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Abstract

The research interest in human activity recognition (HAR) to provide ambient assisted living

(AAL) for elders living alone has increased. As a result, several HAR systems have been

proposed. The categories of HAR systems fall into two types: wearable and non-wearable

systems. Radio-frequency (RF)-based HAR systems are considered among the non-wearable

types. They do not violate the users’ privacy. Moreover, they do not require to be worn by

the user. Furthermore, they are capable of sensing human activities through walls of buildings.

That is why they catch more interest nowadays.

RF-based HAR systems capture the complex non-stationary behaviors of indoor channels

influenced by human activities. Micro-Doppler signatures and time variant mean Doppler

shifts (TV-MDSs) are considered among the extracted features used to train the human

activity classifiers (HACs). The current approach is to train HACs by using measured

RF-sensing data. The collection of such measured data is expensive and time-consuming.

Furthermore, the collected data is not reproducible. An alternative approach is to generate

the micro-Doppler signatures and the TV-MDSs of non-stationary channel simulation models

for training the HACs.

The main aim of this dissertation is to generate synthetic micro-Doppler signatures

and TV-MDSs to train the HACs. This is achieved by developing non-stationary fixed-to-

fixed (F2F) indoor channel models. Such models provide an in-depth understanding of the

channel parameters that influence the micro-Doppler signatures and TV-MDSs. Hence, the

proposed non-stationary channel models help to generate the micro-Doppler signatures and

the TV-MDSs, which fit those of the collected measurement data.

First, we start with a simple two-dimensional (2D) non-stationary F2F channel model with

fixed and moving scatterers. Such a model assumes that the moving scatterers are moving in

2D geometry with simple time variant (TV) trajectories and they have the same height as the

transmitter and the receiver antennas. The model of the Doppler shifts caused by the moving

scatterers in 2D space is provided. The micro-Doppler signature of this model is explored

by employing the spectrogram of which a closed-form expression is derived. Moreover, we

demonstrate how the TV-MDSs can be computed from the spectrograms.

The aforementioned model is extended to provide two three-dimensional (3D) non-

stationary F2F channel models. Such models allow simulating the micro-Doppler signatures
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influenced by the 3D trajectories of human activities, such as walking and falling. Moreover,

expressions of the trajectories of these human activities are also given. Approximate solutions

of the spectrograms of these channels are provided by approximating the Doppler shifts

caused by the human activities into linear piecewise functions of time. The impact of these

activities on the micro-Doppler signatures and the TV-MDSs of the simulated channel models

is explored.

The work done in this dissertation is not limited to analyzing micro-Doppler signatures

and the TV-MDSs of the simulated channel models, but also includes those of the measured

channels. The channel-state-information (CSI) software tool installed on commercial-off-the-

shelf (COTS) devices is utilized to capture complex channel transfer function (CTF) data

under the influence of human activities. To mitigate the TV phase distortions caused by the

clock asynchronization between the transmitter and receiver stations, a back-to-back (B2B)

connection is employed. Models of the measured CTF and its true phases are also shown.

The true micro-Doppler signatures and TV-MDSs of the measured CTF are analyzed. The

results showed that the CSI tool is reliable to validate the proposed channel models. This

allows the micro-Doppler signatures and the TV-MDSs extracted from the data collected

with this tool to be used to train the HACs.

Inertial measurement units (IMUs) can be used to capture the trajectories of moving

objects or human activities. In this dissertation, two IMU-driven non-stationary CSI models

are presented. Such models can be fed with trajectories collected by the IMUs to simulate

realistic micro-Doppler signatures and the TV-MDSs. The aim of the first (second) model is to

capture the influence of the trajectory of a rigid body (moving human) on the micro-Doppler

signatures and the TV-MDSs of CSI channels. Frameworks are proposed for processing

the IMU data to compute the trajectories and feed them to the CSI model to simulate the

micro-Doppler signatures and the TV-MDSs. Both of IMU data and CSI data are recorded

simultaneously to validate the proposed channel models. Then, the micro-Doppler signatures

and the TV-MDSs of the IMU-driven models and CSI data are evaluated. The results show

that there are strong agreements between the micro-Doppler signatures and the TV-MDSs of

the IMU-driven model and the measured CSI. The outcomes of this dissertation pave the way

towards simulation-based HAR systems.
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Chapter 1

Introduction

The research interest in ambient assisted living (AAL) became higher in the last decade. This

is due to the increase in the mortality rate among adults above 65 years [1]. The World

Ageing Report by the United Nations expected in [2] that the number of adults over 80 will

rise to 425 million by 2050. The aim of AAL is to provide assistance to the older people living

alone. As a result, many contributions to the research and development of human activity

recognition (HAR) systems have been proposed. HAR systems help to monitor the elders’

activities and automatically detect their fall activities. HAR systems can be divided into two

categories: wearable and non-wearable, as illustrated in Fig. 1.1.

SmartwatchesSmartphones IMUs Textiles Audio 
Camera 

Surveillance
RF-Sensing 

HAR 

Systems

Wearable Non-Wearable 

Figure 1.1: Categories of HAR systems.

1.1 Wearable HAR Systems

With reference to Fig. 1.1, there are four types of wearable technologies included in this section

that can be used for HAR. These technologies are smartphones [3–9], inertial measurement

3
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units (IMUs) [10–15], smartwatches [16,17], and textiles [18–20]. The smartphones, smart-

watches, and IMUs are equipped with sensors, such as accelerometer, linear accelerometer,

gyroscope, and magnetometer, which can measure signs of human activities. According to

Table 1.1, the accelerometer and linear accelerometer are able to capture the accelerations

along the axes of the sensor including and excluding the impact of gravity, respectively. The

gyroscopes can collect the rotational speed around the axes of the sensor. The magnetometer

captures the geomagnetic field intensity the axes of the sensor.

Some other sensors can be embedded in clothes, trousers, shirts, shoes as in [19, 20]. Such

kinds of wearable HAR systems belong to the textile-based category. These systems can be

equipped with electromyography (EMG) electrodes [18] to monitor vital signs of humans or

IMUs [21] to monitor human activities. Although the wearable systems have good accuracy,

they have the following practical limitations. The sensors should be placed or worn by the

user in particular body locations with specific orientations. They are obtrusive and require to

be worn all day so that the system can recognize activities and vital signs continuously. The

user might reject or forget to hold or wear the device. This might happen in real life between

elders due to the discomfort or memory-related issues.

Table 1.1: Examples of inertial sensors in wearable HAR systems and their capabilities.

Sensor Measurement capabilities

Accelerometer Acceleration including gravitational forces in x, y, and z axes

Linear Accelerometer Acceleration excluding gravitational forces in x, y, and z axes

Gyroscope Rotational velocities around x, y, and z axes

Magnetometer Geomagnetic field intensity in x, y, and z axes

1.2 Non-Wearable HAR Systems

Video surveillance-based HAR systems [22–29] are popular and widely used. They are able

to continuously record images of body movements. Therefore, they are in great demand for

monitoring the daily lives of the older people. Despite these advantages of camera-based

HAR systems, they require very sophisticated image and video processing techniques to

monitor daily human activities. Moreover, they consume a lot of storage and memory capacity.

Furthermore, they can only be used in fixed locations and have a limited coverage area, which

makes installing multiple camera systems inevitable. Hence, such a system requires calibration

which is very complex. Thus, the system becomes more complicated and impractical. It is

worth mentioning that lighting conditions can affect camera-based HAR systems, and they
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are privacy-intrusive.

The main idea behind acoustic or audio HAR systems is that they rely on microphone

sensors deployed in the area around the user to capture audio signals [30–32] caused by human

activities. Such signals carry the fingerprints caused by the human activities. Then, various

features are extracted from the audio signals, such as the spectrograms, linear predictive coding

(LPC) [33], matching pursuit (MP) [34], and mel frequency cepstral coefficients (MFCCs) [35]

to train the human activity classifier (HAC). These systems are accurate and unlike the

wearable systems, they do not require user interaction. However, they have a limited coverage

range, are highly dependent on the indoor layout, can be easily affected by background noise,

and compromise privacy as they can record conversations.

1.3 RF-Based HAR Systems

Radio-frequency (RF)-sensing techniques have the following advantages in comparison to the

aforementioned systems. They do not invade privacy like camera surveillance and audio-based

systems. In addition, unlike wearable systems, they do not require the user’s involvement.

They are also not dependent on lighting conditions and their sensors are not blocked by walls.

For wearable systems, the user might forget or refuse to wear the systems for memory-related

or discomfort reasons. Therefore, RF-based HAR systems can be a reasonable choice to use.

RF-sensing relies on the rapid change of the channel characteristics triggered by the body

movements. Such characteristics include the phases and amplitudes of the complex received

signal. These variations of the characteristics hold the fingerprints of the body movements.

The rapid changes in these characteristics make the channels non-stationary. Many RF-sensing

technologies have been commonly used to collect channel measurements, such as radar, Wi-Fi,

universal software radio peripherals (USRPs), and channel sounders. Radar employs the

continuous-wave (CW) and frequency-modulated-continuous-wave (FMCW) transmission

techniques to capture the characteristics of narrowband and wideband channels, respectively.

Table 1.2 shows four different RF sensing technologies, and the progress made in collecting

data from extracted features that can be used to train HACs. In the literature, radars, USRPs,

and channel sounders have been incorporated to extract micro-Doppler signatures1 [36–39] to

train the HACs. The term micro-Doppler refers to the Doppler effect that an electromagnetic

signal experiences due to the motion of a target [40]. This term was introduced in [41–43].

Fig. 1.2 shows an example of using the micro-Doppler signatures and time variant mean

Doppler shifts (TV-MDSs) to classify human activities. There are many attempts to simulate

micro-Doppler signatures of radar signals under the influence of human walking activities

in [44–46]. Another feature depicted in Fig. 1.2 is the TV-MDS, which can be further computed

1Throughout this dissertation, the terms micro-Doppler signatures and the time variant (TV) Doppler

power characteristics are interchangeably used.
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from the micro-Doppler signatures. This feature can be used to train the HACs and will be

addressed in the next chapters of this dissertation.

Another alternative to radars is collecting channel-state-information (CSI) data by using

commercial-off-the-shelf (COTS) devices [47–49]. A CSI tool has been developed by the

authors of [50] as an open source software. Such a tool can be installed on COTS devices

equipped with Intel NIC 5300 network interface cards that operate on Wi-Fi 802.11n protocol.

COTS devices with such an installed tool and NIC cards are able to record CSI data via

30 subcarriers according to the orthogonal-frequency-division-multiplexing (OFDM) access

scheme. Although this tool allows for capturing complex RF data with inexpensive devices, it

has the disadvantage of containing highly distorted phases. This happens due to the clock

asynchronization of the transmitter and the receiver stations. Many approaches have been

introduced in the literature to clean the collected CSI data. One of the approaches was

denoising the amplitudes by applying filters or the principal component analysis (PCA) on the

amplitudes for the purpose of smoothing before training the HAC [47,48]. Another alternative

approach was to compute one-sided spectrograms of the amplitudes as in [51,52], which are

used as features to train the classifiers. The last approach was to use linear transformations

to sanitize the highly distorted phases as in [49,52–54] to train the HAC.

Table 1.2: State of the art contributions in RF-sensing for HAR

Articles Technology Features Measurements Simulations

[36, 55]

[37,56–58]
Radar Micro-Doppler

signatures
✓ –

[44–46,59] Radar Micro-Doppler

signatures
– ✓

[39, 60]
Channel

sounder
Micro-Doppler

signatures
✓ –

[38,61] USRP Fourier transform ✓ –

[47,48] Wi-Fi Amplitudes ✓ –

[51,52] Wi-Fi One-sided spectrograms

of the amplitudes
✓ –

[52,62]

[49,53,54]
Wi-Fi Sanitized phases ✓ –
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Transmitter 

Station

Receiver 

Station

Signal 

Processing
Micro-Doppler Signature TV Mean Doppler Shift

Feature Extraction Feature Extraction

Human Activity Classifier Human Activity Classifier

Figure 1.2: Obtaining and using the micro-Doppler signature or, alternatively, the TV-MDS

of the complex measured RF data to classify human activities.

1.4 Motivation

By looking at Table 1.2, most of the RF-sensing related works have been done with measured

channels. Fig. 1.3(a) shows the current approach used for training and testing the HACs.

This approach requires collecting RF-sensing data by conducting measurement campaigns.

Such campaigns are time-consuming and expensive. They require having many candidates,

expensive tools and time-consuming setups. Moreover, the micro-Doppler signatures and the

TV-MDSs of the collected measurement data are non-reproducible. For a specific human

activity, the micro-Doppler signatures and the TV-MDSs might be different for each scenario

as they depend on the direction of motion, speed, and locations of the transmitter and receiver.

Hence, different scenarios and activities require conducting further campaigns.

This dissertation paves the way from the current approach for training HACs depicted

in Fig. 1.3(a) to a new paradigm, as shown in Fig. 1.3(b). This paradigm relies on training

HACs with synthetic micro-Doppler signatures or TV-MDSs instead of those extracted from

measured RF data. This paradigm enables the HAC trained by using synthetic data to

detect human activities when it is tested on measured RF data as illustrated in Fig. 1.4. The

new paradigm requires in-depth studies of non-stationary fixed-to-fixed (F2F) channels in

the presence of moving persons and their influence on the micro-Doppler signatures and the

TV-MDSs. Understanding the underlying propagation phenomena is indispensable for the

development of a new class of channel simulation models. Such models enable the generation

of reproducible synthetic micro-Doppler signatures and TV-MDSs mimicking the effects of

human activities. Note that this dissertation focuses on channel modelling, not machine
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learning.

Measured Micro-Doppler Signatures of Human Activities

FallingSitting Walking

...

...

Feature 

Extraction
Labelling HAC

(a) Training the HAC with measurement data.

FallingSitting Walking

Synthetic Micro-Doppler Signatures of Human Activities

...

...

Feature 

Extraction
Labelling HAC

(b) Training the HAC with synthetic data.

Figure 1.3: (a) The current measurement-based approach and (b) the new simulation-based

approach to train HACs.

Figure 1.4: Employing the HAC trained with synthetic data to recognize human activities

when measurement data is given.
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1.5 Contributions

Table 1.3 exhibits the contributions of developing non-stationary channel simulation models

HAR in the literature. The marks (×), (✓), and (–) in the table denote that the parameters

are modelled as time invariants (TiVs), modelled as TVs, and not modelled, respectively. As

depicted in the table, there are limitations in channel modelling in the previous studies when

considering the channel parameters, such as the TV path gains, TV Doppler frequencies, TV

phases, phase-Doppler relationship, and propagation delay-Doppler relationship. The focus of

this dissertation is to model the aforementioned TV parameters and put more emphasis on the

phase and the Doppler frequencies in order to generate reproducible micro-Doppler signatures

and TV-MDSs for different human activities and indoor scenarios. The contributions of

Papers A–F are not limited to the simulations of micro-Doppler signatures of non-stationary

channel models, but also include the micro-Doppler signatures of the measured indoor channels

for validity. A summary of the channel modelling contributions in this dissertation is depicted

in Fig. 1.5.

Non-Stationary F2F Channels 

Measurements
IMU-Driven Channel 

Models

2D 

Channel Models 

(Chapter 2, Paper A)

3D 

Channel Models

 (Chapter 3, Papers B and C)

Measured Channels 

(Chapter 4, Paper D)

(Chapter 5, Papers E 

and F)

Channel 

Models

Figure 1.5: Non-stationary F2F channel models described in this dissertation.

1.6 Research Questions

Here is the list of research questions (RQs) based on the aforementioned overview and

motivation, which will be addressed in the next chapters:

RQ 1: How to model two-dimensional (2D) non-stationary F2F channels under the influence

of moving scatterers?

RQ 2: How to analyze the effect of moving scatterers on the TV Doppler power characteristics

of indoor channels?

RQ 3: How to model the influence of three-dimensional (3D) human body trajectories on the

micro-Doppler signatures of indoor F2F channels?
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RQ 4: How to model the true phases of the measured CSI?

RQ 5: Is it possible to extract the true micro-Doppler signatures from the CSI measured with

COTS devices?

RQ 6: How to develop channel models driven by measured trajectories to generate realistic

and reproducible micro-Doppler signatures?

RQ 7: How to validate the micro-Doppler signatures and the TV-MDSs of the trajectory-driven

models?

1.7 Structure of the Dissertation

The dissertation is divided into two parts. The first part (Part I) presents an overview of the

contributions of this dissertation. The second part (Part II) is structured as a list of the

technical papers, which exploit the detailed contributions and their results. Table 1.4 exhibits

the specific chapters and papers that answer each of the aforementioned RQs. The rest of

Part I is organized as follows:

Table 1.4: The relationships between the chapters, RQs, and papers are indicated by check

marks (✓).

Papers RQs

Chapters A B C D E F RQ 1 RQ 2 RQ 3 RQ 4 RQ 5 RQ 6 RQ 7

2 ✓ – – – – – ✓ ✓ – – – – –

3 – ✓ ✓ – – – – ✓ ✓ – – – –

4 – – – ✓ – – – ✓ – ✓ ✓ – –

5 – – – – ✓ ✓ – ✓ – – – ✓ ✓

� Chapter 2 answers RQ 1 by covering the work presented in Paper A. The paper proposes

a 2D non-stationary F2F model with moving and fixed point scatterers. Doppler shifts

caused by the 2D trajectories of the moving point scatterers are modelled.

� Chapter 3 addresses RQ 3 by providing an overview of the contributions of Papers B

and C as follows:

1. A 3D non-stationary channel model, which considers the moving person as a single

moving point scatterer representing the head (Paper B). Such a model allows to

simulate the micro-Doppler signatures of the head motion in activities, such as

walking and falling.
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2. A 3D cluster channel model, which considers the moving person as a cluster of

synchronized moving point scatterers (Paper C). This model allows the simulation

of micro-Doppler signatures of different body segments, such as head, torso, ankles,

and wrists for different walking and running scenarios. Such a model is also useful

for gait analysis.

� Chapter 4 answers RQs 4 and 5 by covering the contents of Paper D. This paper model

the true phases of the measured CSI. Furthermore, the paper solves the problem of

the TV phase distortions, which appears when measuring the CSI with COTS devices.

This problem is addressed by employing a back-to-back (B2B) connection between the

transmitter and receiver stations. The paper reports the true micro-Doppler signatures

and the TV-MDSs of the measured CSI after eliminating the phase distortions. The

contribution of the paper enables to use CSI data collected by using COTS devices

to validate the synthetic micro-Doppler signatures and the TV-MDSs of the channel

simulation models.

� Chapter 5 answers RQ 6 by summarizing the contributions of Papers E and F. They

present the following contributions:

1. Paper E presents a non-stationary IMU-driven CSI model to simulate the micro-

Doppler signature of a moving rigid body, where the center of mass (CoM) of the

rigid body is modelled as a single moving point scatterer.

2. Paper F develops an extended non-stationary IMU-driven CSI model, in which

the moving person is modelled as a cluster of moving point scatterers.

To answer RQ 7, both of IMU and CSI data are collected, simultaneously. The

trajectories computed from the measured IMU data were fed to the channel models.

Then, the micro-Doppler signatures and the TV-MDSs of IMU-driven models and the

measured CSI data were evaluated.

� RQ 2 is answered by employing the spectrogram to reveal the micro-Doppler signatures

of simulated and measured channels in Papers A–F and Chapters 2–5.

� Chapter 6 summarizes the major contributions of this dissertation and provides an

outlook for future research directions.





Chapter 2

2D Non-Stationary Channel Model

2.1 Introduction

The wireless communication channel is considered stationary when its statistical properties

do not vary with time, i.e., they are time invariant (TiV). This is generally assumed when the

angle of arrival (AOA), angle of departure (AOD), and the speed of the transmitter station,

receiver station, or the moving point scatterers are TiV. When monitoring indoor scenarios

for long periods, the AOAs and AODs become time variant (TV). Moreover, the speed of the

transmitter station, receiver station, or the moving point scatterers might change with time

due to acceleration or deceleration. Thus, the Doppler effect is TV and the channel becomes

non-stationary. Thus, the Doppler power characteristics, mean Doppler shift (MDS), and

Doppler spread (DS) are TV.

For wireless-based human activity recognition (HAR), considering the TV angles of motion

(AOMs), AODs, AOAs, and speed is inevitable. This is since the moving point scatterers

might change their speed or their direction of motion. In the literature, the compound Doppler

effect caused by moving point scatterers has been modelled in stationary fixed-to-mobile

(F2M) [63], vehicle-to-vehicle (V2V) [64,65], and fixed-to-fixed (F2F) [66] channel models.

In the literature, the non-stationary F2F channel model under the time variations of the

AOAs, AODs, and the speed of the moving point scatterers has not been investigated. To

close this gap, this chapter gives an overview of the contribution of Paper A, which contains

a non-stationary F2F channel model associated with two-dimensional (2D) geometry. The

TV AODs and AOAs are presented corresponding to the 2D trajectories and the 2D positions

of the transmitter (Tx) and the receiver (Rx), and the TV displacements of the moving point

scatterers. Furthermore, the TV Doppler frequencies caused by the trajectories of the moving

point scatterers are derived. In addition, the expressions of the TV channel phases and the

complex channel gain (CCG) are provided. Paper A explores the micro-Doppler signature of

the proposed model by using the spectrogram. The spectrogram can be used to visualize the

temporal change of the frequency content of a non-stationary signal. It has many applications
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in radar detection [67], music [68], remote sensing [69], and earthquake records [70]. The main

disadvantage of the spectrogram is spectral interference due to its quadratic nature. The

work in Paper A provides the approximate solution of the spectrogram and proposes a way

to remove the spectral interference in computer simulations.

2.2 A Geometrical 2D Model

The Doppler shifts caused by moving point scatterers in the 2D space depend not only on

the speed of the scatterers, but also on the AODs, AOAs, and AOMs. The AODs are TV

functions of the displacements of the moving point scatterer and the location of the Tx,

whereas the AOAs are TV functions of the displacements of the moving point scatterers

and the location of the Rx. The AOMs are functions of the TV velocities of the moving

point scatterers. To understand how these functions are modelled, a 2D geometrical model

is needed. Such a model provides insights into the aforementioned TV functions, the TV

Doppler frequencies, the TV phases, and the non-stationary CCG. Then, the micro-Doppler

signatures are computed from the CCG. In indoor F2F channels, both Tx and Rx are fixed.

Studying the 2D geometrical model helps to understand how to model the AODs and AOAs

that affect the Doppler shifts caused by the moving point scatterers.

In the following, we will outline briefly how we can derive the angular functions AODs,

AOAs, and AOMs. Our starting point is a geometrical model that helps to derive these

functions. Then, we compute the Doppler frequencies caused by the moving scatterers in

terms of the aforementioned functions. Subsequently, we derive the stochastic channel phases

caused by the moving scatterers. Next, we provide an expression of the CCG µ(t) from which

the time variant mean Doppler shift (TV-MDS), time variant Doppler spread (TV-DS), and

micro-Doppler signatures are extracted.

The scenario in Fig. 2.1 exhibits a 2D multipath propagation scenario with a fixed Tx

and Rx. There exist M fixed objects. For simplicity, each object is described as a fixed

single point scatterer SF
m for m = 1, 2, . . . , M. Moreover, there are N moving persons. Each

person is modelled as a single moving point scatterer SM
n for n = 1, 2, . . . , N and has an

initial position at
(
xM
n , y

M
n

)
. The trajectory of each moving point scatterer is described by

its TV speed vn(t) and its AOM αvn , and has a constant acceleration/deceleration an. The

line-of-sight (LOS) is assumed to be obstructed.

Paper A describes the relationship between the TV speed vn(t), AOD αvn , the TV

displacement in x-direction xM
n (t), and the TV displacement in y-direction yMn (t) as

xM
n (t) = xM

n +

[
vnt+

1

2
ant

2

]
cos (αvn) (2.1)

yMn (t) = yMn +

[
vnt+

1

2
ant

2

]
sin (αvn) , (2.2)
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respectively. From (2.1)-(2.2), the TV AOA and AOD are given by

αR
n (t) = atan2

(
yMn (t)− yR

xM
n (t)− xR

)
, (2.3)

αT
n (t) = atan2

(
yMn (t)− yT

xM
n (t)− xT

)
, (2.4)

where αT
n (t), α

R
n (t) ∈ [−π, π), respectively. The TV expression in (2.3) represents the angle

between the direction of the wave arriving at the Rx from the SM
n , and the positive x-axis. The

TV formula in (2.4) describes the angle between the positive x-axis and the wave travelling

from the Tx and impinging on the SM
n . By using the AOA and AOD expressions in (2.3)–(2.4),

the TV Doppler frequency caused by the nth moving point scatterer SM
n is expressed by

fn(t) = −fn,max(t)
[
cos
(
αT
n (t)− αvn

)
+ cos

(
αvn − αR

n (t)
)]

, (2.5)

where the TV function fn,max(t) denotes the maximum TV Doppler shift caused by the speed

vn(t) of the SM
n and is given by

fn,max(t) =
f0vn(t)

c0
. (2.6)

The parameters f0 and c0 in (2.6) designate the carrier frequency and the speed of light,

respectively. By utilizing the Doppler frequency fn(t) expressed in (2.5), the TV channel

phase associated with the nth moving point scatterer SM
n is given by

θn(t) = 2π

∫ t

−∞
fn(t

′)dt′ ≈ θn + 2π

∫ t

0

fn(t
′)dt′. (2.7)

The parameter θn is unknown and modelled as a random variable with a uniform distribution

between 0 and 2π, i.e., U ∼ (0, 2π]. In Paper A, the Doppler frequency associated with the

nth moving point scatterer has been approximated by using the Taylor series. The CCG

µ(t), which consists of N +M components has been given by

µ(t) =
N∑
n=1

cne
jθn(t) +

M∑
m=1

cme
jθm . (2.8)

The first term in (2.8) denotes the sum of N multipath components corresponding to the

moving point scatterers SM
n . Each component of the first term is characterized by the constant

path gain cn and a stochastic phase process θn(t). The second term in (2.8) is the sum of

M multipath components corresponding to the fixed point scatterers SF
m. Each component

of the second term in (2.8) is characterized by a constant path gain cm and a random phase

variable θm. Note that θm and θn are independently and identically distributed (i.i.d.). The
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fixed point scatterers SF
m do not cause any Doppler shifts in F2F channels. The model in (2.8)

is non-stationary. Its TV-MDS and the TV-DS have been given by [71]

B
(1)
f (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n +
M∑

m=1

c2m

, (2.9)

B
(2)
f (t) =

√√√√√√√
N∑

n=1

c2nf
2
n(t)

N∑
n=1

c2n +
M∑

m=1

c2m

−
(
B

(1)
f (t)

)2
, (2.10)

respectively.
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Figure 2.1: Geometrical channel model of a 2D propagation scenario with moving point

scatterers SM
n (▲), fixed point scatterers SF

m (■), fixed Tx, and fixed Rx.

2.3 Micro-Doppler Effect of Non-Stationary 2D F2F

Channels

To explore the micro-Doppler signatures of the non-stationary CCG presented in (2.8), a time-
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frequency distribution, such as the spectrogram is employed. The spectrogram is one of the

quadratic time-frequency distributions, often used to analyze the power spectral characteristics

of stationary or non-stationary signals [72], such as the CCG. It provides insights into the TV

power spectral density of the signal. It has many applications in the area of TV signals [73],

speech analysis and identification [74], acoustics [75], and seismology [76]. The spectrogram

consists of two terms, the auto-term and the cross-term. The auto-term provides insights

into the true TV power spectral density of the signal. The cross-term is considered as the

undesired spectral interference component that reduces the resolution of the spectrogram.

This term results from the quadratic nature of the spectrogram. Many attempts have been

made to address this issue in the field of mobile fading channels in [77,78].

In Paper A, the spectrogram has been used to explore the micro-Doppler signature of the

model presented in (2.8). The spectrogram helps to show TV Doppler frequencies caused by

the moving point scatterers SM
n . To compute the spectrogram, an even and positive window

function w(t) with normalized energy is needed. In a first step, this window is slid over µ(t)

to compute the short-time CCG x(t′, t) as

x(t′, t) = µ(t′)w(t′ − t). (2.11)

The parameters t and t′ denote the local time, at which the micro-Doppler signature is

explored and the run time, respectively. The second step is to compute the short-time Fourier

transform (STFT) by transforming the run time t′ into the frequency domain as follows

X(f, t) =

∫ ∞

−∞
x(t′, t)e−j2πft′dt′. (2.12)

The third step is to compute the spectrogram Sµ(f, t) by taking the squared magnitude of

X(f, t) as

Sµ(f, t) = |X(f, t)|2 = S(a)
µ (f, t) + S(c)

µ (f, t). (2.13)

The TV functions S
(a)
µ (f, t) and S

(c)
µ (f, t) in (2.12) designate the auto-term and cross-term,

respectively. The auto-term has the desired micro-Doppler characteristics of the CCG

µ(t) in (2.8). The cross-term contains the undesired interference components that reduce

the resolution of the spectrogram. In Paper A, the full expressions of X(f, t), S
(a)
µ (f, t),

and S
(c)
µ (f, t) are provided in terms of the path gains and the Doppler frequencies. These

expressions have been derived by taking advantage of the Taylor series approximation of the

Doppler frequencies mentioned in Section 2.2. Moreover, a method for the elimination of the

cross-term S
(c)
µ (f, t) has been applied in the paper by exploiting the random channel phases

θn and θm. Furthermore, the paper shows how to compute the TV-MDS and the TV-DS from

the spectrogram Sµ(f, t). Computing the TV-MDS and the TV-DS from the spectrogram

is useful when analyzing measurement data, because the Doppler frequencies and the path

gains of the measured channels are not accessible.
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2.4 Principle Results

In the results section of Paper A, a realistic scenario with fixed point scatterers and

moving point scatterers with speed variations has been considered. The CCG µ(t) was

computed. A method for computing the optimal spectrogram window size was presented.

The spectrogram Sµ(f, t) and the auto-term S
(a)
µ (f, t) have been evaluated according to the

expressions in the paper and have been computed numerically. Furthermore, the TV-MDSs

B
(1)
f (t) and B

(1)
µ (t) and the TV-DSs B

(2)
f (t) and B

(2)
µ (t) have been computed.

In this section, some of the results in the paper will be exploited. In the simulated scenario

in the paper, the number of moving scatterers N was chosen to be 3, and the number of

fixed scatterers M was equal to 7. One of the moving scatterers was moving at a constant

speed towards the Tx and Rx during the whole simulation time. The other two moving

scatterers were moving towards a terminating point away from the Tx and Rx with a constant

speed. Then, they decelerated before reaching the point. The other parameters related to

the simulation setup, such as the carrier frequency and the locations of Tx and Rx can be

found in the paper. Fig. 2.2(a) depicts the analytical solution of the spectrogram Sµ(f, t).

The spectrogram in Fig. 2.2(a) provides insight into the Doppler shifts caused by all the point

scatterers. The Doppler patterns at the zero frequency values during the whole observation

time correspond to the fixed point scatterers. The other three Doppler shifts, which are

TVs are associated with the moving point scatterers. The scatterer moving with a constant

speed during the whole observation time has an initial Doppler frequency value of 40 Hz

approximately. Then, its Doppler frequency slightly decreases. This is due to the time

variations of the AOD and AOA.

In Fig. 2.2(a), the Doppler effect caused by the second moving point scatterer has an

initial value of -20 Hz approximately. The moving point scatterer kept moving at a constant

speed until time t ≈ 1.5 s. The Doppler frequency is TV due to the time variations of the

AOD and AOA. After time t ≈ 1.5 s, the moving point scatterer started to decelerate until

it stopped at time t ≈ 3.5 s. That is why the Doppler frequency increases from t ≈ 1.5 s

to t ≈ 3.5 s. After time t ≈ 3.5 s the scatterer, was no longer moving. The Doppler

frequency should have a zero value; however, it does not due to the error from the Taylor

series approximation. For the last moving point scatterer, the same aforementioned discussion

applies, but for the time instants t ≈ 2.5 s to t ≈ 4 s. The cross-term of the spectrogram has

an impact on the frequency values of the fixed point scatterers. Moreover, it has an impact

on the frequency values of the moving point scatterers in the time interval from t ≈ 4.5 s

to t ≈ 5 s. Fig 2.2(b) depicts the analytical solution of the auto-term S
(a)
µ (f, t). All the

spectral interference components are eliminated, and their previously mentioned impacts on

the spectrogram Sµ(f, t) depicted in Fig. 2.2(a) are removed. The Doppler frequency patterns

of the fixed point scatterers are clearer. Furthermore, the spectral interference between the

Doppler frequency patterns of the moving point scatterer is eliminated in the time interval
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from t ≈ 4.5 s to t ≈ 5 s. The results of the analytical solution depicted in Figs. 2.2(a) and

2.2(b) have been validated by the numerical computation of the spectrogram Ŝµ(f, t) and the

auto-term Ŝ
(a)
µ (f, t). We demonstrated that the numerical computation of the spectrogram

Ŝµ(f, t) and the auto-term Ŝ
(a)
µ (f, t) are identical to the analytical solutions Sµ(f, t) and the

auto-term S
(a)
µ (f, t), respectively.

Fig. 2.3(a) depicts the TV-MDSs B
(1)
f (t), B

(1)
µ (t), and B̂

(1)
µ (t). The TV-MDS B

(1)
f (t) has

been computed by (2.9). The TV-MDSs B
(1)
µ (t), and B̂

(1)
µ (t) have been computed from the

analytical solution of the auto-term S
(a)
µ (f, t) and the numerical computation of the auto-term

Ŝ
(a)
µ (f, t), respectively. The figure shows that there is a good match between B

(1)
f (t), B

(1)
µ (t),

and B̂
(1)
µ (t). Futhermore, the figure illustrates the influence of the speed variations, AOAs

and AODs on the TV-MDSs. The visible changes in the slopes of the TV-MDSs are due to

the decelerations of the moving scatterers. Fig. 2.3(b) illustrates the TV-DSs B
(2)
f (t), B

(2)
µ (t),

and B̂
(2)
µ (t). The TV-DS B

(2)
f (t) has been evaluated by (2.10). The aforementioned comments

on Fig. 2.3(a) applies to the TV-DSs depicted in Fig. 2.3(b).

(a) (b)

Figure 2.2: The analytical solution of (a) the spectrogram Sµ(f, t) and (b) the auto-term

S
(a)
µ (f, t) of the provided scenario in Paper A.

2.5 Chapter Conclusion

In this chapter, a non-stationary F2F channel model has been developed that allows for the

variations of the speed of moving point scatterers in 2D geometry. The derivations of the

TV channel parameters, such as the AOAs, the AODs, and the TV Doppler frequencies are

derived (see Paper A). Furthermore, the TV channel phases, CCG, TV-MDS, and TV-DS

are presented. The micro-Doppler signature of the proposed model is investigated by utilizing
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Figure 2.3: The TV-MDSs and TV-DSs in Paper A.

the spectrogram. An approximate solution of the spectrogram is derived by making use of

the Taylor series approximation. The results show how the moving point scatterers influence

the micro-Doppler signature, TV-MDS, and TV-DS. Although this model is a good start for

non-stationary F2F channels, it does not allow for three-dimensional (3D) trajectories. The

3D non-stationary channel models are addressed in the next chapter.





