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Abstract — This paper proposes a three-dimensional (3D) non-stationary

fixed-to-fixed indoor channel simulator model for human activity recognition.

The channel model enables the formulation of temporal variations of the received

signal caused by a moving human. The moving human is modelled by a cluster

of synchronized moving scatterers. Each of the moving scatterers in a cluster

is described by a 3D deterministic trajectory model representing the motion

of specific body parts of a person, such as wrists, ankles, head, and waist. We

derive the time-variant (TV) Doppler frequencies caused by the motion of each

moving scatterer by using the TV angles of motion, angles of arrival, angles

of departure. Moreover, we derive the complex channel gain of the received

signal. Furthermore, we analyze the TV Doppler power spectral density of the

complex channel gain by using the concept of the spectrogram and present its

expression in approximated form. Also, we derive the TV mean Doppler shift

and TV Doppler spread from the approximated spectrogram. The accuracy of

the results is validated by simulations. The channel simulator is beneficial for

the development of activity recognition systems with non-wearable devices as the

demand for such systems has increased recently.
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C.1 Introduction

In 2017, according to the United Nations’ World Aging Report the number of people age

60 and older was 962 million, which is more than double the 1980 figure [1]. By 2050, the

number of over-60s is expected to double from 2017. Also, the number of people age 80 and

older is expected to triple from 137 million to 425 million between 2017 and 2050. These

figures indicate a high demand for eldercare systems, such as in-home activity recognition

systems to classify normal activities such as walking and sitting as well as abnormal activities

such as falls.

In the literature, fall detection systems have been developed using wearable inertial

measurement units (IMUs) [2] and video surveillance systems [3]. The main drawback of

such systems is that the user may forget to wear the sensor or might go outside the coverage

area of the video surveillance system. Another disadvantage is that these systems break

the privacy of the user. To overcome these drawbacks, radio-frequency-based (RF-based)

non-wearable human tracking systems have been introduced by the authors of [4]. Such

systems use RF-based sensors that operate by using frequency-modulated carrier waves. These

systems track humans by using wave components scattered by their bodies.

The compound Doppler effect caused by moving scatterers has been studied in two-

dimensional fixed-to-mobile channels in [3]. The time-variant (TV) Doppler effect caused by

moving scatterers has been modelled in F2F non-stationary indoor channels [5, 6], and in 3D

non-stationary MIMO channels in [7]. In order to analyze the TV Doppler power spectrum,

we use the concept of the spectrogram, which is one of the time-frequency distributions that

provides insight into the TV power spectral density of multicomponent signals [8]. It is

also used in applications such as fall detection [9, 10], classification of human activities [11],

and enables to distinguish between armed and unarmed persons for security and rescue

services [12]. The main drawback of the spectrogram is the cross-term that has an impact on

its resolution. Contributions have been introduced to overcome this problem in mobile fading

channels in [13].

The goal of this paper is to model the influence of different body parts of a walking person

on the Doppler power spectrum characteristics of three-dimensional (3D) fixed-to-fixed (F2F)

indoor channels. We introduce a 3D non-stationary F2F channel model with fixed scatterers

and clusters of synchronized moving scatterers as an extension to the model presented in [6].

An expression of the TV Doppler frequency of each moving scatterer in a cluster is provided

in terms of the TV speed, the TV azimuth angles of departure (AAOD), the TV elevation

angles of departure (EAOD), the TV azimuth angles of arrival (AAOA), the TV elevation

angles of arrival (EAOA), the TV horizontal angles of motion (HAOM), and the TV vertical

angles of motion (VAOM). Furthermore, the instantaneous channel phases and the complex

channel gain of the 3D non-stationary F2F multipath fading channel are presented. Moreover,

an approximation of the spectrogram of the complex channel gain is provided as a sum of
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the auto-term and the cross-term. The auto-term gives us an approximation of the true TV

Doppler power spectral density of the complex channel gain, while the cross-term is considered

as an undesired spectral interference term that reduces the resolution of the spectrogram. The

TV mean Doppler shift and the TV Doppler spread are also derived from the spectrogram.

