈ S(x*j , εj) for every 1 ≤ j ≤ n. Then, clearly

1
1 + 2ε

n∑
j=1

µjhj±k ∈ C,

and ∥∥∥∥∥∥ 1
1 + 2ε

n∑
j=1

µjhj+k −
1

1 + 2ε

n∑
j=1

µjhj−k

∥∥∥∥∥∥ ≥ 1
1 + 2ε

 n∑
j=1

µj[hj+k (xk) − hj−k (xk)]

 = 2
1 + 2ε .

for all k ≥ K. Since ε is arbitrary, we can thus conclude that C has diameter 2.
To produce the K = K(ε) above, note that hj±k converges to gj pointwise, and thus weakly since the se-

quences are bounded. As Uj := {x ∈ M(Λ) : x*j (x) > 1 − 2εj} is weakly open, each sequence (hj±k )∞k=0 enters Uj
eventually. Since there are only a �nite number of sets Uj, this entrance is uniform. So, what is left to prove
is that for ε > 0 there exists K such that ‖hj±k ‖ ≤ 1 + 2ε whenever k ≥ K.

Now, let ε > 0. Combining Remark 2.2, Remark 2.4, that (pk/‖pk‖)∞k=1 converges pointwise to 0, and the
continuity of gj, we can �nd K ∈ N such that for all k ≥ K there are points 0 < ak < xk < bk < 1 such that

pk(x)
‖pk‖

> ε ⇔ x ∈ (ak , bk),

sup
u,v∈(ak ,bk)

|gj(u) − gj(v)| < ε, j = 1, . . . , n.
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We will see that this K does the job for the given ε > 0: Let k ≥ K and suppose x ∈ ̸ (ak , bk). Then

|hj+k (x)| =
∣∣∣∣gj(x) + (1 − gj(xk))pk(x)

‖pk‖

∣∣∣∣ ≤ |gj(x)| + 2ε ≤ 1 + 2ε.

If x ∈ (ak , bk), observe that

|hj+k (x)| ≤
∣∣∣∣gj(x) + (1 − gj(x))pk(x)

‖pk‖

∣∣∣∣ + |gj(x) − gj(xk)|pk(x)
‖pk‖

<
∣∣∣∣gj(x) + (1 − gj(x))pk(x)

‖pk‖

∣∣∣∣ + ε.

Now, if gj(x) ≥ 0, then ∣∣∣∣gj(x) + (1 − gj(x))pk(x)
‖pk‖

∣∣∣∣ ≤ gj(x) + (1 − gj(x)) = 1.

If gj(x) < 0 and gj(x) + (1 − gj(x))pk(x)/‖pk‖ ≥ 0, then∣∣∣∣gj(x) + (1 − gj(x))pk(x)
‖pk‖

∣∣∣∣ ≤ gj(x) + (1 − gj(x)) = 1.

If gj(x) < 0 and gj(x) + (1 − gj(x))pk(x)/‖pk‖ < 0, then∣∣∣∣gj(x) + (1 − gj(x))pk(x)
‖pk‖

∣∣∣∣ ≤ |gj(x)| ≤ 1.

In any case we have for k ≥ K and x ∈ [0, 1] that |hj+k (x)| ≤ 1 + 2ε. The argument that ‖hj−k ‖ ≤ 1 + 2ε is
similar.

Theorem 2.6. Müntz spaces contain asymptotically isometric copies of c0.

Proof. Wewill construct a sequence (fn)∞n=1 ⊂ M(Λ) and pairwise disjoint intervals In = (an , bn) ⊂ [0, 1] such
that for all n ∈ N

(i) fn(x) ≥ 0 for all x ∈ [0, 1],
(ii) ‖fn‖ = 1 − 1/2n ,
(iii) bn < an+1
(iv) fn(x) > 1/22n ⇔ x ∈ In ,
(v) fn(x) < 1/22m whenever m ≥ n and x ∈ Im .

To this end choose a subsequence of Λ with the RIP. For simplicity denote also this subsequence by
(λk)∞k=0. Let (pk)∞k=1 be its corresponding sequence of spike functions, and let xk be the (unique) point in (0, 1)
where pk obtains its maximum.

Now, start by letting k1 = 1 and put

f1 = (1 − 1/2) pk1

‖pk1‖
.

Using continuity and properties of p1, we can �nd an interval I1 = (a1, b1) such that 0 < a1 < b1 < 1 and
f1(x) > 1

22 ⇔ x ∈ I1. By construction f1 satis�es the conditions (i) - (iv).
To construct f2 we use Lemma 2.3 and Remarks 2.2 and 2.4 to �nd k2 ∈ N and an interval I2 = (a2, b2)

with b1 < a2 < b2 < 1 such that

x ∈ I2 ⇔ pk2 (x) > 1/24

1 − 1/22 ‖pk2‖,

x ∈ I2 ⇒ pk1 (x) ≤ 1
24 .
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Let

f2 = (1 − 1/22) pk2

‖pk2‖
.

