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Stabilization of Positive Switched Systems with Time-varying 

Delays under Asynchronous Switching 
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Abstract: This paper investigates the state feedback stabilization problem for a class of positive 

switched systems with time-varying delays under asynchronous switching in the frameworks of conti-

nuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches 

between the candidate controllers and system modes are asynchronous. By constructing an appropriate 

co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during 

the running time of active subsystems, sufficient conditions are provided to guarantee the exponential 

stability of the resulting closed-loop systems, and the corresponding controller gain matrices and ad-

missible switching signals are presented. Finally, two illustrative examples are given to show the effec-

tiveness of the proposed methods. 
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varying delays. 

 

1. INTRODUCTION 

 

Positive systems, whose states and outputs are positive 

(at least nonnegative) whenever the initial conditions and 

inputs are nonnegative, spread almost all over the areas. 

For instance, biomedicine [1], ecology [2], industrial 

engineering [3], TCP-like Internet congestion control [4], 

and so on. Very recently, positive switched systems, 

which contain a family of positive subsystems and a 

switching signal governing the switching among them, 

have been highlighted by many researchers due to their 

broad applications in communication systems [5], 

formation flying [6], and systems theory [7]. It should be 

pointed out that studying positive switched systems is 

more challenging because, in order to obtain some results, 

we have to combine the features of positive systems [8,9] 

and switched systems [10-12]. 

In practice, time-delay phenomenon exists widely in 

engineering and social systems, for example, long-

distance transportation systems, hydraulic pressure 

systems, networked control systems and so on. Time-

delay often causes undesirable performance, even makes 

systems unstable. Therefore, many results have been 

reported for time-delay systems [13-15]. 

On the other hand, stability and stabilization problems 

of positive switched systems have been extensively 

studied in the past years, see for instance [16-25] and the 

references therein. It is worth pointing out that the 

aforementioned results are based on an assumption that 

the switching instants of the controllers coincide with 

those of system modes. However, as pointed out in 

[26,27], there inevitably exists asynchronous switching 

in actual operation, i.e., the switching instants of the 

controllers exceed or lag behind those of system modes. 

Thus, it is necessary to consider asynchronous switching 

for efficient control design. Some results on non-positive 

switched systems under asynchronous switching have 

been proposed in [26-33]. For positive switched systems, 

the asynchronously stabilization is more challenging 

because the designer concerns not only the stability of 

the system, but also the positive property of the system. 

However, to the best of the authors’ knowledge, the 

asynchronous control problem for positive switched 

systems has not been fully investigated. Moreover, the 

asynchronous switching controller design method 

developed in the existing literature cannot be directly 

applied to positive switched systems, and this constitutes 

the main motivation of the present study. 

In this paper, we are interested in studying the 

asynchronous stabilization problem for positive switched 

systems with time-varying delays. The main contribution 

of this paper is that: 1) by constructing a novel co-

positive type Lyapunov-Krasovskii functional which is 

allowed to increase during the running time of active 

subsystems with the mismatched controller, sufficient 

conditions for the existence of the stabilizing controllers 

for the underlying systems in both continuous-time and 

discrete-time contexts are developed; 2) The inequalities 

derived in this paper are decoupled and can be easily 

solved. 
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The remainder of this paper is organized as follows. In 

Section 2, problem statements and necessary lemmas are 

given. In Section 3, based on the average dwell time 

approach, the stability and stabilization problems for 

both continuous-time and discrete-time positive switched 

systems with time-varying delays are developed. Two 

numerical examples are provided to show the 

effectiveness of the proposed approaches in Section 4. 

Concluding remarks are given in Section 5. 

Notations: In this paper, 0A �� ( 0)A��  means that 

all elements of the matrix A are positive (nonnegative). 

A B�� ( )A B��  means that 0A B− �� ( 0).A B− ��  

The notation X Y≥ ( )X Y>  means that X Y−  is 

positive semi-definite (positive definite). Rn is an n-

dimensional real vector space and n

R
+

 is a set of vectors 

whose elements are all positive; n s

R
×  is the set of all 

real matrices of (n×s)-dimension. T
A  denotes the 

transpose of the matrix A. 
1

,
n

s
s

x x
=

=∑  where x
s
 is 

the s-th element of .

n

x R∈  The set of all nonnegative 

integers is represented by .Z
+  

 

2. PROBLEM FORMULATION AND 

PRELIMINARIES 

 

Consider the following continuous-time switched 

linear system with time-varying delay: 

( ) ( ) ( )