Chapter 3

3D Non-Stationary F2F Channels

3.1 Introduction

The model discussed in Chapter 2 is not feasible when considering human trajectories in

three-dimensional (3D) environments, such as walking, falling, standing, sitting, etc. 3D

trajectories are required for real-life applications, such as fall detection [79–81], human gait

assessment [82,83], drone detection [84], distinction between armed and unarmed persons [85],

and gesture recognition [86]. This chapter presents an overview of the contributions of

Paper B and Paper C. These papers presented two non-stationary F2F channel models

that allow for 3D trajectories of the moving point scatterers. In Paper B the moving person

is modelled as a single moving point scatterer, whereas in Paper C considers the person is

modelled as a cluster of synchronized moving point scatterers. The contribution of Paper C

can be helpful in different human gait and running scenarios, such as those in [82,83,85].

3.2 Geometrical 3D Channels

When the scatterer moves in 3D space in indoor fixed-to-fixed (F2F) channels, the angular

functions that affect the Doppler shifts caused by the moving point scatterers must be defined.

To understand how to model these functions, a study of the 3D geometrical model should be

developed. In this section, the new angular functions, such as time variant horizontal angle

of motion (TV-HAOM), time variant vertical angle of motion (TV-VAOM), time variant

elevation angle of departure (TV-EAOD), time variant azimuth angle of departure (TV-

AAOD), time variant elevation angle of arrival (TV-EAOA), and time variant azimuth angle

of arrival (TV-AAOA) are introduced based on the 3D geometrical model. Such functions

help to model the Doppler shifts caused by the scatterers moving in 3D space.

We have a multipath propagation scenario as depicted in Fig. 3.1. There exists a moving
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person1, a fixed receiver (Rx), and a fixed transmitter (Tx). In Fig. 3.2 a geometrical model

is presented in detail. We have in Fig. 3.2 N -moving point scatterers SM
n for n = 1, 2, . . . , N

and M-fixed point scatterers SF
m for m = 1, 2, . . . , M. Each moving point scatterer SM

n has a

fixed initial 3D position
(
xM
n , y

M
n , zMn

)
. The trajectory of SM

n is defined by its time variant (TV)

velocity vector v⃗n(t), which is presented in terms of its TV speed vn(t), TV-HAOM αvn(t),

and TV-VAOM βvn(t). The fixed positions of Tx and Rx are
(
xT , yT , zT

)
and

(
xR, yR, zR

)
,

respectively. The 3D TV Euclidean distance between Tx (Rx) and SM
n is denoted by dTn (t)

(dRn (t)). Single bounce scattering and line-of-sight (LOS) are assumed. The depicted TV

functions βT
n (t), α

T
n (t), β

R
n (t), and αR

n (t) denote the TV-EAOD, TV-AAOD, TV-EAOA, and

TV-AAOA, respectively. The non-line-of-sight (NLOS) conditions are assumed.

Figure 3.1: 3D multipath propagation scenario with a moving person.

3.2.1 The TV Velocity and Angular Functions

In Paper B, the expression of the TV velocity vector v⃗n(t) of each moving point scatterer

(see Fig. 3.2) has been provided in terms of the velocities in x, y, z directions. Each of

these velocity components has been presented in terms of the speed vn(t), the TV-VAOM

βvn(t), and the TV-HAOM αvn(t). The displacements of each moving point scatterer have

been computed in terms of the velocities in x, y, and z directions. The expressions of the

TV-EAOAs βR
n (t), TV-AAOAs α

R
n (t), TV-EAODs βT

n (t), and TV-EAODs αT
n (t) have been

calculated by using inverse trigonometric functions in terms of the TV displacements and the

fixed locations of the Tx and Rx.

1In Fig. 3.1, we have a single moving person for simplicity; however, for the rest of the chapter, we consider

multiple moving persons.
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Figure 3.2: Geometrical model of 3D non-stationary F2F channel with N -moving (M-fixed)

scatterers SM
n (SF

m).

3.2.2 Modelling the TV Doppler Frequency

The Doppler frequency fn(t) caused by the nth moving point scatterer SM
n has been described

in the paper by taking into account the TV speed, carrier frequency, speed of light, TV-

EAOA βR
n (t), TV-AAOA αR

n (t), TV-EAOD βT
n (t), TV-EAOD αT

n (t), TV-VAOM βvn(t), and

TV-HAOM αvn(t) by the following expression

fn(t) =− fn,max (t)

{
cos (βvn (t))

[
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
) ]

+ sin (βvn (t))
[
sin
(
βT
n (t)

)
+ sin

(
βR
n (t)

)]}
,

(3.1)

where

fn,max (t) =
vn (t) f0

c0
(3.2)

denotes the maximum Doppler frequency caused by SM
n . The Doppler frequency expres-

sion (3.1) allows for 3D trajectories of the moving point scatterers SM
n . In Paper B, it has

been shown that the expression of the Doppler frequency in (2.5) is a special case of the

expression in (3.1). Such a case happens when the TV-EAOA, TV-EAOD, and TV-HAOM





3D Non-Stationary F2F Channels

have zero values, i.e., βR
n (t) = 0, βT

n (t) = 0, and βvn(t) = 0. There are other special cases that

can be found in Paper B. The Doppler frequency provided in (3.1) has been approximated

by linear piecewise functions.

3.2.3 The TV Channel Phases and Complex Channel Gain

The instantaneous channel phase model of the nth moving point scatterer SM
n in Paper B

is the same as the one presented in Paper A (see (2.7)). Both are stochastic and modelled

in terms of the Doppler frequencies fn(t). However, the main difference between the phases

is the Doppler frequency expressions used (see (2.5) and (3.1)). Moreover, the expressions

of the complex channel gain (CCG), time variant mean Doppler shift (TV-MDS), and time

variant Doppler spread (TV-DS) are the same in both papers.

The CCG has been defined in the paper as a sum of two terms. The first term of the CCG

has been represented as a single sum of N weighted complex exponentials associated with the

moving point scatterers. Each component of this term has been characterized by the path

gain and the stochastic phase variable corresponding to a moving point scatterer. The path

gains of the moving point scatterers have been assumed to be constant, i.e., time invariant

(TiV). The second term has been described as a sum of M weighted complex exponentials.

Each component of the second term of the CCG has been represented in terms of the path

gains and the random channel phases of the fixed point scatterers. The TV-MDS and TV-DS

have taken into account the path gains and the Doppler frequencies of the moving point

scatterers, and the path gains of the fixed point scatterers.

3.2.4 Principle Results

The micro-Doppler signatures of the CCG have been analyzed by using the spectrogram. The

expressions of the short-time Fourier transform (STFT), spectrogram, auto-term, and cross-

term have been derived in Paper B by taking advantage of the piecewise linear approximation

of the TV Doppler frequencies.

In this section, the results of Paper B will be exploited. In the simulation scenario of the

paper, the head trajectory of walking followed by falling was considered. The head has been

modelled as a single moving point scatterer. The head trajectory model and its parameters

described in [87–89] have been employed. The simulation scenario comprises the following

three phases:

� Phase 1 : The person walks a distance of 2 m at constant speed in a time interval of

2.5 s.

� Phase 2 : The fall takes about 1 s, from the phase when the person’s head starts to fall

forward until the head touches the floor.
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� Phase 3 : After the person’s body has reached the floor, the moving scatterer becomes a

fixed scatterer.

The other simulation parameters, such as the locations of Tx and Rx and the carrier frequency

can be found in the results section of the paper. Fig. 3.3(a) depicts the analytical solution of

the spectrogram Sµ(f, t). The figure visualizes the TV frequency patterns corresponding to

the moving point scatterer (the head) and the fixed point scatterers. The fixed scatterers

have frequencies with zero values as they do not cause Doppler shifts in F2F channels. The

fluctuations of the Doppler frequency that appear in Fig. 3.3(a) correspond to Phase 1

(walking) from t = 0 s until t ≈ 2.5 s. These fluctuations are due to the head oscillations when

walking. The Doppler frequency patterns during Phase 1 are slightly decreasing. This is due

to the angular functions discussed in Section 3.2.1. In Phase 2 (falling), which lasts from

time t ≈ 2.5 s to t ≈ 3.5 s, the Doppler frequency caused by the head motion is decreasing

rapidly. This is due to the high fluctuations in the speed. In Phase 3 (non-moving), which

lasts from time t ≈ 3.5 s to t ≈ 4 s, the Doppler frequency has a zero value as the scatterer

does not move after the fall. In Fig. 3.3(a), the cross-term causes spectral interference during

the walking interval. Fig. 3.3(b) visualizes the analytical solution of the auto-term S
(a)
µ (f, t).

The Doppler frequency patterns are clearer as the cross-term is eliminated.

(a) (b)

Figure 3.3: The analytical solution of (a) the spectrogram Sµ(f, t) and (b) the auto-term

S
(a)
µ (f, t) provided in Paper B.

Fig. 3.4(a) depicts the TV-MDSs B
(1)
f (t), B

(1)
µ (t), and B̂

(1)
µ (t). The TV-MDS B

(1)
f (t)

has been computed by (2.9). The TV-MDSs B
(1)
µ (t), and B̂

(1)
µ (t) have been computed from

the analytical solution of the spectrogram Sµ(f, t) and the numerical computation of the

spectrogram Ŝµ(f, t), respectively. There is a good match between the B
(1)
f (t), B

(1)
µ (t), and

B̂
(1)
µ (t). We can still distinguish between the patterns corresponding to all three phases in
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the scenario, despite of the existing cross-term in B
(1)
µ (t), and B̂

(1)
µ (t). Fig. 3.4(b) depicts

the TV-DSs B
(2)
f (t), B

(2)
µ (t), and B̂

(2)
µ (t). The TV-MDS B

(2)
f (t) has been computed by (2.10).

The TV-DSs B
(2)
µ (t) and B̂

(2)
µ (t) have been computed from the analytical solution of the

spectrogram Sµ(f, t) and the numerical computation of the spectrogram Ŝµ(f, t), respectively.

The values of B
(2)
f (t) and B̂

(2)
µ (t) are different during Phase 2 due to the impact of the

cross-term. However, the patterns corresponding to all phases are distinguishable.
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Figure 3.4: The TV-MDSs and TV-DSs in Paper B.

3.3 Cluster Channel Models

To make the model in Paper B more realistic especially for walking and running scenarios,

such as those in [82,83,85], a non-stationary cluster channel model is proposed in Paper C.

The moving person has been modelled as a cluster Nm of moving point scatterers representing

his major body segments for m = 1, 2, . . . , NC (see Fig. 3.5). The parameter NC denotes

the number of the clusters (persons) in the case of having multiple persons. The TV-HAOM,

TV-VAOM, TV-AAOD, TV-EAOD, TV-AAOA, and TV-EAOA are rewritten as αvn,m(t),

βvn,m(t), α
T
n,m(t), β

T
n,m(t), α

R
n,m(t), and βR

n,m(t), respectively. These functions are associated

with the nth moving point scatterer SM
n,m of the mth cluster. Hence, the TV Doppler frequency

fn,m(t) corresponding to SM
n,m is written as follows

fn,m(t) = −fn,m,max (t)

{
cos
(
βvn,m (t)

) [
cos
(
βT
n,m(t)

)
cos
(
αT
n,m(t)− αvn,m (t)

)
+cos

(
βR
n,m(t)

)
cos
(
αvn,m (t)− αR

n,m(t)
) ]

+sin
(
βvn,m (t)

) [
sin
(
βT
n,m(t)

)
+ sin

(
βR
n,m(t)

)]}
. (3.3)
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Hence, the stochastic phase process θn,m,M(t) associated with the nth moving point scatterer

SM
n,m of the mth cluster has been expressed by

θn,m,M(t) = θn,m,M + 2π

t∫
0

fn,m(t
′)dt′, (3.4)

where the parameter θn,m,M is U ∼ (0, 2π].

Figure 3.5: An example of a person modelled as a cluster of six moving point scatterers SM
n,m

for n = 1, 2, . . . , Nm and m = 1, 2, . . . , Nc.

3.3.1 The Complex Channel Gain

To account for all the received multipath components from all moving point scatterers in

all Nc clusters, the CCG µ(t) of the cluster channel model presented in Paper C has been

written by

µ(t) =

NC∑
m=1

Nm∑
n=1

cn,m,M ejθn,m,M(t) +
M∑

m=1

cm,F e
jθm,F . (3.5)

The expression in (3.5) consists of
∑NC

m=1Nm + M components. The first term in (3.5)

represents the superposition of multipath components corresponding to NC clusters and the

Nm scatterers in each cluster. Each component of the first term has a stochastic phase process

θn,m,M(t) and constant path gain cn,m,M. The second term in (3.5) is the sum of M multipath
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components associated with the fixed point scatterers. Each component of the second term is

characterized by a random phase variable θm,F and a constant path gain cm,F. The TV-MDS

and TV-DS of the model in (3.5) are given by

B
(1)
f (t) =

NC∑
m=1

Nm∑
n=1

c2n,m,M fn,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

, (3.6)

B
(2)
f (t) =

√√√√√√√√
NC∑
m=1

Nm∑
n=1

c2n,m,M f 2
n,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

−
(
B

(1)
f (t)

)2
, (3.7)

respectively. The double sums in (3.6)-(3.7) take into account the moving point scatterers

associated with the clusters.

3.3.2 Principle Results

In Paper C the STFT, spectrogram, auto-term, and the cross-term of the CCG presented

in (3.5) have been derived. In the results of the paper, the ankles, wrists, head, and trunk

have been considered as the major body segments (moving point scatterers) of a walking

person, i.e., NC = 1 and Nm = 6. The person walked ten steps. The derived trajectory

models for the body segments are inspired by those mentioned in [87–91]. The TV-HAOMs,

TV-VAOMs, TV-AAODs, TV-EAODs, TV-AAOAs, and TV-EAOAs have been computed

from the presented trajectory models and the fixed locations of the Tx and Rx. The TV

Doppler frequencies and the TV channel phases associated with the moving point scatterers

have been computed according to (3.3) and (3.4), respectively. Then, CCG µ(t) has been

computed using the expression in (3.5).

Now, we are going to explore some results of Paper C. Fig. 3.6(a) depicts the analytical

solution of the spectrogram Sµ(f, t). The figure shows the Doppler shifts caused by the

walking activity of the person. However, these Doppler patterns corresponding to the moving

body segments are not clear enough. This is due to the spectral interference caused by the

cross-term of the spectrogram. Fig. 3.6(b) visualizes the auto-term S
(a)
µ (f, t). The figure shows

the clear Doppler patterns caused by the motion of the body segments. Note that the Doppler

shifts caused by the ankles have the highest values. The other body segments cause almost

the same Doppler shifts. The Doppler shifts of the body segments have positive values in the

time between t = 0 s and t ≈ 5 s when the person moves towards the Tx and Rx and negative

values in the time between t ≈ 5 s and t ≈ 10 s when the person moves away from the Tx and
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(a) (b)

Figure 3.6: The analytical solution of (a) the spectrogram Sµ(f, t) and (b) the auto-term

S
(a)
µ (f, t) provided in Paper C.

Rx. Fig. 3.7(a) exhibits the TV-MDSs. The TV-MDSs B
(1)
f (t) have been computed from

the expression in (3.6), whereas B̂
(1)
µ (t) have been calculated from the spectrogram Sµ(f, t),

and from the auto-term S
(a)
µ (f, t). There is a good match between the TV-MDSs B

(1)
f (t) and

B̂
(1)
µ (t) computed from the auto-term S

(a)
µ (f, t). The TV-MDS has positive values in the time

between t = 0 s and t ≈ 5 s when the person moves towards the Tx and Rx and negative

values in the time between t ≈ 5 s and t ≈ 10 s when the person moves away from the Tx

and Rx. The number of the steps can be counted from the TV-MDSs B
(1)
f (t). The TV-MDSs

computed from the spectrogram Sµ(f, t) is distorted due to the cross-term. Nevertheless, the

walking pattern can still be recognized.

Fig. 3.7(b) exhibits the TV-DSs. The TV-DSs B
(2)
f (t) have been calculated from the

expression in (3.7), whereas B
(2)
µ (t) have been evaluated from the spectrogram Sµ(f, t), and

from the auto-term S
(a)
µ (f, t). The TV-DSs have only positive values. The TV-DSs decrease

in the time between t = 0 s and t ≈ 5 s when the person moves towards the Tx and Rx.

Furthermore, the TV-DSs increase in the time between t ≈ 5 s and t = 10 s when the person

moves away the Tx and Rx. The TV-DSs computed from the spectrogram Sµ(f, t) is distorted

due to the cross-term.

3.4 Chapter Conclusion

In this chapter, two 3D non-stationary F2F channel models have been introduced. These

models allow for 3D trajectories of moving persons. The first model presented in Paper B

considers the person as a single moving point scatterer. On the other hand, the model shown
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Figure 3.7: The TV-MDSs and TV-DSs in Paper C.

in Paper C considers the major body parts of a person as a cluster of moving point scatterers.

The influence of the human activity on the micro-Doppler signature, the TV-MDS, and

the TV-DS of the proposed models have been demonstrated. The analytical solution of the

spectrograms, the TV-MDS, and the TV-DS are confirmed by simulation. In the next chapters,

exploration of the true micro-Doppler signatures of the measured channel-state-information

(CSI) are demonstrated. Moreover, the simulation of the micro-Doppler signatures of the CSI

models driven by inertial measurement unit (IMU) data is explored.





Chapter 4

Micro-Doppler Signature of Measured

RF Data Using Commercial

Off-the-Shelf-Devices

4.1 Introduction

This chapter demonstrates the possibility of capturing the true micro-Doppler signatures of

measured radio-frequency (RF) signals using cheap commercial-off-the-shelf (COTS) devices.

Open-source software has been developed by the authors of [50], that allows for recording

the complex channel-state-information (CSI) of 30 subcarriers corresponding to orthogonal-

frequency-division-multiplexing (OFDM). Such a tool can work on devices equipped with

NIC5300 wireless and adhere to the IEEE 802.11n protocol standard [92]. The tool was used

in various areas of activity, signal, and action recognition in [93–96] by utilizing only the

amplitudes. The amplitudes are used in most of the work involving the CSI measurements

because of the highly distorted phases found in the measured data. These distortions occur

due to the asynchronization between transmitter (Tx) and receiver (Rx) stations. Thus, the

spectrogram of the complex CSI data is unable to provide insights into the micro-Doppler

signatures. One of the proposed approaches to address the issue of the highly distorted phases

of the measured CSI was to apply a linear transformation to the phases in [49,53,54]. Although

this method helps to get a cleaner pattern of the phases, it can partially eliminate the desired

important phases. Thus, such a method is not reliable to investigate the micro-Doppler

signature of the collected CSI measurements. The other approach was to employ the principal

component analysis (PCA) to the amplitude of the CSI data. Then, the one-sided spectrogram

is applied on the first principle component [48, 49, 51, 52] to reveal the positive frequency

components. This approach improves the quality of the spectrogram; however, it does not

provide the true micro-Doppler signature of the measured CSI, as it only uses the amplitudes.

31
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This chapter summarizes the contribution of Paper D, which provides a model of true

phases of the received CSI. These true phases are corresponding to the moving scatterers.

Also, this chapter demonstrates the relationship between the time variant propagation delays

(TV-PDs) and the time variant (TV) Doppler shifts caused by the moving scatterers. After

that, a method for eliminating the TV phase distortions using a back-to-back (B2B) connection

is shown. Finally, a framework for processing the measured CSI is provided to reveal the true

micro-Doppler signature.

4.2 Modelling the True CSI Channel Phases

In Chapters 2 and 3, the relationship between the TV channel phases and the TV Doppler

frequencies caused by the moving scatterers was shown. The discussed relationship between

the TV Doppler frequencies and the TV channel phases can be used in the case of narrowband

transmission, i.e., the bandwidth B of the transmitted signal has a value of zero. This section

will demonstrate the relationship between the TV channel phases and the TV-PDs. Also,

the relationship between TV-PDs and the TV Doppler frequencies caused by the moving

scatterers will be discussed. These relationships take consider wideband transmission over

multiple subcarriers in OFDM systems.

When it comes to the collection of CSI measurement data, the TV phases of the collected

data are highly distorted due to the clock synchronization between the Tx and Rx stations.

The presented model of the TV phases in this section assumes that they are appropriately

sanitized. The method of sanitizing the TV phases will be presented in Section 4.3. In

Paper D, the TV channel phase caused by the nth moving scatterer SM
n and associated with

the qth subcarrier has been modelled by

θM,n,q(t) = θM,n − 2π (f0 + fq) τM,n(t). (4.1)

The function τM,n(t) denotes the TV-PD of the wave transmitted from Tx via SM
n arriving at

Rx. The TV propagation delay is given by

τM,n(t) =
dTM,n(t) + dRM,n(t)

c0
, (4.2)

where the functions dTM,n(t) and dRM,n(t) are the TV Euclidean distances described in Section 3.2.

In the case of measurement, the parameter θM,n is unknown; however, in the simulation, it can

be modelled as a random variable with uniform distribution between 0 and 2π as mentioned

in Chapter 2. The parameter fq denotes the subcarrier frequency associated with the qth

subcarrier index. This parameter is given by

fq = q ·∆f, (4.3)
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for q = −28, −26, . . . , −2, −1, 1, 3, . . . , 27, 28 according to the IEEE 802.11n standard [92].

The parameter ∆f denotes the subcarrier frequency separation, which has a value of 312.5 kHz.

Note that fq ∈ [−B/2, B/2] for all values of q, where the parameter B designates the

bandwidth. By using the TV phase expression in (4.1), the TV Doppler shift fn,q(t) caused

by SM
n and associated with the qth subcarrier is given by

fn,q (t) =
1

2π
θ̇M,n(t) = − (f0 + fq) τ̇M,n(t) (4.4)

= −fn,q,max(t)γn (t) , (4.5)

where

fn,q,max(t) =
(f0 + fq) vn (t)

c0
, (4.6)

γn(t) = cos (βvn (t))
[
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
) ]

+ sin (βvn (t))
[
sin
(
βT
n (t)

)
+ sin

(
βR
n (t)

) ]
. (4.7)

The main difference between the expression in (4.6) and the one provided in (3.2) is that the

subcarrier frequency fq is included in (4.6). The proof of the relationship between fn,q(t) and

τM,n(t) is analogous to the one found in [97]. The time variant elevation angle of departure

(TV-EAOD) βT
n (t), time variant azimuth angle of departure (TV-AAOD) αT

n (t), time variant

elevation angle of arrival (TV-EAOA) βR
n (t), time variant azimuth angle of arrival (TV-AAOA)

αR
n (t), time variant horizontal angle of motion (TV-HAOM) αvn(t), and time variant vertical

angle of motion (TV-VAOM) βvn(t) are described in Chapter 3. The TV function γn(t)

in (4.7) can have positive or negative values, depending on whether the TV propagation delay

is increasing or decreasing. If the TV propagation delay τM,n(t) is increasing, i.e., the moving

scatterer SM
n is moving away from the Tx and Rx, its rate of change τ̇M,n(t) and γn(t) are

positive. Thus, the Doppler frequency fn,q(t) has negative values according to the expression

in (4.5). If the TV propagation delay τM,n(t) is decreasing, i.e., the moving scatterer SM
n is

towards the Tx and Rx, its rate of change τ̇M,n(t) is negative. Thus, the Doppler frequency

fn,q(t) has positive values as γn(t) is negative. Note that γn(t) scales the TV maximum

Doppler shift fn,q,max(t).

4.3 Processing Measured CSI Data

In order to reveal the true micro-Doppler signature of the measured CSI, a B2B connection

has been employed in Paper D. Fig. 4.1 demonstrates the B2B setup between Tx and Rx

stations. The Tx and Rx stations are operating in single-input multiple-output (SIMO) mode,
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i.e., one RF port is active at the Tx station and two RF ports are active at the Rx station. A

splitter is connected to the active Tx port. The splitter has two output ports. One of them is

connected to one of the Rx ports (B2B connection) and the other one is connected to the Tx

antenna. The other active port at the Rx station is connected to the Rx antenna. Further

details about hardware used in the setup can be found in Paper D. This setup allows us

to capture two channel transfer functions (CTFs). One of them, denoted by HB2B (t, fq),

captures distortions due to the asynchronization between Tx and Rx stations, which result in

carrier frequency offset [98–100], packet boundary delay [101,102], and sampling frequency

offset [103–105]. The other CTF, which is denoted by H1 (t, fq) captures the indoor channel

characteristics and the distortions due to the asynchronization. The CTFs are divided by

each other in elementwise form as follows

H (t, fq) =
H1 (t, fq)

HB2B (t, fq)
. (4.8)

The CTF H (t, fq) resulting from the operation in (4.8) carries the true channel characteristics.

The noise signals associated with each subcarrier of the CTF in (4.8) are uncorrelated. These

signals result in some background noise in the spectrogram. To reduce the impact of this

background noise of the spectrogram, the average of the CTF over the subcarriers is computed

as follows

µ(t) =
1

Nq

∑
q

H (t, fq) , (4.9)

where the parameter Nq denotes the number of subcarriers and is equal to 30, i.e., Nq = 30.

The operation described above has no impact on the Doppler frequencies associated with each

subcarrier. This is because the bandwidth B is much smaller than the carrier frequency f0,

i.e., B ≪ f0. Hence, the Doppler shifts among all the subcarriers are the same. A notch filter

is used to eliminate the strong zero-frequency components due to the fixed objects. Then,

the spectrogram Sµ(f, t) is computed by applying the steps described in Section 2.13 to µ(t).

After computing the spectrogram, the time variant mean Doppler shift (TV-MDS) of the

measured CSI data is computed by the following expression

B(1)
µ (t) =

∞∫
−∞

fSµ(f, t)df

∞∫
−∞

Sµ(f, t)df

. (4.10)

4.4 Principle Results

For the experimental setup in the paper, the Tx and Rx antennas are collocated. A candidate

was asked to perform four different activities. The activities are walking, falling, bending
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Figure 4.1: Illustration of the B2B connection to calibrate the measured CSI data.

and straightening, and sitting. The falling and walking activities were done in two different

directions, i.e., there were walking away, walking towards, falling away, and falling towards

activities. In the results of the paper, the spectrograms and TV-MDSs corresponding to the

activities are demonstrated.

Now, we will discuss some results of the spectrograms and the TV-MDSs in Paper D.

Figs. 4.2(a), 4.2(b), 4.2(c), and 4.2(d) show the spectrograms Sµ(f, t) corresponding to the

activities: walking away, falling away, walking towards, and falling towards, respectively. The

spectrograms depicted in Fig. 4.2 reveal the true micro-Doppler signatures of the captured

CSI data under the influence of the human activities. The Doppler frequencies shown in

Figs. 4.2(a) and 4.2(b) are negative when the candidate moves away from the Tx and Rx and

the propagation delays are increasing. The opposite applies to the spectrograms in Figs. 4.2(c)

and 4.2(d). The Doppler frequencies are positive when the candidate moves towards the

Tx and Rx. Such illustrations go along with the demonstrated relationship in Section 4.2.

The TV-MDSs associated with the activities: walking away, falling away, walking towards,

and falling towards are exhibited in Figs. 4.2(a), 4.2(b), 4.2(c), and 4.2(d), respectively.

The TV-MDSs depicted in Fig. 4.3 have been computed from (4.10). They reveal the true

TV-MDSs of the collected CSI influenced by these activities. Note that the patterns provided

in Figs. 4.2–4.3 are uniquely distinguishable and, thus can therefore be used to train human

activity classifiers (HACs).

4.5 Chapter Conclusion

In this chapter, an overview of the contribution of Paper D was presented. The relationship

between the propagation delays and the Doppler frequencies caused by the moving scatterers

has been demonstrated. Moreover, a framework was presented for processing the captured CSI

and elimination of the TV phase distortions caused by the clock asynchronization between

Tx and Rx stations. The spectrograms and the TV-MDSs of the measured CSI have been

explored in the paper. The results of the spectrograms have validated the relationship between

the propagation delays and the Doppler frequencies demonstrated in Section 4.2. Furthermore,
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(a) (b)

(c) (d)

Figure 4.2: Spectrograms Sµ(f, t) of the (a) walking away, (b) falling away (c) walking towards,

and (d) falling towards activities.

the results of spectrograms and the TV-MDSs have shown that they can be used for training

the HACs using machine learning and deep learning techniques. Moreover, the results have

shown the possibility of using the measured CSI to extract the micro-Doppler signatures of

human activity. The paper has demonstrated the suitability of using the micro-Doppler

signatures and the TV-MDSs of the measured CSI to validate those generated from channel

simulation models. This will be shown in detail in the next chapter.





Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

0 2 4 6 8 10

-50

-40

-30

-20

-10

0

10

20

(a)

0 1 2 3 4 5

-150

-100

-50

0

50

(b)

0 2 4 6 8 10

-20

-10

0

10

20

30

40

50

(c)

0 1 2 3 4 5

-50

0

50

100

150

(d)

Figure 4.3: TV-MDSs B
(1)
µ (t) corresponding to the (a) walking away, (b) falling away, (a) walk-

ing towards, and (b) falling towards activities.







Chapter 5

IMU-Driven Channel Models

5.1 Introduction

In the previous chapters, the influence of the biomechanics of human activities and the

locations of the transmitter (Tx) and receiver (Rx) on the micro-Doppler characteristics of

indoor fixed-to-fixed (F2F) channels have been demonstrated. Moreover, Chapter 4 has shown

the possibility of extracting the true micro-Doppler signatures from collected channel-state-

information (CSI) measurement data using commercial-off-the-shelf (COTS) devices by using

back-to-back (B2B) connections between the Tx and Rx stations.

In the literature, radar systems have been used to extract micro-Doppler signatures

in [36, 37, 55–58] for many applications, such as arm recognition, human-computer interaction

in smart environments [106], the detection of gait asymmetries [82, 83], differentiation of

unarmed and armed people for security services [85], and gesture recognition [86,107,108]. For

these mentioned applications, the spectrogram was employed to extract the micro-Doppler

signatures.

When it comes to the design of human activity recognition (HAR) systems, collections of

measured data from either CSI or radar equipment are required to train the human activity

classifier (HAC). This consumes a huge amount of time to conduct experiments. Furthermore,

the collected measurement data is not reproducible. To overcome this issue, many attempts

have been made to simulate radar micro-Doppler signatures of human activities such as

walking in [44, 45]. A framework for the estimation of the human gait parameters from

simulated radar micro-Doppler signatures has been provided in [109]. Other attempts to

simulate radar micro-Doppler signatures included the use of human trajectory data as crawling,

creeping, and running from motion capture (MOCAP) databases in [46]. The Kinect sensor

was another approach for collecting the human trajectories, such as running, walking, boxing,

and leaping to simulate the radar micro-Doppler signatures in [110].

Inertial measurement units (IMUs) have not been incorporated to simulate the micro-

Doppler signatures of CSI. As shown in Chapter 4, the true micro-Doppler signatures can
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be extracted from measured CSI by employing the B2B connection between the Tx and

Rx stations, making it possible to verify the simulated CSI micro-Doppler signatures. This

chapter gives an overview of the contributions of Paper E and Paper F. Paper E provides

an IMU-driven channel model that allows for extracting the micro-Doppler signature of a

moving rigid body. Then, this work is extended in Paper F to simulate an IMU-driven

channel model to extract micro-Doppler signatures of human activities. These contributions

are the first step towards the design of simulation-based HAR systems.

5.2 Modelling the Received CSI from a Single Moving

Object

This section presents an overview of the contribution of Paper E. The paper provides a

wideband channel model to study the impact of a single moving object on the micro-Doppler

signatures of the measured CSI. As mentioned in Chapter 4, the measured CSI contains the

characteristics of wideband channels. Thus, a model of the channel transfer function (CTF)

representing wideband channels with multiple subcarriers is provided in this section. The

presented CTF considers the moving object as a single moving point scatterer, while the fixed

objects are multiple fixed point scatterers.

5.2.1 The CTF Model

According to Paper E, the center of mass (CoM) of the moving rigid body is modelled as a

single moving point scatterer SM. There are M fixed scatterers representing the stationary

objects in the room, such as walls, furniture, etc. Hence, the CTF representing the received

CSI is modelled by

H (t, fq) = HM (t, fq) +
M∑

m=1

HF,m, (5.1)

where

HM (t, fq) = cM ejθM,q(t), (5.2)

HF,m = cF,m ejθF,m . (5.3)

The first term in (5.1) denotes the CTF corresponding to the CoM of the moving object and

associated with the qth subcarrier frequency fq. The second term is the CTF corresponding

to the fixed scatterers. The time variant (TV) function θM,q(t) in (5.2) denotes the phase

shift caused by the CoM of the moving object, which is given by

θM,q(t) = θM − 2π (f0 + fq) τM(t). (5.4)
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The expression for the TV channel phase in (5.4) is a special case of the one provided

in (4.1), as there exists only one moving point scatterer. The same applies to the time variant

propagation delay (TV-PD) τM(t) and the expression in (4.2), as well. Note that in the

simulation the phases θM and θF,m are independently and identically distributed (i.i.d.) with

uniform distribution from 0 to 2π. Intuitively, the time variant mean Doppler shift (TV-MDS)

of the CTF model provided in (5.1) is given by

B
(1)
fq
(t) =

c2M fM,q(t)

c2M +
M∑

m=1

c2F,m

. (5.5)

The function fM,q(t) denotes the Doppler frequency caused by the moving point scatterer SM

corresponding to the CoM of the rigid body and associated with the qth subcarrier frequency.

The expression of fM,q(t) is similar to the one provided in (4.5).

5.2.2 Trajectory Model of a Moving Pendulum

In Paper E, a pendulum experiment has been conducted. Measured CSI and IMU data have

been collected simultaneously. A 3 kg medicine ball was attached to the ceiling with a rope.

The ball was covered with aluminium foil. There was an IMU device attached to the center

of the ball. The IMU was configured to collect linear accelerations and Euler angles. The ball

was swinging while the IMU and the CSI data has been collected. More information about

the measurement scenario can be found in the paper. The rotation matrix of the collected

IMU data has been computed to rotate the linear acceleration by using the Euler angles from

the IMU’s frame to the reference frame. Then, the rotated accelerations were integrated

twice to obtain the displacements. To resolve the drift issues resulting from the integral

computation, an extended version of the zero-update (ZUPT) algorithm provided in [111]

has been implemented. After that, the displacements have been fed to the channel model

proposed in the paper. The pendulum displacements in x, y, and z directions are modelled by

x
M
(t) = L sin

(
arcsin

(xmax

L

)
cos

(√
g

L
t

))
, (5.6)

y
M
(t) = 0, (5.7)

z
M
(t) = L

{
1− cos

[
arcsin

(
x

M
(t)

L

)]}
, (5.8)

respectively. The parameter L denotes the distance between the ceiling and the CoM of the

ball. The parameters g and xmax designate the gravitational acceleration and the pendulum’s

maximum displacement, respectively. Further details about the values of these parameter can

be found in Paper E.
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The results have shown a good fit between the IMU data and the mechanical model. There

were two models, one model was fed with the IMU data, while the other one was fed with the

mechanical model presented in (5.6)–(5.8).