The novelty of this paper lies not only in presenting a non-stationary F2F model with fixed

scatterers and clusters of moving scatterers, but also in presenting deterministic trajectory

models of different body parts of a walking person.

The remaining sections of this paper are divided as follows. Section C.2 discusses a

multipath propagation scenario with a fixed transmitter, a fixed receiver, fixed scatterers,

and clusters of moving scatterers. Section C.3 derives an exact and approximate solution

of the TV Doppler frequencies of the moving scatterers of the clusters, TV channel phases,

complex channel gain, TV mean Doppler shift, and TV Doppler spread. Section C.4 presents

an approximate solution of the spectrogram. By using the spectrogram, we compute the TV

mean Doppler shift and the TV Doppler spread. Section C.5 discusses the numerical results,

introduces realistic mathematical trajectory models of the motion of the major body parts of

a walking human, and shows the influence of them on the spectrogram, the TV mean Doppler

shift, and the TV Doppler spread. Section C.6 summarizes our work and suggests possible

ideas for future work.

C.2 The 3D Indoor Propagation Scenario

Consider the multipath propagation scenario in Fig. C.1. This scenario consists of a fixed

transmitter (Tx), a fixed receiver (Rx), moving persons, and fixed objects. The transmitter

and the receiver are located at (xT , yT , zT ) and (xR, yR, zR), respectively. Each moving person

is modelled by a cluster of synchronized moving scatterers SM
n,m for n = 1, 2, . . . , Nm and

m = 1, 2, . . . , Nc, where Nm is the number of moving scatterers of the mth cluster, and Nc is

the number of clusters. Each moving scatterer SM
n,m has a starting position at

(
xM
n,m, y

M
n,m, z

M
n,m

)
.

The 3D trajectory of the nth moving scatterer of the mth cluster is described by its TV

speed vn,m(t), TV HAOM αvn,m (t), and TV VAOM βvn,m (t). In Fig. C.1, we have stationary

objects, such as walls and furniture which are simply modelled as M fixed scatterers SF
m

for m = 1, 2, . . . ,M . Single bounce scattering and non-line-of-sight (NLOS) conditions are

assumed. Moreover, it is assumed that the Tx and Rx are deployed with omnidirectional

antennas.

C.3 The Complex Channel Gain

The TV Doppler frequency fn,m(t) caused by the TV speed vn,m(t), TV HAOM αvn,m(t), TV

VAOM βvn,m(t), TV AAOD αT
n,m(t), TV EAOD βT

n,m(t), TV AAOA αR
n,m(t), and TV EAOA
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Figure C.1: A 3D non-stationary multipath propagation scenario with moving persons, a

fixed transmitter, a fixed receiver, and fixed objects.

βR
n,m(t) of the nth moving scatterer SM

n,m of the mth cluster is given by [6]

fn,m(t) = −fn,m,max (t)

{
cos
(
βvn,m (t)

)
×
[
cos
(
βT
n,m(t)

)
cos
(
αT
n,m(t)− αvn,m (t)

)
+ cos

(
βR
n,m(t)

)
cos
(
αvn,m (t)− αR

n,m(t)
) ]

+ sin
(
βvn,m (t)

) [
sin
(
βT
n,m(t)

)
+ sin

(
βR
n,m(t)

)]}
(C.1)

where

fn,m,max (t) =
vn,m (t) f0

c
. (C.2)

The parameters f0 and c in (C.2) denote the carrier frequency of the transmitted signal and

the speed of light, respectively. The expression in (C.2) represents the maximum Doppler

shift caused by the motion speed of the nth moving scatterer SM
n,m of the mth cluster. The

expressions of the TV HAOM αvn,m(t), TV VAOM βvn,m(t), TV AAOD αT
n,m(t), TV EAOD

