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1 Introduction

1.1 Background

It is quite remarkable that there exist Banach spaces where every slice of the unit ball
has a diameter of 2. Properties associated with certain subsets of the unit ball (e.g.
slices, non-empty relatively weakly open subsets and finite convex combination of
slices) having diameter 2, is what is meant by the big slice phenomenon. Banach
spaces with diameter 2 properties exist in the “opposite world” of Banach spaces
with the Radon-Nikodym property. Indeed, it is known that a Banach space X
has the Radon-Nikodym property if and only if every closed and bounded convex
subset of X has slices of arbitrarily small diameter. Reflexive, and in particular
finite dimensional, Banach spaces have the Radon-Nikodym property. Therefore,
the big slice phenomenon is purely infinite dimensional.

The simplest example of a Banach space where we meet the big slice phenomenon
is probably ¢y. Consider a norm one element = in ¢y. Let (ey,),cn be the standard
basis. If we let y, = (z +ey,)/ ||z + €| and z, = (z — ey,)/ ||z — ex|, then we have
norm one elements that converge weakly to = and whose distance tends to 2. In
particular, slices and non-empty relatively weakly open subsets in the unit ball of
¢o have diameter 2. The above argument can be easily extended to show that even
finite convex combinations of slices in the unit ball of ¢y have diameter 2. You just
start with a finite number of norm one elements (instead of just ) and use the same
ey, for each of these.

Possibly the first appearance of the big slice phenomenon in the literature came
in connection with the so-called roughness of the norm. John and Zizler [JZ78]
showed that if the norm of a Banach space X is 2-rough (equivalently locally oc-
tahedral [HLP15]), then the weak*-slices of Bx- have diameter 2. Roughness of
the norm was further investigated by Deville in 1988 in connection with octahedral
norms. A Banach space has an octahedral norm if for any finite dimensional sub-
space E of X there exists a direction almost ¢;-orthogonal to £. Deville [Dev88§]
(see also [God89]) showed that if a Banach space X is octahedral, then the norm
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1 Introduction

of X is 2-average rough, implying that finite convex combinations of weak*-slices
of By~ have diameter 2.

The first paper devoted to investigating the diameter 2 properties was probably
by Nygaard and Werner [NWO01], where they showed that the non-empty relatively
weakly open subsets of the unit ball in uniform algebras have diameter 2. Shvydkoy
[Shv00] had previously shown that the same is true for such subsets of the unit ball
of Banach spaces with the Daugavet property. Subsequent to [NWO01], it was shown
in [BGLPPRPO04] that the non-empty relatively weakly open subsets of the unit
ball of all M-embedded spaces have diameter 2, which generalizes the ¢y example
mentioned above.

It can be argued that a common theory of diameter 2 properties began following
[ALN13] where they did a systematic survey of previous research and introduced
the following properties. A Banach space X has the local diameter 2 property
(LD2P) if every slice of By has diameter 2, the diameter 2 property (D2P) if every
non-empty relatively weakly open subset of By has diameter 2 and the strong diam-
eter 2 property (SD2P) if every finite convex combination of slices of Bx has diam-
eter 2. The SD2P implies the D2P by [GGMS87, Lemma II.1] and clearly the D2P
implies the LD2P. The D2P was distinguished from the LD2P in [BGLPRZ15] and
the SD2P and the D2P was shown, independently, to be different in [ABGLP15],
[HL14] and [Ojal4].

Other examples of Banach spaces where we can observe the big slice phenomenon
are the Banach spaces ¢, /o, and Banach spaces with the Daugavet property (e.g.
C10,1], L1]0,1] and L0, 1], see Section 1.2.3). All of the above examples enjoy
the SD2P. It is worth pointing out that Banach spaces can enjoy diameter 2 prop-
erties in very different ways. Banach spaces with the symmetric strong diameter
2 property, satisfies that any finite number of slices have line segments of almost
length 2 in a common direction. In a Banach space with the Daugavet property
(and diametral local diameter 2 property), any norm one element in a slice lies as
an endpoint of a line segment in the slice with length almost 2.

A Banach space has the Daugavet property (respectively diametral local diam-
eter two property) if and only if for every norm one element x we have that every
y 1n the unit ball (respectively ) is in the closed convex hull of the unit elements
at a distance almost 2 from z. The Banach space C|0, 1] has the Daugavet prop-
erty, and in particular C'[0, 1] satisfies the SD2P. It is therefore natural to study what
kind of diameter 2 structures certain subspaces of C'[0, 1] inherit. In [ANP19] it was
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1.1 Background

shown that extremely regular subspaces X of C[0, 1] have the Daugavet property
and are almost square, i.e., for every finite dimensional subspace E of X, there is
a direction almost /,,-orthogonal to E. In this thesis we single out and study the
famous Miintz spaces (as subspaces of C'[0, 1]) and show that they have the strong
diameter 2 property, but are neither locally almost square nor locally octahedral (it
is pointed out in [HLLN19] that we actually show that Miintz spaces have the sym-
metric strong diameter 2 property). In addition, we show that Miintz spaces can be
almost isometrically embedded into ¢ and that Miintz spaces contain asymptotically
1sometric copies of ¢p.

Pointwise versions of the Daugavet property and the diametral local diameter 2
property have recently been introduced and studied under the names of Daugavet-
and delta-points respectively. Although the set of Daugavet- and delta-points co-
incide in L;(u), their preduals and for Miintz spaces [AHLP20], it is easy to con-
struct examples of Banach spaces with delta-points that are not Daugavet-points.
Indeed, in the space C|0, 1] @2 C|0, 1], all points of the unit sphere are delta-points,
however, no point is a Daugavet-point [AHLP20, Example 4.7]. In [Kad96, Corol-
lary 2.3] Kadets proved that Banach spaces with the Daugavet property fail to have
an unconditional basis. It also follows directly from the characterization in [[K04],
that if a Banach space has the diametral local diameter 2 property and an uncon-
ditional basis, then the unconditional suppression basis constant must be at least
2. It is therefore natural to pose the question, do there exist Banach spaces with
a l-unconditional basis with delta-points, or even Daugavet-points? In order to
study this problem, we investigate Banach spaces with 1-unconditional basis gen-
erated by so-called adequate families, denoted h4,. For 1 < p < oo, we show
that neither /4, nor 2 , contain any delta-points. In addition, we show that Ba-
nach spaces with a 1-subsymmetric basis can never have delta-points. The Banach
spaces with a 1-subsymmetric basis is a big subclass of the Banach spaces with a
1-unconditional basis, and include well-known Banach spaces such as ¢, spaces, co,
the subspaces h); of Orlicz sequence spaces /,,,, the Schreier spaces and Lorentz
sequence spaces d(w, p) and their preduals d(w, p)..

More surprisingly, we show that there exist Banach spaces with a 1-unconditional
basis with Daugavet-points. Moreover, we construct an h 4 ; space with “lots” of
Daugavet-points in the sense that the Daugavet-points are weakly dense in the unit
ball.




1 Introduction

1.2 Summary of the thesis

In this section we summarize the main results of the thesis. Preliminary theory
will be presented prior to each result. We begin, in Subsection 1.2.1, by discussing
Miintz spaces, which is the focus of the two first papers, “Tiwo properties of Miintz
spaces” and “Octahedrality and Miintz spaces”. In Subsection 1.2.2, we then dis-
cuss diameter two properties which is the recurring theme throughout the thesis.
We end the summary, with Subsection 1.2.3, by presenting the results related to
Daugavet- and delta-points, which form the focus of the papers “Daugavet- and
delta-points in Banach spaces with unconditional bases” and “Delta-points in Ba-
nach spaces generated by adequate families”. All the results are stated without
proofs, but their origin is referenced where their proofs can be found in full detail.

The notation and terminology used throughout the thesis is standard (see e.g.
[AKO6]). If X is a Banach space, then By, Sx and X* denote the unit ball, unit
sphere and topological dual space, respectively. The convex hull of A of a subset of
X is denoted conv(A) and the linear span by span(A4). The norm- and weak-closure

of A will be denoted A and A", respectively.

1.2.1 Miintz spaces

The well-known Weierstrass’ approximation theorem states that the polynomials
are dense in C/a, b], the space of continuous functions on the interval [a, b], endowed
with the sup-norm. In 1914, Herman Miintz generalized the Weierstrass approxi-
mation theorem by completely characterizing when a sequence of monomials are
dense in Cla, b]. Let A = ()2, with A\g = 0, be a strictly increasing sequence of

non-negative real numbers and let I1(A) := span(t*)22, C C[0, 1].

Theorem 1.2.1 (cf. Miintz’ Theorem [BE9S, Theorem 4.2.1]). Let A = (X)),

then I1(A) = C0, 1] if and only if

>y
i=1 Ai
By Miintz’ Theorem, we see that M/ (A) := II(A) is a proper subspace of C/0, 1]
whenever the series Y .-, 1/); converges. We will say that A = (\;)°, is a Miintz
sequence and M (A) a Miintz space if .-, 1/); < co. Whenever the constants are

excluded from M (A), we denote the subspace as My(A).
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1.2 Summary of the thesis

It is often too difficult to study Miintz spaces in general. Therefore Miintz spaces
where A satisfies certain properties are frequently singled out. In particular, Miintz
sequences being lacunary or satisfying the gap condition, i.e. inf Az 1/A\x > 1 or
infren(Arr1 — Ak) > 0, have been studied extensively (see e.g. [GLO05]). It is
known that a Miintz space M (A) is isomorphic to a subspace of ¢y whenever A
satisfies the gap condition (see Theorem 9.1.6(c) and Theorem 11.4.1 [GLO5]). In
[Wer00] Werner used the idea from the proof of Theorem 11.4.1 [GLO05] (a proof
due to Wojtaszczyk) to show that if A satisfies the gap condition, then M (A) is
almost isometric to a subspace of ¢ (the space of convergent sequences), i.e., for

each € > 0 there exists an operator J. : M (A) — ¢ such that

(=) Il < Nfll < (X +e) LA

The proofrelies heavily on the fact that in this case every f in M (A) is differentiable

and that there exists for 0 < a < 1 an upper bound K (a) such that

sup |f'(t)] < K(a) [If]]-

0<t<a
The Bounded Bernstein inequality gives us a similar bound for the polynomials

(which certainly are differentiable) when the Miintz sequence A satisfies 1 < ;.

Theorem 1.2.2 (Bounded Bernstein inequality [BE97, Theorem 3.2]). Let A be a

Miintz sequence with 1 < \1. Then for every ¢ > 0 there is a constant c. such that

sup  [p'(t)] < celpll,
0<t<l—e

forall p € TI(A).

We use this upper bound to extend Werner’s proof to get a general result about
all Miintz spaces.

Theorem 3.2.6: [Mar]

Every Miintz space M (A) can be written as a direct sum X @ Y where X is

finite dimensional and Y is almost isometric to a subspace of c.

In fact, as shown in Proposition 6.0.4 in the Appendix, it is possible to show that

all Miintz spaces can be almost isometrically embedded into c.




1 Introduction

Proposition 6.0.4

Let M(A) be a Miintz space. Then for any ¢ > 0 there exists an operator
Je : M(A) — ¢ such that

A=) I < WA < WA

In [DLT96] the notion of an asymptotically isometric copy of ¢y was introduced.

Definition 1.2.3. cf. [DLT98] A Banach space X is said to contain an asymptoti-
cally isometric copy of cy if, for every null sequence (), in (0, 1), there exists a

sequence (xy,)nen 1n X such that

Z tnTn

sup (1 —en) [tn| <
" neN

< sup (14 &y) |ta,
n

for all finite sequences (,,) of real numbers.

Naturally, by the definition, a Banach space containing an almost isometric copy
of ¢y contains a copy of ¢p. In [DLT98] they showed that /., can be equivalently
renormed to fail to contain an asymptotically isometric copy of ¢o. By James’ dis-
tortion theorem [Jam64, Lemma 2.2] it is known that a Banach space X contains
an almost isometric copy of ¢y as soon as it contains a copy of ¢p. We can see
that containing an asymptotically isometric copy of ¢ is a stronger property than
containing an almost isometric copy of ¢g. The study of Banach spaces containing
asymptotically isometric copies of ¢y and ¢; were initiated in [DLT96] and [DL97].
It was shown in [DL97] and [DLT96] that Banach spaces containing an asymptoti-
cally isometric copy of ¢y or ¢; fail the fixed-point property. For Miintz spaces, we

are able to say the following.

Theorem 2.2.6: [ALMN]

Miintz spaces contain asymptotically isometric copies of cj.

1.2.2 Diameter two properties

Let X be a Banach space. A slice S(x*, ) of the unit ball By is a set

S(a*,0) ={y € Bx : «"(y) > |l=*| - 6},




1.2 Summary of the thesis

where 2* € X* and § > 0. If (4;))Y, is a collection of subsets of X, then a convex

combination of (4;), is a set

N N
Z/\iAi = {yGXiyZ)\iyz’7 inAz},

i=1 i=1
where \; > 0 forall : = 1,...,Nand2£\i1>\i =1.

Although the diameter two properties have appeared in the literature for several
years in relation to roughness of the norm [Dev88], the Daugavet property [Shv00],
uniform algebras [NWO01] and M-embedded spaces [BGLPPRP04], it can be argued
that a common theory of diameter 2 properties began with [ALN13]. In [ALN13]
they introduced the following properties:

Definition 1.2.4. A Banach space X is said to have the
(1) local diameter 2 property (LD2P) if every slice of Bx has diameter 2;

(i1) diameter 2 property (D2P) if non-empty relatively weakly open subset of By

has diameter 2;

(i11) strong diameter 2 property (SD2P) if every finite convex combination of

slices has diameter 2.

Since every non-empty relatively weakly open subset of By contains a finite
convex combination of slices [GGMS87, Lemma II.1], the SD2P implies the D2P.
As every slice is a non-empty relatively weakly open subset of By, the D2P implies
the LD2P as well. Note that none of the reverse implications hold. Indeed, ¢y &2 ¢
has the D2P by [ALN13, Theorem 3.2], but fail the SD2P by [ABGLP15, HL.14,
Ojal4]. Thus the SD2P is a strictly stronger property than the D2P. The D2P is also
strictly stronger than the LD2P, which can be seen by [BGLPRZ15, Theorem 2.4]
or in Section 4.4 p. 69.

In “Two properties of Miintz spaces” we prove that all Miintz spaces have the

SD2P, but our result is phrased in terms of octahedral norms.

Definition 1.2.5 (cf. [HLP15]). A Banach space X is said to have an octahedral
norm if for every finite dimensional subspace F' of X and every ¢ > 0, there exists
y € Sx with

o +yll = (1= &) ([l + llyl])

forall x € F.