5.2.3 Principle Results

The spectrogram has been employed to extract the micro-Doppler signatures of the

modelled and measured CSI. The micro-Doppler signatures and the TV-MDSs of the measured

CSI, the channel model fed with IMU data, and channel model fed with the trajectory model

provided in (5.6)–(5.8) have been evaluated in the paper. The results have shown good

qualitative agreements.

Fig. 5.1 shows the spectrograms S̃(f, t), S(f, t), and Ŝ(f, t) of the channel model with

IMU data as input (a), the channel model fed with the mechanical model as input (b), and

the recorded CSI data (c), respectively. The sinusoid Doppler frequency patterns exhibited in

Fig. 5.1 are due to the periodic trajectory of the pendulum. Figs. 5.1 shows a good agreement

between the spectrograms S̃(f, t), S(f, t), and Ŝ(f, t). Figure 5.2 depicts the TV-MDSs

B̃(1)(t), B(1)(t), and B̂(1)(t) evaluated from the spectrograms S̃(f, t), S(f, t), and Ŝ(f, t) by

using (4.10), respectively. There is a good match between the TV-MDSs in Fig. 5.2.

For further quantitative evaluation, more trials have been collected. Then, the normalized-

mean-square error (NMSE) between the TV-MDS of the measured CSI B̂
(1)
µ,k(t) and the

TV-MDS of the IMU-driven channel model B
(1)
µ,k(t) has been computed for each trial. The

NMSE γk of the kth is given by the following expression

γµ,k =

Tobs∫
0

(
B̃

(1)
µ,k(t)− B̂

(1)
µ,k(t)

)2
dt

Tobs∫
0

(
B̂

(1)
µ,k(t)

)2
dt

, (5.9)

for k = 1, 2, . . . , K. Note that the TV-MDSs B̂
(1)
µ,k(t) and B̃

(1)
µ,k(t) have been computed from

the micro-Doppler signatures of the measured CSI and the IMU-driven model, respectively.

The parameters Tobs and K denote the observation time and the total number of trials,

which were 15 s and 20 in the paper, respectively. In the results of the paper, the maximum,

minimum, and average NMSE values are 0.1829, 0.0477, and 0.0932, respectively. From the

results in the paper, it can be concluded that the model presented has a good accuracy.

5.3 Modelling the Received CSI from a Moving Person

This section provides an overview of the contribution of Paper F. The paper presents an IMU-

driven non-stationary wideband channel model to study the impact of a single moving person

on the micro-Doppler signatures of the measured CSI. In the paper the major body segments
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(a) (b)

(c)

Figure 5.1: Spectrograms (a) S̃µ(f, t) of the channel model fed with the IMU data as

input, (b) Sµ(f, t) of the channel model with the mechanical trajectory model of the pendulum

as input, and (c) Ŝµ(f, t) of the measured CSI.

of the moving person have been modelled as a single cluster of moving point scatterers. A

model of the CTF representing the wideband channels with multiple subcarriers is provided

in this section. Furthermore, the model takes into account the TV path gains associated with

the moving point scatterers.

5.3.1 The CTF Model

In the paper, the major body segments of a single moving person have been modelled as a

cluster of N moving point scatterers. Hence, the CTF is modelled as
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Figure 5.2: The TV-MDSs B̃
(1)
µ (t), B

(1)
µ (t), and B̂

(1)
µ (t) computed from the spectrograms of

the channel model with the IMU data as input, the mechanical model as input, and the

measured CSI, respectively.

H (t, fq) =
N∑
n=1

HM,n (t, fq) +
M∑

m=1

HF,m, (5.10)

where

HM,n (t, fq) = cM,n(t) e
jθM,n,q(t). (5.11)

The first term in (5.10) denotes the CTF of the received signals from the moving point

scatterers corresponding to the active person. The second term in (5.10) designates the CTF

associated with the fixed scatterers representing the fixed objects in indoor environments,

such as walls, floor, ceiling, furniture, etc, and was discussed in Section 5.2. The TV function

θM,n,q(t) in (5.11) is the phase shift caused by the nth moving point scatterer SM
n and associated

with the qth subcarrier frequency. The expressions of the TV phase θM,n,q(t) and the TV

Doppler shift fn,q(t) caused by the nth moving point scatterer SM
n have been discussed

previously in (4.1) and (4.5), respectively. The TV path gain in (5.10) corresponding to the

nth moving point scatterer SM
n is given by

cM,n(t) = λ aM,n

[
dRM,n(t) d

T
M,n(t)

]− η
2 , (5.12)

where the parameters λ = c0/f0 and η denote the wavelength of the signal and the path loss

exponent, respectively. The parameter aM,n depends on the cross-section, the transmission
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power, and the transmitter and receiver antenna gains [40] associated with the nth moving

point scatterer SM
n . The functions dTM,n(t) and dRM,n(t) are the Euclidean distances mentioned

in Section 3.2. From the model presented in (5.10), it is straight forward to express its

TV-MDS by the following expression

B
(1)
fq
(t) =

N∑
n=1

c2M,n(t)fn,q (t)

N∑
n=1

c2M,n(t) +
M∑

m=1

c2F,m

. (5.13)

5.3.2 Human Activity Micro-Doppler Signature of the IMU-driven

Channel Model

In Paper F, the micro-Doppler signatures of the CTF model have been extracted by

employing the spectrogram. An approximate solution of the spectrogram has been provided

by approximating the Doppler frequencies of the moving point scatterers into linear functions

of time during the spectrogram window interval. Moreover, the path gain in (5.12) has been

assumed to be constant during the window interval of the spectrogram. Furthermore, it has

been shown how to extract the TV-MDS from the micro-Doppler signatures of the CTF.

Measurement data has been collected from the CSI and IMU devices simultaneously for

the following human activities walking away, sitting, and falling towards. For the walking

activity, the candidate wore six IMUs, two on the candidate’s ankles, two on his wrists, one

on his torso, and one on his head. For the falling and sitting activities, two IMUs were used,

one was on the candidate’s torso, and the other one was on his head.

The data collected by using the IMUs, have been rotated by using the Euler angles to

construct the rotation matrix, so that the measured linear accelerations are projected onto

the reference frame. Then, the linear accelerations have been processed to compute the TV

displacements. Finally, the TV displacements corresponding to each activity have been fed to

the channel model to compute the spectrogram and the TV-MDSs. For the measured CSI,

the procedures for computing the spectrogram are the same as in Section 4.3 and Paper D.

Paper F provides a more detailed flow chart for processing the raw measured IMU and the

measured CSI data. Moreover, it has been shown how to extract the radar cross-section aM,n

of each moving point scatterer SM
n from the TV-MDS computed from the micro-Doppler

signature of the measured CSI.

In the paper, the spectrograms and the TV-MDSs of the IMU-driven channel model and

the measured CSI are depicted. The spectrograms of the IMU-driven channel model have

been evaluated by numerical computation and the approximated solution provided in the

paper. The results have shown good agreement between the spectrograms of the simulated

IMU-driven model and the measured CSI. Furthermore, the TV-MDSs computed from the

spectrograms of the IMU-driven channel model and the measured CSI have been provided.
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The results in the paper have shown good fit between the TV-MDSs of the IMU-driven model

and the measured CSI.

5.3.3 Principle Results

In this section, we will explore some results of Paper F. Figs. 5.3(a) and 5.3(b) exhibit the

walking activity spectrograms Ŝµ(f, t) and S̃µ(f, t) of the measured CSI and the IMU-driven

channel model, respectively. There is a good match between the two spectrograms in Fig. 5.3.

In Fig. 5.3(b) the Doppler patterns associated with the ankles are blurred due to the cross-

term; however, they are clear in the auto-term demonstrated in the paper. The spectrograms

Ŝµ(f, t) and S̃µ(f, t) of the measured CSI and the IMU-driven channel model are depicted

in Figs. 5.4(a) and 5.4(b), respectively. These spectrograms correspond to the falling activity.

There is also a good match between Ŝµ(f, t) and S̃µ(f, t). Although the candidate only wore

two IMUs in this scenario, there is also a good agreement between Ŝµ(f, t) and S̃µ(f, t) as

shown in Fig. 5.4. Figs. 5.5(a) and 5.5(b) illustrate the falling activity spectrograms Ŝµ(f, t)

and S̃µ(f, t) of the measured CSI data and the IMU-driven channel model, respectively.

Again, there is a good match between the spectrograms in Fig. 5.5. The auto-terms of the

IMU-driven model corresponding to the aforementioned activity are presented in the paper.

The TV-MDSs of the walking, falling, and sitting activities are demonstrated in Figs. 5.6(b),

5.6(a), and 5.6(c), respectively. The TV-MDSs have been computed by using the expression

provided by (4.10). The results in Fig. 5.2 show good agreement between the TV-MDSs of

the measured CSI and the IMU-driven model.

(a) Ŝµ(f, t) (b) Sµ(f, t)

Figure 5.3: Walking activity spectrograms of the (a) measured CSI data and (b) IMU-driven

channel model.
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(a) Ŝµ(f, t) (b) Sµ(f, t)

Figure 5.4: Falling activity spectrograms of the (a) measured CSI data and (b) IMU-driven

channel model.

(a) Ŝµ(f, t) (b) Sµ(f, t)

Figure 5.5: Sitting activity spectrograms of the (a) measured CSI data and (b) IMU-driven

channel model.

5.4 Chapter Conclusion

In this chapter an overview of the contributions of Papers E and F has been provided.

The papers have developed IMU-driven channel models that allow for the extraction of the

micro-Doppler signatures corresponding to a moving object and a moving human. The

expressions of the CTF of both models have been provided. Moreover, a framework for
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Figure 5.6: The TV-MDSs of the measured CSI and the IMU-driven channel model corre-

sponding to (a) walking, (b) falling, and (c) sitting activities.

processing the raw data collected from the CSI and the IMUs has been demonstrated. The

results of the contribution allow for the design of simulation-based HAR systems. The next

chapter summarizes the major contributions of the dissertation and discusses possible future

research ideas.





Chapter 6

Summary and Outlook

This dissertation establishes a relationship between the field of the non-stationary channel mod-

elling and non-wearable human activity recognition (HAR) systems based on radio-frequency

(RF) sensing technologies. In this chapter, the major contributions of this dissertation are

summarized in Section 6.1. Furthermore, future research directions are discussed in Section 6.2.

6.1 Major Contributions

In this dissertation, several new channel models were presented to simulate the micro-Doppler

signatures of human activities. These channel models put more emphasis on the time variant

(TV) phases caused by the moving scatterers. The models take into account the TV speed,

horizontal angle of motion (HAOM), vertical angle of motion (VAOM), azimuth angle of

departure (AAOD), elevation angle of departure (EAOD), azimuth angle of arrival (AAOA),

and elevation angle of arrival (EAOA) associated with the moving scatterers. The work in this

dissertation shifts the paradigm towards the design of simulation-based HAR systems. This

can be done by using synthetic data to train the classifiers instead of using real data, which is

not reproducible and time-consuming. The contribution of this dissertation is summarized as

follows:

� A two-dimensional (2D) non-stationary fixed-to-fixed (F2F) channel model was proposed.

This channel model allows extracting the micro-Doppler features associated with the

moving scatterers in 2D geometry.

� A three-dimensional (3D) non-stationary channel model was developed. Such a model

considers a moving person as a moving single point scatterer representing the head

and takes into account the 3D trajectory of a moving scatterer. Thus, it enables the

generation of realistic micro-Doppler signatures associated with human activities and

can therefore be used in simulating the falling activities of a moving person.
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� Another 3D cluster channel model was developed. This model considers the moving

person as a cluster of moving scatterers. Such a model allows simulating the micro-

Doppler signatures of human gait scenarios. The trajectories of wrists, head, torso, and

ankles associated with human walking activity were developed, as well (see Paper C).

� The possibility of extracting the true micro-Doppler signatures from measured channel-

state-information (CSI) signals has been demonstrated. This was achieved by employing

back-to-back (B2B) connection between the transmitter (Tx) and receiver (Rx) stations.

This connection helps to eliminate the TV phase distortions caused by the clock

asynchronization between the stations while keeping the true phases associated with

human activities. Also, this helps to use commercial-off-the-shelf (COTS) devices to

benchmark the proposed channel models.

� An inertial measurement unit (IMU)-driven channel model was presented. This model

allows simulating the micro-Doppler signature associated with a moving rigid body.

This is done by modelling the center of mass (CoM) of the rigid body as a single moving

point scatterer. The model was validated by taking the measurements of CSI and IMU,

simultaneously. The extracted trajectories from the measured IMU was fed to the

channel model. The micro-Doppler signatures and the time variant mean Doppler shifts

(TV-MDSs) of the IMU-driven and the measured CSI showed good agreement.

� Another IMU-driven channel model was developed. This model can be used to simulate

the micro-Doppler signatures of human activities. The model takes into account the TV

path gain associated with the moving scatterers, as well. The micro-Doppler signatures

and the TV-MDSs of the IMU-driven model were confirmed with those computed from

measured CSI. Both of the IMU and the CSI measurements were collected simultaneously.

The micro-Doppler signatures and the TV-MDSs of the measured CSI and the IMU-

driven showed good matches.

6.2 Future Work

This dissertation focuses on modelling, analysis, and simulation of non-stationary F2F

channels. Such a work paves the way towards shifting the paradigm of HAR systems from

measurement-based to simulation-based approaches. This section lights up some future ideas

such as:

� The proposed work in this dissertation was for single-input single-output (SISO) channels.

The work can be extended to massive multiple-input multiple-output (MIMO) channels.

Massive MIMO systems theoretically have shown their eligibility of reducing the cross-

terms of the micro-Doppler signatures in fixed-to-mobile (F2M) channels [78]. It
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worth investigating the eligibility of such systems in reducing the cross-term of the

micro-Doppler signatures of measured indoor F2F channels.

� In Papers G and H (not included in the dissertation), the human activity classifiers

(HACs) have been trained using the TV-MDSs of the measured and calibrated CSI data.

It worth training the classifiers by the micro-Doppler signatures or the TV-MDSs of the

IMU-driven channel models and investigating their eligibility recognizing the human

activities of the measured CSI or any other RF data.

� An alternative way to extract the trajectories of the moving human is to employ

distributed MIMO systems. These systems can be used to estimate the trajectories

of the moving human from the micro-Doppler signatures of each channel. This has

been proven in simulated channels in [112,113]. If the methods mentioned in [112,113]

are applicable for measured channels, then the extracted trajectories can be used to

reproduce the micro-Doppler signatures and TV-MDSs.

� Moreover, RF-sensing can be used for the understanding of sign language (SL). For

example, the micro-Doppler signatures of the measured RF signals influenced by the

hand gestures can be used to train machines to generate to translate text messages.

Hence, it can help to understand people with hearing disabilities by translating SL to

text.

� Time-frequency distributions used to compute the micro-Doppler signatures can be

employed for further computation, such as image formation (IF). IF is helpful to

understand the facial expressions of humans as a further application in the field of

RF-sensing.
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Abstract — When modelling mobile radio channels with moving scatterers, it is

generally assumed that the angles of departure (AODs), angles of arrival (AOAs),

and the speed of the scatterers are time-invariant. However, this assumption

is violated as the AODs and AOAs vary with the positions of the moving scat-

terers. Also, the speed of the moving scatterers might vary with time due to

acceleration/deceleration. In this paper, we model the time-variant Doppler fre-

quencies by taking into account the time-variant AODs, AOAs, and the variations

of the speed of the moving scatterers. Furthermore, the complex channel gain

of non-stationary single-input-single-output (SISO) fixed-to-fixed (F2F) indoor

channels with moving and fixed scatterers is presented. The spectrogram of the

complex channel gain using a Gaussian window is provided. The correctness of the

analytical solutions is confirmed by simulations. The contribution of this paper

paves the way towards the development of a passive in-home activity tracking

system.



A



Paper A

A.1 Introduction

By 2060, around one third of the Europeans will be over 65 years old according to the report [1]

released by the European Commission in 2015. At this point in time, the ratio between the

working people and the retired seniors will become 2 to 1 instead of 4 to 1. The demand for

in-home activity tracking of older people will increase to distinguish critical instances such as

falls due to health problems from normal instances like walking, standing, and sitting down.

This motivates us to analyze the Doppler spectral characteristics which is influenced by the

in-home activity of older people.

In the literature, the Doppler effect caused by moving scatterers has been incorporated

in wide-sense stationary vehicle-to-vehicle (V2V) [2, 3], fixed-to-fixed (F2F) [4], and fixed-

to-mobile (F2M) [5] channel models. However, to the best of our knowledge, there is no

study on the Doppler characteristics of non-stationary F2F indoor channels with moving

people. In this paper, we apply the concept of the spectrogram to reveal the time-variant

spectral information of non-stationary F2F indoor channels. The spectrogram is one of the

time-frequency distributions that has many applications in music [6, 7], radar detection [8],

earthquake records [9], and remote data sensing in underwater environments [10]. The concept

of the spectrogram in the field of mobile radio channels has been first introduced in [11],

where it has been applied to the estimation of the Doppler power spectral density of multipath

fading channels. Later, it has been extended in [12] to reveal the time-variant spectral

information of multipath fading channels by taking into account the speed variations of the

mobile station. Moreover, the authors showed that the quality of the spectrogram can be

improved by removing the spectral interference by averaging over the random channel phases

of the multipath components. Other contributions to the reduction of the spectral interference

can be found in, e.g., [13–15].

Our work starts with introducing a new indoor non-stationary SISO F2F channel model

in which the locations of the scatterers are restricted to be inside a rectangular propagation

area such as a room or an office. From this model, the time-variant AOAs, AODs, and

their approximations using a first-order Taylor series are derived. Then, the time-variant

Doppler frequencies based on the time-variant AOAs, AODs, and speeds are derived with

their approximations using a first-order Taylor series. Based on these approximations, the

instantaneous channel phases are presented. Using the instantaneous channel phases, the

complex channel gain that consists of the sum of the plane wave components arriving from

fixed and moving scatterers at the receiver is presented. The closed-form solution of the

spectrogram of the complex channel gain is provided in this paper and represented as a

sum of an auto-term and a cross-term. The auto-term of the spectrogram shows the desired

time-variant spectral characteristics of each component of the complex channel gain. However,

the cross-term, which represents the undesired spectral interference between the multipath

components, affects the resolution of the spectrogram. In this paper, we use the method

A
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proposed in [12, 16] to reduce the effect of the cross-term. In addition, the time-variant mean

Doppler shift and the time-variant Doppler spread will be derived using the spectrogram.

The rest of the paper is organized as follows. Section A.2 presents the indoor F2F

multipath propagation scenario. Section A.3 derives the complex channel gain of the F2F

indoor non-stationary channel with time-variant AODs, AOAs, and speed of moving scatterers.

Section A.4 shows the analytical solution of the spectrogram of the complex channel gain using

a Gaussian window. Section A.5 presents the numerical results and simulations. Section A.6

summarizes our contribution and discusses directions of future work.

A.2 The Indoor Multipath Propagation Scenario

The indoor multipath propagation scenario under consideration (see Fig. A.1) consists of

a room with length A and width B centralized at the origin O, a fixed transmitter (Tx) at

position (xT , yT ), and fixed receiver (Rx) at position (xR, yR). Also, the scenario includes N

moving persons, which are modelled for simplicity by N moving point scatterers SM
n (n =

1, 2, . . . , N) located at initial positions (xM
n , y

M
n ), where the trajectory of each scatterer is

described by a time-variant speed vn(t) and a constant angle of motion (AOM) αvn . In

addition, the scenario includes walls and fixed objects which are considered as sources for

M fixed point scatterers SF
m (m = 1, 2, . . . ,M) located at positions (xF

m, y
F
m). For simplicity,

we model each moving (fixed) object as a single moving (fixed) scatterer. Single bounce

scattering is assumed, i.e., each transmitted plane wave arrives at the receiver after a single

bounce either on a fixed scatterer SF
m or a moving scatterer SM

n . Moreover, it is assumed

that the Tx and Rx are equipped with single omnidirectional antennas. Furthermore, the

line-of-sight (LOS) component is assumed to be obstructed. The initial Euclidean distance at

time t = 0 between the moving scatterer SM
n and Tx and between SM

n and Rx are determined

by

dTn =
√

(xM
n − xT )2 + (yMn − yT )2 (A.1)

dRn =
√
(xM

n − xR)2 + (yMn − yR)2, (A.2)

respectively.

A.3 Derivation of The Complex Channel Gain

A.3.1 Modelling the Time-Variant Speed

The moving scatterers SM
n in the considered multipath propagation scenario in the previous

section have velocities v⃗n(t) for n = 1, 2, . . . , N , which are expressed as vectors in Cartesian
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Figure A.1: An indoor propagation scenario with fixed scatterers SF
m and moving scatterers

SM
n .

coordinates by v⃗n(t) = vn(t) cos (αvn) x̂ + vn(t) sin (αvn) ŷ, where x̂ (ŷ) denotes the x (y)

direction. The time-variant speed of the nth moving scatterer SM
n is given by

vn(t) = vn + ant (A.3)

where vn and an denote the initial speed of the nth moving scatterer and its acceleration/de-

celeration, respectively. From the speed of the moving scatterer, the time-variant positions

xn(t) and yn(t) of the nth moving scatterer SM
n can be calculated as follows

xM
n (t) = xM

n +

[
vnt+

1

2
ant

2

]
cos (αvn) (A.4)

yMn (t) = yMn +

[
vnt+

1

2
ant

2

]
sin (αvn) , (A.5)

respectively. The parameters xM
n and yMn are the initial x and y coordinates of the nth moving

scatterer SM
n , respectively.
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A.3.2 Modelling the Time-Variant AODs and AOAs

The time-variant AOD αT
n (t) is defined as the angle between the direction of the transmitted

wave travelling towards the nth moving scatterer SM
n and the positive x-axis. According to

Fig.A.1, αT
n (t) can be expressed as

αT
n (t) = arctan

(
yMn (t)− yT

xM
n (t)− xT

)
. (A.6)

Similarly, the time-variant AOA αR
n (t) is determined by the angle between the direction of

the wave travelling from the nth moving scatterer SM
n to Rx and the positive x-axis. The

AOA αR
n (t) can be expressed as

αR
n (t) = arctan

(
yMn (t)− yR

xM
n (t)− xR

)
. (A.7)

From (A.6) and (A.7), the AODs αT
n (t) and AOAs αR

n (t) are non-linear functions of time

t. However, using the first-order Taylor series, they can be approximated by the following

expressions

αT
n (t) ≈ αT

n + γT
n t (A.8)

αR
n (t) ≈ αR

n + γR
n t (A.9)

where

αT
n = αT

n (t)|t=0 = arctan

(
yMn − yT

xM
n − xT

)
(A.10)

αR
n = αR

n (t)|t=0 = arctan

(
yMn − yR

xM
n − xR

)
(A.11)

γT
n =

d

dt
αT
n (t)|t=0 =

vn sin
(
αvn − αT

n

)
dTn

(A.12)

γR
n =

d

dt
αR
n (t)|t=0 =

vn sin
(
αvn − αR

n

)
dRn

. (A.13)

A.3.3 Modelling the Time-Variant Doppler Frequencies

Due to the Doppler effect, the instantaneous time-variant Doppler frequency introduced by

the nth moving scatterer with time-variant speed vn(t), AOA αR
n (t), and AOD αT

n (t) is given

by [2, 5]

fn(t) = −fn,max(t)
[
cos
(
αT
n (t)− αvn

)
+ cos

(
αvn − αR

n (t)
)]

(A.14)

where

fn,max(t) =
f0vn(t)

c0
(A.15)
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denotes the maximum time-variant Doppler frequency due to the speed of the nth moving

scatterer.

The parameters f0 and c0 in (A.15) represent the carrier frequency and the speed of light,

respectively. The expression of the Doppler frequency introduced by the nth moving scatterer

SM
n in (A.14) can be simplified using the first-order Taylor series. This simplified expression

is given by

fn(t) ≈ fn + knt (A.16)

where

fn = fn(0)

= −fn,max

[
cos
(
αT
n − αvn

)
+ cos

(
αvn − αR

n

)]
(A.17)

kn =
d

dt
fn(t)|t=0

= fn,max

{
γT
n sin

(
αT
n − αvn

)
− γR

n sin
(
αvn − αR

n

)
− an

vn

[
cos
(
αT
n − αvn

)
+ cos

(
αvn − αR

n

)]}
(A.18)

in which fn,max is the initial maximum Doppler frequency at t = 0, i.e, fn,max = fn,max(0) =

f0vn/c0. The term kn in (A.18) can be expressed as the sum of four terms. The first and

second terms are due to the rate of change of the AOD and AOA respectively, and the third

and fourth terms correspond to the acceleration (deceleration) of the nth moving scatterer.

For the given indoor propagation scenario, if the parameters given by (A.10)–(A.13) and αvn

are constant, the time-variant Doppler frequency fn(t) is a deterministic process. Otherwise,

fn(t) becomes a stochastic process if at least one of these parameters or more are random

variables. It should be mentioned that, if we set the parameters γR
n , γ

T
n , and an to zero, the

expressions in (A.14) and (A.16) reduce to fn = −fn,max

[
cos
(
αT
n − αvn

)
+ cos

(
αvn − αR

n

)]
,

which represents the Doppler shift caused by a moving scatterer SM
n in stationary channels

without velocity variations [2–5].

A.3.4 Time-Variant Channel Phases and Complex Channel Gain

The time-variant channel phases using the instantaneous Doppler frequency in (A.16) are

calculated according to [17] as

θn(t) = 2π

∫ t

−∞
fn(x)dx ≈ θn + 2π

(
fnt+

kn
2
t2
)

(A.19)

where the first term θn is the initial channel phase, which can be modelled as a random

variable with uniform distribution over the interval between 0 and 2π (i.e., U ∼ (0, 2π)) [17].
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After the instantaneous channel phase is obtained, we can express the complex channel gain

consisting of N +M paths in non-line-of-sight environments as

µ(t) =
N∑

n=1

cne
j[2π(fnt+ kn

2
t2)+θn] +

M∑
m=1

cme
jθm . (A.20)

The first term in (A.20) represents the sum of multipath components coming from N

moving scatterers. It has to be mentioned that, this term is analogous to the complex

channel gain of the models presented in [12, 16, 17]. The second term denotes the sum of

multipath components coming from M fixed scatterers. The parameter cn (cm) represents

the attenuation that happens due to the interaction between the signal and the nth moving

(mth fixed) scatterer. The phase shift θn (θm) is caused by the signal interaction with the

na moving scatterer SM
n for n = 1, 2, . . . , N (mth fixed scatterer SF

n for m = 1, 2, . . . ,M)

scatterer. These quantities are supposed to be identically and independently distributed (i.i.d.)

random variables each with uniform distribution between 0 and 2π. The model expressed by

(A.20) is a non-stationary indoor channel model. From this model, the time-variant mean

Doppler shift and Doppler spread can be expressed according to [17] as

B
(1)
f (t) =

N∑
n=1

c2nfn(t)

N∑
n=1

c2n +
M∑

m=1

c2m

(A.21)

and

B
(2)
f (t) =

√√√√√√√
N∑

n=1

c2nf
2
n(t)

N∑
n=1

c2n +
M∑

m=1

c2m

−
(
B

(1)
f (t)

)2
, (A.22)

respectively. In the next section, the spectrogram analysis will be presented in order to

identify the spectral behaviour of the proposed model.

A.4 Spectrogram Analysis Using a Gaussian Window

The main idea behind the spectrogram is to divide the time-variant signal into short-time

overlapping signals. This is done by multiplying this signal with a short-time signal (sliding

window) h(t). Then, the Fourier-transform of each overlapping signal is calculated to get

the so-called short-time Fourier transform (STFT). Finally, the STFT is multiplied by its

complex conjugate to obtain the spectrogram. This concept is used to identify the spectral
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behavior of time-variant deterministic or stochastic signals. The Gaussian window function is

defined as

h(t) =
1

√
σwπ1/4

e
− t2

2σ2
w (A.23)

where σw is called the window spread. A high value of the window spread σw results in a

high frequency resolution and a low time localization and vice versa. Hence, choosing the

window size is always a trade-off between the time and frequency resolutions. The window

used to calculate the spectrogram is real, positive, and even. It has also a unit energy (i.e.,∫∞
−∞ h2(t)dt = 1). After multiplying the complex channel gain presented in (A.20) by the

window function in (A.23), we can express the short-time complex channel gain as follows

x(t′, t) = µ(t′)h(t′ − t) (A.24)

where t denotes the local time in which we want to analyze the spectral properties of the

complex channel gain, and t′ is the running time. The window is centralized around the local

time t in (A.24). The STFT of the complex channel gain µ(t) is obtained by computing the

Fourier transform of (A.24) w.r.t. the running time t′, i.e.,

X(f, t) =

∫ ∞

−∞
x(t′, t)e−j2πft′dt′. (A.25)

Finally, the spectrogram of the complex channel gain µ(t) in (A.20) is obtained by multiplying

(A.25) by its complex conjugate. It can be represented as

Sµ(f, t) = |X(f, t)|2. (A.26)

After substituting the complex channel gain presented in (A.20) and the Gaussian window

function according to (A.23) in (A.24) and applying the Fourier transformation with respect

to t′ [see (A.25)], we obtain the following closed-form solution of the STFT of the complex

channel gain

X(f, t) =
e−j2πft

√
σwπ1/4

[ N∑
n=1

µn(t)G(f, fn(t), σ
2
x,n)

+
M∑

m=1

µm(t)G(f, 0, σ2
x,m)

]
(A.27)

where

G(f, fn(t), σ
2
x) =

e
− (f−fn(t))2

2σ2
x

√
2πσx

(A.28)

σ2
x,n =

1− j2πσ2
wkn

(2πσw)2
(A.29)

σ2
x,m =

1

(2πσw)2
. (A.30)
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In the equations above, the function fn(t) and the parameter kn are given by (A.16) and

(A.18), respectively. After substituting (A.27) in (A.26), we get the spectrogram of the

complex channel gain µ(t). By using the results in [16], the spectrogram Sµ(f, t) in (A.26)

can be expressed in closed form as

Sµ(f, t) = S(a)
µ (f, t) + S(c)

µ (f, t) (A.31)

where S
(a)
µ (f, t) is called the auto-term, and the second term S

(c)
µ (f, t) denotes the cross-term.

The auto-term is given by

S(a)
µ (f, t) =

N∑
n=1

c2nG(f, fn(t), σ
2
n) +

M∑
m=1

c2mG(f, 0, σ2
m) (A.32)

where

σ2
n =

1 + (2πσ2
wkn)

2

2(2πσw)2
(A.34)

σ2
m =

1

2(2πσw)2
. (A.35)

The auto-term S
(a)
µ (f, t) in (A.32) is a real and positive function that represents the desired

spectral characteristics of the channel due to the time-variant Doppler frequencies. The result

in (A.32) states that S
(a)
µ (f, t) can be expressed as a sum of Gaussian functions weighted by

the squared path gains c2n and c2m for moving and fixed scatterers, respectively, and centralized

at their corresponding instantaneous Doppler frequencies. The weighted Gaussian functions

of the first term of the auto-term S
(a)
µ (f, t) in (A.32) are centralized at the instantaneous

Doppler frequencies introduced by the moving scatterers. In the second term of (A.32), the

weighted Gaussian functions are centralized at zero frequency, as stationary scatterers do

not cause Doppler shifts in F2F channels. An interesting observation is that the variance σ2
n

in (A.35) of the Gaussian function G(f, fn(t), σ
2
n) of the first term of the auto-term S

(a)
µ (f, t)

depends on the parameter kn, which determines the rate of change of the Doppler frequency

in (A.16).

The cross-term S
(c)
µ (f, t) of the spectrogram is presented in (A.33), where µn(t) and µm(t)

are the complex gains corresponding to the moving scatterer SM
n and the fixed scatterer

SF
n , respectively is considered as the undesired spectral interference component. This term

consists of a sum of (N +M)(N +M − 1)/2 components. From (A.33), it is obvious that the

cross-term is real valued, but not necessarily positive. In order to remove the cross-term, the

statistical average over the random channel phases θn of the spectrogram has to be taken [12],

i.e,

E
{
Sµ(f, t)

} ∣∣∣∣
θn

= E
{
S(a)
µ (f, t)

} ∣∣∣∣
θn

+ E
{
S(c)
µ (f, t)

} ∣∣∣∣
θn

= S(a)
µ (f, t) (A.36)
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S(c)
µ (f, t) =

2

σw

√
π

[
N−1∑
n=1

N∑
m=n+1

ℜ
{
G(f, fn(t), σ

2
x,n)G

∗(f, fm(t), σ
2
x,m)µn(t)µ

∗
m(t)

}

+
M−1∑
m=1

M∑
n=m+1

ℜ
{
G(f, 0, σ2

x,m)G
∗(f, 0, σ2

x,n)µm(t)µ
∗
n(t)

}

+
N∑

n=1

M∑
m=1

ℜ
{
G(f, fn(t), σ

2
x,n)G

∗(f, 0, σ2
x,m)µn(t)µ

∗
m(t)

}]
(A.33)

where E{·} is the expectation operator. The reason behind canceling the cross-term S
(c)
µ (f, t)

by taking the average over θn is that E{ej(θn−θm)} equals zero in the case of n ̸= m. Note

that the auto-term S
(a)
µ (f, t) is not affected by taking the average over θn, as E{ej(θn−θm)} = 1

for n = m. This method requires many sample functions of Sµ(f, t), which can be generated

for different realizations of θn and θm. Then, the spectrograms of each trial will be summed

up and divided by the total number of trials, and hence, the cross-term approaches zero. The

results of this method will be presented in Section A.5.

Since the auto-term S
(a)
µ (f, t) in (A.32) contains the desired spectral information of the

channel, one can calculate the time-variant mean Doppler shift B
(1)
µ (t) as follows

B(1)
µ (t) =

∫∞
−∞ fS

(a)
µ (f, t)∫∞

−∞ S
(a)
µ (f, t)

. (A.37)

Analogously, the time-variant Doppler spread B
(2)
µ (t) can be obtained from the auto-term

S
(a)
µ (f, t) and is given by means of

B(2)
µ (t) =

√√√√∫∞
−∞ f 2S

(a)
µ (f, t)∫∞

−∞ S
(a)
µ (f, t)

−
(
B

(1)
µ (t)

)2
. (A.38)

A.5 Numerical Results and Simulations

In this section, simulations and numerical results are presented for an indoor scenario with

certain parameters. The value for the carrier frequency f0 has been set to 5.9GHz. The

spectral behavior of the channel was studied over the interval from t = 0 to 5 s. With reference

to Fig. A.2, the chosen values for the length A and the width B of the room were 10m and

5m, respectively. The locations of Tx and Rx were (−3.5, 2.4) and (−4.9, 0), respectively.