0

( ) ( ) ( ( )) ( ),

( ) ( ), [ ,0],

t d t t
x t A x t A x t d t B u t

x t  

σ σ σ

θ ϕ θ θ τ

= + − +⎧⎪
⎨

+ = ∈ −⎪⎩

�

 (1) 

where ( ) n

x t R∈  and ( ) m

u t R∈  denote the system state 

and the control input, respectively; ( ) : [0, )t Nσ ∞ → =  

{1,2, , }N�  is a piecewise constant function of time, 

called a switching signal; N is the number of subsystems; 

Corresponding to the switching signal, we have the 

switching sequence 
0 0 1 1

{( , ( )), ( , ( )), ,( , ( )),
q q

t t t t t tσ σ σΣ =  �  

},�  where t0 is the initial instant and tq denotes the q-th 

switching instant; ,
i

Α
di

Α  and ,
i

B ,i N∈  are known 

constant matrices with appropriate dimensions; ( )d t  

denotes the time-varying delay satisfying 0 ( )d t τ≤ ≤  

and ( ) 1d t d≤ <�  for known constants τ  and d; ( )ϕ θ  

is a continuous vector-valued initial function defined on 

the interval [ ,0].τ−  

Definition 1: System (1) is said to be a positive 

switched system if for any switching signals ( )tσ  and 

any initial conditions ( ) 0,ϕ θ �� [ ,0],θ τ∈ − ( ) 0x t ��  for 

all 
0
.t t≥  

Definition 2 [34]: A is called a Metzler matrix, if the 

off-diagonal entries of the matrix A are non-negative. 

Definition 3 [35]: System (1) is said to be exponen-

tially stable under switching signal ( ),tσ  if for initial 

conditions 0( ) ( ),x t θ ϕ θ+ = [ ,0],θ τ∈ −  there exist con-

stants 0ζ >  and 0ρ >  such that the solution of the 

system satisfies 

0( )
0 0( ) ( ) , ,

t t

C
x t x t e t t

ρ
ζ

− −

≤ ∀ ≥  

where 
0 0

0

( ) sup ( ) .
C

x t x t

τ θ

θ

− ≤ ≤

= +  

Definition 4 [36]: For a switching signal ( )tσ  and 

any 2 1 0 ,T T t> ≥  let 1 2( , )N T T
σ

 be the switching 

number of ( )tσ  over the interval 1 2[ , ).T T  If 
1

( ,N T
σ

 

2 0 2 1
) ( ) /

a
T N T T T≤ + −  holds for 0

a
T >  and 

0
0,N ≥  

then 
a

T  is called the average dwell time and 0N  is 

called the chattering bound.  

Remark 1: As stated in [36], 
0

0N =  implies that 

( )tσ  cannot switch at all on any interval of length 

smaller than T
a
. In general, if we discard the first N0 

switches (more precisely, the smallest integer greater 

than N0), the average time between consecutive switches 

is at least T
a
. Without lose of generality, we choose 

0
0N =  in this paper. 

A state feedback controller ( )( ) ( )
t

u t K x t
σ

=  for 

system (1) is considered, where 
i

K ( )i N∈  are the 

controller gain matrices to be determined. However, due 

to the existence of asynchronous switching, the 

switching instants of the controller do not coincide 

exactly with those of the system mode. Without loss of 

generality, the asynchronous switching considered here 

means that the switching instants of controller lag behind 

those of the system mode. Then, the real control input 

will become 

( )( ) ( ),
qt

u t K x t
σ −Δ

=  
1

[ , ),
q q

t t t
+

∀ ∈  (2) 

where 0 0,Δ =  and 
1

0
q q q

t t
+

≤ Δ < − ( 1,2,...)q =  rep-

resents the switching delay. 

Remark 2: The delay time 
1

0
q q q

t t
+

≤ Δ < −  implies 

that there exists a period that the system mode and the 

controller operate synchronously during the interval 

1
[ , ).
q q
t t

+
 

Denote ( )tσ ′  as the real switching signal of the 

controller (4), that is, ( ) ( )
q

t tσ σ′ = − Δ . Let the i-th 

subsystem be activated at the switching instant tq and the 

j-th subsystem be activated at the switching instant 
1
,

q
t
+

 

then the corresponding switching controllers are activated 

at the switching instants 
q q
t + Δ  and 

1 1
,

q q
t
+ +
+ Δ  

respectively. Applying the controller (2) to system (1), 

the resulting closed-loop system is given by: 

1

, 1 1 1

( ) ( ) ( ( )), [ , )

( ) ( ) ( ( )), [ , ),

i di q q q

i j dj q q q

x t A x t A x t d t t t t

x t A x t A x t d t t t t

+

+ + +

⎧ = + − ∈ +Δ⎪
⎨

= + − ∈ +Δ⎪⎩

�

�

 (3) 

where 
i i i i

A A B K= +  and 
,

.

i j j j i
A A B K= +  

Lemma 1: System (3) is positive if and only if 
i

A  

and 
,i j

A  are Metzler matrices, and 0,
di

A �� , ,i j N∀ ∈  

.i j≠  

Proof: This Lemma can be directly obtained from 

Proposition 1 in [16]. 