1 Introduction

The concept of an octahedral norm was introduced by Godefroy and Maurey (see
[Dev88, p. 118]) where they showed that a Banach space X contains an isomorphic
copy of /; if and only if X admits an equivalent octahedral norm. Note that if a
Banach space X has an octahedral norm, we will refer to X as octahedral when
there 1s no risk of confusion. For a dual space X*, a weak™* slice is a slice of the

form S(z**,d), where ** € X** is the canonical image of some z € X.
Definition 1.2.6. Let X be a Banach space. We say that X* has the

(1) weak* local diameter 2 property (w*-LD2P) if every weak™ slice of Bx- has

diameter 2;

(i1) weak™ diameter 2 property (w*-D2P) if every non-empty relatively weak*

open subset of Bx- has diameter 2;

(111) weak™* strong diameter 2 property (w*-SD2P) if every convex combination

of weak™ slices of By- has diameter 2.

Octahedral Banach spaces are intimately connected to the SD2P. The connection
was already known in 1988 when Deville proved that if a Banach space X is octa-
hedral, then X* has the w*-SD2P. However, the reverse implication was only stated
without proof in [God89]. Therefore, proofs of the duality between octahedral Ba-
nach spaces and the SD2P appeared later.

Theorem 1.2.7 (cf. [BGLPRZ14] and [HLP15]). Let X be a Banach space. Then:
(i) X is octahedral if and only if X* has the w*-SD2P;
(i) X has the SD2P if and only if X* is octahedral.
Note that (i1) is an immediate consequence of (i) and the following result.

Proposition 1.2.8 (cf. [HLP15, Proposition 1.3]). 4 Banach space X has the LD2P
(respectively D2P, SD2P) if and only if X** has the weak* LD2P (respectively weak*
D2P, weak* SD2P).

We now see that showing that the dual of any Miintz space is octahedral is equiv-

alent to showing that any Miintz space has the SD2P.




1.2 Summary of the thesis

Theorem 2.2.5: [ALMN]
The dual of any Miintz space is octahedral.
The authors of [HLP15] introduced two new weaker versions of octahedrality,
in order to find a (pre)dual characterization of the w*-D2P and the w*-LD2P.
Definition 1.2.9. A Banach space X is

(1) locally octahedral if for every x € Sy and € > 0 there exists y € Sx such
that

le+yl > 2 —¢

(11) weakly octahedral if for every finite-dimensional subspace E of X, every

r* € By~ and every ¢ > 0, there exists y € Sx such that

Iz +yll = (1 =2) (|2" ()| + llyl)) ~ forallz € E.

Note that octahedral Banach spaces are weakly octahedral. Furthermore, weakly
octahedral Banach spaces are locally octahedral. None of the reverse implications

hold because of the following relationships.
Theorem 1.2.10 (cf. [HLP15]). Let X be a Banach space. Then
(i) X is weakly octahedral if and only if X* has the w*-D2P;
(i) X has the D2P if and only if X* is weakly octahedral;
(iii) X is locally octahedral if and only if X* has the w*-LD2P;
(iv) X has the LD2P if and only if X* is locally octahedral.

As any Miintz space can be embedded into ¢ by Proposition 6.0.4, we see that the
dual of any Miintz space is separable and thus has the RNP. Since this implies that
the dual space of any Miintz space fail to have the w*-LD2P we get the following

result.

Theorem 3.3.1: [Mar]

No Miintz space M (A) has a locally octahedral norm.
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In [Kub14, Corollary 3.4] Kubiak showed that the Cesaro function spaces have
the D2P. In addition, Kubiak showed that if X is a Banach space such that for every
x € Sx there exists a sequence (y,) C Bx with ||z £ y,|| — 1 and ||y,|| — 1, then
X has the LD2P [Kubl4, Proposition 2.5]. Furthermore, if in addition y, — 0
weakly, then X has the D2P [Kub14, Proposition 2.6]. This observation was the
starting point of [ALL16] were they introduced the following properties:

Definition 1.2.11. Let X be a Banach space. Then X is

(1) locally almost square (LASQ) if for every x € Sx there exists a sequence
(yn) C By such that ||z + y,|| — 1 and [|y,|| — 1;

(i1) weakly almost square (WASQ) if for every x € Sx there exists a sequence
(yn) C Bx such that ||z £ y,|| — 1, ||yn]| — 1 and y,, — 0 weakly;

(iii) almost square (ASQ) if for every finite subset (z;), C Sy there exists a
sequence (y,) C By such that ||z; £ y,|| — 1 forevery i = 1,2,..., N and
[ynll — 1.

Clearly WASQ implies LASQ and, in fact, ASQ implies WASQ, as the sequence
in (iii) can be chosen to be weakly null (see [ALL16, Theorem 2.8]). Kubiak
showed that if a Banach space X is WASQ (respectively LASQ), then X has the
D2P (respectively LD2P). Proposition 2.5 in [ALL16] shows that ASQ also im-
plies the SD2P. We can see that C'[0, 1] fails to be LASQ. Indeed, by considering
the constant function 1 itis clear that any f € S 1) satisfies max ||1 & f|| = 2. This
argument clearly also holds for any Miintz space containing the constant functions.
To see that the result also holds for Miintz spaces My(A) with A\; < 1 requires more
effort, but can be seen by exploiting the Bounded Bernstein inequality, combined

with an upper bound on the coefficients of the elements Zle a;it" € TI(A).

Theorem 6.0.5: Appendix

Let X be M(A) or My(A) for any Miintz sequence A. Then X is not locally

almost square.

Although there has been done a lot of study in the direction of ASQ Banach
spaces (e.g. [ALL16, AHT20, BGLPRZ16, LLRZ17]), one question from [ALL16]
still remains open: Is WASQ strictly stronger than LASQ?

10



1.2 Summary of the thesis

1.2.3 Daugavet- and delta-points

In 1963 Daugavet proved that the equation
IId+T| =1+ || (1.1)

holds for all compact operators 7" on C[0, 1] [Dau63], where Id is the identity op-
erator on C[0,1]. Due to this discovery the equation (1.1) is now known as the
Daugavet equation. Shortly after Daugavet established this equation for C[0,1]
Lozanovskii [Loz66] proved that the Daugavet equation holds for all compact op-
erators on L;[0, 1]. Banach spaces satisfying the Daugavet equation for all rank-1
operators 7' : X — X are said to have the Daugavet property. Subsequently, the

Daugavet property has been further studied and characterized geometrically.

Lemma 1.2.12 ([KSSWO00, Lemma 2.2]). Let X be a Banach space. Then the

following are equivalent:

(i) X has the Daugavet property;

(i) For every slice S(z*,9) of Bx, every x € Sx and every € > 0, there exists
y € S(z*,8) such that |z —y|| > 2 —e.

It is clear from (ii) that Banach spaces with the Daugavet property has the LD2P.
In fact, the Daugavet property implies the SD2P, as shown in [ALN13, Theo-
rem 4.4]. It is also known (see e.g. [BGLPRZ14, Lemma 2.3]) that the dual of
a Banach space with the Daugavet property has the weak* SD2P. Typical examples
of Banach spaces with the Daugavet property include C[0, 1], L;[0, 1] and L [0, 1].

Note that there is a natural weakening of Lemma 1.2.12 (ii), by only considering
slices containing x. This weakening is known as the diametral local diameter 2
property. The diametral local diameter 2 property was introduced in [IK04] under
the name space with bad projections (see also [IK04] for unnamed appearances of
this), but was also studied under the name local diameter 2 property+in [AHN"16].
The name diametral local diameter 2 property was first used in [BGLPRZ18].

Definition 1.2.13. Let X be Banach space. Then X has the diametral local diam-
eter 2 property (DLD2P) if for every x € Sx, every slice S(x*, ) with z € S(z*, )
and e > 0, there exists y € S(z*,0) such that ||z — y|| > 2 —e.

The goal of the papers “Daugavet- and delta-points in Banach spaces with un-
conditional bases” and “Delta-points in Banach spaces generated by adequate

families” is to study pointwise versions of the Daugavet property and the DLD2P:

11



1 Introduction

Definition 1.2.14. Let X be a Banach space and let x € Sx. We will say that

(1) z 1s a delta-point if for every slice S(z*,0) of Bx with x € S(z*,¢) and for
every € > 0, there exists y € S(z*,0) such that ||z — y|| > 2 —¢;

(11) z 1s a Daugavet-point if for every slice S(z*, ) of Bx and for every € > 0,
there exists y € S(z*, ) such that ||z — y|| > 2 —e.

Daugavet- and delta-points have recently been introduced in [AHLP20] and stud-
ied further by several authors (e.g. [ALMT21, ALM20, DJR21, HPV21, JR20,
MR20]). While the set of Daugavet-points and delta-points are not equal in gen-
eral, they do coincide in L;(u), in spaces whose dual is isometric to L;(x) and
in Miintz spaces (see [MR20, Theorem 3.2], [AHLP20, Theorem 3.1] and Theo-
rem 6.0.7 in the Appendix). In this thesis we study Daugavet- and delta-points in
Banach spaces with an unconditional basis.

Let X be a Banach space. Recall that a sequence (e;);eny C X is a Schauder basis
for X if for every x € X there is a unique sequence (x;);cn of scalars, such that x =
ZieN x;e;. If X 1s a Banach space with a Schauder basis (e;);cn, we say that (e;);en
is an unconditional basis if for every z € X its expansion z = ) . z;e; converges
unconditionally. Moreover, we say that (e;);cn 1S a I-unconditional basis if for all
N € N and all scalars a1, ...,an, b1,...,by such that |a;| < |b;] fori =1,... N,
the following inequality holds,

N N
E a;e;|| < bie;
i=1 i=1

A basis (e;);en 18 normalized if |le;|| = 1 for all i« € N. For z € X the support of
z 1s defined by supp(z) = {i € N : e} (x) # 0}, where (e});cn are the biorthogonal
functionals associated with (e;);cn.

If (e;);en 1s @ 1-unconditional basis then for any subset A C N the projection Py

defined by
Py ( Z xiei) = Z T;€;

ieN icA
satisfies ||P4|| < 1. The unconditional suppression constant is the supremum
sup 4 || Pl over all subsets A of N. Note that whenever (¢;);cy 1s a 1-unconditional
basis, then the unconditional suppression constant is also 1.
Our motivation for studying Daugavet- and delta-points in Banach spaces with

an unconditional basis is based on the following two facts:

12



1.2 Summary of the thesis

(1) Banach spaces with the Daugavet property fail to have an unconditional basis
[Kad96, Corollary 2.3].

(i1) If a Banach space has the DLD2P and an unconditional basis, then the un-

conditional suppression basis constant must be at least 2 [IK04].

Note that (i1) follows directly from [IK04, Theorem 1.4], where it is shown that
a Banach space X has the DLD2P if and only if

[Hd —P[ > 2,

for every rank-1 projection P.

A l-unconditional basis, (e;);cry 1s called subsymmetric, or 1-subsymmetric, if
1D e Oiwier, | = || D_;en zieill forany z = 3", zie; € X, any sequence of signs
(0;);en, and any infinite increasing sequence of naturals (k;);cy. The family of Ba-
nach spaces with a subsymmetric basis includes several well-known Banach spaces,
such as ¢y, the ¢)-spaces for 1 < p < oo, the Schreier spaces, the subspaces h,; of
Orlicz sequence spaces /;; and Lorentz sequence spaces d(w, p) and their preduals
d(w,p).. We show that the Banach spaces with a subsymmetric basis fail to have

delta-points.
Theorem 4.2.17: [ALMT]

If X has subsymmetric basis (e;);cn, then X has no delta-points.

Theorem 4.2.17 is a result of our study of so-called minimal norming subsets:

Definition 1.2.15. For any Banach space X with 1-unconditional basis (¢;);cn and

for z € X, define the minimal norming subsets of = as
M(z) :={ACN: ||Pyzx| = x|, || Paz — zie;|| < ||z||, foralli e A},

and
M™>(z) :={A e M(z): |A] = o0}.

Our initial assumption was that no Banach space with a 1-unconditional basis can
have delta-points. The concept of a minimal norming subset was the basis for our
breakthrough in the study of delta-points in Banach spaces with a 1-unconditional
basis. The importance of this concept can partially be explained through the fol-
lowing two results. For D € M*°(z), where D = (d;):°, and d; < d;+1, we define
D(n) = (di)izy-

13



1 Introduction

Lemma 4.2.14: [ALM]

Let X be a Banach space with 1-unconditional basis (e;);cn and let z € Sy.

Assume that there exists a slice S(z*,0), an n € N and some 1 > 0 such that
(1) =z € S(x*,9);
(i1) y € S(z*,0) implies that
{i ¢ |yil > mlasl, sgny; = sgnai} N D(n) # 0
for all D € M*(z).

Then x is not a delta-point.

For Banach spaces with a subsymmetric basis, it can be shown that there exists
a common coordinate k£ such that £ € A for all A € M°°(x). Theorem 4.2.17
is therefore just an application of Lemma 4.2.14, where 2* = e;. Furthermore,
Lemma 4.2.14 shows that, in some sense, only the structure of the infinite sets of
M (z) is important for the existence of delta-points. This is even more clear from

the following proposition.

Proposition 5.2.3: [ALM]

Let X be a Banach space with 1-unconditional basis. If for x € Sy there exists
n € N such that for s = [ pepyoe () {D(7)} |

1
|Ppe| > 1~ 5 forall Ee U {pm)y,
DeM>=(x)
then z is not a delta-point.

In particular, if |[M*°(z)| < oo, then z 1s not a delta-point.

Proposition 5.2.3 shows that in order for a Banach space with a 1-unconditional
basis to have delta-points, the set | J,. M (z) {D(n)} must in some sense grow
rapidly in size as n increases. To construct Banach spaces with such properties,
we found it natural to study Banach spaces generated by adequate families.

Recall that a family A C P(N) is an adequate family if

(1) A contains the empty set and the singletons;

14



1.2 Summary of the thesis

(i1) A is hereditary: If A € Aand B C A, then B € A;

(ii1) A is compact with respect to the topology of pointwise convergence: Given
A C N, if every finite subset of A 1s in A, then A € A.

If A is an adequate family and 1 < p < oo, we define the norm ||-|| on c¢qp,
the space of finitely supported sequences, by ||(z:)ien|l = supac4 (D ;ca |$i|p)1/p.
The completion of coo under the norm ||-|| is denoted % 4 ,. It can be verified that
the standard unit vectors (e;);cn form a normalized 1-unconditional basic sequence
nhyp.

If A="P(N)wecanseethat hy; = ¢, and if A = {0,{n} : n € N}, then h4; =
co. The class of h 4, spaces includes the Schreier spaces, ¢, spaces for 1 < p < oo,
co and ¢1(cp). If A is an adequate family of purely finite subsets of N or if p > 1,

then h 4, spaces cannot contain delta-points. In fact, we can say more:

Theorem 5.3.1: [ALM]
Let A be an adequate family of subsets of N and let 1 < p < oo. Then
(1) h.a,p does not have delta-points;

(i) 7%, does not have delta-points.