The number of the moving scatterers (persons) N was chosen to be 3, and the number of fixed

scatterers (walls and other objects) M was equal to 7. In the considered scenario, the first

two moving scatterers SM
1 and SM

2 , which start from different locations, and move towards

A
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Figure A.2: The chosen scenario illustrates the locations of Tx, Rx, and the moving scatterers

as well as their directions of motion.

the same destination (termination) point at constant initial speeds. Then, they start to

decelerate until they reach the termination point with zero speed value and stop moving.

The third scatterer SM
3 moves away from the termination point along a horizontal line at

a constant speed and during the whole observation interval. The motion directions of the

moving scatterers are indicated in Fig. A.2 by dashed lines. In order to simulate this scenario,

the initial locations of the moving scatterers SM
1 , SM

2 , and SM
3 according to Fig. A.2 are (1, 2),

(−2, 2), and (4.5, 0), respectively, and the termination point of SM
1 and SM

2 is located at (5, 0).

The AOMs of SM
1 and SM

2 are computed based on their initial locations and the termination

point. The AOM of the moving scatterer SM
3 is π rad. The initial speed of each of the moving

scatterers is 1 m/s and the deceleration parameters of SM
1 and SM

2 are −0.5m/s2. The path

gains of the moving and fixed scatterers were calculated from the following equations

cn = σ0

√
2ηN
N

and cm = σ0

√
2ηM
M

(A.39)

respectively. The parameters ηN and ηM were used to determine the contribution of the

moving and fixed scatterers, such that ηN + ηM = 1. The chosen values of σ0, ηN and ηM
are 1, 0.5, and 0.5, respectively. The time-variant Doppler frequencies introduced by the

moving scatterers are shown in Fig. A.3. This figure depicts the Doppler frequencies of the
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moving scatterers after substituting the exact expression of the AODs and AOAs given by

(A.6) and (A.7), respectively in (A.14). Also, Fig. A.3 depicts the approximate solution of

the time-variant Doppler frequencies according to (A.16). Since, the moving scatterers SM
1

and SM
2 have three speed states, their approximated time-variant Doppler frequencies using

Taylor series have three states, which can be expressed as follows

fn(t) =


fn,1 + kn,1t, if 0 ≤t < tn,1,

fn,2 + kn,2(t− tn,1), if tn,1 ≤t < tn,2,

fn,3, if tn,2 ≤t

(A.40)

for n = 1, 2. The time instants tn,1 and tn,2 are those in which the moving scatterers start

to decelerate and stop moving, respectively. The parameter kn,2 is evaluated at the time

instance tn,2, which means that γT
n , γ

R
n , α

T
n , and αR

n were evaluated at the same time instant.

It is shown in Fig. A.3 that the approximations represented in (A.16) deviate from the exact

solution according to (A.14). These deviations happen due to the approximation of the AODs

and AOAs given by (A.8) and (A.9), respectively.

The analysis and simulations of the spectrogram are shown in Figs. A.4 and A.5, re-

spectively. We have chosen σw = 1/
√
2π|k1,2| [16]. The figures show that the results of the

analytical solution in (A.31) are similar to those of the simulations. They also show how

the cross-term of the spectrogram interferes with the auto-term. This happens especially

with the spectrum of the fixed scatterers at f = 0Hz, as they are about to vanish. The

effect of the cross-term is also obvious starting from time t ≈ 4 s. It should be mentioned

that the parameters θn and θm are the same for the analysis and the simulation. Figure A.4

shows the auto-term of the spectrogram according to (A.32). In Fig. A.6, the simulations of

the spectrogram are depicted, after taking the average over multiple trials as mentioned in

Section A.4. The simulations in Fig. A.6 show a perfect removal of the cross-term such that

the spectrogram approaches the auto-term depicted in Fig. A.7. After removing the cross-term,

the spectral lines become clearer, especially those of the fixed scatterers at f = 0Hz and after

t ≈ 4 s. Fig. A.8 depicts the time-variant mean Doppler shift B
(1)
f (t) after substituting

(A.14) and (A.16) in (A.21). This figure shows the deviations between the time-variant mean

Doppler shift after substituting the exact expression given by (A.14) and the approximation

expressed by (A.16) in (A.21). These deviations occur due to the approximation using the

Taylor series of the AODs and AOAs given by (A.8) and (A.9), respectively. Also, Fig. A.8

depicts the time-variant mean Doppler shift B
(1)
µ (t) after applying (A.37) to the auto-term

given by (A.32) and to the simulation of the spectrogram after taking the average over the

random phases. This figure shows a perfect match between B
(1)
f (t) and B

(1)
µ (t), meaning that

the proposed channel model is consistent w.r.t the time-variant mean Doppler shift [17].

Fig. A.9 depicts the time-variant Doppler spread B
(2)
f (t). This figure shows the deviations

between the time-variant Doppler spread after substituting the exact expression given by

(A.14) and the approximation expressed by (A.16) in (A.22). Also, Fig. A.9 depicts the

A
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Figure A.3: Instantaneous Doppler frequencies caused by the moving scatterers using the

exact expression in (A.14) and the approximation in (A.16).

time-variant Doppler spread B
(2)
µ (t) after applying (A.38) to the auto-term given by (A.32)

and to the simulation of the spectrogram after taking the average over the random phases.

This figure shows a perfect match between B
(2)
f (t) and B

(2)
µ (t), i.e, the model is also consistent

w.r.t the time-variant Doppler spread [17].

A.6 Conclusion

In this paper, we presented the spectrogram of indoor non-stationary F2F channels with fixed

and moving scatterers. We derived the time-variant channel parameters, their approximations,

and the complex channel gain from the geometrical model. Then, a closed-form solution

of the spectrogram using a Gaussian window was presented. Moreover, we introduced how

the cross-term of the spectrogram can be eliminated by taking the average over the random

channel phases. Furthermore, we showed how to calculate the time-variant mean Doppler

shift and Doppler spread from the spectrogram. Finally, a good match between the results
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Figure A.4: Spectrogram Sµ(f, t) of the complex channel gain µ(t) according to (A.31).

Figure A.5: Spectrogram Sµ(f, t) (simulation) of the complex channel gain µ(t).
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Figure A.6: Spectrogram Sµ(f, t) (simulation) of the complex channel gain µ(t) after taking

the average over the channel phases θn.

of the analysis and the simulations was shown. This model is beneficial for passive fall

detection systems because it reveals the time-variant spectral information in the case of

walking scenarios.

For future work, we propose to extend this model to three-dimensional (3D) MIMO

channels as the MIMO techniques allow to reduce the cross-term of the spectrogram by taking

the average in the spatial domain rather than taking the average over the random phases.

Also, we propose to extend this model to 3D geometry so that the spectral information can

be analyzed in the case of 3D motions such as, standing, sitting, falling or jumping.
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Figure A.7: Auto-term of the spectrogram S
(a)
µ (f, t) of the complex channel gain µ(t) according

to (A.32).
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Figure A.8: Time-variant mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) obtained from (A.21) and

(A.37), respectively.
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Figure A.9: Time-variant Doppler spreads B
(2)
f (t) and B

(2)
µ (t) computed according to (A.22)

and (A.38), respectively.
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Abstract — This paper concerns the Doppler power spectrum of three- dimen-

sional non-stationary indoor fixed-to-fixed channels with moving people. Each

moving person is modelled as a moving point scatterer with time-variant (TV)

speed, TV vertical angles of motion, and TV horizontal angles of motion of the

moving scatterers. Furthermore, we derive the TV angular parameters of each

moving scatterer, such as the elevation angle of departure, the azimuth angle of

departure, the elevation angle of arrival, and the azimuth angle of arrival. In

addition, the TV unit vectors of departure and the TV unit vectors of arrival

are derived. Furthermore, to present the approximated Doppler power spectrum

characteristics of such channels, we provide an approximate solution of the spec-

trogram of the complex channel gain. The correctness of the analysis is approved

by simulations. The contribution of this paper is an initiative for the development

of device-free indoor activity monitoring and fall detection systems.
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B.1 Introduction

By 2060, over one third of the Europeans will be above 65 years old according to the study

reported by the European Commission in 2015 [1]. According to this study, the ratio between

the retired seniors and the working people will be doubled. This will result in an increased

demand for in-home activity recognition systems for elder people to distinguish falls from

other normal activities such as, walking, sitting, standing, and jumping. These activities

follow three-dimensional (3D) trajectories. This motivates us to analyze the influence of

human activities on the Doppler power spectrum of 3D fixed-to-fixed (F2F) indoor channels.

The aim of this paper is to design a channel simulator that helps to analyze the influence

of fall activities of the people on the approximated Doppler power spectrum characteristics of

3D indoor channels. In the literature, many fall detection systems have been developed using

video-surveillance [2, 3] or wearable sensors [4]. The main disadvantage of video surveillance-

based or portable sensor-based fall detection systems is that the person might be outside

the surveillance area or forget to wear the sensor. The authors of [5,6] tracked the motion

of people by analyzing the measured received signal power. In this paper, we analyze the

approximation of the true Doppler power spectrum of indoor channels, which is influenced by

the movement of people, by means of the spectrogram.

In the literature, the Doppler frequency caused by the motion of the scatterers has been

incorporated in wide-sense stationary vehicle-to-vehicle [7], F2F [8], and fixed-to-mobile

channels [9]. The time-variant (TV) Doppler effect caused by moving scatterers has been

modelled in two-dimensional (2D) indoor F2F channels in [10]. In this paper, we use the

spectrogram to study the influence of human activities, such as walking and falling, on the

characteristics of 3D indoor multipath propagation channels. The spectrogram is one of the

time-frequency representations used to represent the TV power spectrum of multi-component

signals [11]. It has many applications in the area of TV signals [12], speech analysis and

identification [13], acoustics [14], and seismology [15]. Furthermore, it has first been introduced

in non-stationary multipath fading channels with variations of the mobile speed in [16]. One

of the main disadvantages of the spectrogram, is the cross-term that reduces its resolution.

Due to this problem, contributions to enhance the resolution of the spectrogram in mobile

fading channels can be found in [10,16,17].

This paper begins with the introduction of a new 3D non-stationary single-input single-

output (SISO) F2F channel model with TV parameters, such as the elevation angles of

departure (EAODs), azimuth angles of departure (AAODs), elevation angles of arrival

(EAOAs), azimuth angles of arrival (AAOAs), vertical angles of motion (VAOMs), and

horizontal angles of motion (HAOMs) of the moving scatterers. The model also accounts

for the TV speed of the moving scatterers. From these TV parameters, the expressions of

the TV Doppler frequencies, instantaneous channel phases, and complex channel gain of the

multipath non-stationary F2F channels are provided. Furthermore, an approximation of the
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spectrogram of the complex channel gain is presented in closed-form as a sum of two terms, an

auto-term and a cross-term. The auto-term provides an insight into the approximation of the

desired Doppler power spectrum of the proposed model. On the other hand, the cross-term,

which is considered as an undesired spectral interference term, reduces the resolution of the

spectrogram. The closed-form approximation of the spectrogram is confirmed by simulations.

The rest of the paper is organized as follows. Section B.2 illustrates the 3D multipath

propagation F2F propagation scenario with moving and fixed scatterers. Section B.3 discusses

the TV channel parameters, TV Doppler frequencies, and the complex channel gain of our

proposed model. Section B.4 provides the closed-form approximation of the spectrogram

including the auto-term and the cross-term of the complex channel gain. Section B.5 discusses

the numerical results of the spectrogram and illustrates the influence of human activities

on 3D indoor multipath channels. Section B.6 summarizes our contribution and proposes

possible extensions of our work.

B.2 The 3D Multipath Propagation Scenario

We consider the 3D indoor multipath propagation scenario presented in Fig. B.1, which

consists of a fixed transmitter (Tx), a fixed receiver (Rx), fixed objects, and moving persons. A

more abstract representation of such a 3D indoor propagation scenario leads to the geometrical

channel model shown in Fig. B.2. This geometrical model describes a propagation scenario

with a fixed transmitter (Tx) at position
(
xT , yT , zT

)
and a fixed receiver (Rx) located at(

xR, yR, zR
)
. The scenario includes N moving persons, modelled for simplicity by N moving

point scatterers SM
n (▲) for n = 1, 2, . . . , N , where each one starts from an initial position at(

xM
n , y

M
n , zMn

)
and moves with a TV velocity vector v⃗n(t). The 3D trajectory of each moving

scatterer SM
n is described by its TV speed vn(t) = |v⃗n(t)|, the TV VAOM βvn(t), and the TV

HAOM αvn(t). In addition, the scenario includes walls and other objects which are modelled

for simplicity as M fixed point scatterers SF
m (⋆) for m = 1, 2, . . . ,M . Furthermore, single

bounce scattering is assumed, i.e., each plane wave that the transmitter emits bounces on

either a fixed or moving scatterer before arriving at the receiver. Both Tx and Rx are equipped

with omnidirectional antennas. It is also assumed that the line-of-sight (LOS) is obstructed.

The parameters βT
n (t), α

T
n (t), β

R
n (t), and αR

n (t) shown in Fig. B.2 are TV functions that denote

EAOD, AAOD, EAOA, and AAOA, respectively.
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Figure B.1: A 3D non-stationary indoor multipath propagation scenario with moving persons.
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Figure B.2: A 3D non-stationary indoor multipath propagation scenario with N moving

scatterers SM
n (n = 1, 2, . . . , N) and M fixed scatterers SF

m (m = 1, 2, . . . ,M).

B.3 Derivation of the Complex Channel Gain

B.3.1 TV Velocity and TV Angular Functions

According to Fig. B.2, each moving scatterer SM
n is described by a TV velocity vector v⃗n(t)

which is given by

v⃗n (t) =
[
vn,x (t) , vn,y (t) , vn,z (t)

]
(B.1)
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where the velocities vn,x (t), vn,y (t), and vn,z (t) can be expressed in terms of the TV speed

vn(t), TV VAOM βvn(t), and TV HAOM αvn(t) as

vn,x (t) = vn (t) cos (βvn (t)) cos (αvn (t)) (B.2)

vn,y (t) = vn (t) cos (βvn (t)) sin (αvn (t)) (B.3)

vn,z (t) = vn (t) sin (βvn (t)) . (B.4)

The TV locations xn(t), yn(t), and zn(t) of the nth moving scatterer SM
n can be obtained

from each component of the TV velocity vector v⃗n(t) by

xn(t) = xM
n +

t∫
0

vn,x(t
′)dt′ (B.5)

yn(t) = yMn +

t∫
0

vn,y(t
′)dt′ (B.6)

zn(t) = zMn +

t∫
0

vn,z(t
′)dt′. (B.7)

From the TV locations in (B.5)–(B.7), the TV Euclidean distance dTn (t) between Tx and the

nth moving scatterer SM
n can be obtained as

dTn (t) =
√

(xn(t)− xT )2 + (yn(t)− yT )2 + (zn(t)− zT )2. (B.8)

Similarly, the TV Euclidean distance dRn (t) between Rx and the nth moving scatterer SM
n is

given by

dRn (t) =
√
(xn(t)− xR)2 + (yn(t)− yR)2 + (zn(t)− zR)2. (B.9)

From the TV locations in (B.5)–(B.7) and the TV distances in (B.8) and (B.9), one can

obtain the TV EAOD βT
n (t), TV AAOD αT

n (t), TV EAOA βR
n (t), and TV AAOA αR

n (t) as

follows:

βT
n (t) = arcsin

(
zn(t)− zT

dTn (t)

)
(B.10)

αT
n (t) = atan2

(
yn(t)− yT , xn(t)− xT

)
(B.11)

βR
n (t) = arcsin

(
zn(t)− zR

dRn (t)

)
(B.12)

αR
n (t) = atan2

(
yn(t)− yR, xn(t)− xR

)
. (B.13)

The atan2 function in (B.11) stands for the inverse trigonometric function that returns the

angle between −π and π, unlike the arctan function which returns the angle between −π/2
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and π/2. It should be mentioned that the elevation angles βT
n (t) and βR

n (t) range from −π/2

to π/2 and the azimuth angles αT
n (t) and αR

n (t) from −π and π. The TV HAOM αvn(t) and

TV VAOM βvn(t) can be expressed by the instantaneous velocities vn,x(t), vn,y(t), and vn,z(t)

of the nth moving scatterer by

αvn(t) = atan2 (vn,y(t), vn,x(t)) (B.14)

βvn(t) = arcsin

 vn,z(t)√
v2n,x(t) + v2n,y(t) + v2n,z(t)

 (B.15)

respectively, where αvn(t) ∈ (−π, π] and βvn(t) ∈
[
−π

2
, π
2

]
.

The unit vector of departure ϕ⃗T
n (t) of the wave transmitted from Tx towards the nth

moving scatterer SM
n can be expressed by the TV EAOD βT

n (t) and AAOD αT
n (t) as follows

ϕ⃗T
n (t) =

cos
(
αT
n (t)

)
cos
(
βT
n (t)

)
sin
(
αT
n (t)

)
cos
(
βT
n (t)

)
sin
(
βT
n (t)

)
 . (B.16)

Analogously, the unit vector of arrival ϕ⃗R
n (t) of the wave travelling from the nth moving

scatterer SM
n to Rx can be expressed by the TV EAOA βR

n (t) and AAOA αR
n (t) as follows

ϕ⃗R
n (t) =

cos
(
αR
n (t)

)
cos
(
βR
n (t)

)
sin
(
αR
n (t)

)
cos
(
βR
n (t)

)
sin
(
βR
n (t)

)
 . (B.17)

B.3.2 Modelling the TV Doppler Frequency

The Doppler frequency fn(t) caused by the motion of the nth moving scatterer SM
n can be

calculated by

fn(t) = − v⃗n (t) ϕ⃗
T
n (t) + v⃗n (t) ϕ⃗

R
n (t)

λ

= −fn,max (t)

×
{
cos (βvn (t))

[
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
) ]

+ sin (βvn (t))

×
[
sin
(
βT
n (t)

)
+ sin

(
βR
n (t)

)]}
(B.18)

where

fn,max (t) =
vn (t)

λ
(B.19)
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denotes the maximum Doppler frequency. The symbol λ in (B.19) represents the wavelength

of the carrier signal. The Doppler frequency fn(t) in (B.18) is a TV deterministic process if

the initial position
(
xM
n , y

M
n , zMn

)
and the velocity v⃗n(t) of the scatterer SM

n are known and

the locations of Tx and Rx are fixed.

The model for the Doppler frequencies fn(t) in (B.18) includes several special cases. For

example, if the function βvn (t) equals zero, then (B.18) reduces to

fn(t) =− fn,max (t)

{
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
)}

(B.20)

which is analogous to the Doppler frequencies of moving scatterers in 3D non-stationary

vehicle-to-vehicle (V2V) channels. If we set the functions βvn (t), β
T
n (t), and βR

n (t) to zero,

and αvn(t) is supposed to be a constant, i.e., αvn(t) = αvn , then (B.18) reduces further to

fn(t) =− fn,max (t)

{
cos
(
αT
n (t)− αvn

)
+ cos

(
αvn − αR

n (t)
)}

(B.21)

which equals the Doppler frequency caused by a moving scatterer in 2D non-stationary F2F

channels as modelled in [10]. Moreover, if all the parameters in (B.18) are constants, then

the Doppler frequency becomes independent of time, i.e.,

fn =− fn,max

{
cos (βvn)

[
cos
(
βT
n

)
cos
(
αT
n − αvn

)
+ cos

(
βR
n

)
cos
(
αvn − αR

n

) ]
+ sin (βvn)

×
[
sin
(
βT
n

)
+ sin

(
βR
n

)]}
(B.22)

which equals the Doppler frequency of 3D stationary F2F channels with scatterers moving

with constant velocities and time-invariant angular parameters. Finally, if we set βvn to zero,

then the expression in (B.22) reduces to

fn = −fn,max

{
cos (βvn)

[
cos
(
βT
n

)
cos
(
αT
n − αvn

)
+cos

(
βR
n

)
cos
(
αvn − αR

n

) ]}
(B.23)

which equals the expression of the Doppler frequencies of scatterers moving in the x-y plane

of 2D wide-sense stationary channels.
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For the purpose of this paper, we approximate the Doppler frequencies fn(t) in (B.18) by L

piecewise linear functions according to

fn(t) ≈ fn,l(t) = fn(tl)+kn,l(t− tl) (B.24)

for tl < t ≤ tl+1 and l = 0, 1, . . . , L, where

kn,l =
fn(tl+1)− fn(tl)

tl+1 − tl
. (B.25)

It should be noted that the difference between two adjacent time instances tl+1 and tl, i.e.,

∆ = tl+1 − tl, is the same for all values of l = 0, 1, . . . , L.

B.3.3 Modelling the TV Channel Phases and Complex Channel

Gains

As shown in [18], the instantaneous channel phases θn,M(t) of the multipath component

associated with the nth moving scatterer SM
n can be computed from the Doppler frequency

fn(t) by

θn,M(t) = 2π

t∫
−∞

fn(t
′)dt′ = θn,M + 2π

t∫
0

fn(t
′)dt′ (B.26)

where the first term θn,M denotes the initial channel phase at t = 0 which is generally unknown

and will thus be modelled by a random variable with a uniform distribution between 0 and

2π, i.e., θn,M ∼ U (0, 2π]. After the instantaneous channel phases θn,M(t) are obtained, the

complex channel gain µ(t) of the N +M received multipath components can be modelled by

µ(t) =
N∑

n=1

cn,M ejθn,M(t) +
M∑

m=1

cm,F e
jθm,F . (B.27)

The first term in (B.27) represents the sum of the multipath components associated with the

N moving scatterers. Each component is determined by a stochastic phase process θn,M(t)

and a constant path gain cn,M. The second term in (B.27) represents the sum of the multipath

components associated with the M fixed scatterers. The parameters cn,M and θn,M (cm,F

and θm,F) are the path gain and the phase shift caused by the interaction of the signal with

the nth moving (mth fixed) scatterer SM
n (SF

m), respectively. It has to be mentioned that

θn,M and θm,F are uniformally, independent, and identically distributed in the interval (0, 2π].

The expression in (B.27) represents a stochastic model for the complex channel gain of a 3D

non-stationary indoor F2F channel with moving and fixed scatterers.
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From this model, the TV mean Doppler shift B
(1)
f (t) and the TV Doppler spread B

(2)
f (t) can

be calculated by [18]

B
(1)
f (t) =

N∑
n=1

c2n,M fn(t)

N∑
n=1

c2n,M +
M∑

m=1

c2m,F

(B.28)

and

B
(2)
f (t) =

√√√√√√√
N∑

n=1

c2n,M f 2
n(t)

N∑
n=1

c2n,M +
M∑

m=1

c2m,F

−
(
B

(1)
f (t)

)2
(B.29)

respectively.

B.4 Spectrogram Analysis

The spectrogram Sµ(f, t) of µ (t) is obtained in 3 steps. In the first step, the TV complex

channel gain µ(t) is multiplied by a window function h(t). Here, the chosen window function

is a Gaussian function

h(t) =
1√

σw

√
π
e
− t2

2σ2
w (B.30)

where σw is the Gaussian window spread parameter. In general, the window function is real

and even with unit energy, i.e.,
∫∞
∞ h2(t)dt = 1. The short-time complex channel gain x(τ, t)

is defined in [19, Eq. (2.3.1)] by

x(τ, t) = µ(τ)h(τ − t) (B.31)

where τ denotes the running time, and t is the local time. The second step is to compute the

Fourier transform of the short-time signal w.r.t. the running time τ to obtain the short-time

Fourier transform (STFT). The STFT X(f, t) of the complex channel gain µ(t) in (B.27) can

be obtained as

X(f, t) =

∞∫
−∞

x(τ, t)e−j2πfτdτ

=
e−j2πft

√
σwπ1/4

{
N∑

n=1

µn,M(t)G
(
f, fn,l(t), σ

2
x,n,l,M

)
+

M∑
m=1

µm,F G
(
f, 0, σ2

x,m,F

)}
(B.32)
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for tl < t ≤ tl+1 (l = 0, 1, · · · , L), where

G
(
f, fn,l(t), σ

2
x,n,l,M

)
=

e
−

(f−fn,l(t))
2

2σ2
x,n,l,M

√
2πσx,n,l,M

(B.33)

σ2
x,n,l,M =

1− j2πσ2
wkn,l

(2πσw)2
(B.34)

σ2
x,m,F =

1

(2πσw)2
. (B.35)

The function µn,M(t) (parameter µm,F) denotes the complex gain corresponding to the nth

moving (mth fixed) scatterer SM
n (SF

m). The expression in (B.33) represents a complex

Gaussian function with a time-variant mean fn,l(t) and variance σ2
x,n,l,M. The parameter kn,l

in (B.34), which is defined in (B.25), denotes the rate of change of the Doppler frequency

fn,l(t). By multiplying the STFT X(f, t) presented in (B.32) by its complex conjugate, one

obtains the spectrogram Sµ(f, t) as follows

Sµ(f, t) = |X(f, t)|2 = S(a)
µ (f, t) + S(c)

µ (f, t) (B.36)

where S
(a)
µ (f, t) and S

(c)
µ (f, t) denote the auto-term and the cross-term, respectively. The

auto-term is given by

S(a)
µ (f, t) =

N∑
n=1

c2n,M G
(
f, fn,l(t), σ

2
n,l,M

)
+

M∑
m=1

c2m,FG
(
f, 0, σ2

m,F

)
(B.37)

for tl < t ≤ tl+1, where

σ2
n,l,M =

1 + (2πσ2
wkn,l)

2

2(2πσw)2
(B.38)

σ2
m,F =

1

2(2πσw)2
. (B.39)

The auto-term S
(a)
µ (f, t) given by (B.37) is real and positive. This term consists of a sum

of N + M components and represents the approximation of the desired Doppler power

characteristics of the 3D indoor non-stationary F2F channel with moving scatterers. It is a

sum of weighted Gaussian functions, where the weighting factors are given by the squared

path gains c2n,M and c2m,F of the moving scatterers and the fixed scatterers, respectively. The

Gaussian functions of the first term in (B.37) are centered on fn,l(t) of the moving scatterers.

The second term of S
(a)
µ (f, t) in (B.37) is centered on the origin as the fixed scatterers do
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not cause Doppler shifts in F2F channels. The cross-term S
(c)
µ (f, t), which is given by (B.40)

at the bottom of this page, represents the undesired spectral interference term consisting

of (N +M) (N +M − 1)/2 components. This term is a real, but not necessarily a positive

function. The operator ℜ{·} in (B.40) denotes the real part of a complex function. It is

obvious that the auto-term S
(a)
µ (f, t) in (B.37) is independent of the phases θn,M and θm,F,

unlike the cross-term S
(c)
µ (f, t) in (B.40) which depends on them. Hence, the cross-term can

be eliminated by applying the expectation operator to the spectrogram Sµ(f, t) and averaging

over the random channel phases θn,M and θm,F, i.e., E {Sµ(f, t)}
∣∣
θn,M,θm,F

= S
(a)
µ (f, t).

The TV mean Doppler shift B
(1)
µ (t) and the TV Doppler spread B

(2)
µ (t) can be computed

from the spectrogram Sµ(f, t) by [10]

B(1)
µ (t) =

∞∫
−∞

fSµ(f, t)df

∞∫
−∞

Sµ(f, t)df

(B.41)

and

B(2)
µ (t) =

√√√√√√√√
∞∫

−∞
f 2Sµ(f, t)df

∞∫
−∞

Sµ(f, t)df

−
(
B

(1)
µ (t)

)2
(B.42)

respectively.

B.5 Numerical Results

In this section, numerical results are presented for a 3D non-stationary indoor scenario, which

is illustrated in Fig. B.3. The value of the carrier frequency f0 was chosen to be 5.9GHz. The

S(c)
µ (f, t) =

2

σw

√
π

[
N−1∑
n=1

N∑
m=n+1

ℜ
{
G
(
f, fn,l(t), σ

2
x,n,l,M

)
G∗ (f, fm,l(t), σ

2
x,m,l,M

)
µn,M(t)µ

∗
m,M(t)

}

+
M−1∑
n=1

M∑
m=n+1

ℜ
{
G
(
f, 0, σ2

x,n,F

)
G∗ (f, 0, σ2

x,m,F

)
µn,F µ

∗
m,F

}

+
N∑

n=1

M∑
m=1

ℜ
{
G
(
f, fn,l(t), σ

2
x,n,l,M

)
G∗ (f, 0, σ2

x,m,F

)
µn,M(t)µ

∗
m,F

}]
(B.40)
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channel has been analyzed over an observation interval Tobs of 4 s. The size of the room was

10 m long, 5 m wide, and 2.4 m high. The transmitter and the receiver had the same location

at (5m, 5m, 2.25m). The chosen number of fixed scatterers (walls and fixed objects) M was

equal to 7. The number of moving scatterers N (moving persons) was chosen to be 1. In

this scenario, we considered the head trajectory of the moving person. The path gains of the

moving and fixed scatterers were computed using the following equations

cn,M = σ0

√
2ηN
N

and cm,F = σ0

√
2ηM
M

(B.43)

respectively, where the parameters ηN and ηM allow for balancing the contribution of moving

and fixed scatterers, respectively, which are subject to the following condition ηN + ηM = 1.

The values of σ0, ηN , and ηM were set to 1, 0.7, and 0.3, respectively. The chosen value

for the window spread parameter σw is 0.033 s. The value of the parameter ∆ introduced

in Subsection B.3.2 was set to 2σw. With reference to Fig. B.3, we consider a scenario that

includes one moving scatterer representing the head of a moving person. There are three

phases in the scenario:

Phase 1 : The person walks 2 m at a constant speed in a time interval of 2.5 s.

Phase 2 : When the person starts to fall forward, this phase lasts about 1 s until the head

reaches the floor.

Phase 3 : After the person’s body reaches the floor, the moving scatterer becomes a fixed

scatterer.

The head trajectory during the walking phase is modelled by

z(t) = hstep cos (2πfstept) + hhead. (B.44)

The accuracy of this model has been confirmed in [20] by the trajectory extracted from a

video surveillance-based human activity detection system. The azimuth angle of motion

αvn(t) during the walking phase was 50◦. The parameter hstep in (B.44) denotes the step

height of the head during the walk. This parameter was equal to 2.7 cm. The parameter hhead

stands for the height of the person, which was set to 1.7m. The parameter fstep denotes the

walking frequency, which is equivalent to the horizontal speed Vh over the step length Ls [21].

The value of the step length Ls was set to 30 cm. The horizontal speed value Vh during the

walking phase was 0.8m/s. The vertical speed Vv during the walking phase was computed by

taking the derivative of (B.44) with respect to time. After the fall starts, Vh and Vv increase

linearly with time until they reach the final speed values 2.5m/s and 3.25m/s at the end of

fall, respectively [22].

Fig. B.4 depicts the results of the analysis of the spectrogram Sµ(f, t) by using (B.36).

The simulation results were similar to the analytical results, but they were not included

in this paper for brevity. In the simulation, the complex channel gain µ(t) was generated

using the values provided earlier in this section. The values of θn,M and θm,F were obtained
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from the outcomes of a random generator with uniform distribution between (0, 2π]. The

simulation results have been obtained by simulating µ(t) in (B.27) by using MATLAB and

then, computing the spectrogram from the simulated waveform µ(t). Fig. B.4 visualizes the

influence of the head trajectory and walking speed on the spectrogram of the complex channel

gain during the interval starting from t = 0 s to t = 2.5 s. Also, this figure illustrates the

impact of the variation of the head speed on the spectrogram during the fall starting from

t = 2.5 s to t = 3.5 s. During this interval, the speed increases rapidly with time due to

the fall. From t = 3.5 s until t = 4 s, the spectrogram has a strong spectral component

at f = 0Hz because the head is no longer moving after the fall, i.e., its speed as well

as the Doppler frequency are zero. It has to be mentioned that the characteristics of the

approximated Doppler power spectrum of the fixed and moving scatterers is not obvious due

to the impact of the cross-term reducing the resolution of the spectrogram. Fig. B.5 shows

the auto-term of the spectrogram S
(a)
µ (f, t) according to (B.37). In this figure, it can be seen

that the resolution of the spectrogram has been enhanced after removing the cross-term by

taking the average of the spectrogram Sµ(f, t) over the random phases θn,M and θm,F.

0

0.5

1

0

1.5

2

2.5

5

10
543210

Figure B.3: Test scenario and the head trajectory.

Fig. B.6 depicts the TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) obtained from (B.28)

and (B.41), respectively. The TV mean Doppler shift B
(1)
µ (t) was computed numerically from

the analytical expression in (B.41) and the simulation of the spectrogram using MATLAB.

Although B
(1)
µ (t) is influenced by the cross-term of the spectrogram, one can recognize the

impact of the fall during the interval between t = 2.5 s and t = 3.5 s. There is a good

B
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match between analytical and simulation results in Fig. B.6. Fig. B.7 depicts the TV

Doppler spreads B
(2)
f (t) and B

(2)
µ (t) obtained from (B.29) and (B.42), respectively. Again,

the analytical solution of the spectrogram and the corresponding simulation results were

used to obtain B
(2)
µ (t) by means of (B.42). Notice that, the impact of the fall on B

(2)
µ (t) is

recognizable despite of the cross-term.

Figure B.4: Spectrogram (analysis) of the complex channel gain µ(t).
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Figure B.5: The auto-term S
(a)
µ (f, t) (analysis) of the spectrogram of the complex channel

gain µ(t).

B.6 Conclusion

In this paper, we presented a 3D multipath propagation model that reveals the influence

of human activity on the characteristics of indoor multipath fading channels using the

spectrogram. We started to model moving people as moving point scatterers. Then, we

derived of the TV EAOAs, AAOAs, EAODs, AAODs, HAOMs, VAOMs, the Doppler

frequencies caused by the moving point scatterers, and the complex channel gain of the indoor

channels. After that, we showed the influence of moving people on such channels by providing

an approximate solution of the spectrogram. Moreover, we showed the influence of the human

activity on the TV mean Doppler shift and TV Doppler spread derived from the spectrogram.

The spectrogram, TV mean Doppler shift, and TV Doppler spread enable us to distinguish

between fall and walking activities. For future work, we plan to model people by a more
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Figure B.6: TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) obtained from (B.28) and (B.41),

respectively.

realistic cluster of moving scatterers.
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Figure B.7: TV Doppler spreads B
(2)
f (t) and B

(2)
µ (t) computed according to (B.29) and (B.42),

respectively.
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Abstract — This paper proposes a three-dimensional (3D) non-stationary

fixed-to-fixed indoor channel simulator model for human activity recognition.