βT
n,m(t), TV AAOA αR

n,m(t), and TV EAOA βR
n,m(t) can be found in [6]. The expression of the

Doppler frequency fn,m(t) in (C.1) can be approximated by using L piecewise linear functions

of time as

fn,m(t) ≈ fn,m,l(t) = fn,m(tl)+kn,m,l(t− tl) (C.3)

for tl < t ≤ tl+1 and l = 0, 1, . . . , L, where

kn,m,l =
fn,m(tl+1)− fn,m(tl)

tl+1 − tl
. (C.4)
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Note that the interval length between two time instances in a row, i.e., ∆l = tl+1 − tl, is the

same for all values of l = 0, 1, . . . , L − 1, where L is the number of the time instances at

which the Doppler frequencies were approximated. The parameter kn,m,l in (C.4) expresses

the rate of change of the Doppler frequency fn,m(t) at time t = tl.

The instantaneous channel phase θn,m,M(t) caused by the motion of the nth moving

scatterer of the mth cluster is given by [14]

θn,m,M(t) = 2π

t∫
−∞

fn,m(t
′)dt′= θn,m,M + 2π

t∫
0

fn,m(t
′)dt′. (C.5)

The first term in (C.5) is the initial phase shift, which is modelled as a zero-mean random

variable with a uniform distribution between −π and π. Hence, the instantaneous channel

phase θn,m,M(t) in (C.5) is a stochastic process. After obtaining the instantaneous channel

phase θn,m,M(t), the complex channel gain µ(t) consisting of
∑NC

m=1Nm+M received multipath

components is modelled by

µ(t) =

NC∑
m=1

Nm∑
n=1

cn,m,M ejθn,m,M(t) +
M∑

m=1

cm,F e
jθm,F . (C.6)

The double sum in the first term in (C.6) represents the sum of the multipath components

corresponding to NC clusters and the Nm moving scatterers therein. Each moving scatterer

in a cluster has a stochastic channel phase θn,m,M(t), and a constant path gain cn,m,M. The

second term in (C.6) designates the sum of the multipath components associated with the

M fixed scatterers with constant path gains cm,F and random phases θm,F. It should be

noted that the phases θn,m,M and θm,F are modelled as zero-mean random variables with a

uniform distribution that ranges from −π to π. The complex channel gain µ(t) in (C.6) is a

stochastic model for a 3D non-stationary indoor channel with clusters of moving scatterers,

fixed scatterers, fixed transmitter, and fixed receiver. The TV mean Doppler shift and the

TV Doppler spread of this model can be expressed as [14]

B
(1)
f (t) =

NC∑
m=1

Nm∑
n=1

c2n,m,M fn,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

(C.7)

and

B
(2)
f (t) =

√√√√√√√√
NC∑
m=1

Nm∑
n=1

c2n,m,M f 2
n,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

−
(
B

(1)
f (t)

)2
(C.8)

respectively.
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C.4 Spectrogram Analysis

The spectrogram Sµ(f, t) of the complex channel gain µ(t) is computed in three steps. Step

1: we multiply the complex channel gain µ(t) by a sliding window to obtain the short-time

signal. In this paper, we use the Gaussian window function

h(t) =
1√

σw

√
π
e
− t2

2σ2
w (C.9)

where σw denotes the window spread parameter. The window function is real and even and

has a normalized energy of
∫∞
−∞ h2(t)dt = 1. The short-time complex channel gain is given

according to [15, Eq. (2.3.1)] by

x(t′, t) = µ(t′)h(t′ − t) (C.10)

where the variables t′ and t are the running time and the observation time, respectively.

Continuing with Step 2, we calculate the short-time-Fourier-transform (STFT) by computing

the Fourier-transform of the short-time signal X(t′, t) w.r.t. the running time t′ as follows

X(f, t) =

∞∫
−∞

x(t′, t)e−j2πft′dt′. (C.11)

For the sake of brevity, we do not provide the expression for the STFT. Finally, the last step

is multiplying the STFT X(f, t) in (C.11) by its complex conjugate to obtain the spectrogram

Sµ(f, t) as

Sµ(f, t) = |X(f, t)|2 = S(a)
µ (f, t) + S(c)