An important step towards understanding Daugavet- and delta-points in spaces
with a 1-unconditional basis came by studying an h 4 ; space generated by an ade-
quate family defined in the following way. Begin by partitioning N into blocks of
integers {1, 2} and {3n,3n + 1,3n + 2} for n € N. Then declare A to be in A if and
only if A contains at most one element from each block and whenever A contains
an integer k divisible by 3, then A does not contain any integer bigger than k. More
formally, define By = {1,2} and B, = {3n,3n+1,3n + 2} for n € N. Let A be
such that A € Aif A satisfies |ANB,| < 1foralln € NU{0} andif An{3n} = {3n},
then AN {1,2,...,3n} = A. Note that this adequate family can be visualized as a
graph, as shown in Figure 1.1. An element of A can, with this picture, be realized
as a subset of a path starting from either 1 or 2, where the multiples of 3 are “dead
ends”. For the sake of reference, let us call A the block-three family.

For example, by the definition of the norm on £ 4 ;, we can see that the element

c= (27127 o7t 972 972 972 97n 97 o7n ),

15



1 Introduction

Figure 1.1: Visualizing the block-three family.

is of norm 1. Indeed, if A € A is infinite, we can assume A is such that |[ANB,| =1
foralln € N, then ,_,o; = Y ;= 27" = 1. If A is finite, we can also see
that > °._, z; < 1. Note that there are uncountably many ways of choosing a set
A of infinite cardinality, such that A € M (x). In fact, = serves as an example of a
vector where we cannot use Proposition 5.2.3 to conclude that z is not a delta-point.
Although the block-three family seemed promising, it is possible to show that no
element in h 4 ; 1s a delta-point. We omit the details, but the key observation from
our argument was that the elements of the block-three family are too “intertwined”
(see Figure 1.1). In particular, the fact that any natural number n can essentially
be connected with any natural number bigger than n, seemed to prevent h 4 ; from
containing delta-points.

To construct an adequate family similar to the block-three family, but with “less”
overlap between the elements of the adequate family, we used the binary tree ‘B
and constructed the h 4 space, Xq, which has some surprising properties. The
adequate family constructed by the binary tree can be visualized in the same manner

as the block-three family, see Figure 1.2.




2/1\3
SN SN
ANFANATA

Figure 1.2: The binary tree.

Theorem 4.3.1: ALMT
In X we have that
(1) Xy has a delta-point;
(i1)) Xy does not have Daugavet-points.

We then modified the adequate family generated by the binary tree slightly, by
removing the root and implementing more structure from the block-three family,
to construct an even more interesting Banach space, the modified binary tree space
Xon. The modified binary tree is slightly harder to visualize compared to the block-
three family and the binary tree, as it includes paths with “dead ends”, as shown in
gray in Figure 1.3. An element in the modified binary tree can be seen as a subset

of a path starting from either 1 or 2, and if you move along a gray path you reach a

dead end, e.g., the path going from 1 to 3 to 4 is a maximal path, as it uses a gray

VANSAN
A AN AN\

Figure 1.3: The modified binary tree.

path.
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1 Introduction

Theorem 4.4.4: [ALMT]
In Xyn we have that
(1) there exists z € Sx,, which i1s a Daugavet-point;

(11) there exists w € Sx,, which is a delta-point, but not a Daugavet-point.

In addition, the modified binary tree space has the LD2P, but fails to have the
D2P and is neither LASQ nor locally octahedral.
Define
§={z€ Sxy, 1z €{0,£1} foralli e N},

and
EXW{ECN:ZQGSX}.
icE

Note that the key difference between the binary tree and the modified binary tree
(disregarding the deviation in the root) is that there are additional sets in the ade-
quate family 9J1. The implication of this, is that several norm one elements of Xy
has a norm greater than one, when viewed in Xgy. For example, let y = e; + e
where e; and es are the basis vectors corresponding to the two roots of the modi-
fied binary tree. Then y has norm 2 in Xy, but the corresponding element in X,
y = ez + e3, has norm one. We can see that y 1s in some sense maximal in Bx,,
as there does not exist : € N such that y &+ ¢; € Bx,,. However, because there are
more sets in the adequate family associated with 90T, no 2z € § is maximal as in the

above sense.

Theorem 4.4.2: [ALMT]
Let z € Sx,,, then the following are equivalent:
(1) «is a Daugavet-point;
(1) ||z — Pgz||=1forall E € Ex,;
(111) forany z € §, either ||z — z|| = 2 or for all ¢ > 0 there exists s € 90 such

that 2 +e; € Fand ||z — 2z L eg]| > 2 — .

The theorem above provides us with a tool to show that there are “lots” of Dau-

gavet points in Xyy in the following sense:

18



1.2 Summary of the thesis

Theorem 4.4.7: [ALMT]

In Xy every non-empty relatively weakly open subset of Bx,, contains a

Daugavet-point.

We can see that this implies that the Daugavet-points in S, , are weakly dense in
Byx,,- As Banach spaces with the Daugavet property cannot have an unconditional

basis, this leads to the following natural question:

Question 1. Given a Banach space X. How “massive” does the set of Daugavet-
points in Sy have to be in order to ensure that X fails to have an unconditional

basis?
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ABSTRACT

We show that Miintz spaces, as subspaces of C|0, 1], contain asymptotically isometric copies

of ¢y and that their dual spaces are octahedral.

2.1 Introduction

Let A = (\)72, be a strictly increasing sequence of non-negative real numbers
and let M (A) = span{t*}° C C[0,1] where C[0, 1] is the space of real valued
continuous functions on [0, 1] endowed with the max-norm. We will call M(A) a
Miintz space provided >~ | 1/\; < co. The name is justified by Miintz” wonderful
discovery that if Ao = 0 then M (A) = C[0,1] if and only if ", | 1/\;, = occ.

It is well known that C'[0, 1] contains isometric copies of ¢y (see e.g. [AKO6,
p. 86] how to construct them) and that its dual space is isometric to an L (x) space
for some measure ;. The aim of this paper is to demonstrate that Miintz spaces
inherit quite a bit of structure from C[0, 1] in that they always contain asymptotically
isometric copies of ¢p, and that their dual spaces are always octahedral. (An L ()
space 1s octahedral. See below for an argument.) Let us proceed by recalling the

definitions of these two concepts and put them into some context.

Definition 2.1.1. [DLT98, Theorem 2] A Banach space X is said to contain an
asymptotically isometric copy of cy if there exist a sequence (z,,)7° ; in X and con-

stants 0 < m < M < oo such that for all sequences (¢,,)7° ; with finitely many non
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2 Two Properties of Miintz spaces

Zero terms

Z tnTn

n

msup |t,| < < M sup [ty
n n

and
lim ||z,|| = M.
n—oo

R. C. James proved a long time ago (see [Jam64]) that X contains an almost
isometric copy of ¢y as soon as it contains a copy of ¢y. Note that containing an
asymptotically isometric copy of ¢ is a stronger property, see e.g. [DLT98, Exam-
ple 5].

Definition 2.1.2. A Banach space X is said to be octahedral if for any finite-

dimensional subspace F' of X and every ¢ > 0, there exists y € Sx with
lz+yl > (1 —e)(||z]| +1) forall x € F.

This concept was introduced by G. Godefroy and B. Maurey (see [Dev88, p. 118]),
and in [God89] the following result can be found on page 12:

Theorem 2.1.3 (Deville-Godefroy). Let X be a Banach space. Then X* is octa-

hedral if and only if every finite convex combination of slices of Bx has diameter

2.

By aslice of Bx we mean a set of the form
S(x*,e):={x € By :2"(x) >1 —e,e > 0,2 € Sx+}.

Remark 2.1.4. As we have mentioned, Theorem 2.1.3 can be found, but without
proof, in [God89]. Deville had proven in [Dev88, Theorem 1 and Proposition 3]
that if X is octahedral, every finite convex combination of w*-slices of Bx- has
diameter 2. In the same paper he asks if the converse is true (Remark (c) on page
119). Since there is no proof included in [God89], new proofs appeared, indepen-
dently, in [BLR14] and [HLP15], in connection with a new study of spaces where

all finite convex combination of slices of By has diameter 2.

When we show that the dual of Miintz spaces are octahedral we will use Theorem
2.1.3 and establish the equivalent property stated there. Note that an L, (x) space is
octahedral. Indeed, the bidual of such a space can be written Lq (u)** = Li(p) &1 X
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2.2 Results

for some subspace X of L;(u)** (see e.g. [HWWOI3, IV. Example 1.1]). From here
the octahedrality of L, (u) is a straightforward application of the Principle of Local
Reflexivity.

The main reference concerning Miintz spaces is [GL05]. But there most of the
phenomena that are studied are linked to spreading properties of A and not general
results concerning all Miintz spaces.

We do not know of much research in the direction of our results. But we would
like to mention a paper of P. Petracek ([Pet12]), where he demonstrates that Miintz
spaces are never reflexive and asks whether they can have the Radon-Nikodym
property. Since the Radon-Nikodym property implies the existence of slices of
arbitrarily small diameter, we now understand that Miintz spaces rather belong to
the “opposite world” of Banach spaces.

See also Remark 2.2.9 for some more related results.

2.2 Results

Definition 2.2.1. We will say that a strictly increasing sequence of non-negative
real numbers (\;);2, has the Rapid Increase Property (RIP) if A\ > 2\, for
every k > 0.

We will call a function of the form

p(zr) = 2% — xﬁ,

where 0 < a < 3, a spike function.

Remark 2.2.2. If o > 0 it should be clear that any spike function p satisfies p(0) =
p(1) = 0, attains its norm on a unique point x,, is strictly increasing on [0, z,], and
strictly decreasing on [z, 1]. To visualize the arguments that come, we think it is a

good idea at this stage to draw the graphs of e.g. 190 — 2290 and 1000 _ 420000,

We will need the following result below.

Lemma 2.2.3. Let (\)7°, be an RIP sequence and (py);2, the sequence of corre-
sponding spike functions py(z) = 2™ — ™+, Then infy, ||pg|| > 1/4. Moreover, the

sequence (py./||px||)7, converges to 0 weakly in M(A).

Proof. We want to find the norm of the spike function defined by

pi(w) = 2 — 2,

29



2 Two Properties of Miintz spaces

Observe that 7, (z) := 2™ — 2™ < pu(z) for all z € [0,1]. Now, by standard

calculus, 7, attains its maximum at z;, where z " = 5. Thus
1 1 1
> — s (22 =
lpell = rilzr) = 5 = (5)° = §

As (pg)32 ; converges pointwise to 0 and infy, ||px|| > 1/4, the sequence (py./||px||) 72

converges pointwise to 0 and thus weakly to 0 as it is bounded. D

Remark 2.2.4. By standard calculus one can show that the point at which p; in
Lemma 2.2.3 obtains its norm is Z, = (\y/Aps1)"/Ps+172%) | For sufficiently large

A\, it is straightforward to show that

Yo = 1/ (kg1 — )= < gy
that y;, is strictly monotone, and that y;. converges to 1 (\; > 3 is sufficient).
Theorem 2.2.5. The dual of any Miintz space is octahedral.

Proof. Let M(A) be a Miintz space. Let

C =Y pS}e),
j=1

where Z?Zl pj = 1,05 > 0,and S(z7,¢;),1 < j < n, is a slice of By;,). We will
show that the diameter of C is 2 (cf. Theorem 2.1.3). To this end, start with some
f e Candwrite f = Y7 | g/, where ¢/ € S(z},¢;). Let (A4);2, be an RIP
subsequence of A (which is possible as >/~ 1/A; < co) and put

+_ )Pk
hfj =g’ +(1- gj(l’k))m

where (p,)7° , 1s the sequence of spike functions corresponding to ()72, and x,

hy =g —(L+g (wk))

the (unique) point where py, attains its norm. We will prove that, for any € > 0, there

exists a K = K(¢) such that whenever k > K we have 75 L_pdt W e S(x7,€5)

k ’1+25
for every 1 < j < n. Then, clearly

n
1 i+
1+ 2¢ Zﬂjh‘;@ €C
j=1
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2.2 Results

and

n n
1 ; 1 ;
It I~
1+25Z;'u]k 1+2€Zlu]k
J= J=

1 = : : 2
> Rt I A — )
> 15 (Z;M][hk (zr) — hy, (m)]) T os
J:

for all £ > K. Since ¢ is arbitrary, we can thus conclude that C' has diameter 2.

To produce the K = K (¢) above, note that hii converges to ¢/ pointwise, and
thus weakly since the sequences are bounded. As U; = {z € M(A) : zj(z) >
1 — 2¢;} 1s weakly open, each sequence (h{f)zo: , enters U; eventually. Since there
are only a finite number of sets U;, this entrance is uniform. So, what is left to
prove is that for £ > 0 there exists K such that ||h§;i | <1+ 2e whenever k£ > K.

Now, let ¢ > 0. Combining Remark 2.2.2, Remark 2.2.4, that (p;/||px|| )72, con-
verges pointwise to 0, and the continuity of ¢/, we can find K € N such that for all
k > K there are points 0 < a; < xj < by < 1 such that

pi(z)
Al

sup |gj(u) —gj(v)] <e j=1,...,n.
u,vE(ak,br)

>e e x € (ag,by),

We will see that this K does the job for the given ¢ > 0: Let ¥ > K and suppose
X € (ak, bk). Then

W @) = | () + 0 —gfm»%' <16 (0)] 4+ 2 < 14 2.
If x € (ag, by), observe that
W ()] < |of(2) + (1= gf<x>>ﬁ,’;<j|) T o) - gj<xk>|ﬂ’|’;(j,)
< @) + (1 - ganB@] 4 .
pel

Now, if ¢/ (x) > 0, then

P (@) + (1 - g ()22

el <g(@)+(1-g'(2) =1

If ¢/(z) < 0 and ¢/ () + (1 — ¢/ (x))px(2)/[|pkll > 0, then

k()

1%l

i)

g (@) + (1 - ¢ (2)) <g @)+ (1 -g @) =1
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2 Two Properties of Miintz spaces

If ¢’ (x) < 0 and ¢’ (z) + (1 — ¢’ (x))pk(2)/[lpkll < O, then

P+ (1P @)D < i) < 1.
el

In any case we have for £ > K and z € [0, 1] that |hi+(x)| < 1+ 2¢. The argument
that ||h‘,i_ | <1+ 2¢is similar. [

Theorem 2.2.6. Miintz spaces contain asymptotically isometric copies of cy.

Proof. We will construct a sequence (f,,)7>; C M(A) and pairwise disjoint inter-
vals I, = (an, b,) C [0, 1] such that for all n € N

(1) fo(z) > 0forall z € [0, 1],
(i) [[ful =1—1/2%,
(iil) by < an+1
(iv) fo(z) >1/22" o 2 € I,
(V) fu(x) < 1/2%™ whenever m > n and x € I,,.

To this end choose a subsequence of A with the RIP. For simplicity denote also
this subsequence by (A;)7,. Let (pi)7°, be its corresponding sequence of spike
functions, and let z;, be the (unique) point in (0, 1) where p;, obtains its maximum.

Now, start by letting £ = 1 and put

fr= (=12

Using continuity and properties of p;, we can find an interval I; = (a1,b;) such
that 0 < a1 < by < 1 and fi(z) > 5 < = € I;. By construction f; satisfies the
conditions (1) - (iv).