The channel model enables the formulation of temporal variations of the received

signal caused by a moving human. The moving human is modelled by a cluster

of synchronized moving scatterers. Each of the moving scatterers in a cluster

is described by a 3D deterministic trajectory model representing the motion

of specific body parts of a person, such as wrists, ankles, head, and waist. We

derive the time-variant (TV) Doppler frequencies caused by the motion of each

moving scatterer by using the TV angles of motion, angles of arrival, angles

of departure. Moreover, we derive the complex channel gain of the received

signal. Furthermore, we analyze the TV Doppler power spectral density of the

complex channel gain by using the concept of the spectrogram and present its

expression in approximated form. Also, we derive the TV mean Doppler shift

and TV Doppler spread from the approximated spectrogram. The accuracy of

the results is validated by simulations. The channel simulator is beneficial for

the development of activity recognition systems with non-wearable devices as the

demand for such systems has increased recently.
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C.1 Introduction

In 2017, according to the United Nations’ World Aging Report the number of people age

60 and older was 962 million, which is more than double the 1980 figure [1]. By 2050, the

number of over-60s is expected to double from 2017. Also, the number of people age 80 and

older is expected to triple from 137 million to 425 million between 2017 and 2050. These

figures indicate a high demand for eldercare systems, such as in-home activity recognition

systems to classify normal activities such as walking and sitting as well as abnormal activities

such as falls.

In the literature, fall detection systems have been developed using wearable inertial

measurement units (IMUs) [2] and video surveillance systems [3]. The main drawback of

such systems is that the user may forget to wear the sensor or might go outside the coverage

area of the video surveillance system. Another disadvantage is that these systems break

the privacy of the user. To overcome these drawbacks, radio-frequency-based (RF-based)

non-wearable human tracking systems have been introduced by the authors of [4]. Such

systems use RF-based sensors that operate by using frequency-modulated carrier waves. These

systems track humans by using wave components scattered by their bodies.

The compound Doppler effect caused by moving scatterers has been studied in two-

dimensional fixed-to-mobile channels in [3]. The time-variant (TV) Doppler effect caused by

moving scatterers has been modelled in F2F non-stationary indoor channels [5, 6], and in 3D

non-stationary MIMO channels in [7]. In order to analyze the TV Doppler power spectrum,

we use the concept of the spectrogram, which is one of the time-frequency distributions that

provides insight into the TV power spectral density of multicomponent signals [8]. It is

also used in applications such as fall detection [9, 10], classification of human activities [11],

and enables to distinguish between armed and unarmed persons for security and rescue

services [12]. The main drawback of the spectrogram is the cross-term that has an impact on

its resolution. Contributions have been introduced to overcome this problem in mobile fading

channels in [13].

The goal of this paper is to model the influence of different body parts of a walking person

on the Doppler power spectrum characteristics of three-dimensional (3D) fixed-to-fixed (F2F)

indoor channels. We introduce a 3D non-stationary F2F channel model with fixed scatterers

and clusters of synchronized moving scatterers as an extension to the model presented in [6].

An expression of the TV Doppler frequency of each moving scatterer in a cluster is provided

in terms of the TV speed, the TV azimuth angles of departure (AAOD), the TV elevation

angles of departure (EAOD), the TV azimuth angles of arrival (AAOA), the TV elevation

angles of arrival (EAOA), the TV horizontal angles of motion (HAOM), and the TV vertical

angles of motion (VAOM). Furthermore, the instantaneous channel phases and the complex

channel gain of the 3D non-stationary F2F multipath fading channel are presented. Moreover,

an approximation of the spectrogram of the complex channel gain is provided as a sum of
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the auto-term and the cross-term. The auto-term gives us an approximation of the true TV

Doppler power spectral density of the complex channel gain, while the cross-term is considered

as an undesired spectral interference term that reduces the resolution of the spectrogram. The

TV mean Doppler shift and the TV Doppler spread are also derived from the spectrogram.

The novelty of this paper lies not only in presenting a non-stationary F2F model with fixed

scatterers and clusters of moving scatterers, but also in presenting deterministic trajectory

models of different body parts of a walking person.

The remaining sections of this paper are divided as follows. Section C.2 discusses a

multipath propagation scenario with a fixed transmitter, a fixed receiver, fixed scatterers,

and clusters of moving scatterers. Section C.3 derives an exact and approximate solution

of the TV Doppler frequencies of the moving scatterers of the clusters, TV channel phases,

complex channel gain, TV mean Doppler shift, and TV Doppler spread. Section C.4 presents

an approximate solution of the spectrogram. By using the spectrogram, we compute the TV

mean Doppler shift and the TV Doppler spread. Section C.5 discusses the numerical results,

introduces realistic mathematical trajectory models of the motion of the major body parts of

a walking human, and shows the influence of them on the spectrogram, the TV mean Doppler

shift, and the TV Doppler spread. Section C.6 summarizes our work and suggests possible

ideas for future work.

C.2 The 3D Indoor Propagation Scenario

Consider the multipath propagation scenario in Fig. C.1. This scenario consists of a fixed

transmitter (Tx), a fixed receiver (Rx), moving persons, and fixed objects. The transmitter

and the receiver are located at (xT , yT , zT ) and (xR, yR, zR), respectively. Each moving person

is modelled by a cluster of synchronized moving scatterers SM
n,m for n = 1, 2, . . . , Nm and

m = 1, 2, . . . , Nc, where Nm is the number of moving scatterers of the mth cluster, and Nc is

the number of clusters. Each moving scatterer SM
n,m has a starting position at

(
xM
n,m, y

M
n,m, z

M
n,m

)
.

The 3D trajectory of the nth moving scatterer of the mth cluster is described by its TV

speed vn,m(t), TV HAOM αvn,m (t), and TV VAOM βvn,m (t). In Fig. C.1, we have stationary

objects, such as walls and furniture which are simply modelled as M fixed scatterers SF
m

for m = 1, 2, . . . ,M . Single bounce scattering and non-line-of-sight (NLOS) conditions are

assumed. Moreover, it is assumed that the Tx and Rx are deployed with omnidirectional

antennas.

C.3 The Complex Channel Gain

The TV Doppler frequency fn,m(t) caused by the TV speed vn,m(t), TV HAOM αvn,m(t), TV

VAOM βvn,m(t), TV AAOD αT
n,m(t), TV EAOD βT

n,m(t), TV AAOA αR
n,m(t), and TV EAOA
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Figure C.1: A 3D non-stationary multipath propagation scenario with moving persons, a

fixed transmitter, a fixed receiver, and fixed objects.

βR
n,m(t) of the nth moving scatterer SM

n,m of the mth cluster is given by [6]

fn,m(t) = −fn,m,max (t)

{
cos
(
βvn,m (t)

)
×
[
cos
(
βT
n,m(t)

)
cos
(
αT
n,m(t)− αvn,m (t)

)
+ cos

(
βR
n,m(t)

)
cos
(
αvn,m (t)− αR

n,m(t)
) ]

+ sin
(
βvn,m (t)

) [
sin
(
βT
n,m(t)

)
+ sin

(
βR
n,m(t)

)]}
(C.1)

where

fn,m,max (t) =
vn,m (t) f0

c
. (C.2)

The parameters f0 and c in (C.2) denote the carrier frequency of the transmitted signal and

the speed of light, respectively. The expression in (C.2) represents the maximum Doppler

shift caused by the motion speed of the nth moving scatterer SM
n,m of the mth cluster. The

expressions of the TV HAOM αvn,m(t), TV VAOM βvn,m(t), TV AAOD αT
n,m(t), TV EAOD

βT
n,m(t), TV AAOA αR

n,m(t), and TV EAOA βR
n,m(t) can be found in [6]. The expression of the

Doppler frequency fn,m(t) in (C.1) can be approximated by using L piecewise linear functions

of time as

fn,m(t) ≈ fn,m,l(t) = fn,m(tl)+kn,m,l(t− tl) (C.3)

for tl < t ≤ tl+1 and l = 0, 1, . . . , L, where

kn,m,l =
fn,m(tl+1)− fn,m(tl)

tl+1 − tl
. (C.4)
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Note that the interval length between two time instances in a row, i.e., ∆l = tl+1 − tl, is the

same for all values of l = 0, 1, . . . , L − 1, where L is the number of the time instances at

which the Doppler frequencies were approximated. The parameter kn,m,l in (C.4) expresses

the rate of change of the Doppler frequency fn,m(t) at time t = tl.

The instantaneous channel phase θn,m,M(t) caused by the motion of the nth moving

scatterer of the mth cluster is given by [14]

θn,m,M(t) = 2π

t∫
−∞

fn,m(t
′)dt′= θn,m,M + 2π

t∫
0

fn,m(t
′)dt′. (C.5)

The first term in (C.5) is the initial phase shift, which is modelled as a zero-mean random

variable with a uniform distribution between −π and π. Hence, the instantaneous channel

phase θn,m,M(t) in (C.5) is a stochastic process. After obtaining the instantaneous channel

phase θn,m,M(t), the complex channel gain µ(t) consisting of
∑NC

m=1Nm+M received multipath

components is modelled by

µ(t) =

NC∑
m=1

Nm∑
n=1

cn,m,M ejθn,m,M(t) +
M∑

m=1

cm,F e
jθm,F . (C.6)

The double sum in the first term in (C.6) represents the sum of the multipath components

corresponding to NC clusters and the Nm moving scatterers therein. Each moving scatterer

in a cluster has a stochastic channel phase θn,m,M(t), and a constant path gain cn,m,M. The

second term in (C.6) designates the sum of the multipath components associated with the

M fixed scatterers with constant path gains cm,F and random phases θm,F. It should be

noted that the phases θn,m,M and θm,F are modelled as zero-mean random variables with a

uniform distribution that ranges from −π to π. The complex channel gain µ(t) in (C.6) is a

stochastic model for a 3D non-stationary indoor channel with clusters of moving scatterers,

fixed scatterers, fixed transmitter, and fixed receiver. The TV mean Doppler shift and the

TV Doppler spread of this model can be expressed as [14]

B
(1)
f (t) =

NC∑
m=1

Nm∑
n=1

c2n,m,M fn,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

(C.7)

and

B
(2)
f (t) =

√√√√√√√√
NC∑
m=1

Nm∑
n=1

c2n,m,M f 2
n,m(t)

NC∑
m=1

Nm∑
n=1

c2n,m,M +
M∑

m=1

c2m,F

−
(
B

(1)
f (t)

)2
(C.8)

respectively.
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C.4 Spectrogram Analysis

The spectrogram Sµ(f, t) of the complex channel gain µ(t) is computed in three steps. Step

1: we multiply the complex channel gain µ(t) by a sliding window to obtain the short-time

signal. In this paper, we use the Gaussian window function

h(t) =
1√

σw

√
π
e
− t2

2σ2
w (C.9)

where σw denotes the window spread parameter. The window function is real and even and

has a normalized energy of
∫∞
−∞ h2(t)dt = 1. The short-time complex channel gain is given

according to [15, Eq. (2.3.1)] by

x(t′, t) = µ(t′)h(t′ − t) (C.10)

where the variables t′ and t are the running time and the observation time, respectively.

Continuing with Step 2, we calculate the short-time-Fourier-transform (STFT) by computing

the Fourier-transform of the short-time signal X(t′, t) w.r.t. the running time t′ as follows

X(f, t) =

∞∫
−∞

x(t′, t)e−j2πft′dt′. (C.11)

For the sake of brevity, we do not provide the expression for the STFT. Finally, the last step

is multiplying the STFT X(f, t) in (C.11) by its complex conjugate to obtain the spectrogram

Sµ(f, t) as

Sµ(f, t) = |X(f, t)|2 = S(a)
µ (f, t) + S(c)

µ (f, t) (C.12)

where the functions S
(a)
µ (f, t) and S

(c)
µ (f, t) denote the auto-term and the cross-term, respec-

tively. By using the approximate expression of the Doppler frequency fn,m,l(t) in (C.3), the

approximate solution of the auto-term S
(a)
µ (f, t) is given by

S(a)
µ (f, t) =

NC∑
m=1

Nm∑
n=1

c2n,m,M G
(
f, fn,m,l(t), σ

2
n,m,l,M

)
+

M∑
m=1

c2m,FG
(
f, 0, σ2

m,F

)
(C.13)

for tl < t ≤ tl+1 (l = 0, 1, · · · , L− 1), where

G(x, µ, σ2) =
e

−(x−µ)2

2σ2

√
2πσ2

(C.14)

σ2
n,m,l,M =

1 + (2πσ2
wkn,m,l)

2

2(2πσw)2
(C.15)

σ2
m,F =

1

2(2πσw)2
. (C.16)
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The auto-term S
(a)
µ (f, t) given by (C.13) consists of a sum of

∑NC

m=1 Nm +M components. It

is a real and positive function that represents an approximation of the desired TV Doppler

power spectral density of the complex channel gain µ(t) discussed in Section C.3. The first

term of the auto-term S
(a)
µ (f, t) in (C.13) is a double sum of weighted Gaussian functions,

where each component of this term corresponds to the nth moving scatterer of the mth cluster.

Note that the Gaussian functions of the first term of the auto-term S
(a)
µ (f, t) are weighted by

the squared path gain c2n,m,M and centered on the approximated Doppler frequency fn,m,l(t)

of the nth moving scatterer of the mth cluster. The second term of the auto-term S
(a)
µ (f, t)

in (C.13) is also a sum of Gaussian functions factorized by the squared path gain c2m,F of

each fixed scatterer and centered on the zero-frequency value as a fixed scatterer does not

introduce a Doppler shift in F2F channels. The parameters in (C.15) and (C.16) denote the

variances of the Gaussian functions presented in (C.13). It should be mentioned that the

variance of the Gaussian function in the first term of the auto-term in (C.13) is dependent on

the slope of the Doppler frequency fn,m,l(t) given by (C.4). It should also be noted that the

auto-term in (C.13) does not depend on the random channel phases θn,m,M and θn,F.

The cross-term S
(c)
µ (f, t) is presented in (C.19) at the top of the next page. It represents

an undesired spectral interference term that reduces the resolution of the spectrogram. The

cross-term S
(c)
µ (f, t) in (C.19) has (

∑NC

m=1 Nm +M)(
∑NC

m=1Nm +M − 1)/2 components. It

is a real function and can have positive or negative values. Unlike the auto-term S
(a)
µ (f, t),

the cross-term S
(c)
µ (f, t) depends on the random channel phases θn,m,M and θn,F. Thus,

it can be removed by taking the average of the spectrogram Sµ(f, t) over the phases, i.e.,

E {Sµ(f, t)} |θn,m,M,θm,F
= S

(a)
µ (f, t). The parameter µm,F (function µn,k,M(t)) in (C.19) denotes

the complex channel gain of the mth fixed scatterer (nth moving scatterer of the kth cluster).

The operators ℜ{·} and {∗} in (C.19) compute the real part and the complex conjugate of a

complex function, respectively. The parameters σ2
x,n,m,l,M and σ2

x,m,F in (C.19) are given by

σ2
x,n,m,l,M =

1− j2πσ2
wkn,m,l

(2πσw)2
(C.17)

σ2
x,m,F =

1

(2πσw)2
(C.18)

respectively. The TV mean Doppler shift B
(1)
µ (t) and the TV Doppler spread B

(2)
µ (t) can be

obtained by using the spectrogram as follows [5]

B(1)
µ (t) =

∞∫
−∞

fSµ(f, t)df

∞∫
−∞

Sµ(f, t)df

(C.20)
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S(c)
µ (f, t) =

2

σw

√
π
ℜ

{
NC∑
m=1

Nm−1∑
n=1

Nm∑
k=n+1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
×G∗ (f, fk,m,l(t), σ

2
x,k,m,l,M

)
µn,m,M(t)µ

∗
k,m,M(t)

+
M−1∑
n=1

M∑
m=n+1

G
(
f, 0, σ2

x,n,F

)
G∗(f, 0, σ2

x,m,F

)
µn,Fµ

∗
m,F

+

NC∑
m=1

Nm∑
n=1

M∑
k=1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
G∗(f, 0, σ2

x,k,F

)
µn,m,M(t)µ

∗
k,F

+

NC−1∑
m=1

NC∑
q=k+1

Nm∑
n=1

Nq∑
k=1

G
(
f, fn,m,l(t), σ

2
x,n,m,l,M

)
G∗ (f, fk,q,l(t), σ2

x,k,q,l,M

)
µn,m,M(t)µ

∗
k,q,M(t)

}
(C.19)

and

B(2)
µ (t) =

√√√√√√√√
∞∫

−∞
f 2Sµ(f, t)df

∞∫
−∞

Sµ(f, t)df

−
(
B

(1)
µ (t)

)2
(C.21)

respectively.

C.5 Numerical Results

In this section, we discuss some numerical results regarding the spectrogram, the TV mean

Doppler shift, and the TV Doppler spread.

First, we introduce the trajectory models for the ankles, wrists, trunk (waist), and head

of a walking person. The velocities of the right ankle and left ankle along with the x-axis are

defined as piecewise functions by

vx,RA(t) =

{
vx

(
1− cos

(
2πt
Tstep

))
, if 0 ≤t ≤ Tstep,

0, if Tstep <t ≤ 2Tstep

(C.22)

vx,LA(t) =

{
0, if 0 ≤t ≤ Tstep

vx

(
1− cos

(
2πt
Tstep

))
, if Tstep ≤t ≤ 2Tstep

(C.23)

respectively, where the parameter vx (Tstep) stands for the constant speed (step duration).

The trajectories of the right ankle and left ankle in the vertical direction, i.e., in the direction

C
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of the z-axis are computed by

zRA(t) =

{
Hfoot

(
1− cos( 2πt

Tstep

)
, if 0 ≤t ≤ Tstep,

0, if Tstep <t ≤ 2Tstep

(C.24)

zLA(t) =

{
0, if 0 ≤t ≤ Tstep,

Hfoot

(
1− cos( 2πt

Tstep

)
, if Tstep <t ≤ 2Tstep

(C.25)

respectively, where the parameter Hfoot represents the maximum displacement of the foot

while walking along the z-axis. The ankle models presented in (C.22)–(C.25) were inspired

by the ankle model of humanoid robotics provided in [16]. Next, we define the displacements

of the right and left wrist in the x-direction as follows

xRW(t) =
vxt

2
+ xw cos

(
πt

Tstep

)
(C.26)

xLW(t) =
vxt

2
− xw cos

(
πt

Tstep

)
(C.27)

respectively, where the parameter xw denotes the maximum displacement of the wrists. The

main reason for using a positive sign in (C.26) and a negative sign in (C.27) is that the

displacement in the x-direction of the right (left) wrist is synchronous with the displacement

of the left (right) ankle. Note that the period of the cosine functions in (C.26)–(C.27) is twice

as long as in (C.22)–(C.23). The displacements in the z-direction of the right and left wrist

are the same and calculated by

zRW(t) = zLW(t) = zw cos

(
2πt

Tstep

)
(C.28)

where the parameter zw denotes the maximum vertical displacement of the wrists. It should

be mentioned that the displacements of the wrists are out of phase in the x-direction and in

phase in the z-direction. The displacements in the x-direction and the z-direction of the head

and waist have the same expression, which are given by [17,18]

xHead(t) = xWaist(t) =
vxt

2

zHead(t) = zWaist(t) = HH,W

(
1− cos

(
2πt

Tstep

))
(C.29)

respectively, where the parameter HH,W in (C.29) designates the maximum vertical displace-

ment in the z-direction. When generating the scenario for the walking person, we chose

the values of Tstep, vx, Hfoot, xw, zw, and HH,W to be 1 s, 0.8m/s, 0.1m, 0.1m, 0.025m, and

0.025m, respectively. The heights of ankles, wrists, head, and waist were set to 0.1m, 1m,
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1.7m, and 1.1m, respectively. The number of walking steps were chosen to be 10 steps.

Fig. C.2 depicts the displacements of the ankles, wrists, head, and waist in the x-direction. A

good synchronization is shown in Fig. C.2 between the trajectories of the body parts, i.e.,

when the right ankle moves a step forward, the left wrist also swings forward, while the right

wrist swings backward and the left leg stands on the ground. The forward displacements

presented in Fig. C.2 in the x-direction of the ankles were computed by generating 5 piecewise

functions of the forward velocities provided by (C.22) and (C.23) for the right ankle and left

ankle, respectively. Then, the forward displacement is computed by integrating the forward

velocities in (C.22) and (C.23) w.r.t. time t. Fig. C.3 shows a good synchronization between

the displacements in the z-direction of the ankles, wrists, head, and waist, i.e., when the

person takes a step forward with his right foot, the ankle moves upward in the z-direction

until it crosses the left foot and then, it moves downward until it reaches the ground. The

head and waist reach the maximum displacement at the time instant, in which the right

or left foot reaches the maximum upward displacement. The wrists reach their maximum

vertical displacements at the time instant, in which the heels are on the ground.

Fig C.4 depicts the walking scenario of the moving person in 3D. The number of clusters

NC was set to 1 and the number of moving scatterers in the cluster Nm was chosen to be 6.

We used the same values of the motion parameters mentioned earlier in this section. The

only difference is that the horizontal angle of motion αvn,m(t) was set to 15◦, i.e., the direction

of motion of the body was chosen to be 15◦. The locations of the transmitter Tx and the

receiver Rx were chosen to be (5.5m, 2.5m, 2.25m) and (5m, 2.5m, 2.25m), respectively.

It is supposed that the LOS is blocked.

When computing the spectrogram, we chose the number of fixed scatterers M to be 6.

Fig. C.5 depicts the result of the approximation of the spectrogram given by (C.12). The

path gains of the moving scatterers and fixed scatterers are given by

cn,m,M =

√√√√√ 2η
NC∑
m=1

Nm

and cm,F =

√
2 (1− η)

M
(C.30)

respectively, where the parameter η ≤ 1 is used for balancing the contribution of the fixed and

moving scatterers on the mean power of the complex channel gain µ(t). Here, the parameter

η was set to 0.6. We chose the value of 5.9GHz for the carrier frequency f0. The window

spread parameter σw was set to 0.0335 s. Fig. C.5 shows the influence of the motion of

major body parts on the spectrogram of µ(t). The spectrogram in Fig. C.5 is blurred due

to the impact of the cross-term S
(c)
µ (f, t). The simulation results of the spectrogram are

close to the analytical results, but they are not provided in the paper for brevity. In the

simulation, we generated the values of the trajectories for the wrists, ankles, head, and waist

in 3D using the mathematical models and their parameters provided earlier in this section.

Then, we computed the HAOM αvn,m(t), VAOM βvn,m(t), AAOA αR
n,m,M(t), EAOA βR

n,m,M(t),
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Figure C.2: TV forward displacements in the x-direction x(t) of the 6-point scatterers

representing the walking person.

AAOD αT
n,m,M(t), and EAOD βT

n,m,M(t) from the displacement values and the values of the

locations of the transmitter Tx and the receiver Rx. After that, the Doppler frequencies

were computed using (C.1) and approximated using (C.3). Next, we integrated the Doppler

frequencies of each moving scatterer w.r.t. time t. After that, each one of the integrated

Doppler frequencies is added to an outcome of a random generator with a uniform distribution

from −π to π to obtain the instantaneous channel phase θn,m,M(t) of each moving scatterer

according to (C.5). For the fixed multipath components, which are not Doppler shifted, we

obtained the associated phases θm,F by generating the outcomes of a random generator with

a uniform distribution from −π to π for each scatterer. After performing the procedures

described above, we obtained the complex channel gain µ(t) in (C.6). Fig. C.6 visualizes the

approximated auto-term S
(a)
µ (f, t) of the spectrogram provided by (C.13). It can be shown

that the resolution of the spectrogram improves after removing the cross-term by averaging

the spectrogram Sµ(f, t) over the random channel phases θn,m,M and θm,F. Fig. C.6 shows

more clearly the influence of the fixed scatterers and the cluster of the moving scatterers on
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Figure C.3: TV vertical displacements z(t) of the moving scatterers of the walking person.

the spectrogram. Note that the TV Doppler frequencies of the ankles in Fig. C.6 have the

highest values that range from −40Hz to 40Hz.

Fig. C.7 depicts the TV mean Doppler shifts B
(1)
f (t) and B

(1)
µ (t) computed according to

(C.7) and (C.20), respectively. The spectrogram of µ(t) was simulated by using MATLAB.

The TV mean Doppler shift B
(1)
µ (t) was computed numerically according to (C.20) using the

approximate solution of the spectrogram Sµ(f, t) in (C.12), the simulated spectrogram, and

the approximated auto-term S
(a)
µ (f, t) of the spectrogram in (C.13). It is shown in Fig. C.7

that the TV mean Doppler shifts obtained by using the spectrogram Sµ(f, t) are affected by

the cross-term S
(c)
µ (f, t). There is a good match between the TV mean Doppler shift obtained

by using the approximated solution of the spectrogram and the simulated spectrogram. Also,

there is a good match between the TV mean Doppler shift B
(1)
f (t) computed by (C.7) and

the TV mean Doppler shift calculated by (C.20) using the auto-term S
(a)
µ (f, t).

Fig. C.8 depicts the TV Doppler spreads computed according to (C.8) and (C.21). The TV

Doppler spread B
(2)
µ (t) was computed numerically according to (C.21) using the approximate

solution of the spectrogram Sµ(f, t) in (C.12), the simulated spectrogram, and the approxi-
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Figure C.4: Simulation scenario and 3D trajectories of the major body parts of a moving

person.

mated auto-term S
(a)
µ (f, t) of the spectrogram in (C.13). It can be seen in Fig. C.8 that the

TV Doppler spread B
(2)
µ (f, t) obtained by using the spectrogram Sµ(f, t) is affected by the

cross-term S
(c)
µ (f, t) . There is a good match between the TV Doppler spreads obtained by

using the approximated solution of the spectrogram and the simulated spectrogram. The TV

Doppler spread B
(2)
f (f, t) computed by (C.8) and the TV Doppler spread B

(2)
µ (t) calculated by

(C.21) using the auto-term S
(a)
µ (f, t) do not match. This is due to the influence of the variance

σ2
n,m,l,M and σ2

m,F in (C.15) and (C.16) on the TV Doppler spread in (C.21), respectively, of

the Gaussian functions of the auto-term S
(a)
µ (f, t).

C.6 Conclusion

In this paper, we introduced a 3D non-stationary channel model by modelling moving

humans as clusters of synchronized moving scatterers to study the impact of major body

parts of a walking person on the spectrogram of the complex channel gain of indoor F2F

channels. We provided expressions for the TV Doppler frequencies and the TV phases of the
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Figure C.5: Spectrogram Sµ(f, t) (analysis) of the complex channel gain µ(t).

moving scatterers representing the major body parts. Moreover, we presented mathematical

expressions for the complex channel gain and showed the impact of a walking human on

the spectrogram, for which an approximate solution has been presented. Furthermore, we

presented trajectory models of different body parts of the walking human, such as ankles,

wrists, head, and waist. Simulations validated the accuracy of the approximated-form of

the spectrogram. For future work, we suggest validating the trajectory models and the

channel model presented her in this paper with wearable IMU sensors and RF-measured data,

respectively.
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Figure C.6: The auto-term of the spectrogram S
(a)
µ (f, t) (analysis) of the complex channel

gain µ(t).
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Figure C.7: TV mean Doppler shift according to (C.7) and (C.20).
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Figure C.8: TV Doppler spread according to (C.8) and (C.21).
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Spain

Conference: 2020 IEEE 91th Vehicular Technology Conference (VTC

Spring), Antwerp, Belgium, 2020.

DOI: 10.1109/VTC2020-Spring48590.2020.9129187.

129

https://doi.org/10.1109/VTC2020-Spring48590.2020.9129187




Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

Doppler Power Characteristics Obtained from

Calibrated Channel State Information for Human

Activity Recognition

Ahmed Abdelgawwad1, Andreu Català2 , and Matthias Pätzold1
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Abstract — This paper demonstrates the time-variant (TV) Doppler power

characteristics of human activities using measured channel state information (CSI).

We model the measured CSI as a complex channel transfer function corresponding

to a 3D non-stationary multipath fading channel consisting of a fixed transmitter,

a fixed receiver, fixed scatterers representing fixed objects, and a cluster of moving

scatterers representing a moving person performing some human activities. We

demonstrate the relationship between the TV Doppler frequency caused by each

moving scatterer and the rate of change of its corresponding TV propagation

delay. Furthermore, we express the TV mean Doppler shift in terms of the path

gains of the fixed scatterers, the TV path gains, and the TV Doppler frequencies

of the moving scatterers. To provide an insight into the TV Doppler power

characteristics of the measured calibrated CSI, we employ the spectrogram from

which we derive the TV mean Doppler shift. Finally, we present the spectrograms

and the TV mean Doppler shifts of the measured calibrated CSI for different

human activities. The results show the possibility of designing human activity

recognition systems using commercial Wi-Fi devices by employing deep learning

or machine learning algorithms.

Index Terms — Non-stationary, spectrogram, complex channel transfer function,

TV Doppler power characteristics, CSI, human activity recognition.
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D.1 Introduction

According to the statistics in [1], 28.7 % of the adults above 65 years have fall incidents. An

increase in mortality and healthcare costs is a consequence of these fall incidents, especially

for people aged 75 years or older. According to the United Nations’ World Ageing Report [2],

the number of adults over 60 is increasing. The number of adults over 80 is expected to rise

from 137 million to 425 million between 2017 and 2050. As a result, it is expected that the

demand for indoor human activity recognition (HAR) systems will increase. The main role of

HAR systems is to distinguish between normal activities and dangerous activities such as

falls. One of the types of HAR systems are radio-frequency-based (RF-based) non-wearable

systems [3]. Such systems track human activities by using frequency-modulated carrier waves

scattered by the major body segments, such as wrists, head, torso, and legs. These scattered

waves contain the micro-Doppler characteristics caused by the moving body segments.

The time-variant (TV) compound Doppler effect caused by moving body segments (mod-

elled for simplicity as a cluster of moving scatterers) has been incorporated in 3D channel

models by taking into account the TV azimuth angle of motion (AAOM), the elevation angle

of motion (EAOM), the azimuth angle of departure (AAOD), the elevation angle of departure

(EAOD), the azimuth angle of arrival (AAOA), and the elevation angle of arrival (EAOA)

in fixed-to-fixed (F2F) channel models. Such a phenomenon opened up the opportunity for

many applications such as HAR [3,4], detection of gait asymmetry [5], fall detection [6, 7],

distinguishing between armed and unarmed humans for security [8], and gesture recognition [9].

Most of these applications are based on applying different machine learning, deep learning,

or detection algorithms to the spectrograms of the measured multi-component radar signals.

By employing the concept of the spectrogram, which is a time-frequency distribution, an

insight into the TV Doppler power characteristics influenced by the moving body segments is

revealed.

The authors of [10] introduced a software tool that can capture the channel state informa-

tion (CSI). Such a tool operates according to the IEEE 802.11n standard [11] and collects

data over 30 subcarriers operating in orthogonal-frequency-division-multiplexing (OFDM)

mode. When it comes to processing the complex CSI data collected by this tool, one of the

main challenges is that the transmitter and the receiver are not clock synchronized [12–14].

Consequently, the phases of the complex CSI data are highly distorted, which makes it

impossibile to explore the spectrograms of the complex CSI data. Attempts to overcome this

issue have been proposed in [15, 16] by utilizing the principle component analysis or applying

linear transformations on the distorted phases. However, these techniques do not contribute to

the study of the true TV Doppler characteristics, since they partially or completely eliminate

the true phases containing the Doppler shifts caused by the moving scatterers. The authors

of [17] successfully eliminated the TV phase distortions by calibrating the transmitter and the

receiver stations using a back-to-back (B2B) connection between them. They validated the
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proposed method by measurements from a vector network analyzer. They tested the procedure

by exploring the TV Doppler power characteristics of a simple hand gesture experiment and

validated the results by simulation.

To the best of the authors’ knowledge, no one has yet researched the TV Doppler power

characteristics of measured calibrated CSI with B2B connection for human activities, such as

walking, falling, etc. All the studies in the literature regarding the CSI were either on the

amplitude or the distortion-eliminated phases through linear transformations. The main goal

of this paper is to present some measurement results of calibrated CSI with B2B connection

for some human activities. First, we model the channel transfer function (CTF) of a 3D

non-stationary F2F channel and the TV Doppler frequencies caused by the moving scatterers.

We elaborate on the relationship between the TV Doppler frequencies and the TV propagation

delays. Then, we discuss the spectrogram of the presented channel model associated with

each subcarrier and illustrate how the TV mean Doppler shift can be obtained from the

spectrogram. Finally, we explore the spectrogram and the TV mean Doppler shift of the

measured calibrated CSI for some human activities. The results of this paper are important

for getting a better understanding of the influence of the channel parameters on the spectral

characteristics of the channels in the presence of a moving person.

The rest of this paper is divided as follows. Section D.2 presents a model for the complex

CTF and the TV Doppler shift caused by human activities. The spectrogram of the presented

model and the computation of the TV mean Doppler shift from the spectrogram are discussed

in Section D.3. Section D.4 demonstrates the measurement scenario, processing the CSI, the

spectrogram of the measured CSI, and the analysis of the measured TV mean Doppler shift.

Section D.5 gives concluding remarks and directions for future work.

D.2 Modelling the CTF

In this paper, we consider the scenario depicted in Fig. D.1. We have a fixed Wi-Fi transmitter

Tx and a fixed Wi-Fi receiver Rx located at (xT , yT , zT ) and (xR, yR, zR), respectively. The

scenario shows a moving person whose major body segments are modelled for simplicity

by a cluster of N moving point scatterers SM,n for n = 1, 2, . . . , N . The fixed point

scatterers SF,m ( m = 1, 2, . . . , M) in Fig. D.1 simply represent M fixed objects such as

walls, furniture, etc. Each moving point scatterer is characterized by its TV displacement

(xM,n(t), (yM,n(t), (zM,n(t)). The TV Euclidean distance between Tx (Rx) and the nth moving

scatterer is denoted by dTM,n(t) (d
R
M,n(t)). Single-bounce scattering is assumed, i.e., each wave

launched from the Tx is scattered only once by either a fixed scatterer SF,m or a moving

scatterer SM,n before arriving at the Rx.

The TV Euclidean distance dTM,n(t) between the transmitter Tx and the nth moving

scatterer SM,n is expressed in terms of the TV position of SM,n and the fixed position of Tx by

dTM,n(t) =

√
(xM,n(t)− xT )2 + (yM,n(t)− yT )2 + (zM,n(t)− zT )2. (D.1)
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Figure D.1: Propagation scenario consisting of a fixed transmitter Tx, fixed receiver Rx, a

moving person modelled by a cluster of N moving scatterers SM,n, and M fixed scatterers

SF,m.

Similarly, the Euclidean distance dRM,n(t) between the receiver Rx and the nth moving scatterer

SM,n is given by

dRM,n(t) =

√
(xM,n(t)− xR)2 + (yM,n(t)− yR)2 + (zM,n(t)− zR)2. (D.2)

Using the expressions in (D.1) and (D.2), the total TV propagation delay τM,n(t) of the wave

travelled from Tx via SM,n to Rx is determined by

τM,n(t) =
dTM,n(t) + dRM,n(t)

c0
(D.3)

where the parameter c0 indicates the speed of light.