µ (f, t) (C.12)

where the functions S
(a)
µ (f, t) and S

(c)
µ (f, t) denote the auto-term and the cross-term, respec-

tively. By using the approximate expression of the Doppler frequency fn,m,l(t) in (C.3), the

approximate solution of the auto-term S
(a)
µ (f, t) is given by

S(a)
µ (f, t) =

NC∑
m=1

Nm∑
n=1

c2n,m,M G
(
f, fn,m,l(t), σ

2
n,m,l,M

)
+

M∑
m=1

c2m,F G
(
f, 0, σ2

m,F

)
(C.13)

for tl < t ≤ tl+1 (l = 0, 1, · · · , L− 1), where

G(x, µ, σ2) =
e

−(x−µ)2

2σ2

√
2πσ2

(C.14)

σ2
n,m,l,M =

1 + (2πσ2
wkn,m,l)

2

2(2πσw)2
(C.15)

σ2
m,F =

1

2(2πσw)2
. (C.16)
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The auto-term S
(a)
µ (f, t) given by (C.13) consists of a sum of

∑NC

m=1 Nm +M components. It

is a real and positive function that represents an approximation of the desired TV Doppler

power spectral density of the complex channel gain µ(t) discussed in Section C.3. The first

term of the auto-term S
(a)
µ (f, t) in (C.13) is a double sum of weighted Gaussian functions,

where each component of this term corresponds to the nth moving scatterer of the mth cluster.

Note that the Gaussian functions of the first term of the auto-term S
(a)
µ (f, t) are weighted by

the squared path gain c2n,m,M and centered on the approximated Doppler frequency fn,m,l(t)

of the nth moving scatterer of the mth cluster. The second term of the auto-term S
(a)
µ (f, t)

in (C.13) is also a sum of Gaussian functions factorized by the squared path gain c2m,F of

each fixed scatterer and centered on the zero-frequency value as a fixed scatterer does not

introduce a Doppler shift in F2F channels. The parameters in (C.15) and (C.16) denote the

variances of the Gaussian functions presented in (C.13). It should be mentioned that the

variance of the Gaussian function in the first term of the auto-term in (C.13) is dependent on

the slope of the Doppler frequency fn,m,l(t) given by (C.4). It should also be noted that the

auto-term in (C.13) does not depend on the random channel phases θn,m,M and θn,F.

The cross-term S
(c)
µ (f, t) is presented in (C.19) at the top of the next page. It represents

an undesired spectral interference term that reduces the resolution of the spectrogram. The

cross-term S
(c)
µ (f, t) in (C.19) has (

∑NC

m=1 Nm +M)(
∑NC

m=1 Nm +M − 1)/2 components. It

is a real function and can have positive or negative values. Unlike the auto-term S
(a)
µ (f, t),

the cross-term S
(c)
µ (f, t) depends on the random channel phases θn,m,M and θn,F. Thus,

it can be removed by taking the average of the spectrogram Sµ(f, t) over the phases, i.e.,

E {Sµ(f, t)} |θn,m,M,θm,F
= S

(a)
µ (f, t). The parameter µm,F (function µn,k,M(t)) in (C.19) denotes

the complex channel gain of the mth fixed scatterer (nth moving scatterer of the kth cluster).

The operators ℜ{·} and {∗} in (C.19) compute the real part and the complex conjugate of a

complex function, respectively. The parameters σ2
x,n,m,l,M and σ2

x,m,F in (C.19) are given by

σ2
x,n,m,l,M =

1− j2πσ2
wkn,m,l

(2πσw)2
(C.17)

σ2
x,m,F =

1

(2πσw)2
(C.18)

respectively. The TV mean Doppler shift B
(1)
µ (t) and the TV Doppler spread B

(2)
µ (t) can be

obtained by using the spectrogram as follows [5]

B(1)
µ (t) =

∞∫
−∞

fSµ(f, t)df

∞∫
−∞

Sµ(f, t)df

(C.20)
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S(c)
µ (f, t) =

2

σw

√
π
ℜ

{
NC∑
m=1

Nm−1∑
n=1

Nm∑
k=n+1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
×G∗ (f, fk,m,l(t), σ