To construct f> we use Lemma 2.2.3 and Remarks 2.2.2 and 2.2.4 to find &y € N

and an interval I = (ag, b2) with b; < ay < ba < 1 such that

1/24
x € Iy & pp,(v) > 1_—1/22||Pk2||,
1
x € Ir = pi,(x) < o

Let

fo= (1= 12y
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2.2 Results

By construction f; now satisfies condition (v) for m < 2 and f» satisfies conditions
(1) - (iv).
To construct f3 we use Lemma 2.2.3 and Remarks 2.2.2 and 2.2.4 again to find

ks € N and an interval I3 = (a3, b3) with by < a3 < bg < 1 such that

1/26
ze I3 e p,(z) > / 2 1ok, Il

1-1/2

1 .
xel; :>pkj(x)§¥ for j =1, 2.

Let

fo= =12y

By construction f; and fo now satisfy condition (v) for m < 3 and f3 satisfies
conditions (i) - (iv). If we continue in the same manner we obtain a sequence
(fn)o2y € M(A) and a sequence of intervals I, = (ay, b,) which satisfies the con-
ditions (1) - (V).

Now we will show that (f,,)7° , satisfies the requirements of Definition 2.1.1. To
this end we need to find constants 0 < m < M < oo such that given any sequence

(tn)>° , with finitely many non zero terms

msuptn| < 1Y tufall < M sup [t,] 2.1)

and
lim | £, = M (22)
n—o0

We claim that (2.1) and (2.2) holds with m = %1 and M = 1. First observe that
we have lim,,, || f»|| = 1 immediately from the requirements, so (2.2) holds for
M = 1. In order to prove the two inequalities in (2.1), let (¢,)>°; be an arbitrary
sequence with finitely many non zero terms. First we will prove that 1 /4 sup,, |t,] <
”Zn tn an We can assume by scaling that sup |¢,,| = 1. Since (¢,,)7 ; has finitely
many non zero terms, its norm is attained at, say, n = N, i.e. |ty| = 1. Putzy = xp,,

where zy,, 1s the point where py, and thus fx attains its norm. Then

1 tafal = [t fn(an)l = 1D tafalen)]

neN n#N
1
>1-— 2_N - Z ‘fn(xN)|
n#N
> 1 L L > 1
2N 4 T 4
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2 Two Properties of Miintz spaces

We conclude that the left hand side of the inequality (2.1) holds. Now we will show
the right hand side of this inequality holds, i.e. we wantto prove that | ¢, fn(z)| <
1 forall z € [0,1]. Since f,, > 0 forall n = 1,2,..., we may assume that every ¢,, 1s

positive. Now, if « & U,,(an, b,), we have

1 1
;tnfn<w) < ;fn(l’) < ;227 < 3

If, on the other hand z € (a,, b,) for some n’ € N, then

Y tafal@) < fw(@) + Y fule) + Y ful2)

n<n’ n>n’'
< 1 n —1 1
_1_W+W+W
n' — 2" 1
§1+W§1—W<1.

These combined yields the right hand side of the inequality (2.1), so the proof is

complete. [

A Banach space X contains an asymptotically isometric copy of ¢1 if it contains
a sequence (x,,);> ; for which there exists a sequence (0,,)7° ; in (0, 1), decreasing
to 0, and such that

m m m
D> (1 =dw)lan < anwnl < lanl
n=1 n=1 n=1

for each finite sequence (a,)]" ; in R.

Merging ([DJLT97, Theorem 2]) and [ALNTI16, Lemma 2.3] gives us that if
either the Banach space X contains an asymptotically isometric copy of ¢y or if X*
is octahedral, then X* contains an asymptotically isometric copy of /1. So, we have

two ways of proving

Corollary 2.2.7. M(A)* contains an asymptotically isometric copy of (.
Moreover, we have

Corollary 2.2.8. M(A)** contains an isometrically isomorphic copy of L]0, 1].

Proof. This follows from Corollary 2.2.7 and [DGHO00, Theorem 2]. [

Remark 2.2.9 (Added in proof). (a) One of the anonymous referees invited the
authors to consider the question whether Miintz spaces also could be octa-

hedral (as C0, 1] 1s). Here is a preliminary answer: Combine the so called
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2.2 Results

(b)

Clarkson-Erdds-Schwartz theorem (see [GL05, Theorem 6.2.3]) in tandem
with a result of P. Wojtaszczyk (see [Wer, Theorem 1]). Then we see that
when A consists of natural numbers, M/ (A) is isomorphic to a subspace of ¢.
Since an octahedral space contains a copy of /1, we have a negative answer

for a big class of Miintz spaces.

We have mentioned [ALNT16, Lemma 2.3] as reference for the fact that an
octahedral space contains an asymptotically isometric copy of /;. It has come
to our knowledge that this result, even with the same proof, was published

earlier by Yamina Yagoub-Zidi, see [YZ13, Proposition 3.3].
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3 On Octahedrality and Miintz spaces

André Martiny
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pp. 513-518.

ABSTRACT

We show that every Miintz space can be written as a direct sum of Banach spaces X and Y,
where Y is almost isometric to a subspace of ¢ and X is finite dimensional. We apply this to

show that no Miintz space is locally octahedral or almost square.

3.1 Introduction

Denote the closed unit ball, the unit sphere, and the dual space of a Banach space X
by Bx, Sx, and X* respectively. Let A = ();)22,,, with A\g = 0, be a strictly increas-
ing sequence of non-negative real numbers and let II(A) := span(t})°, € C0, 1],
where C10, 1] is the space of real valued continuous functions on [0, 1] endowed
with the canonical sup-norm || - ||oo. We will call A = (X;)9°, a Miintz sequence and
M(A) = TI(A) a Miintz space if 3;- 1/X\; < oo. This terminology is justified by
Miintz famous theorem from 1914, which says that II(A) is dense in C|0, 1] if and
only if \o=0and > .~ 1/)\; = oc.

It is known that a Miintz space M (A) is isomorphic to a subspace of ¢y, provided
that the Miintz sequence satisfies the gap condition, i.e. infyen(Agr; — Ag) > 0
([GLOS5, Theorem 9.1.6(c)]). In Section 3.2 we show that all Miintz spaces embed
isomorphically into ¢y. This is done by showing that M (A) can be written as a
direct sum X @ Y where Y is almost isometric to a subspace of ¢ and X is finite

dimensional.
Definition 3.1.1. Let X be a Banach space. Then X is

(1) locally octahedral (LOR) if for every x € Sx and £ > 0 there exists y € Sy
such that ||z £ y|| > 2 —«.
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3 On Octahedrality and Miintz spaces

(i1) octahedral (OR) if for every z1,..., 2, € Sx and ¢ > 0 there exists y € Sy
such that ||z; £ y|| > 2 — e foralli € {1,...,n}.

In Section 3.3 we will show that no Miintz space is OH, answering the question
posed in [ALMN17] whether Miintz spaces can be OH. A partial negative answer
was given in [ALMN17, Remark 2.9] for Miintz spaces with Miintz sequences con-
sisting only of integers, by combining the Clarkson-Erdds-Schwartz Theorem (see
[GLOS, Theorem 6.2.3]) with a result of Wojtaszczyk (see [Wern00, Theorem 1]).

Definition 3.1.2. Let X be a Banach space. Then X is

(1) locally almost square (LASQ) if for every z € Sx there exists a sequence

(yn)p>; In Bx such that ||z £ y,|| — 1 and ||y,| — 1.

(i1) almost square (ASQ) if for every z1,...,x2; € Sx there exists a sequence

(yn)22 In By such that ||y, | — 1 and ||z; £ y,|| — 1 foreveryi € {1,... k}.

Both ASQ and OH are closely related to the area of diameter two properties,
which has received intensive attention in the recent years (see for example [BGLPRZ16]
and [HLN18] and the references therein). Trivially ASQ implies LASQ and OH
implies LOH.

The area of diameter two properties concerns slices of the unit ball, i.e. subsets
of the unit ball of the form

S(x*,e):={x € Bx: x%(x) >1—¢},

where z* € Sy« and ¢ > 0. Miintz spaces and their diameter two properties were
studied in [ALMN17]. Haller, Langemets, Lima and Nadel [HLLN18] pointed out
that the proof of [ALMNI17, Theorem 2.5] actually shows that, in any M (A) we have
that for every finite family (5;)!"_; of slices of B M(A) and € > 0, there exist z; € 5;
and y € B)(a), iIndependent of i, such that z; -y € S; for every i € {1,...,n} and
ly]| > 1 —e. This property is formally known as the symmetric strong diameter
two property (SSD2P).

It is known that if a Banach space is ASQ, then it also has the SSD2P. In fact,
ASQ is strictly stronger than SSD2P (see [HLLN18, Theorem 2.1d and Example
2.2]). A natural question is therefore if a Miintz space can be ASQ. The results

developed in this article will be used to show that this is never the case.
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3.2 On embeddings of Miintz spaces

Note that we can exclude the constants and consider the subspace My(A) =
span(t)°°, of M(A) and the results of the article still hold true, unless explicitly
stated.

We use standard Banach space terminology and notation (e.g. [AK06]), in addi-
tion the notation || f||0,q) := SUP,¢fo,q) [/ (2)[ Will be used throughout the paper.

3.2 On embeddings of Miintz spaces

The main results of this article relies on the following results.

Theorem 3.2.1 (Bounded Bernstein’s inequality [BE97, Theorem 3.2]). Assume
thatl < A\ < Xy < A3 < --- and 221 1/\i < oo, then for every € > 0 there is a

constant c. such that
17 l[j0,1-) < cellpllio,

forall p € TI(A).

Lemma 3.2.2. Let V be a subspace of C|0, 1] such that each f € V is differentiable.
If for every ¢ > 0 there exists a K. € N such that

171

[0,1—¢] < KerHOO (3-1)
forall f €V, then the Banach space V embeds almost isometrically into c.

The proof of Lemma 3.2.2 is almost identical to the proof of [Wern00, Theo-

rem 2], however, we do not require V to be closed, but instead require the inequality

3.1).

Proof. Lete > 0 and choose a sequence 0 = ag<a; <---<a;<---<1 converging

to 1. For each a; € (0, 1) there exists K; > 0, depending on a; such that
110,01 < Kill flloo forall f € V

Pick points 0 = sp<s1 <+ <$p, =a1 < Spy4+1 <---<Sp, =az <---, in such a way
that

Sj41 — 55 < forn; <j < mnjq1.

i+1

Define the operator J. : V — ¢ by J.(f) = (f(sn))n, thus J. is well-defined by
continuity of f € V. As ||J.f|| = sup,.ex |f(sn)| < ||f]|co, for all f € V, we have
that ||J.|| < 1. For any f € V let (f;) be a sequence in V' converging uniformly to
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3 On Octahedrality and Miintz spaces

f. Leté > 0and find N € N such that || f — fn]|lec <. Then, for any s € [0,1), we

€

have a; < s < a;j;+1 for some i € N. Let s,,, € [a;, a;+1] be such that |s — s,,,| <

Kt
Then
[f () < |fn(s)|+6 < |fn(s) = fn(sm) + [fnv(sm)] + 6
< sup  [fy(O)lls = sm| + Sl + 6
a; <t<a;+1
£
< N llooKir1 g+ e fnll +6
i+1
< | fnlloce + 1 efnll +6
< (Iflloe +0)e + (I Jefll +0) + 0
and therefore
(L =&)[flloc — (e +2) < | JA.
Since § was arbitrary we conclude that
A=)l flloe < Il < N1 lloo
completing the proof. [

Combining Theorem 3.2.1 and Lemma 3.2.2, we arrive at the following propo-

sition.

Proposition 3.2.3. Let A be a Miintz sequence with A\ > 1. Then the associated
Miintz space M(A) is almost isometric to a subset of c. That is, for every ¢ > 0

there is an operator J. : M(A) — c such that

(L=l fllo,) < [IefI < N1F]

(0,1]-
We will need the following lemma for the coming theorem.

Lemma 3.2.4. Let Z = span(z;);cn and let N € N. If' Y = span(z;);~n then
Z]Y = span(w(z;))i<n, Where 7 : Z — Z/Y is the quotient map. Consequently
ZY has finite dimension and Z = X &Y where X = span(z;);<n.

Remark 3.2.5. Forevery N € N we have that span(¢*);> v is a finite codimensional
subspace of M (A).

By combining Proposition 3.2.3 and Lemma 3.2.4 we obtain the following result.
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3.3 On octahedrality and almost squareness of Miintz spaces

Theorem 3.2.6. Every Miintz space M (\) can be written as X ®Y where X is finite

dimensional and Y is almost isometric to a subspace of c.
Corollary 3.2.7. Every Miintz space M (A) embeds isomorphically into cy.

Remark 3.2.8. From [GLOS5, Theorem 10.4.4] it is known that no Miintz space of
dimension greater than 2 is polyhedral. However, since ¢ is polyhedral ([Klee60,

Theorem 4.7]), it follows that any Miintz space can be renormed to be polyhedral.

3.3 On octahedrality and almost squareness of Miintz spaces

The results from Section 3.2 will now be used to derive some results concerning
Miintz spaces. M (A)* is separable by Corollary 3.2.7, we therefore easily answer

the question posed in [ALMNI17]. In fact we show more.
Theorem 3.3.1. No Miintz space M (A) is LOH.

Proof. Since M (A)* is separable, we can combine [Bour83, Theorem 4.1.3] with
[Bour83, Theorem 4.2.13] to see that there exist slices S(x,¢) of the unit ball of
M (A)* of arbitrarily small diameter, where « can be taken from A/ (A). By [HLP1S5,
Theorem 3.1] this is equivalent to M (A) failing to be LOH, as claimed. ]

We finish this article by showing that My(A) fails to be ASQ for any Miintz se-
quence A. Note that M (A) is trivially not LASQ, just consider the constant function

1. First we show that even more is true for some spaces My(A).
Proposition 3.3.2. No Miintz space My(A) with Ay > 1is LASQ.

Proof. Let A be a Miintz sequence with \; > 1 and My(A) be the associated Miintz

space. Choose some = € (0,1). By Theorem 3.2.1 there is a ¢ € N such that

1//llj0,2) < ¢ forall f € Bpyy). Let a = min(s-, z) and observe that

2¢?
sup |0 < 5
f€Buw, el =2
since
0= 1£2) ~ FO) < 1 o1t~ 0l S e 5 =

Recall from [ALV16, Theorem 2.1] that My(A) is LASQ if and only if for every
g € Syn) and e > 0 there exists h € Sy, such that ||g + || < 1+ . We claim
that no such h exists for g = t*. Indeed, if 0 < & < ¢ /2 and h € Sy, is such that
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3 On Octahedrality and Miintz spaces

[t £ || < 1 +¢, then |h(t)| < 1 — ¢ fort > aast* > 2¢ fort > a. Thus, h must
attain its norm on the interval [0, a], contradicting our observation. As II((\,;)0% )

1s dense in My(A), we conclude that My(A) is not LASQ. [
Proposition 3.3.3. No Miintz space My(\) is ASQ.