Furthermore, we consider the following discrete-time 

switched system with time-varying delay: 

( ) ( ) ( )

0

( 1) ( ) ( ( )) ( ),

( ) ( ), , 1, , 1,0,

k d k k
x k A x k A x k d k B u k

x k k k  k d d

σ σ σ

ϕ

+ = + − +⎧⎪
⎨

+ = = − − + −⎪⎩ �

 

 (4) 
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where ( ) n

x k R∈  and ( ) m

u k R∈  denote the system state 

and the control input, respectively; ( ) :k Z Nσ
+
→ =  

{1,2, , }N�  is the switching signal; ( )k i Nσ = ∈  

means that the i-th subsystem is active; N is the number 

of subsystems; Corresponding to the switching signal, 

we have the switching sequence 
0 0

{( , ( )),k kσΣ =
1

( ,k  

1
( )), , ( , ( )), },

l l
k k kσ σ  � �  where 

0
0k =  is the initial 

instant and 
l
k  denotes the l-th switching instant; Ai, Adi 

and Bi, ,i N∈  are constant matrices with appropriate 

dimensions; ( )d k  denotes the time-varying delay 

satisfying 0 ( )d d k d< ≤ ≤  for known constants d  

and ;d ( )kϕ  is a discrete vector-valued initial function. 

Definition 5: System (4) is said to be positive if, for 

any initial conditions ( ) 0,kϕ �� , 1, , 1,0,k d d= − − + −�  

and any switching signals ( ),kσ ( ) 0x k ��  holds for all 

0
.k k≥  

Definition 6 [36]: System (4) is said to be exponen-

tially stable under switching signal ( )kσ  if for initial 

conditions 
0

( ) ( ),x k k kϕ+ = , 1, , 1,0,k d d= − − + −�  ther

e exist constants 0ε >  and 0ξ >  such that ( )x k ≤  
0( )

0( ) ,
k k

C
e x k

ξ
ε

− −

0
,k k∀ ≥  where 

0

0

( ) sup
C

d

x k

θ− ≤ ≤

=  

0
( ) .x k θ+  

Definition 7 [37]: For any 2 1 0 ,k k k> ≥  let 
1

( ,N k
σ

 

2
)k  be the switching number of ( )kσ  over the interval 

1 2[ , ).k k  If 1 2 0 2 1( , ) ( ) /
a

N k k N k k
σ

τ≤ + −  holds for 

0
a

τ >  and 
0

0,N ≥  then 
a

τ  is called the average 

dwell time and 0N  is called the chattering bound. 

The asynchronous state feedback controller for system 

(4) can be written as 

( )( ) ( ),
lk

u k K x k
σ −Δ

=  
1

[ , ),
l l

k k k
+

∀ ∈  (5) 

where 0 0Δ =  and 
1

0
l l l

k k
+

≤ Δ < − ( 1,2,...)l =  repre-

sents the switching delay. 

Denote ( )kσ ′  as the real switching signal of the 

controller (5), then ( ) ( ).
l

k kσ σ′ = − Δ  Letting ( )lk iσ =  

and 1( ) ,lk jσ
+

=  we have ( ) ,l lk iσ + Δ =
1 1

( )
l l
kσ

+ +
+ Δ  

,j=  and the resulting closed-loop system is given by 

1

, 1 1 1

( 1) ( ) ( ( )), [ , )

( 1) ( ) ( ( )), [ , ),

i di l l l

i j dj l l l

x k A x k A x k d k k k k

x k A x k A x k d k k k k

+

+ + +

⎧ + = + − ∈ +Δ⎪
⎨

+ = + − ∈ +Δ⎪⎩

 (6) 

where 
i i i i

A A B K= +  and , .i j j j iA A B K= +  

The following lemma is an extension of Lemma 3 in 

[38]. 

Lemma 2: System (6) is positive if and only if 

0,
i

A ��
,

0
i j

A ��  and 0,
di

A �� , ,i j N∀ ∈ .i j≠  

 

3. MAIN RESULTS 

 

3.1. Continuous-time case 

Before giving the main results, we first present the 

following lemmas which will be essential for our later 

development. 