2
x,k,m,l,M

)
µn,m,M(t)µ

∗
k,m,M(t)

+
M−1∑
n=1

M∑
m=n+1

G
(
f, 0, σ2

x,n,F

)
G∗(f, 0, σ2

x,m,F

)
µn,Fµ

∗
m,F

+

NC∑
m=1

Nm∑
n=1

M∑
k=1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
G∗(f, 0, σ2

x,k,F

)
µn,m,M(t)µ

∗
k,F

+

NC−1∑
m=1

NC∑
q=k+1

Nm∑
n=1

Nq∑
k=1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
G∗ (f, fk,q,l(t), σ2

x,k,q,l,M

)
µn,m,M(t)µ

∗
k,q,M(t)

}
(C.19)

and

B(2)
µ (t) =

√√√√√√√√
∞∫

−∞
f 2Sµ(f, t)df

∞∫
−∞

Sµ(f, t)df

−
(
B

(1)
µ (t)

)2
(C.21)

respectively.

C.5 Numerical Results

In this section, we discuss some numerical results regarding the spectrogram, the TV mean

Doppler shift, and the TV Doppler spread.

First, we introduce the trajectory models for the ankles, wrists, trunk (waist), and head

of a walking person. The velocities of the right ankle and left ankle along with the x-axis are

defined as piecewise functions by

vx,RA(t) =

{
vx

(
1− cos

(
2πt
Tstep

))
, if 0 ≤t ≤ Tstep,

0, if Tstep <t ≤ 2Tstep

(C.22)

vx,LA(t) =

{
0, if 0 ≤t ≤ Tstep

vx

(
1− cos

(
2πt
Tstep

))
, if Tstep ≤t ≤ 2Tstep

(C.23)

respectively, where the parameter vx (Tstep) stands for the constant speed (step duration).

The trajectories of the right ankle and left ankle in the vertical direction, i.e., in the direction
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of the z-axis are computed by

zRA(t) =

{
Hfoot

(
1− cos( 2πt

Tstep

)
, if 0 ≤t ≤ Tstep,

0, if Tstep <t ≤ 2Tstep

(C.24)

zLA(t) =

{
0, if 0 ≤t ≤ Tstep,

Hfoot

(
1− cos( 2πt

Tstep

)
, if Tstep <t ≤ 2Tstep

(C.25)

respectively, where the parameter Hfoot represents the maximum displacement of the foot

while walking along the z-axis. The ankle models presented in (C.22)–(C.25) were inspired

by the ankle model of humanoid robotics provided in [16]. Next, we define the displacements

of the right and left wrist in the x-direction as follows

xRW(t) =
vxt

2
+ xw cos

(
πt

Tstep

)
(C.26)

xLW(t) =
vxt

2
− xw cos

(
πt

Tstep

)
(C.27)

respectively, where the parameter xw denotes the maximum displacement of the wrists. The

main reason for using a positive sign in (C.26) and a negative sign in (C.27) is that the

displacement in the x-direction of the right (left) wrist is synchronous with the displacement

of the left (right) ankle. Note that the period of the cosine functions in (C.26)–(C.27) is twice

as long as in (C.22)–(C.23). The displacements in the z-direction of the right and left wrist

are the same and calculated by

zRW(t) = zLW(t) = zw cos

(
2πt

Tstep

)
(C.28)

where the parameter zw denotes the maximum vertical displacement of the wrists. It should

be mentioned that the displacements of the wrists are out of phase in the x-direction and in

phase in the z-direction. The displacements in the x-direction and the z-direction of the head

and waist have the same expression, which are given by [17,18]

xHead(t) = xWaist(t) =
vxt

2

zHead(t) = zWaist(t) = HH,W

(
1− cos

(
2πt

Tstep

))
(C.29)

respectively, where the parameter HH,W in (C.29) designates the maximum vertical displace-

ment in the z-direction. When generating the scenario for the walking person, we chose

the values of Tstep, vx, Hfoot, xw, zw, and HH,W to be 1 s, 0.8m/s, 0.1m, 0.1m, 0.025m, and

0.025m, respectively. The heights of ankles, wrists, head, and waist were set to 0.1m, 1m,
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1.7m, and 1.1m, respectively. The number of walking steps were chosen to be 10 steps.