Proof. Combining Lemma 3.2.4 with Proposition 3.3.2 shows that every Miintz
space My(A) has a subspace of finite codimension which is not ASQ. By [Abral5,
Theorem 3.6] no Miintz space can be ASQ. [
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ABSTRACT

We study the existence of Daugavet- and delta-points in the unit sphere of Banach spaces with
a l-unconditional basis. A norm one element x in a Banach space is a Daugavet-point (resp.
delta-point) if every element in the unit ball (resp. x itself) is in the closed convex hull of unit
ball elements that are almost at distance 2 from z. A Banach space has the Daugavet prop-
erty (resp. diametral local diameter two property) if and only if every norm one element is a
Daugavet-point (resp. delta-point). It is well-known that a Banach space with the Daugavet
property does not have an unconditional basis. Similarly spaces with the diametral local diam-
eter two property do not have an unconditional basis with suppression unconditional constant

strictly less than 2.

We show that no Banach space with a subsymmetric basis can have delta-points. In con-
trast we construct a Banach space with a 1-unconditional basis with delta-points, but with no
Daugavet-points, and a Banach space with a 1-unconditional basis with a unit ball in which

the Daugavet-points are weakly dense.

4.1 Introduction

Let X be a Banach space with unit ball By, unit sphere Sx, and topological dual
X*. Forz e Syande > 0let A.(z) = {y € Bx : ||z — y|| > 2 — e}. We say that X
has the

(1) Daugavet property if for every x € Sx and every ¢ > 0 we have By =

convA(x);

(i1) diametral local diameter two property if for every x € Sx and every ¢ > 0

we have = € convA,(z).
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

In [Kad96, Corollary 2.3] Kadets proved that any Banach space with the Dau-
gavet property fails to have an unconditional basis (see also [Wer01, Proposition 3.1]).
These arguments are probably the easiest known proofs of the absence of uncondi-
tional bases 1n the classical Banach spaces C0, 1] and L]0, 1]. The diametral local
diameter two property was named and studied in [BGLPRZ18], but it was first in-
troduced in [IK04] under the name space with bad projections. (See the references
in [IK04] for previous unnamed appearances of this property.) Using the character-
izations in [IK04] we see that if a Banach space with the diametral local diameter
two property has an unconditional basis, then the unconditional suppression basis
constant is at least 2. But note that we do not know of any Banach space with an
unconditional basis and the diametral local diameter two property.

In the present paper we study pointwise versions of the Daugavet property and

the diametral local diameter two property in spaces with 1-unconditional bases.
Definition 4.1.1. Let X be a Banach space and let = € Sx. We say that z is

(1) a Daugavet-point if for every ¢ > 0 we have Bx = convA.(z);

(11) a delta-point if for every ¢ > 0 we have © € convA.(z).

Daugavet-points and delta-points were introduced in [AHLP20]. For the spaces
L1 (), for preduals of such spaces, and for Miintz spaces these notions are the same
[AHLP20, Theorems 3.1, 3.7, and 3.13]. However, C|0, 1] &2 C[0, 1] is an example
of a space with the diametral local diameter two property, but with no Daugavet-
points [AHLP20, Example 4.7]. Stability results for Daugavet- and delta-points in
absolute sums of Banach spaces was further studied in [HPV21].

In Section 4.2 we consider Banach spaces with 1-unconditional bases and study
a family of subsets of the support of a vector . We find properties of these subsets
that are intimately linked to x not being a delta-point. Quite general results are
obtained in this direction. We apply these results to show that Banach spaces with
subsymmetric bases (these include separable Lorentz and Orlicz sequence spaces)
always fail to contain delta-points.

In Section 4.3 we construct a Banach space with a 1-unconditional basis which
contains a delta-point, but contain no Daugavet-points. The example is a Banach
space of the type h 4 ; generated by an adequate family of subsets of a binary tree.

The norm of the space is the supremum of the ¢;-sum of branches in the binary tree.
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4.2 1-unconditional bases and the sets M (x)

In Section 4.4 we modify slightly the binary tree from Section 4.3 and the asso-
ciated adequate family, to obtain an % 4; space with some remarkable properties:
It has Daugavet-points; the Daugavet-points are even weakly dense in the unit ball;
the diameter of every slice of the unit ball is two, but is has relatively weakly open
subsets of the unit ball of arbitrary small diameter.

Finally, let us also remark that the examples in both Section 4.3 and Section 4.4
contain isometric copies of ¢y and ¢;. Both the /;-ness of the branches and cg-
ness of antichains in the binary tree play an important role in our construction of
Daugavet- and delta-points in these spaces (see e.g. Theorems 4.3.1 and 4.4.2, and
Corollary 4.4.3).

4.2 1-unconditional bases and the sets M (x)

The main goal of this section is to prove that Banach spaces with a subsymmetric
basis fail to have delta-points. Before we start this mission, let us point out some
results and concepts that we will need. First some characterizations of Daugavet-
and delta-points that we will frequently use throughout the paper.

Recall that a s/ice of the unit ball Bx of a Banach space X is a subset of the form
S(x*,e) ={x € Bx : x*(x) > ||z*| — &},
where z* € X* and ¢ > 0.

Proposition 4.2.1. [AHLP20, Lemma 2.3] Let X be a Banach space and © € Sx.

The following assertions are equivalent:
(i) xis a Daugavet-point;

(ii) for every slice S of Bx and for every ¢ > 0 there exists y € S such that
[z —yll =2 —e

Proposition 4.2.2. [AHLP20, Lemma 2.2] Let X be a Banach space and x € Sx.

The following assertions are equivalent:
(i) x is a delta-point,

(ii) for every slice S of Bx with x € S and for every ¢ > 0 there exists y € S such
that |z —y|| > 2 —«.
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

Let X be a Banach space. Recall that a Schauder basis (e;);cn of X is called
unconditional if for every » € X its expansion = ) . _ z;e; converges uncondi-
tionally. If, moreover, || ),y iwieill = || D ey zieil forany o = Y. wie; €
X and any sequence of signs (6;);en, then (e;);en 18 called 1-unconditional. A
Schauder basis is called subsymmetric, or 1-subsymmetric, if it is unconditional
and || > cn fiwick,
signs (6;);en, and any infinite increasing sequence of naturals (k;);cy. Trivially a

= || > ey wiei]| forany z = 3. zie; € X, any sequence of

subsymmetric basis is 1-unconditional. In the following we will assume that the
basis (e;)icy 1s normalized, 1.e. |le;[| = 1 for all ¢ € N. With (e});eny we denote
the conjugate in X* to the basis (e;);en. Clearly (€]);cn 1s a 1-unconditional basic
sequence whenever (e;);cn 1s. When studying Daugavet-points or delta-points in a
Banach space X with 1-unconditional basis (e;);cny We can restrict our investigation

to the positive cone Ky generated by the basis, where

KX{xeiei:xi>O}{a:EX:e;‘(a:)>O}.

ieN
The reason for this is that for every sequence of signs 6 = (6;);cn the operator T :
X — X defined by Ty(> oy wiei) = Y,y iziei is a linear isometry. Hence z =
> ien Tiei is a Daugavet-point (resp. delta-point) if and only if |z| = Y. [xile; is.

The following result is well-known.

Proposition 4.2.3. Let X be a Banach space with a 1-unconditional basis (e;);en.

If Y~ oy biei is convergent and |a;| < |b| for all i, then )y,  a;e; is convergent and
1> aiell < | >_bie]|
ieN ieN
Moreover ||P4|| = 1 where, for A C N, P4 is the projection defined by
PA(Z .CEZ'(%Z‘) = Z €Ti€;4.
€N i€A
From this we immediately get a fact that will be applied several times throughout
the paper.
Fact 4.2.4. Let X be a Banach space with a 1-unconditional basis (e;);en and let

z,y € X and £ C N. Then the following holds.

o If |2;] < |y;| and sgnz; = sgny; forall i € E, then ||y — Prz|| < [jy]|.
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4.2 1-unconditional bases and the sets M (x)

The upshot of Fact 4.2.4 is that it can be used to find an upper bound for the
distance between x € Sx and elements in a given subset of the unit ball. Indeed,
suppose we can find £ C N, » > 0 and a subset S of the unit ball such that ||z —
Pgz|| < 1 —n and the assumption in Fact 4.2.4 holds for any y € S. Then

[z =yl < [lo = Ppz|| + |y — Ppzl| <2 —n.

If such a set S is a slice (resp. a slice containing z), then = cannot be a Daugavet-
point (resp. delta-point). We will see in Theorem 4.2.17 that any unit sphere element
in a space with a subsymmetric basis, is contained in a slice of the above type. Our
tool to investigate the existence of slices of this type in a Banach space with a 1-
unconditional basis, are certain families of subsets of the support of the elements

in the space.

Remark 4.2.5. If only the moreover part of Proposition 4.2.3 holds, then the basis is
called 1-suppression unconditional. In this case the conclusion of Proposition 4.2.3
still holds if sgna; = sgn b;, for all 7. This is all that is needed in Fact 4.2.4. Sim-
ilarly, one can check that all the results about 1-unconditional bases in the rest of
this section also holds for a Banach space X with a 1-suppression unconditional

basis.

Definition 4.2.6. For any Banach space X with 1-unconditional basis (¢;);cy and

for z € X, define
M(z) :={ACN: ||[Pazx| = x|, || Paz — zie;|| < ||z||, foralli e A},

M7 (z) == {A e M(z) : |A| < o0},

and

M>®(z) = {A € M(z): |A| = co}.

We can think of M (z) as a collection of minimal “norm-giving” subsets of the
support of z. If for example X = ¢y and = € ¢, then M(z) = {{i} : |z;| = ||z||}
while if X =/, 1 <p < ocoand z € X, then M (x) = {supp(z)}.

Our first observation about the families M (z) is that they are always non-empty.

Lemma 4.2.7. Let X be a Banach space with 1-unconditional basis (e;);cn. Then
M(z) # 0 forall x € X.
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

Proof. Let xz € X. Either Ay := supp(z) € M(z) or there exists a smallest n; € A
such that if we define A; = Ag \ {n1}, then || P4, x| = ||z|| and

|Pa,x — zjej|| < |lz| forallj € Agn{1,...,ny —1}.

Suppose we have found n; < --- < ng_q such that Ay_; = Ao \ {nx_1} satisfies
| Pa,_,z|| = ||z|| and || P4, ,x — zje;|| < ||| forall j € Ap_y N {1,...,ng_1 — 1}.
Then either A;_; € M(z) or there exists a smallest integer n; greater than n;_,
such that Ay, = Ap_1(x) \ {ny} satisfies || Py, z|| = ||z| and

1P,z — zje;]| < ||| forall j € A, n{1,... 0y —1}.

Either this process terminates and A, € M(x), or we get a set N = {n;}—,. Let
A =, Ar = supp(z) \ N and note that || Psz| = [|z||. If j € A, find & such that

j < ng, then by 1-unconditionality
[Paz — zjej|| < [[Pa,x — xjej]| <]
and A € M(z). ]

Our next goal is to prove that certain classes of subsets of M (x) and M°(x) are
finite (see Lemma 4.2.10 below). We will use the next result as a stepping stone. In
the proof, and throughout the paper, we will assume that the sets A = {a;,as,...} €
M (z) are ordered so that a; < ag < --- < a, < ---, and we will use A(n) to denote
the set {ay,...,a,}.

Lemma 4.2.8. Let X be a Banach space with 1-unconditional basis (e;);cn. If

x € X, then for every n € N,
(i) |{A(n): Ae M(x), |A] >n}| < oo,
(ii) |[{A e M(z):|A|l <n}| < .

UDeMoo(a:) {D(n)}) < 00.
Proof. Let us prove (i) inductively. For k € N, let R, = I — Py,, where N, =
{1,...,k}. For n = 1 the result follows from ||Ryz| — 0.

Now assume that [{A(n—1): A€ M(z), |A| >n—1}] < oo, and let s,_1 =
max{HPA(n_l)xH tAe M(z),|A| >n—1} < |lz||. Find k € N such that || Ryz| <
|z|| — sp—1. Then by the triangle inequality, it follows that max A(n) < k for all
A € M(x) with | 4| > n.

For (i), let A € M(x) with |[A| = n. Then HPA(H*U‘(EH < $p—1, and thus max A <

k, where as above k£ € N is such that | Ryx| < ||z] — sn—1. [l

In particular,
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4.2 1-unconditional bases and the sets M (x)

In order to find the sets £ C N mentioned in the remarks following Fact 4.2.4

we need the following families of subsets of M (z).

Definition 4.2.9. Let X have 1-unconditional basis (e;);cn. Let x € Sx and define

Fn(x) = {A e M7 (z) : AN D(n) # D(n), forall D e MOO(:C)} ,
Gn(w) = Fulr)U | ] (D)},

DeM>=(x)

Enlz) = {EC JA:EnA#0, forall Ac gn}.
A€Gn
If it is clear from the context what element = we are considering, we will simply

denote these sets by F,,, G,, and &,.

It is pertinent with a couple of comments about these families of sets. Trivially,
if M*°(z) = 0, then G,, = F,, = M(z) for all n € N. We can think of the elements
of &, as essential for the norm of z, i.e. ||z — Pgx|| < ||z| forall E € &,. According
to Lemma 4.2.11 below the drop in norm is also uniformly bounded away from 0.
The main reason for this is that 7, and &, are finite for all n € N. We will prove

this now.

Lemma 4.2.10. Let X have 1-unconditional basis (e;);en. If © € Sx, then for all
neN,

(i) |Fn| < o0;
(ii) |En| < oc.
In particular, if M (x) = 0, then |M(z)| < cc.

Proof. (i). There exists N € N such that max pe e (,) D(n) < N by Lemma 4.2.8.

Assume for contradiction that | 7,| = co. Then there exists a sequence (A;) C F,
such that |A,| > k. By compactness of {0,1}" and passing to a subsequence if
necessary, we may assume that A, — A € N pointwise and AN {1,..., N} =
A0 {1,...,N} for all k. In particular || P4z|| = 1. By Lemma 4.2.7, there exists
B C A,suchthat B € M(Pyx) C M(x). Since AN{1,...,N} = Apn{l,..., N}, we
have |B| < oo by definition of F,,. Since B is finite A; N B is eventually constant.
Thus for some & € N we have B C Ay € M(x), a contradiction.

Finally, (i1) follows from (i) and Lemma 4.2.8. [
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

With the knowledge that the cardinality of &, is finite for every n € N, we now

obtain the following result.

Lemma 4.2.11. Let X be a Banach space with 1-unconditional basis (¢;)ien. If

x € Sy, then
(i) |xr — Pez||<1ifENA#0forall Ae M(z);
(ii) for any n € N there exists ~, > 0 such that

max |z — Pgz|| =1— .

Proof. (1). Assume that F C N with E N A # () for all A € M(x) such that ||z —
Prpz| = 1. By Lemma 4.2.7 there exists B € M (x— Pgx). But M (x— Pgz) C M(z)
since ||x — Pgx|| = 1 and this gives us the contradiction BN E = ().