The complex TV CTF of the 3D non-stationary F2F channel model can be expressed as

H
(
t,∆f (q)

)
=

N∑
n=1

c
(q)
M,n(t) e

j[θM,n−2π(f0+∆f (q))τM,n(t)] +
M∑

m=1

cF,m ej[θF,m−2π(f0+∆f (q))τF,m]. (D.4)

The parameter ∆f (q) in (D.4) denotes the subcarrier frequency, which is associated with the

qth subcarrier according to

∆f (q) = q ·∆ (D.5)
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for q = −28, −26, . . . , −2, −1, 1, 3, . . . , 27, 28. The parameter ∆ in (D.5) designates the

difference between the subcarrier frequencies, which has a constant value of 312.5 kHz [11].

The first term in (D.4) denotes the sum of multipath components corresponding to the N
moving scatterers. Each component of the first term in (D.4) is characterized by a constant

phase shift θM,n, a TV propagation delay τM,n(t), and a TV path gain c
(q)
M,n(t), which are

associated with the nth moving scatterer SM,n. The TV path gain c
(q)
M,n(t) depends on the gains

of Tx and Rx antennas, the propagation distances dTM,n(t) and dRM,n(t), the transmission power,

the wavelength of the qth subcarrier c0/(f0 + ∆f (q)) [18], and the radar cross-section [19].

The second term in (D.4) denotes the sum of multipath components of the M fixed scatterers.

Each component corresponding to the mth fixed scatterer is characterized by a path gain cF,m
and a phase shift θF,m due to the interaction with the fixed scatterer. In the simulation, the

phases θM,n and θF,m are the outcomes of identically and independently distributed random

variables with a uniform distribution over −π and π [20, P. 36].

The Doppler shift f
(q)
n (t) associated with the qth subcarrier caused by the nth moving

scatterers can be expressed using the relationship f
(q)
n (t) = −(f0 +∆f (q))τ̇M,n(t), which can

be found in [21, Eq. (22)] as

f (q)
n (t) = −f (q)

n,max(t)γn (t) . (D.6)

The function f
(q)
n,max(t) denotes the maximum Doppler shift of the qth subcarrier.

f (q)
n,max(t) =

(
f0 +∆f (q)

)
vn (t)

c0
(D.7)

and γn(t) is given by

γn(t) = cos (βvn (t))
[
cos
(
βT
n (t)

)
cos
(
αT
n (t)− αvn (t)

)
+ cos

(
βR
n (t)

)
cos
(
αvn (t)− αR

n (t)
) ]

+ sin (βvn (t))
[
sin
(
βT
n (t)

)
+ sin

(
βR
n (t)

) ]
. (D.8)

The functions vn(t), βvn(t), αvn(t), α
T
n (t), β

T
n (t), α

R
n (t), and βR

n (t) in (D.7) and (D.8) designate

the TV speed of the nth moving scatterer, the TV elevation angle of motion (EAOM), the

TV azimuth angle of motion (AAOM), the TV azimuth angle of departure (AAOD), the TV

elevation angle of departure (EAOD), the TV azimuth angle of arrival (AAOA), and the

TV elevation angle of arrival (EAOA), respectively. More details about these expressions

can be found in [22]. The proof of the relationship between the Doppler frequency f
(q)
n (t)

and the propagation delay τM,n(t) can be found in [21]. Note that the function γn(t) scales

the maximum Doppler shift fn,max(t). The function can be positive or negative depending

on the movement of the moving scatterer SM,n relative to the Tx and Rx. If the moving

scatterer SM,n moves away from Tx and Rx, its corresponding TV propagation delay τM,n(t)

increases, i.e., its rate of change with respect to time τ̇M,n(t) and γn(t) have positive values.
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Hence, according to (D.6), the Doppler frequency f
(q)
n (t) has negative values. If the moving

scatterer SM,n moves towards Tx and Rx, its corresponding TV propagation delay τM,n(t)

decreases, and thus, its rate of change with respect to time τ̇M,n(t) and γn(t) have negative

values. Hence, according to (D.6), the Doppler frequency f
(q)
n (t) is larger than zero. The

TV mean Doppler shift B
(1)

f (q)(t) of the presented model in (D.4), associated with the qth

subcarrier, can be computed in terms of the path gains c
(q)
M,n(t) and cF,m, and the Doppler

frequency f
(q)
n (t) as [21]

B
(1)

f (q)(t) =

N∑
n=1

(
c
(q)
M,n(t)

)2
f
(q)
n (t)

N∑
n=1

(
c
(q)
M,n(t)

)2
+

M∑
m=1

c2F,m

. (D.9)

The expression in (D.9) is the first-order spectral moment which provides the average Doppler

shift of the model presented in (D.4) as a sum of the Doppler shifts f
(q)
n (t) caused by the

moving scatterers SM,n multiplied by their corresponding path gains c
(q)
M,n(t) and normalized

by the sum of the squared path gains of the fixed and moving scatterers. Note that the

mean Doppler shift B
(1)

f (q)(t) in (D.9) is influenced by the path gains of the moving scatterers

c
(q)
M,n(t) and those corresponding to the fixed scatterers cF,m. If the path gains of the fixed

scatterers cF,m have high values in comparison to those of the moving scatterers c
(q)
M,n(t), the

TV mean Doppler shift B
(1)

f (q)(t) in (D.9) has small values that approach zero. This can happen

in practice if the person moves too far from Tx/Rx. For measured channels, the expression

in (D.9) cannot be used, but there is an alternative to estimate it by utilizing the spectrogram,

which will be discussed in the next section.

D.3 Spectrogram of the CTF

To compute the spectrogram, an even and positive window function is needed. In this paper,

we used the Gaussian window function w(t) given by

w(t) =
1√

σw

√
π
e
− t2

2σ2
w (D.10)

where σw denotes the Gaussian window spread parameter. Choosing the value of such a

parameter is a trade-off between the frequency resolution and the time localization. If the

window spread σw is large, the frequency resolution is high, but the time localization is low,

and vice versa. Note that the window function has normalized energy, i.e.,
∫∞
−∞w2(t) = 1.

After choosing the window function, the spectrogram can be computed in three steps.

The first step is to compute the short-time CTF x(q)(t′, t) which is obtained by multiplying
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the sliding window w(t′ − t) with the CTF H(t′,∆f (q)), i.e.,

x(q)(t′, t) = H
(
t′,∆f (q)

)
w (t′ − t) (D.11)

where the parameters t′ and t designate the running time and the local time, respectively. The

second step is to compute the short-time Fourier-transform (STFT) X(q)(f, t) by transforming

the running time t′ to frequency f . The STFT of H(t′,∆f (q)) associated with the qth

subcarrier is given by

X(q)(f, t) =

∞∫
−∞

x(t′, t)e−j2πft′dt′ =
N∑
n=1

X
(q)
M,n(f, t) +

M∑
m=1

X
(q)
F,m. (D.12)

The first and second terms in (D.12) denote the sum of the STFTs corresponding to the

N moving scatterers and the sum of the STFTs corresponding to the M fixed scatterers,

respectively. The last step is to compute the spectrogram SH(q)(f, t) associated with the qth

subcarrier by multiplying the STFT in (D.12) with its complex conjugate, which results in

SH(q)(f, t) = |X(q)(f, t)|2 = S
(a)

H(q)(f, t) + S
(c)

H(q)(f, t) (D.13)

where the functions S
(a)

H(q)(f, t) and S
(c)

H(q)(f, t) indicate the auto-term and the cross-term of

the spectrogram, respectively. The auto-term S
(a)

H(q)(f, t) provides insight into the true TV

Doppler power characteristics. It is determined by

S
(a)

H(q)(f, t) =
N∑
n=1

∣∣∣X(q)
M,n(f, t)

∣∣∣2 + M∑
m=1

∣∣∣X(q)
F,m

∣∣∣2 . (D.14)

The first term in (D.14) denotes the superposition of the auto-terms caused by the N
moving scatterers, whereas the second term in (D.14) designates the sum of the auto-terms

corresponding to the M fixed scatterers, i.e., the auto-term consists of N +M components.

Each component of the first (second) term in (D.14) has the Doppler power characteristics

corresponding to the nth moving (mth fixed) scatterer SM,n (SF,m). The cross-term S
(c)

H(q)(f, t)

is expressed by (D.15), which can be found at the top of the next page. This term consists of

(N +M)(N +M− 1)/2 components. The operators {·}∗ and ℜ{·} represent the conjugate

and the real value operators, respectively. This cross-term in (D.15) represents the undesired

spectral interference components that reduce the resolution of the spectrogram. The first term

of the cross-term S
(c)

H(q)(f, t) represents the sum of the spectral interference terms between

two different moving scatterers, whereas the second term consists of the sum of the spectral

interference terms between two different fixed scatterers. The last term in (D.15) denotes the

sum of the spectral interference terms between moving and fixed scatterers. An approximate

solution of the spectrogram SH(q)(f, t) of the channel model when using a Gaussian window

can be found in [22] by approximating the Doppler frequencies f
(q)
n (t) into linear piecewise
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S
(c)

H(q)(f, t) = 2ℜ
[N−1∑

n=1

N∑
i=n+1

X
(q)
M,n(f, t)X

∗(q)
M,i (f, t) +

M−1∑
m=1

M∑
i=m+1

X
(q)
F,mX

∗(q)
F,i

+
N∑
n=1

M∑
i=1

X
(q)
M,n(f, t)X

∗(q)
F,i

]
(D.15)

functions. In theory, the cross-term can be eliminated by averaging the spectrogram SH(q)(f, t)

over the random phases θM,n and θF,m, i.e., E{SH(q)(f, t)}|θM,n, θF,m
= S

(a)

H(q)(f, t). In practice,

however, the cross-term cannot be removed because of the limited number of available snapshot

measurements.

From the spectrogram SH(q)(f, t), the TV mean Doppler shift can be computed as

B
(1)

H(q)(t) =

∞∫
−∞

fSH(q)(f, t)df

∞∫
−∞

SH(q)(f, t)df

. (D.16)

The expression in (D.16) can be applied to both, simulation and measurements. Note that

the expression in (D.16) is influenced by the cross-term SH(q)(f, t). If the auto-term S
(a)

H(q)(f, t)

is used in the simulation instead of the spectrogram SH(q)(f, t), then the TV mean Doppler

shifts B
(1)

H(q)(t) and B
(1)

f (q)(t) become equal [23] when computing the TV mean Doppler shift

in (D.16).

D.4 Experimental Results

In this section, the spectrograms of the measured CSI for different human activities, and their

corresponding TV mean Doppler shifts will be explored. The measurement scenario will be

discussed first. Then, the steps for calibrating and processing the CSI data will be described.

Finally, the measurement results will be discussed.

D.4.1 Measurement Scenario

A pair of horn antennas YE572113-30SMAM from Laird� were used as Tx and Rx antenna.

They had the same location and the same height, which was 0.8 m. A 22-year-old male

candidate with a height of 1.8 m and a weight of 76 kg, was asked to perform some activities

while collecting the CSI data. Fig. D.2 illustrates the measurement scenario and the locations

corresponding to the activities done by the candidate. The candidate was asked to carry out

the following activities:
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– Falling away : The candidate stood 4 m away from the Tx and Rx and fell in their

opposite direction onto a 15 cm high mattress.

– Falling towards: The candidate stood 4 m away from the Tx and Rx and fell in the

direction towards them onto a 15 cm high mattress.

– Walking away : The candidate stood a few centimeters away from the Tx and Rx and

walked 4 m away from them.

– Walking towards: The candidate stood 4 m away from the Tx and Rx and walked

towards them until they were reached.

– Sitting : The candidate stood 4 m away from the Tx and Rx, facing them and then sat

down on a chair.

– Bending and straightening : The candidate stood 4 m away from the Tx and Rx, facing

them and then bent forward towards them picking an imaginary object from the floor

and then straightening up again.

The candidate did not move after finishing each activity.

Figure D.2: CSI measurement scenario.
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D.4.2 Processing CSI Data

In order to collect RF data, we used two HP Elitebook 6930p laptops equipped with Intel

NIC5300. Both laptops had Ubuntu 14.04 LTS operating system, and CSI tool [10] installed.

One of the laptops was connected to the Tx antenna, while the other was connected to the Rx

antenna. The Tx laptop was working in injector mode, and the Rx laptop was working in

monitor mode. Channel 149 was used for recording the CSI data, i.e., the carrier frequency

f0 was chosen to be 5.745 GHz. The bandwidth was set to 20 MHz. The sampling frequency

fs was set to 1 kHz. To overcome the TV phase distortions due to the clock-asynchronization

between the Tx and the Rx stations, a B2B connection was employed as illustrated in [17]. To

setup the B2B connection, an RF power splitter ZFSC-2-10G+ with one input and two output

ports, 4 RF cables 141-1MSM+, and a 30 dB attenuator from Mini-Circuits® were utilized.

The transmission port of the Tx laptop was connected to the input port of the splitter via an

RF cable. For the two output ports of the splitter, one of them was connected to the Tx horn

antenna and the other was connected to the attenuator, and then, to one of the RF ports of

the Rx laptop using an RF cable. One of the remaining ports of the Rx laptop was used to

connect to the Rx horn antenna through an RF cable.

The captured CSI data were stored on two matrices. One of them contained the CTF

corresponding to the B2B connection. This matrix had the TV phase distortions. The other

matrix contained the CTF corresponding to the Rx antenna and the TV phase distortions.

This matrix had channel characteristics and the TV phase distortions. MATLAB 2019b

was used for processing the CSI data. The matrix corresponding to the Rx antenna was

divided by the matrix corresponding to the B2B connection in elementwise form and stored

in a new matrix. This new matrix contained the true micro-Doppler (TV Doppler power)

characteristics of the recorded CSI.

Before computing the spectrogram, the CSI matrix containing the true TV Doppler power

characteristics was filtered by using a highpass equiripple filter to reduce the effect of the

fixed scatterers. Then, we took the sum of the CTF over the subcarriers as follows:

µ(t) =
∑
q

H
(
t,∆f (q)

)
. (D.16)

This was done for better visualization as it reduces the background noise of the spectrogram.

Finally, we computed the spectrogram Sµ(f, t) of µ(t), using the same steps as in Section D.3.

The window spread parameter σw was set to 0.05 s.

D.4.3 Demonstration of the Results

Figs. D.3(a)–D.3(f) exhibit the spectrograms Sµ(f, t) corresponding to the falling away, falling

towards, walking away, walking towards, sitting, and bending and straightening activities of

the candidate. For the spectrogram Sµ(f, t) of the falling away activity shown in Fig. D.3(a),
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the Doppler frequency is negative as the candidate moves away from the Tx and Rx. Hence,

the propagation delay τM,n(t) increases and its rate of change τ̇M,n(t) is positive (see (D.3)

and (D.6)). The Doppler shift caused by the falling activity of the candidate keeps decreasing

until it reaches a value around -120 Hz in Fig. D.3(a). Then, it returns to zero value.

Fig. D.3(b) depicts the spectrogram Sµ(f, t) corresponding to the falling towards activity of

the candidate. The Doppler frequency caused by the activity is positive since the candidate

moves towards the Tx and Rx, thus the propagation delay τM,n(t) decreases and its rate of

change τ̇M,n(t) is negative. The Doppler shift corresponding to the falling activity increases

until it reaches a value around 100 Hz, then the value drops to zero as the candidate is not

moving after the fall. Note that the fall activities depicted in Figs. D.3(a)–D.3(b) include

short time intervals up to 2 s. Figs. D.3(c)–D.3(d) exhibit the spectrogram corresponding to

the walking away and walking towards activities of the candidate. These activities consume

almost 10 s time intervals. The Doppler shift corresponding to the walking away and walking

towards activities reach -40 Hz and 40 Hz, respectively.

Fig. D.3(e) shows the spectrogram corresponding to the sitting activity of the candidate.

It is shown that the sitting activity lasts for almost 3 s. The pattern of the spectrogram

shown in Fig. D.3(e) is quite similar to that in Fig. D.3(a), but the Doppler shift reaches

almost -40 Hz unlike the Doppler shift in Fig. D.3(a), which reaches almost -120 Hz. The

spectrogram, which corresponds to bending and straightening, is shown in Fig. D.3(f). During

the first interval from t = 0 s and t = 2 s, the Doppler shift reaches almost 20 Hz as when the

candidate bends the back, the head gets closer to the Tx and Rx. Thus, the propagation delay

τM,n(t) decreases and the Doppler shift is positive. In the second interval, from t = 2 s to

t ≈ 3 s, the Doppler shift has almost zero value as the person pauses. Thus, the corresponding

propagation delay is time-invariant. During the interval from t ≈ 3 s to t = 5 s, the candidate

is straightens the back, the propagation delay increases and the Doppler shift is negative as

shown in Fig. D.3(f).

Figs. D.4(a)-D.4(f) depict the TV mean Doppler shifts B(1)(t) corresponding to the falling

away, falling towards, walking away, walking towards, sitting, and bending and straightening

activities of the candidate. These TV mean Doppler shifts were computed by substituting

Sµ(f, t) in (D.16) instead of SH(q)(f, t). The TV mean Doppler shifts exhibited in Figs. D.4(a)-

D.4(f) provide similar patterns to the Doppler frequencies shown in the spectrograms depicted

in Figs. D.3(a)–D.3(f), but with different values. This is due to the effect of the fixed

scatterers, which is not completely eliminated by the highpass filter, the background noise in

the spectrogram, and having multiple moving scatterers (see the definition of the TV mean

Doppler shift in Section D.2).
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D.5 Conclusion

In this paper, we modelled of the CTF of 3D non-stationary F2F channels and the TV Doppler

frequency caused by the moving scatterer in terms of the TV speed, the TV AAOM, the TV

EAOM, the TV AAOA, the TV EAOA, the TV AAOD, and the TV AAOA. We demonstrated

the relationship between the Doppler frequency and the TV propagation delay corresponding

to the moving scatterer. We provided the expressions of the spectrogram of the CTF, which

consists of the auto-term and the cross-term. We expressed the TV mean Doppler shift by

means of the spectrogram. We presented the results of the spectrograms and the TV mean

Doppler shifts of the calibrated measured CSI for six human activities. The measurement

results showed the possibility of applying deep learning or machine learning algorithms for

HAR to the spectrograms or the TV mean Doppler shift of the measured calibrated CSI,

which can be collected by using commercial devices. For future work, we recommend the

development of a channel simulator fed with realistic trajectories of human activities. Such a

simulator will contribute to the development simulation-based HAR systems.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Spectrograms Sµ(f, t) of calibrated measured CSI corresponding to the following

6 different human activities (a) falling away, (b) falling towards, (c) walking away, (d) walking

towards, (e) sitting, and (f) bending and straightening.
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Figure D.4: TV mean Doppler shifts B(1)(t) of the measured calibrated CSI corresponding

to (a) falling away, (b) falling towards, (c) walking away, (d) walking towards, (e) sitting,

and (f) bending and straightening activities.
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Abstract — This paper is about designing a 3D non-stationary wideband

indoor channel model for radio-frequency sensing. The proposed channel model

allows for simulating the time-variant (TV) characteristics of the received signal of

indoor channel in the presence of a moving object. The moving object is modelled

by a point scatterer which travels along a trajectory. The trajectory is described

by the object’s TV speed, TV horizontal angle of motion, and TV vertical angle

of motion. An expression of the TV Doppler frequency caused by the moving

scatterer is derived. Furthermore, an expression of the TV complex channel

transfer function (CTF) of the received signal is provided, which accounts for the

influence of a moving object and fixed objects, such as walls, ceiling, and furniture.

An approximate analytical solution of the spectrogram of the CTF is derived. The

proposed channel model is confirmed by measurements obtained from a pendulum

experiment. In the pendulum experiment, the trajectory of the pendulum has

been measured by using an inertial-measurement unit (IMU) and simultaneously

collecting CSI data. For validation, we have compared the spectrogram of the

proposed channel model fed with IMU data with the spectrogram characteristics

of the measured CSI data. The proposed channel model paves the way towards

designing simulation-based activity recognition systems.

Index Terms — spectrogram, 3D non-stationary channels, indoor channels,

Doppler frequency, channel state information, Wi-Fi 802.11n, inertial measure-

ment units, micro-Doppler effect, CSI.



E



Paper E

E.1 Introduction

In wireless communications, the compound Doppler effect caused by the moving objects or

bodies opened up opportunities for many applications. These applications track the scattered

wave components by the moving bodies for drone detection [1], gesture recognition [2],

human gait assessment for diagnosis and rehabilitation [3], and tracking human activities

using non-wearable radio-frequency-based (RF-based) elder-care [4]. Such waves contain the

micro-Doppler effects corresponding to the moving bodies.

In channel modelling, the Doppler effect caused by moving scatterers has been modelled

in two-dimensional (2D) stationary fixed-to-mobile radio in [5]. Then, this model has been

extended for 2D non-stationary fixed-to-fixed (F2F) indoor channels by considering the time-

variant (TV) speed of the moving scatterer, angle of motion, angle of arrival, and angle of

departure [6]. Later on, the TV Doppler frequency caused by the moving scatterer has been

incorporated in three-dimensional (3D) channels by taking into account the TV azimuth angles

of motion (AAOM), elevation angle of motion (EAOM), azimuth angle of departure (AAOD),

elevation angle of departure (EAOD), azimuth angle of arrival (AAOA), and elevation angle

of arrival (EAOA) for fixed-to-fixed channel models [6, 7] and vehicle-to-vehicle channels [8].

To reveal the TV Doppler power characteristics of non-stationary multicomponent signals,

a time-frequency distribution such as the spectrogram can be employed. The authors of [9]

distinguished between aided and unaided gaits by means of the spectrogram. In [10] the

angular velocities and lengths of rotating blades have been estimated by using the spectrogram.

The spectrogram has been employed in gesture recognition [11] and human activity recognition

(HAR) [12]. It has been used for the detection of gait asymmetry in [3, 13], distinguishing

between armed and unarmed persons for security services [14], and fall detection [15–17], as

well.

The authors of [18] developed a software tool that captures the complex channel state in-

formation (CSI) of 30 subcarriers corresponding to orthogonal-frequency-division-multiplexing

(OFDM). This software tool is compatible with commercial devices equipped with Intel NIC

5300 network interface cards and operates on the Wi-Fi 802.11n protocol [19]. An overview

of studies on signal recognition, action recognition, and activity recognition by utilizing the

amplitude of the measured CSI can be found in [20]. One of the challenges faced while

processing CSI data to extract the micro-Doppler signatures is that the phases of such data

are distorted as the transmitter and receiver are not clock synchronized [21–28]. To overcome

this issue, one of the attempts is to apply the principle component analysis (PCA) [29–32] on

the magnitude of the complex CSI data to denoise it, then to apply a one-sided spectrogram

on the denoised data to reveal the positive frequency components of the spectrogram. Another

attempt has been applied by using a phase sanitization technique [32–34] by employing linear

transformation operation on the distorted phases of the 30 subcarriers. Such an operation

gives a better pattern of the transformed phases. These attempts do not help to reveal the

E





Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

true Doppler power characteristics of the preprocessed CSI data. In [35] the phase distortions

of CSI data have been eliminated by using a back-to-back (B2B) connection between the

transmitter and receiver stations. This approach allows for revealing the true Doppler power

characteristics of the measured CSI data.

The micro-Doppler effect of pendulum motion in bistatic and monostatic radar systems

has been investigated in [36,37]. In [36], the micro-Doppler effect was analyzed by means of

the one-sided spectrogram of both simulated radar signal and verified with the experiment.

According to the best of the authors’ knowledge, there are no studies on the micro-Doppler

effect of a swinging pendulum on measured calibrated CSI with B2B connection. There are

no simultaneous conducted measurements by using the CSI tool and an IMU attached to the

swinging pendulum, as well.

The Fresnel zone diffraction model has been described in [38–41]. Such a model has been

used for CSI-based human activity recognition [42], human respiration sensing [43], and indoor

human detection [44]. The Fresnel zone model is an envelope model that does not contain any

phase information. The phase information is important for the analysis of the micro-Doppler

signatures, which is our main focus in this paper. The motivation of this paper is to present

a non-stationary wideband F2F channel model that has Doppler power characteristics similar

to experimental data. According to the best of the authors’ knowledge, RF-based HAR,

gesture recognition, and fall detection systems are designed based on experimental data,

i.e., the machine used for detection or classification is trained by using experimental data.

Thus, proposing such a model will help for simulation-based activity recognition systems by

using it for training instead of using experimental data. This approach is time efficient and

cost-effective. Instead of wasting too much time for collecting RF data for training, one can

generate data sets of different scenarios by using lab simulations. In order to design such a

realistic channel model with Doppler power characteristics close to experimental data, the TV

trajectory of a moving object plays an important role as the Doppler shift depends on the TV

speed, AAOM, EAOM, EAOD, AAOD, EAOA, and AAOA. The trajectory of the moving

object can be measured by using an IMU which captures linear accelerations, and Euler

angles simultaneously. The Euler angles are used to rotate the measured linear accelerations

from the frame of the IMU to the reference frame. Then the rotated linear accelerations can

be integrated to obtain TV velocities and displacements (trajectories). The TV velocities

and displacements suffer from linear and quadratic drifts, respectively. In [45, 46], these drift

problems were addressed by employing zero update algorithms.

In this paper, we design a 3D non-stationary wideband channel model for activity recogni-

tion. We model a moving object as a moving scatterer. The expressions for the TV speed,

AAOM, EAOM, EAOD, AAOD, EAOA, and AAOA corresponding to the moving scatterer are

presented. Then, the expression for the TV Doppler frequency caused by the moving scatterer

is provided. Furthermore, the instantaneous channel phase of the moving scatterer and the

complex channel transfer function (CTF) of the non-stationary F2F channels are determined.
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Next, an approximate solution of the spectrogram of the complex CTF is presented to provide

insight into the TV Doppler power characteristics of this model. We perform measurements

of the calibrated CSI and IMU, simultaneously during a moving object experiment. The CSI

data is calibrated by using a B2B connection to eliminate the TV phase distortions. Then,

we feed the proposed channel model with the measured trajectory using the IMU. Finally, we

show that the spectrogram of the calibrated measured CSI data and the channel model are

matching. The TV mean Doppler shifts computed from both spectrograms are matching as

well. The proposed channel model paves the way towards the design of software-RF-based

human activity recognition and fall detection systems.

The rest of the paper is structured as follows. Section E.2 exhibits the 3D multipath

propagation scenario with moving and fixed objects. Section E.3 presents the expressions of the

TV channel parameters and the complex channel transfer function. The approximate analytical

solution of the spectrogram of the complex channel function is provided in Section E.4.

Section E.5 discusses the numerical and measurement results. The conclusion and future work

are discussed in Section E.6.

E.2 The 3D Geometrical Model

We consider the 3D geometrical model of a 3D multipath propagation channel shown in

Figure E.1. This figure shows a fixed Wi-Fi transmitter Tx and a fixed Wi-Fi receiver Rx which

operate according to the IEEE 802.11n standard [19] with carrier frequency f0 = 5.32 GHz

and bandwidth B = 20 MHz. The positions of Tx and Rx are denoted by
(
xT , yT , zT

)
and(

xR, yR, zR
)
, respectively. A moving object whose center of mass (CoM) is modelled for

simplicity by a single moving (point) scatterer SM initially located at (xM, yM, zM). The

trajectory of the moving scatterer SM is described by a TV velocity vector v⃗M(t) which can be

expressed by the TV speed vM(t), the TV AAOM αvM(t), and the TV EAOM βvM(t). Each

fixed object is modelled by a fixed scatterer SF
m (▲) for m = 1, 2, . . . , M, where M denotes

the number of fixed scatterers (objects). The TV parameters βT
M(t), α

T
M(t), β

R
M(t), and αR

M(t)

designate the TV EAOD, TV AAOD, TV EAOA, and TV AAOA, respectively. We assume

single-bounce scattering, i.e., each wave that is launched from Tx is bounced by either a fixed

scatterer SF
m or a moving scatterer SM before arriving at Rx.

E.3 The Channel Transfer Function

The TV velocity vector v⃗M (t) of the moving scatterer SM is presented as

v⃗M (t) =
[
vM,x (t) , vM,y (t) , vM,z (t)

]T
(E.1)
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Figure E.1: Geometrical model of a 3D multipath propagation scenario with one moving

scatterer SM and M fixed scatterers SF
m, m = 1, 2, . . . , M.

where [·]T denotes the vector transpose operation. The velocities vM,x (t), vM,y (t), and vM,z (t)

can be expressed in terms of the TV speed vM(t), TV EAOM βvM(t), and TV AAOM αvM(t)

as

vM,x (t) = vM (t) cos (βvM (t)) cos (αvM (t)) (E.2)

vM,y (t) = vM (t) cos (βvM (t)) sin (αvM (t)) (E.3)

vM,z (t) = vM (t) sin (βvM (t)) (E.4)

where

αvM(t) = atan2 (vM,y(t), vM,x(t)) (E.5)

βvM(t) = arcsin

 vM,z(t)√
v2M,x(t) + v2M,y(t) + v2M,z(t)

 . (E.6)

The function atan2(·) in (E.5) represents the four-quadrant inverse trigonometric tangent

function that provides an azimuth angle αvM(t) ranging from −π to π, unlike the regular
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arctan(·) function that provides an angle ranging from −π/2 to π/2. Note that the elevation

angle βvM(t) is within the range from −π/2 to π/2. By using the components of the TV

velocity vector v⃗M(t) in (E.2)–(E.4), one can compute the displacements xM(t), yM(t), and

zM(t) of the moving scatterer SM as

xM(t) = xM +

t∫
0

vM,x(t
′)dt′ (E.7)

yM(t) = yM +

t∫
0

vM,y(t
′)dt′ (E.8)

zM(t) = zM +

t∫
0

vM,z(t
′)dt′. (E.9)

From the displacements in (E.7)–(E.9), the TV Euclidean distance dTM(t) between the trans-

mitter Tx and the moving scatterer SM can be computed by

dTM(t) =
√

(xM(t)− xT )2 + (yM(t)− yT )2 + (zM(t)− zT )2. (E.10)

Analogously, the Euclidean distance dRM(t) between the receiver Rx and the moving scatterer

SM is given by

dRM(t) =
√
(xM(t)− xR)2 + (yM(t)− yR)2 + (zM(t)− zR)2. (E.11)

By using the expressions of the displacements in (E.7)–(E.9) and the distances in (E.10)–

(E.11), the TV EAOD βT
M(t), TV AAOD αT

M(t), TV EAOA βR
M(t), and TV AAOA αR

M(t) can

be computed as follows:

βT
M(t) = arcsin

(
zM(t)− zT

dTM(t)

)
(E.12)

αT
M(t) = atan2

(
yM(t)− yT , xM(t)− xT

)
(E.13)

βR
M(t) = arcsin

(
zM(t)− zR

dRM(t)

)
(E.14)

αR
M(t) = atan2

(
yM(t)− yR, xM(t)− xR

)
(E.15)

where αT
M(t), α

R
M(t) ∈ (−π, π] and βT

M(t), β
R
M(t) ∈ [−π/2, π/2]. The TV propagation delay

τM(t) of the propagation path from Tx via SM to Rx is given by

τM(t) =
dTM(t) + dRM(t)

c0
. (E.16)
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In (E.16), the parameter c0 denotes the speed of light.

The CTF H(t,∆f (q)) is given by

H
(
t,∆f (q)

)
= HM

(
t,∆f (q)

)
+

M∑
m=1

HF,m (E.17)

where

HM

(
t,∆f (q)

)
= cM ej[θM−2π(f0+∆f (q))τM(t)] (E.18)

HF,m = cF,m ejθF,m . (E.19)

The superscript q in (E.17) represents the subcarrier index of OFDM communication systems

that follows the IEEE 802.11n standard [19]. The parameter ∆f (q) in (E.17) designates the

subcarrier frequency which is given by

∆f (q) = q ·∆ (E.20)

for q ∈ {−28, −26, . . . , −2, −1, 1, 3, . . . , 27, 28}. In (E.20), the parameter ∆ represents

the subcarrier frequencies difference which has a value of 312.5 kHz [19]. The function

HM(t,∆f (q)) designates the complex CTF of the moving scatterer SM and the parameter

HF,m denotes the complex CTF corresponding the mth fixed scatterer SF
m. The expression

in (E.17) is similar to the one in [47, Eq.(21)]. The only difference is that the multipath effect

associated with the fixed scatterers is taken into account by adding the second term in (E.17).

The first term in (E.17) designates the TV part of the CTF corresponding to the moving

scatterer SM with a fixed path gain cM and stochastic phase process θM − 2π(f0 +∆f (q))τM(t)

associated with the qth subcarrier [see (E.18)]. The second term in (E.17) is time-invariant

and represents the sum of the M received multipath components corresponding to the M
fixed scatterers. Each component of the second term in (E.17) is characterized by a fixed

path gain cm,F and a random phase variable θm,F due to the interaction with the mth fixed

scatterer SF
m [see (E.19)]. It should be mentioned that the phases θM and θm,F are identically

and independently distributed (i.i.d), each follows a uniform distribution over −π and π, i.e.,

θM, θm,F ∼ U (−π, π ]. The model presented in (E.17) is a stochastic model of the TV CTF

H(t,∆f (q)). The TV Doppler shift f
(q)
M (t) of the moving scatterer SM and associated with

the qth subcarrier index is expressed by using (E.16) in combination with the relationship

f
(q)
M (t) = −(f0 +∆f (q))τ̇M(t), which can be found in [47, Eq.(22)] as [48]

f
(q)
M (t) = −f (q)

max (t)

{
cos (βvM (t))

[
cos
(
βT
M(t)

)
cos
(
αT (t)− αvM (t)

)
+ cos

(
βR
M(t)

)
cos
(
αvM (t)− αR

M(t)
) ]

+ sin (βvM (t))
[
sin
(
βT
M(t)

)
+ sin

(
βR
M(t)

) ]}
(E.21)
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where function f
(q)
max(t) designates the maximum Doppler shift caused by the moving scatterer

SM which is given by

f (q)
max (t) =

(
f0 +∆f (q)

)
vM (t)

c0
. (E.22)

From the expression in (E.21) and the relationship f
(q)
M (t) = −(f0 + ∆f (q))τ̇M(t), one can

conclude that if the moving scatterer SM moves away from the Tx and Rx vicinity, the TV

propagation delay τM(t) and its slope τ̇M(t) increase and the Doppler effect fM(t) has negative

values, and vice versa. To obtain an approximate solution for the spectrogram of the CTF

H(t,∆f (q)) that will be discussed in Section E.4, the Doppler frequency f
(q)
M (t) in (E.21) can

be approximated by L linear piecewise functions according to

f
(q)
M (t) ≈ f

(q)
M,l(t) = f

(q)
M (tl) + k

(q)
M,l(t− tl) (E.23)

for tl < t ≤ tl+1 and l = 0, 1, . . . , L− 1, where k
(q)
M,l denotes the slope of the approximated

Doppler frequency f
(q)
M (t) which is given by

k
(q)
M,l =

f
(q)
M (tl+1)− f

(q)
M (tl)

tl+1 − tl
. (E.24)

The difference between two consecutive time instances tl+1 and tl, i.e., δ = tl+1 − tl is the

same for all values of l = 0, 1, . . . , L− 1.