Fig. C.2 depicts the displacements of the ankles, wrists, head, and waist in the x-direction. A

good synchronization is shown in Fig. C.2 between the trajectories of the body parts, i.e.,

when the right ankle moves a step forward, the left wrist also swings forward, while the right

wrist swings backward and the left leg stands on the ground. The forward displacements

presented in Fig. C.2 in the x-direction of the ankles were computed by generating 5 piecewise

functions of the forward velocities provided by (C.22) and (C.23) for the right ankle and left

ankle, respectively. Then, the forward displacement is computed by integrating the forward

velocities in (C.22) and (C.23) w.r.t. time t. Fig. C.3 shows a good synchronization between

the displacements in the z-direction of the ankles, wrists, head, and waist, i.e., when the

person takes a step forward with his right foot, the ankle moves upward in the z-direction

until it crosses the left foot and then, it moves downward until it reaches the ground. The

head and waist reach the maximum displacement at the time instant, in which the right

or left foot reaches the maximum upward displacement. The wrists reach their maximum

vertical displacements at the time instant, in which the heels are on the ground.

Fig C.4 depicts the walking scenario of the moving person in 3D. The number of clusters

NC was set to 1 and the number of moving scatterers in the cluster Nm was chosen to be 6.

We used the same values of the motion parameters mentioned earlier in this section. The

only difference is that the horizontal angle of motion αvn,m(t) was set to 15◦, i.e., the direction

of motion of the body was chosen to be 15◦. The locations of the transmitter Tx and the

receiver Rx were chosen to be (5.5m, 2.5m, 2.25m) and (5m, 2.5m, 2.25m), respectively.

It is supposed that the LOS is blocked.

When computing the spectrogram, we chose the number of fixed scatterers M to be 6.

Fig. C.5 depicts the result of the approximation of the spectrogram given by (C.12). The

path gains of the moving scatterers and fixed scatterers are given by

cn,m,M =

√√√√√ 2η
NC∑
m=1

Nm

and cm,F =

√
2 (1− η)

M
(C.30)

respectively, where the parameter η ≤ 1 is used for balancing the contribution of the fixed and

moving scatterers on the mean power of the complex channel gain µ(t). Here, the parameter

η was set to 0.6. We chose the value of 5.9GHz for the carrier frequency f0. The window

spread parameter σw was set to 0.0335 s. Fig. C.5 shows the influence of the motion of

major body parts on the spectrogram of µ(t). The spectrogram in Fig. C.5 is blurred due

to the impact of the cross-term S
(c)
µ (f, t). The simulation results of the spectrogram are

close to the analytical results, but they are not provided in the paper for brevity. In the

simulation, we generated the values of the trajectories for the wrists, ankles, head, and waist

in 3D using the mathematical models and their parameters provided earlier in this section.

Then, we computed the HAOM αvn,m(t), VAOM βvn,m(t), AAOA αR
n,m,M(t), EAOA βR

n,m,M(t),
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Figure C.2: TV forward displacements in the x-direction x(t) of the 6-point scatterers

representing the walking person.

AAOD αT
n,m,M(t), and EAOD βT

n,m,M(t) from the displacement values and the values of the

locations of the transmitter Tx and the receiver Rx. After that, the Doppler frequencies

were computed using (C.1) and approximated using (C.3). Next, we integrated the Doppler

frequencies of each moving scatterer w.r.t. time t. After that, each one of the integrated