Lemma 3: Consider the following positive system 

0

( ) ( ) ( ( )),

( ) ( ), [ ,0],

dx t Ax t A x t d t

x t θ ϕ θ θ τ

= + −⎧
⎨

+ = ∈ −⎩

�

 (7) 

where A is a Metzler constant matrix and 0dA ��  is a 

constant matrix; d(t) denotes the time-varying delay 

satisfying 0 ( )d t τ≤ ≤  and ( ) 1;d t d≤ <� ( ) 0,ϕ θ �� θ ∈  

[ ,0].τ−  For a given positive scalar α, if there exist 

vectors , n
v  Rυ

+
∈ , such that 

0,
T

A v v  α υ+ + ≺ ≺  (8) 

(1 ) 0,T

d
A v d e  

ατ

υ
−

− − ≺ ≺  (9) 

then along the trajectory of system (7), we have 

0( )
0( ) ( ).

t t
V t e V t

α− −

≤  (10) 

Proof: Applying Lemma 2 in [39,40], and letting 

0ς =  and 0,ϑ =  the lemma can be directly obtained. 

Lemma 4: Consider system (7), for a given positive 

scalar β, if there exist vectors , ,nv  Rυ
+

∈  such that 

0,
T

A v v  β υ− + ≺ ≺  (11) 

(1 ) 0,T

d
A v d  υ− − ≺ ≺  (12) 

then along the trajectory of system (7), we have 

0( )
0( ) ( ).

t t
V t e V t

β −

≤  (13) 

Proof: Applying Lemma 3 in [39], and letting 0ς =  

and 0,ϑ =  this lemma can be directly obtained. 

Remark 3: Lemmas 3 and 4 provide the decay 

estimation and growth estimation of the co-positive type 

Lyapunov-Krasovskii functional, respectively. They will 

be used for the asynchronous controller design of 

positive switched system (1). 

The following theorem presents a sufficient condition 

for the existence of an asynchronous stabilizing 

controller for positive switched system (1). 

Theorem 1: Consider positive switched system (1). 

For given positive scalars α, β, 
,

,
i j

λ  and vectors 
i
v ∈�  

,

m
R
+

 if there exist vectors vi, 
, ,

, , ,

n
i i j i jv Rυ υ

+
∈  and 

,n
i

h R∈  such that, ( , ) ,i j N N∀ ∈ × ,i j≠  
 

0,T

i i i i i
A v v h  α υ+ + + ≺ ≺  (14) 

(1 ) 0,T

di i i
A v d e  

ατ

υ
−

− − ≺ ≺  (15) 

, ,

,

T T T T
i j i i i i j i jv B v v B vλ ≤� �  0,

i
h  ≺ ≺  (16) 

0,T T

i i i
v B v >�  (17) 

, , , ,

0,
T
j i j i j i j i i jA v v h  β λ υ− + + ≺ ≺  (18) 

, ,

(1 ) 0,T
dj i j i jA v d  υ− − ≺ ≺  (19) 

( ) 0,T T T T T T
g i i i i i i i lv B v A h v B+ ≥I I� �  ,g l≠  (20) 

( ) 0,T T T T T T
g i i i j i i j lv B v A h v B+ ≥I I� �  ,g l≠  (21) 

where 
� �

1

[0...01 0...0]

g n g

g

− −

=I  and 
� �

1

[0...01 0...0],

l n l

l

− −

=I  then 
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under the controller (2) with 

1
,

T

i i iT T

i i i

K v h

v B v

= �

�

 (22) 

the closed-loop system (3) is exponentially stable for any 

switching signal σ(t) with average dwell time satisfying 

*

1 2
( ( ) ln( )) ,

a a
T T α β μ μ μ α> = Δ + +  (23) 

where max{ },
q

Δ = Δ 1,2,... ,q =

( )
,e

τ α β

µ
+

=
1

µ  and 

2
µ  satisfy 

1 ,
,j i jv  vµ≺ ≺  

1 ,
,j i j µυ υ≺ ≺  

, 2
,i j iv  vµ µ≺ ≺  

, 2

,
i j i

 µυ υ≺ ≺  ( , ) ,i j N N∀ ∈ ×  .i j≠  (24) 

Proof: When 
1

[ , ),q q qt t t
+

∈ + Δ  the closed-loop sys-

tem (3) can be written as 

( ) ( ) ( ( )).
i di

x t A x t A x t d t= + −�  (25) 

Equation (20) implies that T T T T T

i i i i i i i
v B v A h v B+� �  is a 

Metzler matrix. Then it follows from (17) that 

1T T T

i i i iT T

i i i

A h v B

v B v

+ �

�

 

is a Metzler matrix. From (22), one has 
i i i i

A A B K= +  

is a Metzler matrix. 