The TV mean Doppler shift B
(1)

f (q)(t) of the proposed 3D channel model can be computed

by using (E.21) as [49]

B
(1)

f (q)(t) =
c2M f

(q)
M (t)

c2M +
M∑

m=1

c2F,m

. (E.25)

The expression in (E.25) denotes the squared path gain c2M multiplied by the Doppler frequency

caused by the moving scatterer f
(q)
M (t) divided by the sum of the squared path gain of all

of the scatterers. Note that, if the sum of the squared path gains
∑M

m=1 c
2
F,m is much less

than the squared path gain of the moving scatterer c2M of the moving scatterer SM, i.e.,∑M
m=1 c

2
F,m ≪ c2M, then the TV mean Doppler shift B

(1)

f (q)(t) will have values closer to those of

the Doppler frequency of the moving scatterer f
(q)
M (t), i.e., B

(1)

f (q)(t) → f
(q)
M (t).
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E.4 Spectrogram Analysis

In this paper, we employ the spectrogram approach [50] to reveal the TV Doppler power

spectrum of the proposed channel model. The spectrogram SH(q)(f, t) of the CTF H(t,∆f (q))

corresponding to the qth subcarrier index is computed in three steps. First, a sliding window

w(t) is multiplied by the CTF H(t,∆f (q)). In this paper, we choose a Gaussian window

function [50, Eq. (2.3.1)]

w(t) =
1√

σw

√
π
e
− t2

2σ2
w (E.26)

where the parameter σw is called the Gaussian window spread. The window function w(t) is

real, positive, and even. It has a normalized energy, i.e.,
∫∞
−∞w2(t) = 1. By multiplying the

window function w(t) by the CTF H(t,∆f (q)), the short-time CTF xH(q)(t′, t) is obtained as

xH(q)(t′, t) = H
(
t′,∆f (q)

)
w(t′ − t) (E.27)

where the variables t and t′ are the local time and the running time, respectively. The second

step is to compute the short-time Fourier transform (STFT) XH(q)(f, t) of xH(q)(t′, t). By

using the approximation of the TV Doppler shift provided in (E.23), the STFT XH(q)(f, t)

associated with the qth subcarrier is obtained as

XH(q)(f, t) =

∞∫
−∞

xH(q)(t′, t)e−j2πft′dt′

≈ e−j2πft

√
σwπ1/4

{
HM

(
t,∆f (q)

)
G
(
f, f

(q)
M,l(t), σ

2
x,M,l

)
+

M∑
m=1

HF,m G
(
f, 0, σ2

x,F,m

)}
(E.28)

for tl < t ≤ tl+1 (l = 0, 1, . . . , L− 1), where

G
(
f, f

(q)
M,l(t), σ

2
x,M,l

)
=

1√
2πσx,M,l

e
−

(f−f
(q)
M,l

(t))2

2σ2
x,M,l (E.29)

σ2
x,M,l =

1− j2πσ2
wk

(q)
M,l

(2πσw)2
(E.30)

σ2
x,F,m =

1

(2πσw)2
. (E.31)

The expression in (E.29) is a complex Gaussian function with a TV mean f
(q)
M,l(t) and a

complex variance σ2
x,M,l. Note that the complex variance σ2

x,M,l in (E.30) is dependent on
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the slope k
(q)
M,l of the Doppler frequency f

(q)
M,l(t) [see (E.23)]. The last step is to obtain the

spectrogram SH(q)(f, t) associated with the qth subcarrier by squaring the magnitude of the

STFT XH(q)(f, t);, i.e.,

SH(q)(f, t) ≈ |XH(q)(f, t)|2 = S
(a)

H(q)(f, t) + S
(c)

H(q)(f, t) (E.32)

where the functions S
(a)

H(q)(f, t) and S
(c)

H(q)(f, t) are called the auto-term and the cross-term of

the spectrogram SH(q)(f, t), respectively. The auto-term is given by

S
(a)

H(q)(f, t) ≈ c2M G
(
f, f

(q)
M,l(t), σ

2
M,l

)
+

M∑
m=1

c2F,m G
(
f, 0, σ2

F,m

)
(E.33)

for tl < t ≤ tl+1, where

σ2
M,l =

1 +
(
2πσ2

wk
(q)
M,l

)2
2(2πσw)2

(E.34)

σ2
F,m =

1

2(2πσw)2
. (E.35)

The auto-term S
(a)

H(q)(f, t) in (E.33) is an approximation that provides insight into the Doppler

power spectrum of the proposed 3D non-stationary channel model presented in Section E.2.

This term is real, positive, and consists of a sum of M+ 1 weighted Gaussian functions. The

first Gaussian function, which is due to the moving scatterer SM is weighted by the squared

path gain c2M and centered on the approximated TV Doppler frequency f
(q)
M,l(t). The second

term of the auto-term S
(a)

H(q)(f, t) in (E.33) is the sum of weighted Gaussian functions, which

capture the effect of the M fixed scatterers SF
m. The weighting factors are the squared path

gains c2F,m and each Gaussian function is centered on zero-frequency as the fixed scatterers do

not cause Doppler shifts in F2F channels.

The cross-term S
(c)

H(q)(f, t) of the spectrogram corresponding to the qth subcarrier is given

by

S
(c)

H(q)(f, t) ≈ 2

σw

√
π
ℜ

{
M−1∑
n=1

M∑
m=n+1

G
(
f, 0, σ2

x,F,n

)
G∗ (f, 0, σ2

x,F,m

)
HF,nH

∗
F,m

+
M∑

m=1

G
(
f, f

(q)
M,l(t), σ

2
x,M,l

)
G∗ (f, 0, σ2

x,F,m

)
HM(t,∆f (q))H∗

F,m

}
.(E.36)

The cross-term S
(c)

H(q)(f, t) in (E.36) represents the undesired spectral interference term con-

sisting of M(M+ 1)/2 components which reduce the resolution of the spectrogram. This
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term is real but not necessarily positive. The operators ℜ{·} and (·)∗ denote the real value

operator and the complex conjugate operator, respectively. The cross-term in (E.36) consists

of two terms. The first term of (E.36) designates the sum of the components corresponding

to the spectral interference caused by the fixed scatterers. The mth component of the second

term denotes the spectral interference between the moving scatterer SM and the mth fixed

scatterer SF
m. The cross-term S

(c)

H(q)(f, t) in (E.36) is dependent on the random phases θM

and θF,m unlike the auto-term S
(a)

H(q)(f, t). Hence, the cross-term S
(c)

H(q)(f, t) can be eliminated

by taking the average over the random phases, i.e., E{S(c)

H(q)(f, t)}|θM, θF,m
= 0, and thus,

E{SH(q)(f, t)}|θM, θF,m
= S

(a)

H(q)(f, t).

The TV mean Doppler shift can be obtained by using the spectrogram as follows

B
(1)

H(q)(t) =

∞∫
−∞

fSH(q)(f, t)df

∞∫
−∞

SH(q)(f, t)df

. (E.37)

If the spectrogram SH(q)(f, t) in (E.37) is replaced by the auto-term S
(a)

H(q)(f, t), the TV mean

Doppler shift B
(1)

H(q)(t) becomes equal to B
(1)

f (q)(t), i.e., B
(1)

H(q)(t)=B
(1)

f (q)(t).

E.5 Measurements and Numerical Results

In this section, we discuss and compare the TV Doppler power characteristics of our proposed

channel model with those of measured CSI data. We will describe the processing of the

measured trajectory during the measurements.

E.5.1 Measurement Scenario

To complement the TV Doppler power characteristics of the proposed channel model, mea-

surements have been performed. The CSI data and the trajectory of a pendulum (moving

object) have been measured simultaneously. Two laptops have been used for measuring the

CSI as Wi-Fi Tx and Rx. An IMU sensor fusion has been used to measure the trajectory

of the pendulum. Figures E.2(a)–E.2(b) illustrate the measurement scenario in xy and xz

planes, respectively. The pendulum was a 3 kg medicine ball, covered with aluminum foil and

attached to the ceiling by a rope, and was swinging in a horizontal direction perpendicular to

the line-of-sight (LoS). The distance between the ceiling and the center of mass (CoM) of the

ball L was 1.17 m and the horizontal distance between Wi-Fi Tx antenna and the CoM of the

ball was 1.5 m. The distance between Wi-Fi Tx and Rx antennas was 2 m and they had the

same height value of 1.18 m. The initial location of the moving scatterer (ball) was the origin.

The pendulum displacements xM(t) and zM(t) are computed as follows [36]:
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x
M
(t) = L sin

(
arcsin

(xmax

L

)
cos

(√
g

L
t

))
(E.38)

y
M
(t) = 0 (E.39)

z
M
(t) = L

{
1− cos

[
arcsin

(
x

M
(t)

L

)]}
(E.40)

where g denotes the acceleration of gravity. The parameters xmax and L in (E.38)-(E.40) were

set to 0.55 m and 1.17 m according to Figure E.2(a)-E.2(b), respectively.

Pendulum (Ball with IMU attached)

m

Pendulum trajectory

m

Wi-Fi 
�

Wi-Fi
�

m

(a)

Pendulum (Ball with IMU attached)

Pendulum trajectory Wi-Fi 
�

Wi-Fi
�

mcm

cm

m

(b)

Figure E.2: A presentation of the experiment scenario in the (a) xy plane and (b) xz plane.

E.5.2 Motion Capturing Using IMU

A MetaMotionR sensor fusion (IMU) [51] was attached to the swinging ball. A smartphone

was connected via Bluetooth to control the IMU and log the data files. The IMU was used to

record quaternions and linear accelerations during the experiment. Euler angles were computed

by using the recorded quaternions to rotate the measured linear accelerations. Next, the raw

rotated linear accelerations were smoothed by using quadratic regression provided by the

signal analysis toolbox in MATLAB 2019a. After that, the rotated linear accelerations were

integrated and double integrated to obtain the velocities and the displacements (trajectories),

respectively. Due to measurement errors of the IMU, the velocities and the displacements

suffer from linear and quadratic drifts, respectively. To overcome this drift issue, zero-update

(ZUPT) algorithms [45] were employed. Since the pendulum motion is periodic, its horizontal

and vertical velocities reach zero when the horizontal and vertical accelerations approach their

maximum or minimum values. Similarly, the values of horizontal and vertical displacements

approach zero values when the velocities tend to their maximum or minimum values. Hence,

by searching for the indices corresponding to the local maximum or minimum values of the
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accelerations, the velocity drift is removed between two consecutive indices. Also, by knowing

the indices of the local maximum or minimum values of the drift-eliminated velocities, the

drift of the displacement is removed. The source code of the ZUPT algorithm, where the

sensors are placed on the toes of a walking person for position tracking, is available online [46].

This algorithm was repeated to also eliminate the drift of the displacement. Figure E.3(a)

depicts the TV drift-free horizontal displacements xM(t) of the captured data from the IMU

and the mechanical model of the pendulum in (E.38) by using the pendulum parameters

shown in Figure E.2. The TV drift-free vertical displacements zM(t) of the captured data

from the IMU and the mechanical model of the pendulum in (E.40) by using the pendulum

parameters shown in Figure E.2, are depicted in Figure E.3(b). A minimal error is noticed

between the IMU data and the model in the order of centimeters during the whole interval of

15 s.

0 5 10 15

-1

0

1

0 5 10 15

0

0.05

0.1

0.15

(a)0 5 10 15

-1

0

1

0 5 10 15

0

0.05

0.1

0.15

(b)

Figure E.3: Trajectories of the mechanical model and measured IMU data in (a) horizontal

direction xM(t) and (b) vertical direction zM(t).
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E.5.3 Capturing CSI Data

The CSI tool in [18] was installed to capture the CSI data (RF signals). Two HP Elitebook

6930p laptops equipped with Intel NIC5300 were used. An Ubuntu 14.04 LTS operating

system was installed on both laptops. One laptop was the transmitter station in injector mode

and the other laptop was the receiver operating in monitor mode. The carrier frequency f0 was

set to 5.32 GHz corresponding to channel 64 according to IEEE 802.11n standards [19]. The

sampling frequency and the bandwidth were set to 1 KHz and 20 MHz, respectively. TV phase

distortions exist due to carrier frequency offset [21–23], sampling frequency offset [24–26], and

packet boundary delay [27,28]. These TV phase distortions were eliminated by using a B2B

connection between the transmitter station and the receiver station as described in [35]. Since

there was only one RF transmission port in the Wi-Fi Tx, an RF power splitter ZFSC-2-10G+

from Mini-Circuits® with two output ports was used. One of the output ports was used

for the B2B connection and the other one was connected to the transmitting antenna. At

the Wi-Fi receiver laptop, one of the ports was used for the B2B connection, and another

port was connected to the receiver antenna. The port used for the B2B connection was

connected to a 30 dB attenuator. RF cables 141-1MSM+ from Mini-Circuits® were used as

well. The processing of the captured CSI data was done by using MATLAB R2019a. Two

matrices are stored in a file. One matrix contains the CSI data that corresponds to the

captured signal with the fingerprint information associated with the motion of the pendulum

and TV phase distortions. The other matrix corresponds to the B2B connection, i.e., it only

contains the TV phase distortions. Then, the matrix that contains the fingerprint information

and TV phase distortions is divided by the matrix corresponding to the B2B connection in

elementwise form. The output matrix resulting from the elementwise division only contains

the fingerprint information. After the elementwise division, a highpass filter has been used to

reduce the power of zero-frequency components associated with the fixed scatterers and/or

the line-of-sight.

Regarding the channel model and its spectrogram, Figure E.4(a) shows the block diagram

of the proposed channel model discussed in Section E.3 fed with IMU data as inputs and the

computation of the spectrogram. Figure E.4(b) shows the block diagram of the proposed

channel model discussed in Section E.3 fed with the mechanical model as inputs and the com-

putation of the spectrogram. Note that the difference between Figure E.4(a) and Figure E.4(b)

is how the trajectories are obtained to feed the channel model. If they are measured using

IMU, then the preprocessing mentioned Section E.5.2 should be considered before feeding

them to the simulator. If they are computed using the expressions in (E.38)-(E.40), then

they can be fed into the simulator directly. The channel model can be fed with the TV

displacements from either the IMU (after applying ZUPT) or the mechanical model presented

earlier in Section E.5.2, as inputs. The carrier frequency of the simulator f0 was set to

5.32 GHz for consistency with CSI measurement scenario. The number of the fixed scatterers
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M was chosen to be 6. The initial location of the moving scatterer SM and the locations

of the Wi-Fi Tx, Wi-Fi Rx were set according to the experiment scenario as presented in

Figure E.2, i.e., they can be located anywhere, but the distances should be the same as those

illustrated in Figure E.2. Then, the TV displacements as presented in Figure E.3 were added

to the initial location of the moving scatterer SM. After that, the TV Doppler frequency

f (q)
M

(t) caused by the moving scatterer SM was computed according to (E.21). The path gains

of the moving scatterer SM and each fixed scatterer SF
m were computed by

c
M
=
√

2η and cF,m =

√
2 (1− η)

M
(E.41)

respectively. The parameter η is used to balance the contribution of the fixed and moving

scatterers and was set to 0.8. The phases θ
M

and θF,m were generated as realizations of

random variables with uniform distribution from −π to π. Next, the STFT XH(q)(f, t) for

each subcarrier index q was computed according to (E.28). The window spread parameter

σw was set 31.1 ms. Finally, the spectrogram S(f, t) (or S̃(f, t) in case of using IMU data as

inputs) was computed as the squared magnitude of the sum of the STFT over the subcarriers

by the following expression

S(f, t) =

∣∣∣∣∣∑
q

XH(q)(f, t)

∣∣∣∣∣
2

. (E.42)

For computing the spectrogram of the recorded CSI as exhibited in Figure E.4(c), the CTF

Ĥ(q)(t,∆f (q)) is recorded. Then, the STFT X̂H(q)(f, t) was computed for each subcarrier q.

After that the spectrogram Ŝ(f, t) is computed according to (E.42).

Figure E.5(a)–E.5(c) exhibit the spectrograms of S̃(f, t), S(f, t), and Ŝ(f, t) of the channel

model with IMU data as inputs, the channel model fed with the mechanical model as inputs,

and the recorded CSI data, respectively. It is shown that the TV Doppler power characteristics

depicted by the spectrograms S̃(f, t), S(f, t), and Ŝ(f, t) in Figure E.5(a)–E.5(c) are fairly

similar to each other, respectively. In Figure E.5(a)–E.5(c), the Doppler frequency associated

with the moving scatterer (pendulum) SM has negative values when the pendulum swings

away from the Wi-Fi Tx and Wi-Fi Rx antennas and has positive values when it swings

towards them. The Doppler frequency corresponding to the moving scatterer (pendulum)

SM approaches zero values at the time instants in which the moving scatterer reach its local

maximum and minimum displacement values [see Figure E.3(a)–E.3(b)]. Therefore, the speed

of the pendulum v
M
(t) approaches zero values. Thus, the Doppler shift at these instants is

zero according to (E.22).

Figure E.6 depicts the TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t) computed

from the spectrograms S̃(f, t), S(f, t), and Ŝ(f, t) using (E.37), respectively. There is a good

match between B̃(1)(t), B(1)(t), and B̂(1)(t). The mean Doppler shifts have negative values at
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the time instants in which the pendulum (moving scatterer SM) swings away from the Wi-Fi

Tx and Wi-Fi Rx antennas. They have positive values when the pendulum swings towards the

Wi-Fi Tx and Wi-Fi Rx antennas. The TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t)

approach zero values at the moments when the pendulum reaches its local maximum and

minimum displacement values. There exists a slight drift in the values of the mean Doppler

shift B̂(1)(t) in between the time instants t ≈ 11.5 s and t ≈ 12.7 s due to the noise of the

measured CSI signal.

For quantitative evaluation, we collected CSI and IMU data for 20 experiments, i.e.,

K = 20. From the collected data measurement, we computed the normalized-mean-square-

error (NMSE) γk between the TV mean Doppler shift B̃
(1)
k (t) of the proposed channel model

fed with the IMU data as inputs and the TV mean Doppler shift B̂
(1)
k (t) of the CSI data

according to

γk =

Tobs∫
0

(
B̃

(1)
k (t)− B̂

(1)
k (t)

)2
dt

Tobs∫
0

(
B̂

(1)
k (t)

)2
dt

(E.43)

for k = 1, 2, . . . , K, where the parameter Tobs denotes the observation interval which was

set to 15 seconds, i.e., Tobs = 15 s. Figure E.7 depicts the NMSE γk for each experiment.

The maximum NMSE belongs to the first experiment and has a value of 0.1829, whereas

the minimum NMSE, with a value of 0.0477, belongs to fourteenth experiment. The average

NMSE equals 0.0932, and the variance of the NMSE is 0.0013.

E.6 Conclusion

In this paper, we proposed a non-stationary wideband channel model and its TV Doppler

power characteristics when there is a moving object in the 3D space. We derived the TV

Doppler shift caused by the moving object in terms of the TV speed, AAOM, EAOM, AAOD,

EAOD, AAOA, and EAOA. The TV Doppler characteristics of the proposed channel model

were analyzed by using the spectrogram. Furthermore, we provided the approximate solution

of the spectrogram of the channel model. We validated the proposed channel model by

measuring the trajectory of the moving object using an IMU and calibrated CSI with B2B

connection, simultaneously. Then, we fed the channel model with the trajectory data extracted

form the IMU. The results showed a good agreement between the measured CSI and the

channel model in terms of the spectrogram and the mean Doppler shift. We conclude that

the proposed channel model can be used for designing simulation-based HAR systems. For

the future, we aim to extend the proposed channel model for human activity recognition by

modelling the moving human as multiple moving scatterers.
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Figure E.4: Block diagrams illustrating steps to compute the spectrograms S̃(f, t), S(f, t),

and Ŝ(f, t) of (a) the channel model with the IMU data as input, (b) the channel model with

the trajectories of the mechanical model as inputs, and (c) measured CSI data, respectively.
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(a)

(b)

(c)

Figure E.5: Spectrograms S̃(f, t), S(f, t), and Ŝ(f, t) (a) the channel model with IMU data as

inputs, (b) the channel model with the mechanical model of the pendulum as inputs, and (c)

measured CSI, respectively.
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Figure E.6: TV mean Doppler shifts B̃(1)(t), B(1)(t), and B̂(1)(t) computed from the spectro-

grams of the channel model with IMU data as inputs, mechanical model as inputs, and the

measured CSI, respectively.
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Figure E.7: NMSE γk of each experiment computed from the TV mean Doppler shift B̃
(1)
k (t)

of the channel model fed with IMU data as inputs and the measured TV mean Doppler shift
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(1)
k (t) for k = 1, 2, . . . , K.



E





Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

Bibliography

[1] M. Jian, Z. Lu, and V. C. Chen, “Drone detection and tracking based on phase-

interferometric Doppler radar,” in 2018 IEEE Radar Conference (RadarConf18), pp. 1146–

1149, April 2018.

[2] M. G. Amin, Z. Zeng, and T. Shan, “Hand gesture recognition based on radar micro-

Doppler signature envelopes,” in 2019 IEEE Radar Conference (RadarConf), pp. 1–6,

April 2019.

[3] A. Seifert, A. M. Zoubir, and M. G. Amin, “Detection of gait asymmetry using indoor

Doppler radar,” in 2019 IEEE Radar Conference (RadarConf), pp. 1–6, April 2019.

[4] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3D tracking via body radio reflec-

tions,” in Proc. of the 11th USENIX Conference on Networked Systems Design and

Implementation NSDI’14, (Berkeley, CA, USA), pp. 317–329, USENIX Association, 2014.

[5] V.-H. Pham, M.-H. Taieb, J.-Y. Chouinard, S. Roy, and H.-T. Huynh, “On the dou-

ble Doppler effect generated by scatterer motion,” REV Journal on Electronics and

Communications, vol. 1, pp. 30–37, Mar. 2011.

[6] A. Abdelgawwad and M. Pätzold, “On the influence of walking people on the Doppler

spectral characteristics of indoor channels,” in Proc. 28th IEEE Int. Symp. on Personal,

Indoor and Mobile Radio Communications, PIMRC 2017, Montreal, Canada, Oct. 2017.

[7] A. Abdelgawwad and M. Paetzold, “A 3d non-stationary cluster channel model for human

activity recognition,” in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-

Spring), pp. 1–7, April 2019.

[8] J. Bian, C. Wang, M. Zhang, X. Ge, and X. Gao, “A 3-D non-stationary wideband

MIMO channel model allowing for velocity variations of the mobile station,” in IEEE

International Conference on Communications (ICC), pp. 1–6, May 2017.

[9] S. Z. Gurbuz, C. Clemente, A. Balleri, and J. J. Soraghan, “Micro-doppler-based in-home

aided and unaided walking recognition with multiple radar and sonar systems,” IET

Radar, Sonar Navigation, vol. 11, no. 1, pp. 107–115, 2017.

[10] X. Wang, P. Wang, X. Cao, and V. C. Chen, “Interferometric angular velocity mea-

surement of rotating blades: theoretical analysis, modeling and simulation study,” IET

Radar, Sonar Navigation, vol. 13, no. 3, pp. 438–444, 2019.

[11] M. Ritchie and A. M. Jones, “Micro-Doppler gesture recognition using doppler, time

and range based features,” in 2019 IEEE Radar Conference (RadarConf), pp. 1–6, April

2019.



E



BIBLIOGRAPHY

[12] B. Erol and M. G. Amin, “Radar data cube processing for human activity recognition

using multi subspace learning,” IEEE Transactions on Aerospace and Electronic Systems,

pp. 1–1, 2019.

[13] A. Seifert, M. G. Amin, and A. M. Zoubir, “Toward unobtrusive in-home gait analysis

based on radar micro-Doppler signatures,” IEEE Transactions on Biomedical Engineering,

vol. 66, pp. 2629–2640, Sep. 2019.
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[17] B. Jokanović and M. Amin, “Fall detection using deep learning in range-Doppler radars,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 54, pp. 180–189, Feb 2018.

[18] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: gathering 802.11n traces

with channel state information,” ACM SIGCOMM CCR, vol. 41, p. 53, Jan. 2011.

[19] “IEEE standard for information technology– local and metropolitan area networks–

specific requirements– part 11: Wireless lan medium access control (mac) and physical

layer (phy) specifications amendment 5: Enhancements for higher throughput,” IEEE Std

802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-

2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009),

pp. 1–565, Oct 2009.

[20] Z. Wang, B. Guo, Z. Yu, and X. Zhou, “Wi-Fi CSI-based behavior recognition: from

signals and actions to activities,” IEEE Communications Magazine, vol. 56, pp. 109–115,

May 2018.

[21] X. Wang, C. Yang, and S. Mao, “Phasebeat: exploiting csi phase data for vital sign

monitoring with commodity wifi devices,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pp. 1230–1239, June 2017.

[22] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wifi,” in

Proceedings of the 21st Annual International Conference on Mobile Computing and

Networking, MobiCom ’15, (New York, NY, USA), pp. 53–64, ACM, 2015.

E





Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

[23] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with a single wifi

access point,” in Proceedings of the 13th Usenix Conference on Networked Systems Design

and Implementation, NSDI’16, (Berkeley, CA, USA), pp. 165–178, USENIX Association,

2016.

[24] L. Gong, W. Yang, D. Man, G. Dong, M. Yu, and J. Lv, “Wifi-based real-time calibration-

free passive human motion detection,” in Sensors, 2015.

[25] M. N. Mahfoudi, T. Turletti, T. Parmentelat, F. Ferrero, L. Lizzi, R. Staraj, and

W. Dabbous, “Orion: orientation estimation using commodity wi-fi,” in 2017 IEEE

International Conference on Communications Workshops (ICC Workshops), pp. 1233–

1238, May 2017.

[26] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: decimeter level localization

using wifi,” SIGCOMM Comput. Commun. Rev., vol. 45, pp. 269–282, August 2015.

[27] K. Qian, C. Wu, Z. Yang, Z. Zhou, X. Wang, and Y. Liu, “Tuning by turning: Enabling

phased array signal processing for wifi with inertial sensors,” in IEEE INFOCOM 2016 -

The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9,

April 2016.

[28] Y. Zhuo, H. Zhu, and H. Xue, “Identifying a new non-ninear csi phase measurement

error with commodity wifi devices,” in 2016 IEEE 22nd International Conference on

Parallel and Distributed Systems (ICPADS), pp. 72–79, Dec 2016.

[29] W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using wifi signals,” in Proceedings

of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing,

UbiComp ’16, (New York, NY, USA), pp. 363–373, ACM, 2016.

[30] X. Wu, Z. Chu, P. Yang, C. Xiang, X. Zheng, and W. Huang, “Tw-see: human activity

recognition through the wall with commodity wi-fi devices,” IEEE Transactions on

Vehicular Technology, vol. 68, pp. 306–319, Jan 2019.

[31] C. Du, X. Yuan, W. Lou, and Y. T. Hou, “Context-free fine-grained motion sensing using

wifi,” in 2018 15th Annual IEEE International Conference on Sensing, Communication,

and Networking (SECON), pp. 1–9, June 2018.

[32] J. Chen, F. Li, H. Chen, S. Yang, and Y. Wang, “Dynamic gesture recognition using

wireless signals with less disturbance,” Personal and Ubiquitous Computing, vol. 23,

pp. 17–27, Feb 2019.

[33] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “You are facing the mona lisa:

spot localization using phy layer information,” in Proceedings of the 10th International



E



BIBLIOGRAPHY

Conference on Mobile Systems, Applications, and Services, MobiSys ’12, (New York, NY,

USA), pp. 183–196, ACM, 2012.

[34] K. Qian, C. Wu, Z. Yang, Y. Liu, and Z. Zhou, “Pads: Passive detection of moving

targets with dynamic speed using phy layer information,” in 2014 20th IEEE International

Conference on Parallel and Distributed Systems (ICPADS), pp. 1–8, Dec 2014.

[35] N. Keerativoranan, A. Haniz, K. Saito, and J.-i. Takada, “Mitigation of csi temporal

phase rotation with b2b calibration method for fine-grained motion detection analysis on

commodity wi-fi devices,” Sensors, vol. 18, no. 11, 2018.

[36] R. S. A. R. Abdullah, A. Alnaeb, A. A. Salah, N. E. A. Rashid, A. Sali, and I. Pasya,

“Micro-Doppler estimation and analysis of slow moving objects in forward scattering radar

system,” Remote Sensing, vol. 9, no. 7, 2017.

[37] V. Chen, The Micro-Doppler Effect in Radar, Second Edition. Artech House radar library,

Artech House, 2019.

[38] D. E. Dauger, “Simulation and study of Fresnel diffraction for arbitrary two-dimensional

apertures,” Computers in Physics, vol. 10, no. 6, pp. 591–604, 1996.

[39] R. He, Z. Zhong, B. Ai, J. Ding, and K. Guan, “Analysis of the relation between Fresnel

zone and path loss exponent based on two-ray model,” IEEE Antennas and Wireless

Propagation Letters, vol. 11, pp. 208–211, 2012.

[40] A. Goldsmith, Wireless Communications. U.K. Cambridge, Cambridge University. Press,

2004.

[41] T. Rappaport, Wireless Communications: Principles and Practice. USA: Prentice Hall

PTR, 2nd ed., 2001.

[42] F. Zhang et al., “Towards a diffraction-based sensing approach on human activity

recognition,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, Mar. 2019.

[43] F. Zhang, D. Zhang, J. Xiong, H. Wang, K. Niu, B. Jin, and Y. Wang, “From Fresnel

diffraction model to fine-grained human respiration sensing with commodity Wi-Fi

devices,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, vol. 2, no. 1, pp. 1–23, 2018.

[44] T. Xin, B. Guo, Z. Wang, P. Wang, J. C. K. Lam, V. O. K. Li, and Z. Yu, “Freesense:

a robust approach for indoor human detection using Wi-Fi signals,” IMWUT, vol. 2,

pp. 143:1–143:23, 2018.

E





Synthetic Micro-Doppler Signatures of Non-Stationary Channels for the Design of HAR Systems

[45] X. Yun, E. R. Bachmann, H. Moore, and J. Calusdian, “Self-contained position tracking

of human movement using small inertial/magnetic sensor modules,” in Proceedings 2007

IEEE International Conference on Robotics and Automation, pp. 2526–2533, April 2007.

[46] “Matlab code for 3D tracking with IMU,” Available online: https://github.com/

xioTechnologies/Gait-Tracking-With-x-IMU.

[47] M. Pätzold and C. A. Gutierrez, “Modelling of non-WSSUS channels with time-variant

Doppler and delay characteristics,” in 2018 IEEE Seventh International Conference on

Communications and Electronics (ICCE), pp. 1–6, Hue, Vietnam, July 2018.

[48] A. Abdelgawwad and M. Pätzold, “A framework for activity monitoring and fall detection

based on the characteristics of indoor channels,” in IEEE 87th Vehicular Technology

Conference (VTC Spring), Porto, Portugal, Jun. 2018.

[49] M. Pätzold, C. A. Gutiérrez, and N. Youssef, “On the consistency of non-stationary

multipath fading channels with respect to the average Doppler shift and the Doppler

spread,” in Proc. IEEE Wireless Communications and Networking Conference, WCNC

2017, San Francisco, CA, USA, 2017.

[50] B. Boashash, Time-Frequency Signal Analysis and Processing – A Comprehensive Refer-

ence. Elsevier, Academic Press, 2nd ed., 2015.

[51] “Sensors for motion capture, biomechanics, industrial control, robotics, facility manage-

ment, cold storage, research, and product development,” https://mbientlab.com/.



E

https://github.com/xioTechnologies/Gait-Tracking-With-x-IMU
https://github.com/xioTechnologies/Gait-Tracking-With-x-IMU
https://mbientlab.com/




Appendix F

Paper F

Title: An IMU-Driven 3D Non-Stationary Channel Model for Human

Activity Recognition

Authors: Ahmed Abdelgawwad1, Andreu Català2, and Matthias
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Abstract — This paper concerns the design, analysis, and simulation of a

3D non-stationary channel model fed with inertial measurement unit (IMU)

data. The work in this paper provides a framework for simulating the micro-

Doppler signatures of indoor channels for human activity recognition by using

radio-frequency-based sensing technologies. The major human body segments,

such as wrists, ankles, torso, and head, are modelled as a cluster of moving

point scatterers. We provide expressions for the time variant (TV) speed and

TV angles of motion based on 3D trajectories of the moving person. Moreover,

we present mathematical expressions for the TV Doppler shifts and TV path

gains associated with each moving point scatterer. Furthermore, a model of the

non-stationary TV channel transfer function (TV-CTF) is provided, which takes

into account the effects caused by a moving person as well as fixed objects, such as

furniture, walls, and ceiling. The micro-Doppler signatures of the moving person

is extracted from the TV-CTF by employing the concept of the spectrogram,

whose expression is also provided in closed form. Our model is confirmed by

channel-state-information (CSI) measurements taken during walking, falling, and

sitting activities. The proposed channel model is fed with IMU data that has

been collected. We evaluate the micro-Doppler signature of the model and CSI

measurements. The results show a good agreement between the spectrograms

and the TV mean Doppler shifts of our IMU-driven channel model and the

measured CSI. The proposed model enables a paradigm shift from traditional

experimental-based approaches to future simulation-based approaches for the

design of human activity recognition systems.

Index Terms — Human activity recognition, non-stationary fading channels,

channel state information, channel transfer function, spectrogram, time-variant

Doppler power characteristics, micro-Doppler signature, channel measurements,

inertial measurement units, Internet of things, wireless sensing.
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F.1 Introduction

The unsupervised monitoring of human mobility parameters during the activities of daily

living is generating a high interest in the medical community, especially after the explicit

recommendation of the US Food and Drug Administration [1] and the European Medicines

Agency [2] that it is desirable to include information from portable or context-aware systems

in clinical trials. Other reasons for the high interest are the increase of fall incidents among

adults over 65 years according to the US fall report [3] and the high mortality rate caused by

fall incidents according to the World Population Ageing Report of the United Nations [4].

Although there are still many problems to solve, mainly in the lack of gold standards, a

good indication of the growth prospect of these context-aware systems is their adoption and

development in the next five years by the main pharmaceutical companies of the diseases

related to pathological human movement [5]. Monitoring systems can detect movement

disorders, which can be signs of physical and mental illness and fragility. Small changes in

the quality and complexity of movements can be indicators of an impending deterioration in

health status, which in many cases can be reversed with appropriate rehabilitation measures.

The first challenge in the development of monitoring systems is to clearly identify the

main types of movements used in clinical practice, such as cadence when walking, stride

length, sit to stand, stand to sit, turns, and adverse events such as falls. The accurate and

convenient measurement of the above parameters at the user’s home over long periods of time

is a milestone that may lead to significant advances in geriatrics.