Doppler frequencies is added to an outcome of a random generator with a uniform distribution

from −π to π to obtain the instantaneous channel phase θn,m,M(t) of each moving scatterer

according to (C.5). For the fixed multipath components, which are not Doppler shifted, we

obtained the associated phases θm,F by generating the outcomes of a random generator with

a uniform distribution from −π to π for each scatterer. After performing the procedures

described above, we obtained the complex channel gain µ(t) in (C.6). Fig. C.6 visualizes the

approximated auto-term S
(a)
µ (f, t) of the spectrogram provided by (C.13). It can be shown

that the resolution of the spectrogram improves after removing the cross-term by averaging

the spectrogram Sµ(f, t) over the random channel phases θn,m,M and θm,F. Fig. C.6 shows

more clearly the influence of the fixed scatterers and the cluster of the moving scatterers on
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Figure C.3: TV vertical displacements z(t) of the moving scatterers of the walking person.

the spectrogram. Note that the TV Doppler frequencies of the ankles in Fig. C.6 have the

highest values that range from −40Hz to 40Hz.

Fig. C.7 depicts the TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) computed according to

(C.7) and (C.20), respectively. The spectrogram of µ(t) was simulated by using MATLAB.

The TV mean Doppler shift B
(1)
µ (t) was computed numerically according to (C.20) using the

approximate solution of the spectrogram Sµ(f, t) in (C.12), the simulated spectrogram, and

the approximated auto-term S
(a)
µ (f, t) of the spectrogram in (C.13). It is shown in Fig. C.7

that the TV mean Doppler shifts obtained by using the spectrogram Sµ(f, t) are affected by

the cross-term S
(c)
µ (f, t). There is a good match between the TV mean Doppler shift obtained

by using the approximated solution of the spectrogram and the simulated spectrogram. Also,

there is a good match between the TV mean Doppler shift B
(1)
f (t) computed by (C.7) and

the TV mean Doppler shift calculated by (C.20) using the auto-term S
(a)
µ (f, t).

Fig. C.8 depicts the TV Doppler spreads computed according to (C.8) and (C.21). The TV

Doppler spread B
(2)
µ (t) was computed numerically according to (C.21) using the approximate

solution of the spectrogram Sµ(f, t) in (C.12), the simulated spectrogram, and the approxi-
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Figure C.4: Simulation scenario and 3D trajectories of the major body parts of a moving

person.

mated auto-term S
(a)
µ (f, t) of the spectrogram in (C.13). It can be seen in Fig. C.8 that the

TV Doppler spread B
(2)
µ (f, t) obtained by using the spectrogram Sµ(f, t) is affected by the

cross-term S
(c)
µ (f, t) . There is a good match between the TV Doppler spreads obtained by

using the approximated solution of the spectrogram and the simulated spectrogram. The TV

Doppler spread B
(2)
f (f, t) computed by (C.8) and the TV Doppler spread B

(2)
µ (t) calculated by

(C.21) using the auto-term S
(a)
µ (f, t) do not match. This is due to the influence of the variance

σ2
n,m,l,M and σ2

m,F in (C.15) and (C.16) on the TV Doppler spread in (C.21), respectively, of

the Gaussian functions of the auto-term S
(a)
µ (f, t).

C.6 Conclusion

In this paper, we introduced a 3D non-stationary channel model by modelling moving

humans as clusters of synchronized moving scatterers to study the impact of major body

parts of a walking person on the spectrogram of the complex channel gain of indoor F2F

channels. We provided expressions for the TV Doppler frequencies and the TV phases of the
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Figure C.5: Spectrogram Sµ(f, t) (analysis) of the complex channel gain µ(t).

moving scatterers representing the major body parts. Moreover, we presented mathematical

expressions for the complex channel gain and showed the impact of a walking human on

the spectrogram, for which an approximate solution has been presented. Furthermore, we

presented trajectory models of different body parts of the walking human, such as ankles,

wrists, head, and waist. Simulations validated the accuracy of the approximated-form of

the spectrogram. For future work, we suggest validating the trajectory models and the

channel model presented her in this paper with wearable IMU sensors and RF-measured data,

respectively.
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Figure C.6: The auto-term of the spectrogram S
(a)
µ (f, t) (analysis) of the complex channel

gain µ(t).
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Figure C.7: TV mean Doppler shift according to (C.7) and (C.20).
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Figure C.8: TV Doppler spread according to (C.8) and (C.21).
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