Consider the following co-positive type Lyapunov-

Krasovskii functional for system (25) 

( )

( )
( ) ( ) ( ) .

t
T t s T

i i i
t d t

V t x t v e x s ds
α

υ
− +

−

= + ∫  (26) 

Using (22), we have ,T T
i i i ih K B v=  then according to 

Lemma 3, it can be obtained from (14)-(15) that, for 

1
[ , ),q q qt t t

+
∈ + Δ  

( )
( ) ( ).q qt t

i i q qV t e V t
α− − −Δ

≤ + Δ  (27) 

When 
1 1 1

[ , ),
q q q

t t t
+ + +

∈ + Δ  the closed-loop system can 

be written as 

,( ) ( ) ( ( )).i j djx t A x t A x t d t= + −�  (28) 

Similarly, one can obtain from (16), (17), and (21) that 

,i j j j iA A B K= +  is a Metzler matrix. 

Choose a co-positive type Lyapunov-Krasovskii 

functional for system (28) as follows: 

( )
, , ,( )
( ( )) ( ) ( ) .

tT t s T
i j i j i jt d t

V x t x t v e x s ds
β

υ
−

−

= + ∫  (29) 

From (22), it is easy to get that 

,

,

.

T T
i j i jT T

j j i j i T T
i j i

v B v
K B v h

v B v
=

�

�

 

It follows from (16)-(18) that 

, , , ,

0.
T T T
j i j i j j j i j i jA v v K B v  β υ− + + ≺ ≺  (30) 

Using (19), (30), and applying Lemma 4, one obtains 

1( )

, , 1( ) ( ).qt t

i j i j qV t e V t
β

+
−

+
≤  (31) 

Denote 
1
, , ft t�  as the switching instants on the 

interval 
0

[ , ),t t  and consider the following Lyapunov-

Krasovskii functional candidate for system (3): When 

1
[ , ),t t t
κ κ κ +

∈ +Δ 0,1,2, , ,fκ = �  

( )
( ) ( ) ( )( )
( ) ( ) ( ) .

t
T t s T

t t t
t d t

V t x t v e x s ds
α

σ σ σ
υ

− +

−

= + ∫  

When [ , ),t t t
κ κ κ

∈ +Δ 1,2, , ,fκ = �  

( ), ( ) ( ), ( )

( )
( ), ( )( )

( ) ( )

( ) .

T

t t t t

t
t s T

t t
t d t

V t x t v

e x s ds

σ σ σ σ

β
σ συ

′ ′

−

′
−

=

+ ∫
 

From (24), (27) and (31), for 
1

[ , ),f f ft t t
+

∈ + Δ  we 

obtain that 

0 0 0

0

( )

( ) ( )

( )

1 ( ), ( )

( )

1 2 ( )

( )

1 2 ( )

( ) ( ) ( )( )
1 2

( ) 0

( ) ( )

( )

( )

( )

( )

( ).

f f

f f

f f f

f f

f f f

f

f

f

a a

t t

t t f f

t t

t t f

t t

ft

t t

ft

t t T t t t t T

t

V t e V t

e e V t

e e V t

e e V t

e e

V t

α

σ σ

α β

σ σ

α β

σ

α β

σ

α α β

σ

µ

µ µ µ

µ µ µ

µ µ µ

−

−

− − −Δ

+Δ

− − −Δ Δ

′

− − −Δ Δ −

− − −Δ Δ −

− − − Δ + −

≤ + Δ

≤

≤

≤

≤

≤

×

�

 (32) 

From (23) and (32), one has 

0

0

( )
( ) ( ) 0( ) ( ),

t t

t t
V t e V t

ρ

σ σ

− −

≤  (33) 

where ( )1 2
( ) ln( ) 0

a
Tρ α β μ μ μ α= − Δ + + + > . 

Thus there exists a constant 0ζ >  such that the 

system state satisfies  

0( )
0( ) ( ) .

t t

C
x t e x t

ρ
ζ

− −

≤  

The proof is completed. 

Remark 4: From Theorem 1, it can be seen that a 

smaller α and a larger β will be favorable to the 

feasibility of inequalities (14)-(21). In view of this, we 

put forward the following procedure for determining the 

controller gain matrices Ki and the desired *

.

a
T  

 

Algorithm 1 

Step 1: Input the system matrices Ai, Adi and Bi, and 

given 
,

0
i j

λ >  and vectors .
m

i
v R

+
∈�  

Step 2: Take α and β (For the first time, we can 

choose a larger 0α >  and a smaller 0),β >  and solve 

(14)-(21). 