Any FE € &, satisfies EN A # () forall A € M(x) and &, is finite, so (ii) follows
from (1). ]

Let X be a Banach space and = € Sx. If x is a delta-point, then for every slice
S with x € S, we have that x is at one end of a line segment in S with length as
close to 2 as we want. Suppose we replace the slice S with a non-empty relatively
weakly open subset W of Bx with x € W. If X has the Daugavet property, then x
1s at one end of a line segment in W with length as close to 2 as we want ([ Shv00,
Lemma 3]). Next we show that this is never the case if X has a 1-unconditional

basis.

Proposition 4.2.12. Let X be a Banach space with 1-unconditional basis (¢;);cn. If
x € Sy, then there exist 0 > 0 and a relatively weakly open subset W, with x € W,
such that sup,cyy |z —yl| <2 — 6.

Proof. Assumethatz € SyNKx. Let E = UAGM(m) A(1). By Lemma 4.2.11 there
exists y; > 0 such that maxpcg, ||z — Prz|| =1 — 1. Let § = 41/2.

Let W = {y € By : |e;-k (x —y)| <mingecp 5,4 € E} Then z € W, and if y €
W, theny; > % > 0 foralli € E. Thus if y € W we have

{ieN:yiz%}ﬂE:Eeé’l.
For any y € W, we get that
4|
2

and we are done. ]

T X T
5 — Pes PE§—y

<2-94
2 2 ’

lz =yl <
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4.2 1-unconditional bases and the sets M (x)

Let us remark a fun application of the above proposition.

Remark 4.2.13. Let K be an infinite compact Hausdorff space. Then C'(K) does
not have a 1-unconditional (or a 1-suppression unconditional) basis.

Let f be a function which attains its norm on a limit point of K. Arguing similarly
as in [AHLP20, Theorem 3.4] we may find a sequence of norm one functions g
with distance as close to 2 as we want from f that converge pointwise, and thus

weakly, to f. The conclusion follows from Proposition 4.2.12.

The next result is the key ingredient in our proof that there are no delta-points in

Banach spaces with subsymmetric bases. Its proof draws heavily upon Lemma4.2.11.

Lemma 4.2.14. Let X be a Banach space with 1-unconditional basis (e;);cn and
let x € Sx. Assume that there exists a slice S(z*,0), an n € N and some n > 0 such

that
(i) x € S(z*,0),
(ii) y € S(x*,0) implies that
i+ lyil > nlai], sgny; =sgna;} N D(n) # 0
forall D € M*(z).
Then x is not a delta-point.

Proof. Assume that 2 € Sx N Kx. Now for each A € 7, find 2% € Sx- such
that 2% (Pax) = 1 with 2% (e;) = 0 for all i ¢ A, and 2% (e;) > 0 for all © € A. Let

* 1 * * *
< _W(ZAG}‘”Q:A"‘?U ) Then z* € Bx+ and

e e Tl 1= 5
> L
171 2 ) > Sz Ful 41

Forany y € S(z*, ||z*|| - 1 + ﬁ), we get that

1 - <l
Fal +1 R+ 1 (A; Tal) +e <y)> s

Solving for z*(y) we get that
1—6<a™(y),

and similarly 1 — § < 2% (y). Thus, 1f0 <n <1 -4,

F{zyz>nxz}ﬂ<u E) €&

Eeg,
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

Forany y € S(z*, ||z*|| - 1 + #) we now get from Lemma 4.2.11 that

|z = yll < [l = nPpz|| + InPrz -y
<nlle = Prz|| + (1 —n) [lz] + 1

<pmax |z — Ppz| +2 —
_nEegnH foed| 7

<2—nym <2 []

If x € Sx with M°°(z) = () in the above lemma, then any slice S(z*, ) containing

x trivially satisfies Lemma 4.2.14 (ii). We record this in the following proposition.

Proposition 4.2.15. Let X be a Banach space with 1-unconditional basis and let
x € Sx. If M (x) = 0, then x is not a delta-point.

We will also need the following lemma.

Lemma 4.2.16. Let X be a Banach space with 1-unconditional basis (e;)ien. If
x € K, then for every A € M(z) and every t > 0 we have |Pyx + te;|| > ||z|| for
all i € A.

Proof. Letx € Kx, A € M(z)andt¢ > 0. Sincei € A and A € M(x) we have
x; > 0and ||Pax — x| < ||z|| = ||Paz||. Put A = x;/(t + ;). Then 0 < A < 1 and
Pax = MN(Paz + te;) + (1 — A\)(Pax — x4ei), SO

2]l = [Paz]l < A[Paz + teill + (1 — N)[[ Paz — wies|
< M| Pax + tei]] + (1 — N)||Pax||
= AM[Paz +tei| + (1 = A)|]l,

and the conclusion follows. ]

Finally it is time to cash in some dividends and prove the main result of this

section.
Theorem 4.2.17. If X has subsymmetric basis (e;);cn, then X has no delta-points.

Proof. Assume x € SxyNKx. By Proposition 4.2.15 we may assume that //*°(z) #
0. Let s := max{n : x, = max; x;}. We first show that s € A for all A € M*°(z).
For contradiction assume that there exists A = {aj,az,...} € M*(z) with s & A.

Letap = 0 and j € N be such that a; 1 < s < a;. Lett > 0 such that z; = x4, +1

56



4.2 1-unconditional bases and the sets M (x)

and let A, be A with a; replaced by s. Using that (e;);cn 1s subsymmetric and
Lemma 4.2.16 we get

1> [Pl = || D waei+ (2o, + e
i#£]

= E xaieai + tea]‘

1€EN

= ||[Paz +teg,|| > 1

a contradiction.
If we let n = s, then s € D(n) for all D € M*°(x), and the slice S(e}, 1 — %) and

n= % satisfies the criteria in Lemma 4.2.14 and we are done. ]

In the proof above we saw that if X has a subsymmetric basis, then for any x € Sy
either M*>°(z) = () or all A € M*°(x) has a common element. In the case X has a
1-symmetric basis we can say a lot about the sets M (z) for any given x € S.

Recall that a Schauder basis (e;);c 1s called 1-symmetric if it is unconditional
and || oy Oivier)ll = | D en wies]| forany 2 = Y, wie; € X, any sequence of
signs (;);en, and any permutation 7 of N. A 1-symmetric basis is subsymmetric
[LT77, Proposition 3.a.3].

Proposition 4.2.18. Let X be a Banach space with 1-symmetric basis (e;);en and

let v € Sx.
(i) If M>(z) # 0, then M(x) = {supp(z)};
(ii) If M>°(z) =0 and A, B € M(x), then |A| = |B| and x is constant on AAB.

Proof. Assume that z € Sy N K.
(1). Let A € M*°(z) and z; € supp(z) \ A. Since |A| = oo, there exists £ € A and

t > 0 with zy + ¢t = x;. Using that (¢;);cn 1s 1-symmetric and Lemma 4.2.16 we get
1> ||PA\{]€}1’+ZE[€1H = ||PA\{k}fU+xl€kH = ||PA$+t€k|| > 1,

a contradiction.

(11). Suppose that z is not constant on AAB and let k,l € AAB with x;, # x,
say k € A,l € B, and =, < z;. Then argue as in (i) to get a contradiction, so x is
constant on AAB. As x is constant on AA B, we cannot have |A| < | B| since then
a subset of B would be in M (x) contradicting the definition of M (z). []
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

4.3 A space with 1-unconditional basis and delta-points

In this section we will prove the following theorem.

Theorem 4.3.1. There exists a Banach space X with 1-unconditional basis, such

that
(i) Xy has a delta-point;
(ii) X does not have Daugavet-points.

Before giving a proof of the theorem we will need some notation. By definition,
a tree 1s a partially ordered set (7, <) with the property that, for every ¢t € T, the set
{s € T : s 2t} is well ordered by <. In any tree we use normal interval notation,
so that for instance a segment is [s,t] = {r € T : s < r < t}. If a tree has only
one minimal member, it is said to be rooted and the minimal member is called the
root of the tree and is denoted (). We have () < ¢ for all ¢ € 7. We say that ¢ is an
immediate successor of s if s < t and the set {r € T : s < r < t} is empty. The
set of immediate successors of s we denote with s™. A sequence B = {¢,,}>2, is a
branch of T if t, € T foralln, ty = 0 and ¢, € ¢} forall n > 0. If s, € B are
nodes such that neither s < ¢t nort¢ < s, then s and ¢ are incomparable. An antichain
in a tree is a collection of elements which are pairwise incomparable. We consider
the infinite binary tree, B = J,-,{0,1}", that is, finite sequences of zeros and
ones. The order < on B is defined as follows: If s = {s1, 592,..., 5.} € {0,1}} C B
and t = {t1,t2,...,t;} € {0,1}} B, then s < tifand only if £ < [ and s; = ¢;,
1 < i < k. As usual we denote with |s| the cardinality of s, i.e. |s| = k. The
concatenation of s and t is st = {s1,52,..., s, t1,t2,..., 4} € {0,1}*+ c B,
Clearly s < s7t and st = {s70,s"1}. The infinite binary tree is rooted with
0= {0,1}°.

Following Talagrand [Tal79, Tal84] we say that A C P(N) is an adequate family
if

» A contains the empty set and the singletons: {n} € A foralln € N.
* Ais hereditary: If A € Aand B C A, then B € A.

» A is compact with respect to the topology of pointwise convergence: Given
A C N, if every finite subset of A 1s in A, then A € A.
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4.3 A space with 1-unconditional basis and delta-points

Given an adequate family A, we define the Banach lattice /4 ; as the set of all se-
quences z = (a;):°, satisfying ||z|| = sup 4 4 ;e 4 lai| < oo (see e.g. [AM93, Def-
inition 2.1]). It is easy to see that, in general, the standard unit vectors (¢;);cry form
a normalized 1-unconditional basic sequence in /4. We denote h 4 the closed
subspace of ¢4 generated by (e;);eny. For example if A = {0} U {{n} : n € N},
then {41 = lso, ha1 = co,and if N € A, then {41 = h 41 = ¢1. Since A is compact
we get that for every « € h 4 there exists A € A such that || Paz| = ||z||.

There is a bijection between B and N where the natural order on N corresponds
to the lexicographical order on B (see [AT04, p. 69]). The family A of all subsets
of N corresponding to the branches of ‘B and their subsets is an adequate family.
We get that Xis := h4; 1s a Banach space with 1-unconditional basis (e;)¢es. It is
worth pointing out that we use ¢ € B as indices for the basis. Thus, for x € Xy
and any non-negative integer n we write Z|t|>n ey (x)es, when referring to the sum
Ztem f>n ey (x)et, that is, t € ‘B 1s implicit. A similar notation will be used in
Section 4.4.

Note that the span of the basis vectors corresponding to any infinite antichain in
Xg 1s 1sometric to ¢y, and that the span of the basis vectors corresponding to any

branch in Xg is isometric to /1.

Proof of Theorem 4.3.1 (i). Consider

xr = Z 2_|t‘€t.

[t|>0

Summing over branches we find that ||z|| = 1. We will show that « is a delta-point.
Define z; = 0 and then for ¢ty € ‘B

20 = 2ty Fe~1 and 21 = 24, + €0

Here is a picture of z o) and z(g 1):

(0,0) £(0,1)
/ 0 \ / 0 \
0 1 0 1
/7 \ /7 \ / N\ /7 \
0 1 0 0 1 0 0 0
From the definition it is clear that

(Ztgo + Zto“l) = 2ty + ! (etgo + Gt()“l)
2

N —
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

so by induction
YN = 2LN Z 2 =T — Z 2_|t‘et.
[t|=N [t|>N
Let 2* € Sx; and ¢ > 0 such that z € S(z*,0). Find N such that 2*(yy) > 1 -6
which is possible since || ZM>N 27 Itley|| — 0as N — co. Butz*(yy) > 1— 6 means
that there exists tg with [tg| = N such that 2*(z,) > 1 — 6. Let E = (¢;):°, be an

infinite antichain of successors of ¢p. Then z*(e;,) — 0 as i — oo. Find ¢,, such that
¥ (zy —€,) > 1—0.

By definition of z;, we have {u € B : u < to} Nsupp(z,) = @ hence z,, — e;, €

n

S(z*,0). Summing over a branch containing ¢,, we get

o0

Iz = (ot — e, ) > Y 2727l =2
h=1,h#|tn|

as desired. L]

Next is the proof that X does not have Daugavet-points. We first need a general
lemma about Daugavet-points.

Let (e;);en be a 1-unconditional basis in a Banach spaces X. Define

EX:{ECN:ZGZ'ES)(}.
i€k
Lemma 4.3.2. Let X be a Banach space with 1-unconditional basis (e;);cn. If

x € Sx is a Daugavet-point, then ||x — Pgx|| = 1 for all E € Ex.

Proof. Assume x € Sx N Kx and that there exists n > 0 and £ € Ex such that
|l — Pgpx|| <1—mn.
e (x)

Define 2* = ﬁ Y icp € € Sx-. Choose v > 0 such that max;ep =5~ < 1 — 1.

Ify € S(z*, %), then it follows that 1 — v < ef(y) forall i € E and

x x n
gl < |l = PR Pt <o
Iz y”—Hx E2H+Hy E2H %

so z 1s not a Daugavet-point. []

Proof of Theorem 4.3.1 (ii). Assume z € Sx,, N Kx,. Let E = UAGM(x) A(1).

From Lemma 4.2.8 we see that |E| is finite. Note that £ is an antichain. Indeed,
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4.4 A space with 1-unconditional basis and Daugavet-points

assume tg,t; € E with tog < t; where A(1) = {¢;} for some A € M(z). Then since
x € Kx, and

1> [|Paggegrl > D ei@) = Y ei(a)+ej(@) > ||Paz| =1
tGAU{to} tGA\{to}
we must have tg = ¢;.
We have ||z — Pgzx| < 1 by Lemma 4.2.11 (1). From Lemma 4.3.2 we get that «

is not a Daugavet-point since £ € Ex,,. [

Let us end this section with a remark about the proof of Theorem 4.3.1 (1). In
order to prove that Xy has a delta-point we could have used dyadic trees. Recall that
a dyadic tree in a Banach space is a sequence (z;);c, such that x;, = %(zro +x4~1).

In fact, 2 = >, 2-Itle; is the root of a dyadic tree. In order to show this one
uses the same z;’s as in the above proof, but attach a copy of x to the node ¢. Finally,

we have the following result about dyadic trees and delta-points.

Proposition 4.3.3. [f a Banach space X contains a dyadic tree (xt)icos C Bx such
that

lim sup(min{||zy — z¢]|}) = 2,
n—00 =n

then xy is a delta-point.