By construction f1 now satis�es condition (v) for m ≤ 2 and f2 satis�es conditions (i) - (iv).
To construct f3 we use Lemma 2.3 and Remarks 2.2 and 2.4 again to �nd k3 ∈ N and an interval I3 =

(a3, b3) with b2 < a3 < b3 < 1 such that

x ∈ I3 ⇔ pk3 (x) > 1/26

1 − 1/23 ‖pk3‖,

x ∈ I3 ⇒ pkj (x) ≤ 1
26 for j = 1, 2.

Let

f3 = (1 − 1/23)
pk3

‖pk3‖
.

By construction f1 and f2 now satisfy condition (v) form ≤ 3 and f3 satis�es conditions (i) - (iv). If we continue
in the same manner we obtain a sequence (fn)∞n=1 ⊂ M(Λ) and a sequence of intervals In = (an , bn) which
satis�es the conditions (i) - (v).

Now we will show that (fn)∞n=1 satis�es the requirements of De�nition 1.1. To this end we need to �nd
constants 0 < m < M < ∞ such that given any sequence (tn)∞n=1 with �nitely many non zero terms

m sup
n
|tn| ≤ ‖

∑
n
tn fn‖ ≤ M sup

n
|tn| (1)

and
lim
n→∞

‖fn‖ = M (2)

We claim that (1) and (2) holdswithm = 1
4 andM = 1. First observe thatwehave limn→∞ ‖fn‖ = 1 immediately

from the requirements, so (2) holds for M = 1. In order to prove the two inequalities in (1), let (tn)∞n=1 be an
arbitrary sequence with �nitely many non zero terms. First we will prove that 1/4 supn |tn| ≤

∥∥∑
n tn fn

∥∥. We
can assume by scaling that sup |tn| = 1. Since (tn)∞n=1 has �nitely many non zero terms, its norm is attained
at, say, n = N, i.e. |tN | = 1. Put xN = xkN where xkN is the point where pkN and thus fN attains its norm. Then

‖
∑
n∈N

tn fn‖ ≥ |tN fN(xN)| − |
∑
n≠N

tn fn(xN)|

≥ 1 − 1
2N −

∑
n≠N
|fn(xN)|

> 1 − 1
2N −

1
4 ≥

1
4 .

We conclude that the left hand side of the inequality (1) holds. Now we will show the right hand side of this
inequality holds, i.e. we want to prove that |

∑
n tn fn(x)| ≤ 1 for all x ∈ [0, 1]. Since fn ≥ 0 for all n = 1, 2, . . . ,

we may assume that every tn is positive. Now, if x ∉ ∪n(an , bn), we have∑
n
tn fn(x) ≤

∑
n
fn(x) ≤

∑
n

1
22n ≤

1
3 .

If, on the other hand x ∈ (an′ , bn′ ) for some n′ ∈ N, then∑
n
tn fn(x) ≤ fn′ (x) +

∑
n<n′

fn(x) +
∑
n>n′

fn(x)

≤ 1 − 1
2n′ + n′ − 1

22n′ + 1
22n′

≤ 1 + n′ − 2n
′

22n′ ≤ 1 − 1
22n′ < 1.

These combined yields the right hand side of the inequality (1), so the proof is complete.
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A Banach space X contains an asymptotically isometric copy of `1 if it contains a sequence (xn)∞n=1 for which
there exists a sequence (δn)∞n=1 in (0, 1), decreasing to 0, and such that

m∑
n=1

(1 − δn)|an| ≤ ‖
m∑
n=1

anxn‖ ≤
m∑
n=1
|an|

for each �nite sequence (an)mn=1 in R.
Merging ([11, Theorem 2]) and [12, Lemma 2.3] gives us that if either the Banach space X contains an

asymptotically isometric copy of c0 or if X* is octahedral, then X* contains an asymptotically isometric copy
of `1. So, we have two ways of proving

Corollary 2.7. M(Λ)* contains an asymptotically isometric copy of `1.

Moreover, we have

Corollary 2.8. M(Λ)** contains an isometrically isomorphic copy of L1[0, 1].

Proof. This follows from Corollary 2.7 and [13, Theorem 2].

Remark 2.9 (Added in proof).
(a) One of the anonymous referees invited the authors to consider the question whether Müntz spaces also

could be octahedral (as C[0, 1] is). Here is a preliminary answer: Combine the so called Clarkson-Erdös-
Schwartz theorem (see [9, Theorem 6.2.3]) in tandemwith a result of P. Wojtaszczyk (see [14, Theorem 1]).
Then we see that when Λ consists of natural numbers, M(Λ) is isomorphic to a subspace of c0. Since an
octahedral space contains a copy of `1, we have a negative answer for a big class of Müntz spaces.

(b) We have mentioned [12, Lemma 2.3] as reference for the fact that an octahedral space contains an asymp-
totically isometric copy of `1. It has come to our knowledge that this result, even with the same proof, was
published earlier by Yamina Yagoub-Zidi, see [15, Proposition 3.3].
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