Step 3: If there is a feasible solution, go to Step 5. 

Step 4: If there inequalities are infeasible, decrease α 

and increase β appropriately, and go to Step 2. 

Step 5: Compute the controller gain matrices Ki by 

(22), and calculate μ1 and μ2 by the following optimi-

zation approach 

minimize 
1 2

μ μ+  

s.t. (24). 



Stabilization of Positive Switched Systems with Time-varying Delays under Asynchronous Switching 

 

943

Step 6: Calculate *

a
T  by (23). 

When 0,Δ =  i.e., the controllers are switched 

synchronously with the subsystems, we can get the 

following result. 

Corollary 1: Consider positive switched system (1). 

For given positive scalars α, β, and vectors ,

m

i
v R

+
∈�  if 

there exist vectors ,
i
v

n

i
Rυ
+

∈  and ,n
i
h R∈  such that 

(14), (15), (17), and (20) hold, then under the state 

feedback controller ( )( ) ( )
t

u t K x t
σ

=  with (22), the 

resulting closed-loop system (3) is exponentially stable 

for any switching signal ( )tσ  with average dwell time 

satisfying *
1ln ,

a a
T T μ α> =  where 

1
1μ ≥  satisfies 

1
,

i j
v   vµ≺ ≺

1
,

i j
 µυ υ≺ ≺ ( , ) ,i j N N∀ ∈ × .i j≠  

In what follows, we will give the asynchronous 

switching controller design scheme for discrete-time 

positive switched system (4). 

 

3.2. Discrete-time case 

Before giving the result, we first present the following 

lemma. 

Lemma 5: Consider the following positive system 

0

( 1) ( ) ( ( )),

( ) ( ), , 1, , 1,0,

d
x k Ax k A x k d k

x k k k k d dϕ

+ = + −⎧⎪
⎨

+ = = − − + −⎪⎩ �

 (34) 

where 0A��  and 0
d

A ��  are constant matrices with 

appropriate dimensions; ( )d k  denotes the time-varying 

delay satisfying 0 ( ) ;d d k d< ≤ ≤ ( ) 0,kϕ �� ,k d= −  

1, , 1,0.d− + −�  For a given positive scalar η, if there 

exist vectors , ,

n

v  Rυ
+

∈  such that 

( 1) 0,T
A v e v d d  

η
υ

−

− + − + ≺ ≺  (35) 

0,
T d

d
A v e  

η
υ

−

− ≺ ≺  (36) 

then along the trajectory of system (34), we have 

0( )
0( ) ( ).

k k
V k e V k

η− −

≤  

Proof: Consider the following co-positive type 

Lyapunov-Krasovskii functional: 

1
( 1)

( )

1
( 1)

1

( ) ( ) ( )

( ) .

k
T k s T

s k d k

d k
k s T

s kd

V k x k v e x s

e x s

η

η

θθ

υ

υ

−

− + +

= −

− −

− + +

= +=− +

= +

+

∑

∑ ∑

 

Along the trajectory of (34), we have 

( 1) ( ) ( )( ( 1) )T T
V k e V k x k A v e v d d

η η
υ

− −

+ − ≤ − + − +  

( ( ))( ).T T d

d
x k d k A v e

η
υ

−

+ − −  (37) 

It follows from (35)-(36) that 

0( )
0( ) ( )

k k
V k e V k

η− −

≤ . 

The proof is completed. 

The following theorem presents a sufficient condition 

for the existence of an asynchronous stabilizing control-

ler for system (4). 

Theorem 2: Consider positive switched system (4). 

For given positive scalars η, γ, 
,

,
i j

λ  and vectors 
i
v ∈�  

,

m

R
+

 if there exist vectors ,
i
v

, ,

, , ,

n
i i j i jv Rυ υ

+
∈  and 

,

n

i
h R∈  such that, ( , ) ,i j N N∀ ∈ × ,i j≠  

( 1) 0,T

i i i i i
A v h e v d d  

η
υ

−

+ − + − + ≺ ≺  (38) 

0,
T d

di i i
A v e  

η
υ

−

− ≺ ≺  (39) 

, ,

,

T T T T
i j i i i i j i jv B v v B vλ ≤� �  0,

i
h  ≺ ≺  (40) 

0,
T T

i i i
v B v >�  (41) 

, , , ,

( 1) 0,T
j i j i j i j i i jA v e v h d d  

γ
λ υ− + + − + ≺ ≺  (42) 