Proof. Lete > 0 and find n with ||zy — || > 2 — ¢ for all ¢ with |¢| = n. This means
that x; € A.(zp). By definition of a dyadic tree

{L‘@:%Z[L‘t,

[t|=n

so we have xy € conv A, (zp). n

4.4 A space with 1-unconditional basis and Daugavet-points

In this section we will cut of the root of the binary tree and modify the norm from
the example in the previous section to allow the space to have Daugavet-points.
Let M = |J~,{0,1}" be the binary tree with the root removed. Note that a
branch B = {t,}° ; in 91 corresponds to the branch {t,}°°, in B where tg = 0.
A \-segment in M is a set S C M of the form S = [s,t] UtT, where [s,t] is a
(possibly empty) segment of 1. If [s, t] = (0, then S = {(0), (1)}.
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

Using the lexicographical order < on 9t we have a bijective correspondence to N
with the natural order. Let A be the adequate family of subsets of N corresponding
to subsets of branches and subsets of A\-segments. Using this adequate family we
get a Banach space Xy := h4 1 with 1-unconditional basis (e;)icon. We call Xop
the modified binary tree space. Note that Xy, contains isometric copies of ¢y and
(1 just like Xg.

As we saw in the proof of Theorem 4.3.1 (ii) the antichains in the tree play an
important role for the existence of Daugavet-points.

Define
§:={0}U{z e Sx,, : (M) C {0, £1}}.

The set Ex,, from Section 4.3 can be described as the set of all non-void finite
antichains £ of 91 such that |[AN E| < 1 for all A € A. Clearly supp(z) € E¥x,, for
every z € § \ {0} and every =z with supp(z) € Ex,, and z(9t) C {0, £1} belongs
to §. It is also clear that for every £ € Ex,, there exists a branch B such that
BN E = (. We will see in Lemma 4.4.1 and Theorem 4.4.2 that the sets E'x,, and
$ will play an essential role in characterizing the Daugavet-points of Xgy.

If M is a finite subset of 901, then we will use the notation K, = {Zte NCE
a; >0} and §pr = {z € § : supp(z) C M}.

First we prove a lemma which says that convex combinations of elements in §

are dense in the unit ball of Xyy.

Lemma 4.4.1. Let M be a finite subset of 9N. Then
span{e; : t € M} N Bx,, = conv (§u)

that is, for every x € span{e; : t € M} N Bx,, we have

N
T = Z A2k 4.1)
k=1

where z, € Sy, A\ > 0, Zgzl M, = 1. In particular, ext(Ky N Bx,,) = Ky NS

Proof. With M,, denote the subset of )t which corresponds to {1,...,n} C N. We

will show, by induction, that for every € Kj,, N Bx,, we have

N
= E Ak 2k,
k=1
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4.4 A space with 1-unconditional basis and Daugavet-points

upp(z) N8> Ak > 0 and Z]kvzl A, = 1. As Ky C Ky, forsomen € N
upp(z) NS> the result will follow.
The base step 1s « € Ky, N Bx,, with ej(xz) > 0 fort € My = {(0), (1)}. Write

where z;, € K

and z;, € K

*

€(0) (x) = ap and 6?1)(‘75) = ay. Define ¢ = 1 —ag — a1, 20 = ¢(g), and z1 = e(y. Then
z=(c-0+apz+aiz)

is a convex combination of elements in Ky (,) N §-
Assume the induction hypothesis holds for n € N. Let x € Ky, ., N Bx,,. Let
t € 9 be the node such that ¢ 0 corresponds to 2n + 1 and ¢ 1 to 2n + 2. Define

v =12 —ef-o(x)er-0 — ef-q(7)er1.

By assumption we have 2’/ = fozl Mz With A\, > 0, ij:l M. = 1land 2, €

Ksupp(:c’) ng.
Define the segment A = {s € 91 : s < ¢t} and the sets

I=f{ke{l,...,N}:Pizx =0} and J={1I,... N}\I.
For k € I we let
2k0 ‘= 2k T €t~0 and 2,1 = R e

Since z € Kgypp(ary NS We get 250, 2k,1 € Kgupp() N5 and

Y e => e@) =) M

s€A seA keJ
Thus, by definition of the norm we have,

0 < efglo) +ef-1(@) ST=) eff@) =D A
s€A kel

Write ej(z) = ag and ej~(z) = a1. Define ¢ = Y7, ; A\p —ap —a1. Letm =
> ke M- 1t follows that

r=2a + apes~0 + ar1e~1

= Z ez + Z Ak 2k + Z Ak (a_ngetAO + %etﬁl>

keJ kel kel
(ap + a1 + ¢) ag ap
=3 ") Ao LT A (— 0+ —ep- )
Z kzk+z k - Zk+z k m€t0+m6t1
keJ kel kel
a ay c
= Z Akzi + Z Ak (—Ozho + —2k1 + —Zk)
m m m
keJ kel
which is a convex combination of elements in Kgy,n,) N §- []

63



4 Daugavet- and delta-points in Banach spaces with unconditional bases

With the above lemma in hand we are able to characterize Daugavet-points in
Xon 1n terms of Ex, . This will give us an easy way to identify and give examples

of Daugavet-points.

Theorem 4.4.2. Let x € Sx,,, then the following are equivalent
(i) x is a Daugavet-point;
(ii) ||z — Pgz| =1, forall E € Ex,,,

(iii) for any z € §, either ||x — z|| = 2 or for all € > 0 there exists s € N such
that z + e; € §and ||x — z  eg]| > 2 — e

Proof. As usual we will assume that z € Ky, throughout.
(1) = (i1) is Lemma 4.3.2.
(i1) = (ii1). Lete > 0, z € §F and E = supp(z). We have assumed that ||z — Pgz|| =

By definition of M (z — Pgxz) we have AN E = () for every A € M (x — Pgx). If
there, for some A € M(z — Pgx), exists t € F and sy € Asuchthatt < sp,ort € F

such that s < ¢ for all s € A, then we are done since ¢} (z) = 0 and

lz =2 > lei@)] + lef (2)] = 2.
s€A
So from now on we assume that no such A exists.
Assume that there exists A € M(z — Pgx) that is a subset of a branch B. By
definition of the norm, we have e¢j(x) = 0 for t € B\ A, and by the assumption
above, we also have BN E = (). Since |e}(x)| — 0 as |t| — oo for t € B we can find

s € B with |e}(z)| < ¢/2 and hence

lo—ztel > Y lej(@)| +les(@) 1] > 2.
tEAt#s
This concludes the case where A is a subset of a branch.

Suppose for contradiction that no A € M (z — Pgz) is a subset of a branch, then
every B € M(x— Pgx) 1s a subset of a A-segment. By Lemma 4.2.10 we must have
|M(z — Pgx)| < oo.

Choose any B € M(x — Pgx) and write

B={b; <by<---<by,} U{bT0,b71},
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4.4 A space with 1-unconditional basis and Daugavet-points

where b, < b. In particular e*(x) # 0 for s € bT.

Let R={te E:b"0<t}and E; = (FU{b0}) \ R. From the assumptions
above EN{t:t <070} =0, so £y € Ex,,.

LetC € M(x— Pg,x). Notice that Cn{t : b0 < t} = (). Otherwise, by definition

of the norm, we get the contradiction

1= [|Pongoyell = D le (@) + les-o(@)] > Y lef ()] = |[Pox| = 1.
teC teC
Hence Po(x — Pg,x) = Po(x — Pgx) and C € M(x — Pgx).

We have M(z — Pg,x) € M(x — Pgx), but since BN E; # 0 we have B ¢
M (x — Pg,x) so the inclusion is strict.

We now have |M (z — Pg,z)| < |M(x— Pgz)|andno C € M (z— Pg,z) is a subset
of a branch. We can use the argument above a finite number of times until we are
left with E,,, € Ex,, with ||z — Pg, || = 1 and M (z — Pg, x) = () which contradicts
Lemma 4.2.7.

Finally, (ii1) = (1). Choose ¢ > 0. Let y € By,, with finite support. Then by
Lemma 4.4.1, we can write y = ;| A2y, With 2, € §, A, > 0and > Mg = 1.
Let Dy ={ke{l,...,n}: ||z — z|| =2} and D2 = {1,...,n}\ D;. We can, by as-
sumption, for each k € D, find s, € MM such that z;, +e,, € F with ||z — z; £ es, || >

2 — e. Then y € conv A.(x) since

A A
y= Mzt Y Gl tes)+ D Fla—es).

1€Dy keD- keD-

The set of all such y 1s dense in By,,, hence By,, = convA.(z) so z is a Daugavet-

point. [

Corollary 4.4.3. If © € Sx,, such that ||Paz| = 1 for all branches A, then x is a
Daugavet-point.

Proof. Let E € Ex,,. There exists a branch B such that BN E = (). Then ||z —
Prz|| > ||Ppx|| = 1. By Theorem 4.4.2 x is a Daugavet-point. [l

With a characterization of Daugavet-points in hand we can now prove the main

result of this section.
Theorem 4.4.4. In Xoy we have that

(i) there exists x € Sx,, which is a Daugavet-point;
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

(ii) there exists w € Sx,, which is a delta-point, but not a Daugavet-point.

Proof. Letz =", o 2~ Itle,. We have that « is a Daugavet-point by Corollary 4.4.3.
The next part of the proof is similar to the proof of Theorem 4.3.1 (1). We will
show that a shifted version of x is a delta-point which is not a Daugavet-point.

Define an operator on the modified binary tree:

L Z ater | = Z ap~teo~t + Z A1~t€(1,0)~t»
[t|>0 >0 [t|>0
where ¢t = () when [t| = 0.

Define w = L(z). Let 2* € Sx; and 6 > 0 such that w € S(z*, ). Just as in the
proof of Theorem 4.3.1 (1) we can find z;, € Sx,, whose support is an antichain
(i.e. 2z, € §) and we can find e;, such that z;, — e;, € S(z*,9). Summing over a
branch containing ¢,, we get ||w — (z¢, — ez,)|| = 2.

Let E = {(0),(1,0)}. Then ||w— Pgw| = Y ;-, 2% = 1 < 1 so by Theorem 4.4.2

w 1s not a Daugavet-point. [

In [AHLP20], the property that the unit ball of a Banach space is the closed
convex hull of its delta-points was studied. We will next show that Xy satisfies
something much stronger, the unit ball is the closed convex hull of a subset of its
Daugavet-points.

If D is the set of all Daugavet-points in Xyy define
Dp ={x € D : ||Ppx| =1 for all branches B of 91}.

The proof of Theorem 4.4.4 shows that Dg is non-empty.
For tg € 9, let Sy, be the shift operator on Xyy that shifts the root to ¢, that is

Sto(z aiey) = Z ateist (4.2)

tem teom

It is clear that Sy, 1s an isometry on Xgy.
Proposition 4.4.5. The space Xoy satisfies Bx,, = conv(Dp).

Proof. Lety € Bx,,. We may assume that y has finite support, since such y are

dense in Bx,,. By Lemma4.4.1, we can write y = ZZ:1 Mgz Where 2z, € §, A\, >0
n

and >, \p = 1.
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4.4 A space with 1-unconditional basis and Daugavet-points

Fix z € §. Let m := max{|t| : t € supp(z)}.
B={teM:[t=m, Y lei(z) =0}
s=<t
Choose any xg € Dp and use the shift operator in (4.2) to define
x = Z St(xo).
teB

Observe that = 4+ = takes its norm along every branch, so by Corollary 4.4.3 both
z+x € Dp.

Repeat this construction for z; to create x; for k € {1,...,n}. Then

A "\
Y = kg_l —2 (Zk + xk) + kg_l 5 (Zk xk),

1s a convex combination of Daugavet-points in Dp. []

Our next result is that Xoy has the remarkable property that the Daugavet-points
are weakly dense in the unit ball. So in a sense there are lots of Daugavet-points,
but of course not enough of them in order for Xyy to have the Daugavet property.
First we need a lemma. For ¢ € 9, S; denotes the shift operator defined in (4.2)

above.

Lemma 4.4.6. Let x* € Sx; and s € *B. For any x € Sx,, and ¢ > 0 there exist

some infinite antichain E = {t;}3°, with the following properties

(i) HZ?:l €t;

(ii) s S tforallt € E;

=1foralln € N;

(iii) |z*(Six)| < e forallt € E.

Proof. Pick any z* € Sxz» S € B and © € Sx,,. It is not difficult to find an
infinite antichain £ = {¢;}>°, satisfying (i) and (i1). Since £ is an antichain we
have || 377" | Si.(z)| = 1 for all n € N. Hence

Iim 2™ (S,x) =0,

1—00
and then we can find n € N such that |2* (S;,2)] < € for all i > n. Now E' =
E\ {t;}} satisfies (i), (ii) and (iii). []
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

Theorem 4.4.7. In Xoy every non-empty relatively weakly open subset of Bx,, con-

tains a Daugavet-point.

Proof. Since vectors with finite support are norm dense in By,,, it enough show
that for any y € By,, with finite support and any relatively weakly open neighbour-
hood of y of the form

W :={x € Bxy, : |zj(y—z)| <ei=1,...,n},

where 2z} € Sxz.t=1,...,n and ¢ > 0, contains a Daugavet-point.

Let m := max{|t| : t € supp(y)}, and for ¢ € N with |¢| = m define

pe=1=Y lesy)

s=<t

and

N :={teM: |t| =m,pu > 0}

From Corollary 4.4.3 we have that g = > o, 2~ Isle, is a Daugavet-point. By
Lemma 4.4.6 for each ¢t € N there exists ¢ < b, such that |z} (S,9)| < ¢/2™ for

r=y+ Y 1S(9)

By construction = € Sy,, and we have x € W since

= |27 (Zﬂtsbt ) <Zut!9€ (Sb9)l < o Z,Ut<€
teN

teN teN
Using Theorem 4.4.2 we will show that = is a Daugavet-point. Indeed, let E € Ey,,.
Then there exists a branch A with ANE = (). Lett € A with |t| = m. Ift ¢ N, then

i=1,...,n. Now put

|z} (y —

lz = Pzl > " les(y)| = 1.

st

If ¢ € N, then since S, (¢g) is a Daugavet-point, there exists a branch B with ¢t € B
such that ||, (9) — PeSy, (9)ll = > _.cp S0, (9)s| = 1. Thus

o = Peall > Y les@ + D mlSs ()l =1 = e+ e =1,
s=<t sEB,
S>bt
and we are done. ]
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4.4 A space with 1-unconditional basis and Daugavet-points

Question 2. How “massive” does the set of Daugavet-points in Sy have to be in

order to ensure that a Banach space X fails to have an unconditional basis?

If S is a slice of the unit ball of Xgy, then the above proposition tells us that S
contains a Daugavet-point . Then by definition of Daugavet-points there exists
forany e > 0ay e S with ||z — y|| > 2 — . Thus the diameter of every slice of the
unit ball of Xy is 2, that is Xy has the local diameter two property.

The next natural question is whether the diameter of every non-empty relatively
weakly open neighborhood in By,, equals 2, that is, does Xoy have the diameter
two property? The answer is no, in fact, every Daugavet-point in Dp has a weak
neighborhood of arbitrary small diameter. Let us remark that the first example
of a Banach space with the local diameter two property, but failing the diameter
two property was given in [BGLPRZ15]. While we have used binary trees, their
construction used the tree of finite sequences of positive integers and they even
showed that every Banach space containing ¢y can be renormed to have the local

diameter two property and fail the diameter two property.

Proposition 4.4.8. In Xgy every x € Dy is a point of weak- to norm-continuity for

the identity map on Bx,,. In particular, Xoy, fails the diameter two property.

Proof. Lete > 0and z € Dg. Let n € N be such that || ZMM zieq|| < §. Consider
the weak neighborhood W of =

9
W= {y € B s |65 (0 = )| < 5z ] < )

We want to show that the diameter of W is less than e. Lety = ), o vier € W.
Let A be a subset of a branch or of a A\-segment in 9. Since |z; — y| < 27113

for [t| < n, || Z| H>n riei]| < g, and x attains its norm along every branch of 901, we

Z|yt‘>2‘xt|_|xt_yt’>Z’xt|—§>1—§l.

teA tcA tcA
[t|<n [t|<n [t|<n

have

Hence > vca |yi| < 5, and thus

[t|>n
Zm—yt’: Z’xt_yt’+2|$t_yt|

teA teA teA
[t|<n [t|>n
< E e271=3 E |7e] + E |yt
te A teA te A
[t|<n [t|>n [t|>n
< 9 4 g i 9 . 9
8 8 4 2
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4 Daugavet- and delta-points in Banach spaces with unconditional bases

From this it follows that the diameter of W is less than «. ]

Recall from [ALL16] that a Banach space X is locally almost square if for every
z € Sx and € > 0 there exists y € Sy such that ||z £ y|| < 1+e.

It 1s known that every locally almost square Banach space X has the local diam-
eter two property. As noted above Xy has the local diameter two property, but it

1s not locally almost square as the following proposition shows.

Proposition 4.4.9. Xyy, is not locally almost square.

Proof. Consider x = je() + 3e(). Let 0 < e <  and suppose there exists y =

Y temytet € Sxy With [z £yl < 1+¢ < 5 Then clearly lyayl < i +e By

|

considering —y if necessary we may assume that y(;) > 0. Then

1 3
Lt e > max{|7 £y + |7 £y}

1 3
> ’;1 — Y0l 1t )l

1 3
> |yl — 11t [y,

which yields |y + |y(1)| < 3 +¢ < 3. Thus since ||y|| = 1 there must exist a subset
A of a branch or a A-segment such that [AN {(0),(1)}| =1and >, , |y = 1. Let

se An{(0), (1)}

5)
7> eyl =max |zg £yl + Y Jl = sl + lysl + 1 [s]

te A
t#£s

and we get the contradiction |z, < 1. [l

Recall from [HLP15] that a Banach space X is locally octahedral if for every
x € Sx and € > 0, there exists y € Sx such that ||z £ y|| > 2 —«.

It is known that every Banach space with the Daugavet property is octahedral.
Even though the modified binary tree space have lots of Daugavet-points, as seen

in Proposition 4.4.5, it is not even locally octahedral.
Proposition 4.4.10. Xy, is not locally octahedral.

Proof. Consider z = 5(e) + ¢(1)) € Sx,,- We want to show that for all y € Sx,,

1
2

. 3

we have min ||z £ y|| < 3.
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4.4 A space with 1-unconditional basis and Daugavet-points

Lety = Zteim yrer € Sx,,. Let A be a subset of a branch or a A-segment. If
A #{(0), (1)}, then

[\ [V}

S ol < 5+ Yiealuls AN{0).(} A0 _
= A\ Sl AN{O. (1)} =0

—_

If A = {(0),(1)}, then, since |y.| + |y)| < 1 and a convex function attains its

maximum at the extreme points, we get
|—+y |+|—+y \+|——y |+|——y)| 3.

Hence min ||z £ y|| < 3. O
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6 Appendix

In this Appendix we tie up some loose ends concerning Miintz spaces and prove
special cases that were not covered in the papers forming Chapters 2—-3. For nota-
tion and terminology, see Chapter 1.

In Proposition 3.2.3 it was shown that M/ (A) is almost isometric to a subspace of
¢ whenever \; > 1. It is natural to think that Proposition 3.2.3 could be extended
to hold for any Miintz space. Our first goal is to show that this is indeed the case.
For the following results, unless explicitly stated otherwise, A will be any Miintz
sequence with \; < 1and £ € Nsuch that A\; < Ao < ... < X\ <1 < Agyq.

The next lemma follows by studying the proof of [GL0S5, Corollary 6.1.3].

Lemma 6.0.1. For any M (A) Miintz space and m € N there exists M € N such that
ifg=>3 1, ait)‘i—l—zzl:mﬂ a;it™i € TI(A), then |a;| < M ||g|| foralll € {0,1,...,m}.

Using this Lemma, we also get the following.

Lemma 6.0.2. Let M(A) be a Miintz space. For any 0 < a < b < 1, there exists a

constant Cy, such that
Hg/H[a,b] < Cap gl
for any g € TI(A).

Proof. Start with 0 < a < b < 1 and let M be the constant from Lemma 6.0.1. By
the Bounded Bernstein inequality (see Theorem 3.2.1) there is a constant ¢ such
that |[p'|| ;g5 < ¢ [|pl forany p € span {t* : i > k}. Forg e TI(A) anda <t < bwe
have that a™—1 >t~ foralli € {1,..., k}, thus

i k
Hg/H[a,b} = Z H“W“"_1||[a,b] +1g Zai/\itAi_H
=1 i=1
k
<k-XNg-aMU Mgl +ellg — Zait)\i”
=1

[a,b]

<k M- gl + e (gl + k- M|gll)
= (k- Ma™ '+ ¢(1+ kM) g < oo.
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6 Appendix

We now see that ||¢/|| < Cy |lgll, where Cop = (k- MaM ™! + ¢(1 + kM)). O

Lemma 6.0.3. Let M(A) be a Miintz space. Then for any € > 0 there exists s > 0
such that |f(t) — f(0)| < e||f|| forallt < s and f € M(A).

Proof. Let ¢ > 0 and let M be the constant from Lemma 6.0.1. By the Bounded

Bernstein inequality (see Theorem 3.2.1) there is a constant ¢ such that ||p/|| 0,1/2) <

c|lp|| for any p € span {t* : i€ {k+1,k+2,...} U{0}}. Pick s € (0,1/2) such
k

that sM < m Forg = Y, ait™ set h = Y. a;it". Then for any
a€|0,1]

k

il < laila < kM |g] o
=1

We get that forany ¢ < s

9(t) — g(0)] = |h(t) + (g — R)(t) — (g — 1) (0)]
< [I7lljp,¢ + 1t = Olll (g — h)'lljo,1
< kM|glls™ + scllg = o
< kM|lglls™ + sc(llgll + kM |lg]))
< M (KM + c(1+kM)) |lg]|

As TI(A) is dense in M (A) the result follows. [l

We are now ready to extend Proposition 3.2.3 to include all Miintz spaces. The

proof is just a modification of the original argument.

Proposition 6.0.4. Let M (A) be a any Miintz space. Then for any ¢ > 0 there exists
an operator J. : M(A) — c such that

A=) I < NefI < 1A

Proof. By Proposition 3.2.3 we only need to consider M(A) where \; < Ay <

o< A <1 < Ay Lete > 0 and from Lemma 6.0.3 find so € (0,1) such
that |f(t) — f(0)] < e||f]] forall t < sy and f € M(A). Now pick a sequence
sop=ap < a; <ay <...<a; <...convergingto 1. By Lemma 6.0.2, we can for

each a;, find Cy, 4, such that for any g € II(A) we get

19']] o ] < Csova N9l
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with i € N. Next we pick points sp = ag < 51 < ... < Sp;, = a1 < Spy41 < ... <

Sp, = a2 < ...such that

Sj41 — 8j < forn; <j < ni.

50,Qi+1

Define the operator J. : M(A) — ¢ by Jo(f) = (f(0), f(s0), f(s1), f(s2),...). Then
by continuity of f the operator is well defined, and || J. f|| = sup,,cn | f(sn)] < || f]]
forall f € M(A). Now, let f € M(A) and let g € II(A) be such that || f — g|| < d. If

0 < s < sp, we get from Lemma 6.0.3 that

[F(s)] < lg(s)] +6 < [g(s) — g(0)] + [g(0)| + 0
<ellgl+ (1f(O)] + )+
<e([lFl+0) + I JefIl + 26.

Rearranging terms yields

[f (&) = ellfIl < N Jf]] + d(e +2).

If sp < s < 1, we have that a; < s < a;4+; for some i € N. Let s, € [aj, ai4+1] be
such that |s — s,,| < 7—=—. Then

50,0441

)] < 19()] +6 < 19(5) = asm)| + lg(sm)| +0
< o'l

< [lglICs

sm|+ [ Jegll +0

|s —
@iy Ai41)

€
= +lJegll +9

0,Ai+4+1 Oso7ai+1
< llglle + [l Jegll + 6
< (I +0)e + (1Sl +0) + 6

and therefore
(L=l < £l + d(e + 2).

Since 0 was arbitrary we conclude that
A =)fI < [IfIF < (LI ]

In “On Octahedrality and Miintz spaces” the following result was shown:

Proposition 3.3.2: [Mar]

No Miintz space My(A) with A; > 11s LASQ.
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The proof relied on an upper bound, ¢, similar to the one in Lemma 6.0.3. In fact,
with Lemma 6.0.3 a straightforward modification of the proof of Proposition 3.3.2

yields the following.
Theorem 6.0.5. No Miintz space My(A) or M(A) is LASQ.

Proof. By Lemma 6.0.3 we only need to consider M (A) where \; < Ao < ... <
A < 1 < Mgy1. By considering the constant 1 function, we can see that M(A)
1s never LASQ. Now, consider a Miintz space My(A). By Lemma 6.0.3 we can
choose some s € (0, 1) such that |f(¢) — f(0)| = |f(t)| < 1/4 forall t < s and for all
J € Sm-

Recall from [ALL16, Theorem 2.1] that My(A) is LASQ if and only if for every
g € Syn) and e > 0 there exists h € Sy, such that ||g + || < 1+ . We claim
that no such & exists for g = t*. Indeed, if 0 < ¢ < s* /2 and h € Sy, is such that
|t* & h|| < 1+ €. Then |h(t)] < 1 — ¢ fort > s as t* > 2¢ for t > s. Thus, h must
attain its norm on the interval [0, s|, contradicting our observation. As II((A,)% ;)

n=1

is dense in My(A), we conclude that My(A) is not LASQ. ]

In Chapter 4 Proposition 4.2.12 the following result was shown:

Proposition 4.2.12: [ALMT]

Let X be a Banach space with 1-unconditional basis (¢;);en. If € Sy, then
there exist 6 > 0 and a relatively weakly open subset W, with = € W, such that

sup,ey [l — yll <2 4.

Let us show that if f is a Daugavet-point in a Miintz space M (A), then the above

proposition does not hold for f. In fact, we show more:

Proposition 6.0.6. Let M(A) be any Miintz space, and f € Syppy with [f(1)] = 1.
Then whenever C' is a convex combination of non-empty relatively weakly open
subsets of the unit ball we have

sup|lg — f|| = 2.
geC

Proof. Let X = M(A), f € Sx with f(1) = 1, and let C be a convex combination of
non-empty relatively weakly open subsets of By. Let (\;),-; be a RIP subsequence

of A, and let py, be the corresponding spike-function to (\);- ; and z;, be the unique
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point where p;, attains its norm (see Lemma 2.2.3 and Remark 2.2.4). Pick any
g=>1 g’ € C,and define

- ; ; Dk
g =9 — (1 + gl(xk)) ol

By the calculations in Theorem 2.2.5, we get that || gi|| — 1, that (gi") is bounded

and converges pointwise to ¢’, and consequently g;,° converges weakly to ¢’. Thus
hi = % also converges weakly to ¢’ and thus Y, y;h! is eventually in C.

It remains to show that |37 | yhf — f|| — 2. However, as f(1) = 1, h{ (zx) —
—1, and 2 — 1, this follows from continuity of f.

Clearly a similar argument for f € Sx with f(1) = —1 will work. [

Daugavet- and delta-points of certain Miintz spaces were characterized in The-
orem 3.13 [AHLP20]. Again Lemma 6.0.2 and Lemma 6.0.3 can be used to gen-

eralize this result to all Miintz spaces.

Theorem 6.0.7. For any Miintz space My(\) or M(A), the following assertions for

f € Sx are equivalent:
(i) f is a Daugavet-point;
(ii) f is a delta-point;

(iii) || fl| = [f(D)]-

Proof. By [AHLP20, Theorem 3.13], we only consider M (A) where \; < Ay <
<A <1< Ay
(i) = (7). This is trivial.
(i) = (uii). Assume for a contradiction that there exists f € M(A), with
|f(1)] < 1. Assume |f(0)] = 1 and use Lemma 6.0.3 to find ¢ € (0,1) such
that [|g — g(0)[|p,q < 1/2 for all g € Spy). As [ is the restriction of an an-
alytic function on {z € C\ [-1,0] : |z] < 1} to (0,1), we can conclude that / =
{te(q,1) : |f(t)| =1} U{0} is a finite set, by the Principle of permanence. Note
that the Principle of permanence also allows us to assume that | f(¢)| < 1 (otherwise
f(s) =1forall s < ¢ implying that f = 1 for all s € (0,1)).

Letd = %”1 and tg = w > 0and Iy = [0,q]. Let C = Cy, 4 be the
constant from Lemma 6.0.2 and assume that 0 < v < % Define I; = (t —v,t + 7).

Choose ~ smaller if necessary such that I, N Iy = () whenever ¢, s € [ and ¢t # s. By
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continuity of f and by reducing ~ further if necessary, we can assume that
1 —|f(s)] <1/4 whenever s € Iy and ¢t € I \ {0}.

Thus, by defining

n:lsup{f(s) D s € [O,l]\(UIt)}>

tel

we get that » < 1/2. Suppose g € Bx and ||g — f|| > 2 — n. Then there exists j € [
and s € I; with sgn g(s) = —sgn f(s), and with |g(s)| > 1 — 7. Therefore we cannot
have ¢t € I; with |g(j)| > 1 —n and sgng(j) = —sgng(s) as this would contradict
that [|¢'|,, 4 < T"if j > 0 and our choice of ¢ if j = 0. In other words, for j € I we
have that g ¢ S(sgn(f(t)d;,n), where §; is the Dirac measure centered on j.

Define the slice S = S(ﬁ > rer EtOt, %) where ¢, = sgn f(t). Note that f € S
and for h € Bx we have that

heS = he S(ed,n). (6.1)

As g ¢ S(g;6;,m) we can conclude that g ¢ S, by (6.1). As span {t*} is dense, we
conclude that sup, ¢ || f — h|| < 2 and thus f is not a delta-point.

If |f(0)] < 1or f € My(A), the argument is similar, where the major difference
is that the point ¢ can be omitted, and the set / does not include the point 0.

(14i) = (7). This follows directly from Proposition 6.0.6. ]
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