, ,

0,
T d
dj i j i jA v e  

γ
υ− ≺ ≺  (43) 

0,
T T T T T

i i i i i i i
v B v A h v B   +� � � �  (44) 

0,
T T T T T
i i i j i i jv B v A h v B   +� � � �  (45) 

then under the controller (5) with 

1
,

T

i i iT T

i i i

K v h

v B v

= �

�

 (46) 

the closed-loop system (6) is exponentially stable for any 

switching signal σ(t) with average dwell time satisfying 

( )1 2
( ) ln( ) ,*

a a
µ µτ τ η γ μ η′> = Δ + +  (47) 

where max{ },
l

′Δ = Δ 1,2,...l = ,
1
,µ

2
µ  and µ  satisfy 

( )
,

d
e

η γ
µ

+

=  
1 ,

,j i jv  vµ≺ ≺  
1 ,

,j i j µυ υ≺ ≺  

, 2

,
i j i

v  vµ µ≺ ≺  
, 2

,
i j i

 µυ υ≺ ≺  (48) 

( , ) ,i j N N∀ ∈ ×  .i j≠  

Proof: Similarly, one can obtain from (41), (44)-(46) 

that 0
i i i

A B K+ ��  and 0.j j iA B K+ ��  

Denote 
1
, ,

w
k k�  the switching instants during the 

interval 
0

[ , ),k k  and consider the following Lyapunov-

Krasovskii functional candidates for system (6): When 

1
[ , ),

z z z
k k k

+
∈ +Δ 0,1,2, , ,z w= �  

1
( 1)

( ) ( ) ( )

( )

( ) ( ) ( )
k

T k s T

k k k

s k d k

V k x k v e x s
η

σ σ συ

−

− + +

= −

= + ∑  

1
( 1)

( )

1

( ) .
d k

k s T

k

s kd

e x s
η

σ

θθ

υ

− −

− + +

= +=− +

+ ∑ ∑  

When [ , ),
z z z

k k k∈ +Δ 1,2, , ,z w= �  

( ), ( ) ( ), ( )

1
( 1)

( ), ( )

( )

1
( 1)

( ), ( )

1

( ) ( )

( )

( ) .

T

k k k k

k
k s T

k k

s k d k

d k
k s T

k k

s kd

V k x k v

e x s

e x s

σ σ σ σ

γ
σ σ

γ
σ σ

θθ

υ

υ

′ ′

−

− −

′

= −

− −

− −

′

= +=− +

=

+

+

∑

∑ ∑

 

Then similar to the proof of Theorem 1, we can obtain 

from (38)-(48) and Lemma 5 that 

0

0

( )
( ) ( ) 0( ) ( ),

k k

k k
V k e V k

ξ
σ σ

− −

≤  (49) 
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where 
1 2

(ln( ) ( )) 0.
a

ξ η μ μ μ η γ τ′= − + Δ + >  

It follows that there exists a constant 0ε >  such that 

the system state satisfies  

0( )
0( ) ( ) .

k k

C
x k e x k

ξ
ε

− −

≤  

The proof is completed. 

When 0,Δ =  we can get the following result. 

Corollary 2: Consider positive switched system (4). 

For given positive scalars η, γ, and vectors ,

m

i
v R

+
∈�  if 

there exist vectors ,
i
v

n
i Rυ

+
∈  and ,

n
ih R∈  such that 

(38), (39), (41), and (44) hold, then under the state 

feedback controller ( )( ) ( )
k

u k K x k
σ

=  with (46), the 

closed-loop system (6) is exponentially stable for any 

switching signal σ(k) with average dwell time satisfying 
*

1
ln ,

a a
τ τ μ η> =  where 

1
1μ ≥  satisfies 

1
,i jv  vμ≺ ≺  

1
,

i j
 µυ υ≺ ≺ , ,i j N∀ ∈ .i j≠  

Based on Theorem 2, we give the following procedure 

to obtain the controller gain matrices Ki and the desired 
*
.aτ  

 

Algorithm 2 

Step 1: Input the system matrices Ai, Adi and Bi, and 

given , 0i jλ >  and vectors .

m
iv R

+
∈�  

Step 2: Take η and γ (For the first time, we can choose 

a larger η > 0 and a smaller 0),γ >  and solve (38)-(45). 

Step 3: If there is a feasible solution, and go to Step 2; 

otherwise, go to Step 5. 

Step 4: If there inequalities are infeasible, decrease η 

and increase γ appropriately, and go to Step 2. 

Step 5: Compute the controller gain matrices Ki by 

(46), and calculate μ1 and μ2 by the following optimi-

zation approach 

minimize 
1 2

µ µ+  

s.t. (48). 

Step 6: Calculate *
aτ  by (47). 

 

4. NUMERICAL EXAMPLES 

 

In this section, two numerical examples will be 

presented to demonstrate the validity of our developed 

theoretical results. 

Example 1: Consider system (1) with the following 

parameters 

1

3.5 3
,

5.8 4.8
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0 0
,

0.2 0.18
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
1

0.5
,

0.2
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

3 3.3
,

4.3 5
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.2 0
,

0.1 0.2
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
2

0.6
,

0.3
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

0.1,τ =  0.1,d =  0.3.Δ =  

Take 1 8,.α = 1 5,.β =
1

0.4,v =�

2
0.6,v =�

1,2
0.4λ =  

and 
2,1

1,λ =  then solving (14)-(21) in Theorem 1 gives 

rise to 

1

18.5311
,

13.1778
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

10.1169
,

11.0389
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

16.3290
,

13.7281
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

15.2088
,

14.5994
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1,2

20.1997
,

15.6530
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2,1

19.3433
,

16.2392
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2,1

28.6204
,

29.3711
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1,2

27.0522
,

25.2969
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

71.6062
,

38.0025
h

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

59.5055
.

21.6463
h

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

 

By (22), the gain matrices Ki, 1,2,i =  can be obtained 

1
[ 6.0167 3.1932],K = − −

2
[ 6.3426 2.3073].K = − −  

Furthermore, according to (24), we have 
1

0.9580,µ =  

2
2.9698µ =  and 1.3910.µ =  From (23), it can be 

obtained that 1.0979.
*

a
T =  Choosing 1.5,

a
T =  the 

simulation results are shown in Figs. 1-2, where the 

initial conditions are (0) [0.2 0.1]Tx =  and ( )x θ =  

[0 0] ,
T

[ 0.1,0).θ ∈ −  

From Figs. 1-2, we can see that the resulting closed-

loop system is positive and exponentially stable, which 

indicates that the proposed method is effective. 

 

0 1 2 3 4 5 6 7 8 9
0

1

2

3

Time(s)

System mode

Controller mode

 

Fig. 1. Switching signal in Example 1. 
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Fig. 2. State response of the closed-loop system in 

Example 1. 



Stabilization of Positive Switched Systems with Time-varying Delays under Asynchronous Switching 

 

945

Example 2: Consider system (4) with the following 

parameters 

1

0.6 0.48
,

0.6 0.5
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

0.1 0
,

0 0
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
1

0.3
,

0.3
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

0.5 0.45
,

0.62 0.54
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

0.1 0
,

0 0
d

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
2

0.25
,

0.32
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1,d =  2,d =  1.′Δ =  

Take 0 32,.η = 0 02,.γ =
1

1,v =�

2
1,v =�

1,2
1.2λ =  and 

2,1
1.2,λ =  then solving (38)-(45) in Theorem 2 gives 

rise to 

1

14.5190
,

15.2754
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2

15.0434
,

16.6506
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

2.9007
,

1.7853
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2

3.0949
,

1.8310
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2,1

20.8460
,

20.6063
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1,2

20.0610
,

22.5155
v

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2,1

4.8236
,

3.8481
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1,2

4.8193
,

4.0905
υ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

14.0503
,

8.7643
h

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

14.0897
.

9.0480
h

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

By (46), the gain matrices Ki, 1,2,i =  can be obtained 

1
[ 1.5719 0.9805],K = − −

2
[ 1.5502 0.9955].K = − −  

Furthermore, from (47)-(48), we have 
1

0.7499,µ =  

2
2.2913,µ = 1.9739µ =  and 4.8790.

*

a
τ =  Choosing 

5,
a

τ =  the simulation results are shown in Figs. 3-4, 

where the initial conditions are (0) [0.6 0.4]Tx =  and 

( ) [0 0] ,T
x k = 2, 1.k = − −  

From Figs. 3-4, it is easy to see that the designed 

controller can guarantee that the resulting closed-loop 

system is positive and exponentially stable. This 

demonstrates the effectiveness of the proposed method. 

 

5. CONCLUSIONS 

 

The stabilization problems for both continuous-time 

and discrete-time positive switched systems with time-

varying delays under asynchronous switching have been 

investigated in this paper. Sufficient conditions for the 

existence of the asynchronous controllers are established, 

and the desired controller gain matrices are obtained 

easily through the solutions of LMIs. Our future work 

will focus on studying the stability and stabilization 

problems for positive switched systems by using the 

mode-dependent average dwell time method proposed in 

[41]. 
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