This article is part of a recent line of research that tries to extract knowledge from human

activities at home using conventional Wi-Fi systems. Such systems have the advantages over

wearable systems as they are easy to use, comfortable, have low cost, no stigmatization, and

universal availability. The enormous penetration of Wi-Fi systems in all households carries a

high degree of acceptance. In addition, such systems do not violate the users’ privacy like

human activity recognition (HAR) systems based on camera surveillance [6–9]. Moreover, they

do not require user involvement, which is mandatory when using smartphones or wearable

sensors [10–13] that may be forgotten to wear. With Wi-Fi systems, it is possible to collect

radio-frequency (RF) sensing data continuously while the users can carry out their daily living

activities without disturbance.

The literature describes radar systems for classifying human activities [14–19], such

as arm motion recognition for human-computer interaction in smart homes [20], gesture

recognition [21–23], differentiation of unarmed and armed people for security services [24], and

the detection of gait asymmetries [25,26]. In all these mentioned applications the spectrogram

was employed. The spectrogram is a quadratic time-frequency power distribution that provides

insight into the micro-Doppler signature of non-stationary multicomponent signals influenced

by human activities.

A tool for capturing the complex channel-state-information (CSI) has been developed by
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the authors of [27]. Such a tool enables the collection of RF data over 30 subcarriers and

operates according to the IEEE 802.11n standard [28]. Laptops equipped with the NIC 5300

wireless network module are able to run this tool. The authors of [29] provided a survey on

many contributions of different activity recognition systems by analyzing the amplitude of the

CSI data acquired by the NIC 5300 module. The main drawback of the CSI tool is that the

phases of the data collected are highly distorted. This is due to the clock asynchronization

between the transmitter and receiver stations which makes it challenging to analyze the

micro-Doppler signatures of the collected CSI data. If the spectrogram of the measured CSI

is very noisy, it does not provide a clear insight into the time variant (TV) Doppler power

characteristics. For noise supression, the principle component analysis [30] was applied to

the amplitudes of measured CSI data, and then the one-sided spectrogram was computed.

An alternative approach is to apply a linear transformation to the highly distorted phases to

eliminate the phase distortions [31]. Although this approach succeeds in providing a good

pattern of the transformed phases, it can partially eliminate the desired phases, which might

limit the insight into the true micro-Doppler signature. A reliable solution to eliminate the

phase distortions is to employ a physical back-to-back (B2B) connection. This approach was

introduced, implemented, tested, and verified in [32].

The main disadvantage of the systems based on RF sensing in [14–22, 24–26] is that

they require measurement data to train the classifier. This consumes a huge amount of

time and effort to collect non-reproducible data. An alternative approach is to generate

simulation-based reproducible data to train the classifier. In the literature, many attempts

have been done to simulate radar micro-Doppler signatures of human activities such as walking

in [33,34]. The authors of [35] have provided a framework to estimate the gait parameters from

simulated radar micro-Doppler signatures of human walking activity, where the Thalmann

human walking model described in [36] has been incorporated. Motion capture (MOCAP)

databases have been employed in [37] to simulate the radar micro-Doppler signatures of

different human activities such as crawling, creeping, and running. An alternative approach

was to use the Microsoft Kinect sensor for collecting the trajectories to simulate the radar

micro-Doppler signatures of human activities, such as walking, running, leaping, and boxing

in [38].

To the best of our knowledge, inertial measurement units (IMUs) have not been used to

simulate the micro-Doppler signatures of CSI channel models under the influence of human

activities. The trajectories of the moving body segments can be measured by attaching the

IMUs to the moving body segments. The IMUs collect the accelerations and the Euler angles.

Then, we rotate the accelerations to get their projections on the reference frame. Finally, the

trajectories computed from the rotated accelerations can be fed to the channel model. Such

an IMU-driven channel model enables to simulate the micro-Doppler signatures.

In this paper, we present an IMU-driven non-stationary channel model that enables to

simulate the multipath components associated with different body segments. Moreover, such a
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model allows for in-depth understanding of the parameters that have influence on the Doppler

shifts caused by the moving body segments. The contributions of this paper are listed as

follows

� The moving body segments are modelled as a cluster of moving point scatterers.

� We present expressions of the TV speed, time-variant azimuth angle of motion (TV-

AAOM), and time-variant elevation angle of motion (TV-EAOM) corresponding to each

moving point scatterer.

� The expressions of the TV Doppler shift and the TV propagation delay associated with

each moving point scatterer are provided.

� The TV path gains of the moving point scatterers are taken into account to make the

proposed channel model more realistic.

� We present a model for the TV channel transfer function (TV-CTF).

� The micro-Doppler signature is extracted from the TV-CTF by means of the spectrogram,

of which the closed-form expressions are provided.

� The proposed channel model is confirmed by performing the CSI and IMU measurements

simultaneously for human activities.

� The spectrograms of both the CSI measurements and the IMU-driven channel model are

evaluated. In addition, the results of the time variant mean Doppler shifts (TV-MDSs)

computed from the spectrograms are matching.

The contributions of this paper pave the way towards design of the simulation-based HAR

systems.

The rest of the paper is organized as follows. Section F.2 describes the 3D multipath

propagation scenario and presents the expressions of the TV Doppler shifts, TV path gains,

and the non-stationary TV-CTF corresponding to the IMU-driven channel model. Section F.3

presents the expressions of the spectrogram of the TV-CTF. Section F.4 shows how the CSI

and IMU data were collected, addresses the challenges faced while processing the data, and

exhibits the results of the proposed IMU-driven channel model and the measured CSI data.

Section F.5 is left for the conclusion and provides an outlook to future research.

F.2 Modelling the TV-CTF

F.2.1 The Geometrical Model

In this paper, we consider an indoor propagation scenario described by the geometrical model

in Fig. F.1. The geometrical model includes a Wi-Fi transmitter and a Wi-Fi receiver denoted
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by Tx and Rx, respectively. Both Tx and Rx are stationary and located at
(
xT , yT , zT

)
and(

xR, yR, zR
)
, respectively, and operate according to the IEEE 802.11n standard [28]. We

consider a person performing some activities during which the person’s main body segments

are modelled by a cluster of N moving point scatterers SM,n for n = 1, 2, . . . , N . Moreover,

the fixed objects, such as walls, furniture, etc. are modelled as M fixed scatterers SF,m for

m = 1, 2, . . . , M. Single-bounce scattering is assumed, i.e., any wave transmitted from the

Tx reaches the Rx via either a moving point scatterer SM,n or a fixed scatterer SF,m. The

line-of-sight is assumed to be obstructed.

Figure F.1: Geometrical model of an indoor propagation scenario with a fixed transmitter Tx,

a fixed receiver Rx, a moving person modelled by moving point scatterers (▲), and several

fixed scatterers (■) representing stationary objects, such as walls, furniture, etc.

F.2.2 The TV Trajectories

The TV velocity v⃗M,n (t) associated with the nth moving point scatterer SM,n is presented as

v⃗M,n (t) =
[
vM,n,x (t) , vM,n,y (t) , vM,n,z (t)

]T
(F.1)

where the vector transpose operation is denoted by [·]T. The velocities vM,n,x (t), vM,n,y (t),

and vM,n,z (t) in x, y, and z directions, respectively can be expressed in terms of the TV speed
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vM,n(t), TV-EAOM βvM,n
(t) and TV-AAOM αvM,n

(t) as

vM,n,x (t) = vM,n (t) cos
(
βvM,n

(t)
)
cos
(
αvM,n

(t)
)

(F.2)

vM,n,y (t) = vM,n (t) cos
(
βvM,n

(t)
)
sin
(
αvM,n

(t)
)

(F.3)

vM,n,z (t) = vM,n (t) sin
(
βvM,n

(t)
)

(F.4)

respectively. The TV functions αvM,n
(t) and βvM,n

(t) are computed by

αvM,n
(t) = arctan2 (vM,n,y(t), vM,n,x(t)) (F.5)

βvM,n
(t) = arcsin

 vM,n,z(t)√
v2M,n,x(t) + v2M,n,y(t) + v2M,n,z(t)

 (F.6)

respectively. The elevation angle βvM,n
(t) described in (F.6) has a range from −π/2 to π/2,

i.e., βvM,n
(t) ∈ [−π/2, π/2]. The function arctan2(·) returns an angle with a range from −π

to π, i.e., αvM,n
(t) ∈ [−π, π). From (F.2)–(F.4), the TV displacements xM,n(t), yM,n(t), and

zM,n(t) can be calculated as follows

xM,n(t) = xM,n +

t∫
0

vM,x(t
′)dt′ (F.7)

yM,n(t) = yM,n +

t∫
0

vM,y(t
′)dt′ (F.8)

zM,n(t) = zM,n +

t∫
0

vM,z(t
′)dt′ (F.9)

respectively. The parameters xM,n, yM,n, zM,n designate the initial positions of SM,n in the

x, y, and z directions, respectively. By using the TV displacements in (F.7)–(F.9) and the

location of Tx, the TV Euclidean distance dTM,n(t) between the nth moving point scatterer

SM,n and the transmitter Tx is given by

dTM,n(t) =

((
xM,n(t)− xT

)2
+
(
yM,n(t)− yT

)2
+
(
zM,n(t)− zT

)2) 1
2

. (F.10)

Similarly, the TV Euclidean distance dRM,n(t) between the nth moving point scatterer SM,n

and the receiver Rx can be expressed by

dRM,n(t) =

((
xM,n(t)− xR

)2
+
(
yM,n(t)− yR

)2
+
(
zM,n(t)− zR

)2) 1
2

. (F.11)
F
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By using the expressions in (F.7)–(F.11), the time variant azimuth angle of departure (TV-

AAOD) αT
M,n(t), time variant azimuth angle of arrival (TV-AAOA) αR

M,n(t), time variant

elevation angle of departure (TV-EAOD) βT
M,n(t), and time variant elevation angle of arrival

(TV-EAOA) βR
M,n(t) can be expressed by

αT
M,n(t) = arctan2

(
yM,n(t)− yT , xM,n(t)− xT

)
(F.12)

αR
M,n(t) = arctan2

(
yM,n(t)− yR, xM,n(t)− xR

)
(F.13)

βT
M,n(t) = arcsin

(
zM,n(t)− zT

dTM,n(t)

)
(F.14)

βR
M,n(t) = arcsin

(
zM,n(t)− zR

dRM,n(t)

)
(F.15)

respectively. The TV functions in (F.12)–(F.15) are playing an essential role in providing an

expression for the Doppler frequency caused by the nth moving point scatterer, which will be

discussed later in this section. The TV propagation delay τM,n(t) of the wave transmitted by

Tx via the nth moving point scatterer SM,n and arriving at the receiver Rx can be computed

by

τM,n(t) =
dTM,n(t) + dRM,n(t)

c0
(F.16)

where the parameter c0 denotes the speed of light.

F.2.3 The TV Model Parameters

Using the relationship fn,q(t) = −(f0 + fq)τ̇M,n(t) in [39, 40], the TV Doppler shift fn,q (t)

caused by the nth moving point scatterer SM,n and associated with the qth subcarrier index

can be computed by

fn,q (t) = −fn,q,max(t)γn (t) (F.17)

where the function fn,q,max(t) denotes the maximum Doppler shift caused by the speed of

motion of the nth moving point scatterer SM,n. It is given by

fn,q,max(t) =
(f0 + fq) vM,n(t)

c0
(F.18)

where the parameter f0 denotes the carrier frequency. The parameter fq is the qth subcarrier

frequency, which is given by

fq = q ·∆f. (F.19)



F



Paper F

The parameter q ∈
{
− 28, −26, . . . ,−2, −1, 1, 3, . . . , 27, 28

}
in the expression above

designates the subcarrier frequency index in OFDM communication systems that follow the

IEEE 802.11n standard [28]. The parameter ∆f has a constant value of 312.5 kHz.

The function γn (t) in (F.17) is calculated by

γn(t) =

cos
(
βvM,n

(t)
) [

cos
(
βT
M,n(t)

)
cos
(
αT
M,n(t)− αvM,n

(t)
)

+cos
(
βR
M,n(t)

)
cos
(
αvM,n

(t)− αR
M,n(t)

) ]
+sin

(
βvM,n

(t)
) [

sin
(
βT
M,n(t)

)
+ sin

(
βR
M,n(t)

) ]
. (F.20)

The TV function described by (F.20) is a combination of the trigonometric functions

of the TV-AAOD αT
M,n(t), TV-AAOA αR

M,n(t), TV-EAOD βT
M,n(t), TV-EAOA βR

M,n(t), TV-

EAOM βvM,n
(t), and TV-AAOM αvM,n

(t). Thus, it depends on the direction of motion and

location of the moving point scatterer SM,n and the fixed locations of the Tx and Rx. Note

that the function γn(t) can have either positive or negative values and scales the maximum

Doppler shift fn,q,max(t). If the moving point scatterer SM,n moves towards the Tx and Rx,

the propagation delay τM,n(t) decreases, and its rate of change τ̇M,n(t) is negative. Thus,

from (F.17) it follows that the function γn (t) is negative and the Doppler frequency fn,q (t)

has positive values according to (F.17). When SM,n moves away from the Tx and Rx, the

propagation delay τM,n(t) increases, and the rate of change τ̇M,n(t) has positive values. Hence,

the function γn (t) is positive and the TV Doppler frequency fn,q (t) becomes negative. This

shows how strongly the locations of the moving point scatterer SM,n, Tx, and Rx influence

the values of the TV Doppler frequency fn,q (t). Thus, by changing the locations of the Tx

and Rx, we will have different values of the Doppler frequency fn,q (t). Note that the Doppler

frequency fn,q (t) in (F.17) is assumed to be linear function of time over short time intervals.

A special case occurs when the Tx and Rx are co-located, e.g., as in a mono-static radar

configuration, then the TV functions αT
M,n(t) and βT

M,n(t) become equivalent to αR
M,n(t) and

βR
M,n(t), respectively. Hence, the expression for γn (t) reduces to

γn(t) = 2×[
cos
(
βvM,n

(t)
)
cos
(
βT
M,n(t)

)
cos
(
αT
M,n(t)− αvM,n

(t)
)

+sin
(
βvM,n

(t)
)
sin
(
βT
M,n(t)

) ]
. (F.21)

Note that if the subcarrier frequency fq is much smaller than the values of the carrier frequency

f0, i.e., fq ≪ f0, the influence of the subcarrier frequency fq on the Doppler frequency is much

smaller than that of the carrier frequency f0. Thus, the Doppler frequency of the moving

F
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point scatterer SM,n is the same for all the subcarrier frequencies, i.e., fn,q (t) ≈ fn,p (t) for

p ̸= q.

The TV path gain cM,n(t) associated with the nth moving point scatterer SM,n is expressed

by [41,42]

cM,n(t) = λ aM,n

[
dRM,n(t) d

T
M,n(t)

]− η
2 . (F.22)

The TV path gain cM,n(t) depends on the distances dRM,n(t) and dTM,n(t), the wavelength

λ = c0/f0, the transmit and receive antenna gains and the contribution of the nth moving

point scatterer aM,n [43], and the path loss exponent η. Note that the TV path gain cM,n(t)

in (F.22) does not change quickly with respect to time. Hence, it can be assumed that the

path gain cM,n(t) is constant over short-time intervals. The parameters aM,n in (F.22) is given

by

aM,n =
√

PTxGTxPRxGRxAM,n (F.23)

for n = 1, 2, . . . , N , where the symbols PTx , GTx , PRx , GRx , and AM,n designate the transmit

power, gain of the Tx antenna, receive power, gain of the Rx antenna, and the radar cross-

section of the nth moving point scatterer SM,m, respectively. These parameters are unknown.

A method for estimating the parameters aM,n by using the TV-MDS will be demonstrated in

Section F.4.2.

F.2.4 The CTF

The TV-CTF H (t, fq) is given by

H (t, fq) =
N∑
n=1

HM,n (t, fq) +
M∑

m=1

HF,m (F.24)

where the first term in (F.24) denotes the superposition of N components corresponding

to the moving point scatterers. The second term designates the superposition of the M
components corresponding to the fixed scatterers. The components of the first and the second

term in (F.24) are given by

HM,n (t, fq) = cM,n(t) e
j[θM,n−2π(f0+fq)τM,n(t)] (F.25)

HF,m = cF,m ejθF,m (F.26)

respectively. The TV-CTF HM,n (t, fq) in (F.25) is characterized by a TV path gain cM,n(t),

TV propagation delay τM,n(t), and phase shift θM,n corresponding to the nth moving point

scatterer SM,n.

The expression in (F.26) is the TV-CTF associated with the mth fixed point scatterer

SF,m characterized by a constant path gain cF,m and phase shift θF,m. The phases θM,n and
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θF,m are assumed to be identically and independently distributed (i.i.d.), random variables

that follow a uniform distribution between −π and π, i.e., θM,n, θF,m U (−π, π] [44, p. 36].

The model presented in (F.24) corresponds to the class of 3D non-stationary fixed-to-fixed

(F2F) wideband channels.

The TV-MDS Bfq(t) of the proposed trajectory-driven channel can be expressed in terms

of cM,n(t), cF,m, and fn,q (t) as

Bfq(t) =

N∑
n=1

c2M,n(t)fn,q (t)

N∑
n=1

c2M,n(t) +
M∑

m=1

c2F,m

. (F.27)

The expression above represents the first-order spectral moment, which provides insight into

the average Doppler shift caused by the moving point scatterers in the model. This quantity

is the sum of the Doppler shifts fn,q(t) weighted by their squared TV path gains c2M,n(t) and

divided by the total sum of the squared path gains of the fixed and moving point scatterers

c2F,m and c2M,n(t), respectively. The fixed scatterers SF,m do not have any influence on the

numerator in (F.27), as the Doppler shifts caused by the fixed scatterers in F2F channels are

zero. On the other hand, their squared path gains c2F,m influence the denominator in (F.27).

Hence, high values of the path gains cF,m result in small values of the TV-MDS Bfq(t). The

expression in (F.27) can be evaluated by simulations, but not by measurements. That is due

to the fact that the values of fn,q(t), cF,m, and cM,n(t) are not accessible in the measurement

data. An alternative approach for estimating the TV-MDS of CSI measurements by using the

spectrogram is presented in the next section.

F.3 Micro-Doppler Signature of the TV-CTF

To study the micro-Doppler signature of the non-stationary TV-CTF presented in Section F.2.4,

a time-frequency-power distribution (TFPD) is employed. There are different TFPDs according

to the literature [45–47]. In this section we use the spectrogram that requires an even, real,

and positive window w(t) with normalized energy for computation. In this paper, we utilize a

Gaussian window function defined as

w(t) =
1√

σw

√
π
e
− t2

2σ2
w (F.28)

where the parameter σw denotes the Gaussian window spread.

There are three steps to calculate the spectrogram of the TV-CTF H (t, fq). First, the

TV-CTF H (t′, fq) is multiplied with the sliding window function w (t′ − t) to obtain the

short-time CTF (ST-CTF) xq(t
′, t) according to [47, Eq. (2.3.1)] as

xq(t
′, t) = H (t′, fq)w (t′ − t) . (F.29)
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Here, the parameters t and t′ denote the local time at which we investigate the micro-Doppler

signature and the running time, respectively. The next step is to compute the short-time

Fourier transform (STFT) Xq(f, t) associated with the qth subcarrier by computing the

Fourier transform of the ST-CTF xq(t
′, t) in (F.29) as follows

Xq(f, t) =

∞∫
−∞

xq(t
′, t)e−j2πft′dt′

≈ e−j2πft√
σw

√
π

{
N∑
n=1

XM,n,q(f, t) +
M∑

m=1

XF,m

}
(F.30)

where

XM,n,q(f, t) ≈HM,n (t, fq) G
(
f, fn,q(t), σ

2
x,n,q,M

)
(F.31)

XF,m =HF,m G
(
f, 0, σ2

x,F

)
(F.32)

G
(
f, µ, σ2

)
=

1√
2πσ

e−
(f−µ)2

2σ2 (F.33)

σ2
x,n,q,M =

1− j2πσ2
wkn,q

(2πσw)2
(F.34)

σ2
x,F =

1

(2πσw)2
(F.35)

kn,q =
dfn,q(t)

dt
. (F.36)

The expression in (F.30) consists of two terms. The first term designates the superposition of

STFTs of N components corresponding to the moving point scatterers. Each component of the

first term in (F.30) is associated with the nth moving point scatterer SM,n. An approximate

solution of each component of the first term is provided in (F.31), which has been obtained

by assuming that the path gains cM,n(t) are constant and the Doppler frequencies fn,q (t) are

linear functions of time t, over the window function for each moving point scatterer SM,n

as mentioned in Section F.2.4. The function G(·) denotes a Gaussian distribution whose

expression is provided in (F.33). The second term in (F.30) denotes the superposition of

M components corresponding to the fixed scatterers. Each component of the second term

in (F.32) corresponds to the mth fixed scatterer SF,m. Note that the STFT in (F.30) is

complex valued. The third step is to compute the spectrogram Sq(f, t) associated with the

qth subcarrier index by taking the magnitude squared of the STFT in (F.30) as

Sq(f, t) = |Xq(f, t)|2 = S(a)
q (f, t) + S(c)

q (f, t). (F.37)

The first term in (F.37) denotes the auto-term S
(a)
q (f, t), whereas the second term is the

cross-term S
(c)
q (f, t). Note that the spectrogram in (F.37) is real and positive. The auto-term
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S
(a)
q (f, t) in (F.37) is real and positive, and its approximation is given by

S(a)
q (f, t) ≈

N∑
n=1

|XM,n,q(f, t)|2 +
M∑

m=1

c2F,m G
(
f, 0, σ2

F

)
(F.38)

where [40]

|XM,n,q(f, t)|2 ≈ c2M,n(t)G
(
f, fn,q(t), σ

2
n,q,M

)
(F.39)

σ2
n,q,M =

1 + (2πσ2
wkn,q)

2

2(2πσw)2
(F.40)

σ2
F =

1

2(2πσw)2
. (F.41)

The auto-term in (F.38) is the superposition of N +M components. The first term in (F.38)

denotes the superposition of the auto-terms associated with the N moving point scatterers.

Each component of the first term in (F.38) contains the desired TV Doppler power char-

acteristics of the nth moving point scatterer SM,n associated with the qth subcarrier. The

expression in (F.39) represents the approximation of auto-term corresponding to the nth

moving point scatterer SM,n. It is a Gaussian function, which is centered on the Doppler

shift fn,q(t), has a variance denoted by σ2
n,q,M, and is weighted by the squared path gain

c2M,n(t). The second term in (F.38) denotes the sum of the auto-terms of M fixed scatterers.

Each component of the second term in (F.38) corresponds to the mth fixed scatterer SF,m.

Moreover, each component of the second term in (F.38) is a Gaussian function centered on a

zero-frequency value as the Doppler frequencies of the fixed scatterers in F2F channels are

zero. The Gaussian functions in the second term of (F.38) are weighted by the squared path

gain c2F,m of the mth fixed scatterer SF,m. The expression in (F.38) provides an approximate

solution of the power distribution over time and frequency, jointly.

The cross-term S
(c)
q (f, t) associated with the qth subcarrier is expressed in (F.41), at the

top of the next page. It consists of (N +M) (N +M− 1) /2 components. It represents the

undesired spectral interference term that reduces the resolution of the spectrogram. This term

is real, but not necessarily positive. The operators ℜ{·} and {·}∗ in (F.41) denote the real and

complex conjugate operators, respectively. The first term in (F.41) denotes the sum of the

spectral interference components between two moving point scatterers SM,n and SM,i for n ̸= i.

The second term in (F.41) designates the sum of the spectral interference components between

two fixed scatterers SF,m and SF,i for m ̸= i. Finally, the last term in (F.41) represents the sum

of the spectral interference components between the fixed scatterers SF,m and the moving point

scatterers SM,n. Averaging the spectrogram Sq(f, t) over the random phases θM,n and θF,m by

simulations removes the cross-term S
(c)
q (f, t), i.e., E{Sq(f, t)}|θM,n, θF,m

= S
(a)
q (f, t) [48, 49]. In

the case of measurements, eliminating the cross-term is still unknown; however, it has been
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S(c)
q (f, t) ≈ 2

σw

√
π
ℜ

{
N−1∑
n=1

N∑
i=n+1

XM,n,q(f, t)X
∗
M,i,q(f, t) +

M−1∑
m=1

M∑
i=m+1

XF,mX
∗
F,i

+
N∑
n=1

M∑
i=1

XM,n,q(f, t)X
∗
F,i

}
(F.41)

theoretically proven that massive MIMO techniques can help [50].

The TV-MDS BHq(t) can be computed by means of the spectrogram Sq(f, t) as follows

BHq(t) =

∞∫
−∞

fSq(f, t)df

∞∫
−∞

Sq(f, t)df

. (F.42)

The expression in (F.42) can be used in conjunction with simulations and measurements.

The numerator of (F.42) represents the average frequency computed from the spectrogram

at each time instant. The numerator in (F.42) is divided by the total power at each time

instant. The TV-MDS BHq(t) is influenced by the auto-term S
(a)
q (f, t) and the cross-term

S
(c)
q (f, t) in case of measurements; however, it still provides insight into the mean Doppler

shifts in the presence of human activities, i.e., BHq(t) ≈ Bfq(t). In the case of simulations, the

auto-term S
(a)
q (f, t) can be used instead of the spectrogram Sq(f, t) when computing BHq(t)

in (F.42). Hence, the TV-MDSs BHq(t) and Bfq(t) become equal [48], i.e., BHq(t)
∆
= Bfq(t).

It is worth mentioning that in the case of measurement data, a notch filter must be used

before computing the spectrogram. This is due to the fact that the power spectral density of

the signal components associated with the fixed scatterers is much higher than that of moving

point scatterers.

F.4 Measurements and Numerical Results

In this section, the TV Doppler power characteristics, the TV-MDSs of the measured RF

data and the IMU-driven channel model are presented for some human activities. Moreover,

the measurement scenario and the processing of the RF and IMU data are discussed.

F.4.1 Measurement Scenario

Fig. F.2 shows the measurement scenario setup in the xy-plane. For RF recording, we used a

CSI software tool described in [27,51] and installed it on two HP Elitebooks 6930p laptops.

Both laptops had Intel NIC 5300 network adapters and Ubuntu 14.04 LTS operating systems.
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One laptop was operating in injector mode as Tx while the other was operating in monitor

mode as Rx. The laptops were connected to a pair of Laird� YE572113-30SMAM horn

antennas. One was a Tx antenna connected to the transmitter station and the other one was

an Rx antenna connected to the receiver station. We employed channel number 149 to record

the CSI data, i.e., f0 = 5.745 GHz [28]. The bandwidth B was 40 MHz. A B2B connection

was used to remove the TV phase distortions, which occur due to the clock asynchronization

between the Tx and Rx stations, as shown in Fig. F.2 and described in [32]. For realizing the

B2B connection, the RF cables 141-MSM+, and RF power splitter ZFSC-2-10G+ with two

output and one input ports have been deployed. The input port of the splitter was connected

to the Tx station. One of the output ports was connected to a port of the Rx station as a

B2B connection, whereas the other port was connected to the Tx antenna. Both of Tx and Rx

antennas were collocated at a height of 0.8 m. The source MATLAB code for reading the

measured CSI data can be found in [52].

Six IMUs were used to capture motion data simultaneously while collecting the CSI data.

Four of the IMUs were from MetaMotionR [53] and the other two were from the Polytechnic

School of Engineering of Vilanova i la Geltrú at the Technical University of Catalonia (UPC).

A 22-year-old male candidate weighing 76 kg and 1.8 m tall was asked to perform the following

activities (see Fig. F.2):

� Walking: The candidate stood in front of the Tx and Rx antennas. He wore six IMUs,

two on his wrists, two on his ankles, one on his torso, and one on his head. He walked

4 m away from Tx and Rx antennas, and then he stopped.

� Falling: The candidate stood still facing the Tx and Rx antennas at a distance of 4 m.

Then, he fell forward on a 15 cm thick mattress. He was wearing two IMUs. One

attached to the torso, and the other one was placed on his head.

� Sitting: He stood still facing the Tx and Rx antennas at a distance of 4 m. Then, he sat

down on a chair. He was wearing two IMUs at the same locations as those in the falling

activity.

The candidate stopped moving for a while after finishing each activity. In the simulation,

the location
(
xT , yT , zT

)
of Tx and the location

(
xR, yR, zR

)
of Rx and were chosen to be

(0, −0.05, 0.8) and (0, 0.05, 0.8), respectively. The initial positions (xM,n, yM,n, zM,n) of the

moving point scatterers are exhibited in Table F.1 for each activity.

F.4.2 Processing of the Collected Data

Fig. F.3(a) illustrates the steps for processing the recorded CSI data. The collected CSI data

were stored in two matrices at the Rx station. The first matrix stored the CSI data of the B2B

connection, which includes only the TV phase distortions caused the clock asynchronization

F
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Table F.1: Initial positions (xM,n, yM,n, zM,n) of each moving point scatterer SM,n associated

with each activity.

Walking Falling Sitting

Left ankle (0.2, 0.15, 0.1) – –

Right ankle (0.2, −0.15, 0.1) – –

Left wrist (0.2, 0.25, 0.85) – –

Right wrist (0.2, −0.25, 0.85) – –

Waist (0.2, 0, 1.1) (4, 0, 1.1) (4, 0, 1.1)

Head (0.2, 0, 1.75) (4, 0, 1.75) (4, 0, 1.75)

Figure F.2: Measurement scenario in xy-plane.

between the Tx station and the Rx station. The second matrix stored the data representing

the desired fading behaviour of the measured channels and the TV phase distortions between

the Tx and the Rx stations caused by the clock asynchronization. The second matrix was

divided element-wise by the first matrix to get a new third matrix containing the channel

transfer function (CTF) Ĥ (t, fq), with the desired channel behaviour [54,55]. Then, the CTF
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Ĥ (t, fq) was summed over the subcarriers to obtain the complex channel gain µ̂(t)

µ̂(t) =
∑
q

Ĥ (t, fq) . (F.43)

This procedure reduces the background noise of the spectrogram that arises due to measurement

imperfections. Because, as mentioned in Section F.2.3, the bandwidth B is much smaller

than the carrier frequency f0, the Doppler frequencies are almost the same for all subcarriers.

Hence, the sum in (F.43) does not have an impact on the micro-Doppler signatures. The

zero-value Doppler shifts due to static objects (fixed scatterers) were eliminated by utilizing a

notch filter. The parameters of the filter designed in MATLAB can be found in Table F.2.

Finally, the spectrogram Ŝq(f, t) was computed to reveal the micro-Doppler signature of the

candidate’s activity.

Fig. F.3(b) depicts the block diagram for developing the IMU-driven channel model. The

IMU data was recorded simultaneously with the CSI data. The sensors were configured to

record accelerations and quaternions simultaneously. Also, the timestamps were recorded and

used to synchronize the data. The acceleration data was measured on the local axes of the

IMUs. By using the quaternions, the Euler angles and the rotation matrix were constructed

to rotate the measured accelerations to the reference frame. The rotated accelerations were

numerically integrated first to obtain the TV velocities. The drifts in the obtained TV

velocities were removed by using the zero-update (ZUPT) algorithm [56]. The source code

of the ZUPT algorithm is available on GitHub [57]. After that, the displacements were

determined by integrating the drift-removed velocities.

The spectrogram Ŝq(f, t) and TV-MDS B̂Hq(t) of the measured CSI data were computed

first. Then, the TV-MDS B̂Hq(t) was used to compute the contribution of the nth moving

scatterer SM,n by solving the following mean-square-error (MSE) optimization problem as

follows

EBfq (t)
= argmin

aM,n

n∈{1,2,...,N}

Tobs∫
0

(
Bfq(t)− B̂Hq(t)

)2
dt (F.44)

where Bfq(t) and B̂Hq(t) were computed by (F.27) and (F.42), respectively. After obtaining

the contributions of the moving scatterers aM,n, TV-CTF H (t, fq) was generated according

to (F.24). The parameter η was set to 2. Finally, the spectrogram Sq(f, t) and the TV-MDS

Bfq(t) of µ(t) were computed. Table F.3 shows the estimated values of aM,n associated with

each moving point scatterer corresponding to each activity.

F.4.3 Discussion of the Results

Figs. F.4(a) and F.4(b) exhibit the spectrograms Ŝq(f, t) and Sq(f, t) corresponding to the

walking activity of the measured CSI and the IMU-driven channel model, respectively. There
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Table F.2: The parameters of the used notch filter.

Name Value

Filter type Highpass FIR

Stopband frequency 0.1 Hz

Passband frequency 1 Hz

Stopband attenuation 25 dB

Passband ripple 0.01

Design method Equiripple

Table F.3: The values of the estimated parameter aM,n of each moving point scatterer SM,n

corresponding to each activity.

Walking Falling Sitting

Left ankle 0.150 – –

Right ankle 0.138 – –

Left wrist 0.086 – –

Right wrist 0.105 – –

Waist 0.347 0.825 0.652

Head 0.174 0.175 0.348

is a good match between the two spectrograms in Figs. F.4(a) and F.4(b). The spectrogram of

the IMU-driven channel model was computed after the estimation of an for n = 1, 2, . . . , N as

in (F.44). The walking duration took almost 5.5 s, i.e., Tobs ≈ 5.5 s. The Doppler frequencies

have negative values as the candidate was moving away from the Tx and Rx antennas. Thus,

the propagation delays τM,n(t) and their rate of change τ̇M,n(t) were increasing. Hence, the

Doppler frequencies have negative values according to (F.17) in Section F.2.3. The Doppler

frequencies corresponding to the head and the torso have the highest power values, unlike

the rest of the body segments, as they have the highest body areas. The Doppler shifts

caused by the head and torso have ranges from 40 to 50 Hz. The values of the parameter aM,n

corresponding to the walking activity are exhibited in Table F.3. These values are associated

with the moving scatterers corresponding the left ankle, right ankle, left wrist, right wrist,

waist, and head. According to this table, the waist and the head have the highest values,

whereas the wrists have the lowest values.

Figs. F.5(a) and F.5(b) exhibit the analytical solutions of the spectrogram Sq(f, t) and the

auto-term S
(a)
q (f, t) of the IMU-driven channel model corresponding to the walking activity,
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respectively. Both of Sq(f, t) and S
(a)
q (f, t) were computed by approximating the Doppler

frequencies as mentioned in Section F.3. Although the linear approximations of the Doppler

frequencies are obvious in Fig. F.5(b), they do not have a huge impact on the spectrograms

as shown in the figures. Furthermore, the Doppler frequency patterns depicted in the figures

still provides useful insights in Figs. F.5(a) and F.5(b) of the walking activity. Note that in

Fig. F.5(b), the Doppler frequencies corresponding to the moving scatterers are more obvious

as there is no cross-term.

The spectrograms Ŝq(f, t) and Sq(f, t) of the measured CSI and the IMU-driven channel

model are depicted in Figs. F.6(a) and F.6(b), respectively. These spectrograms correspond to

the falling activity. Surprisingly, there is a good match between Ŝq(f, t) and Sq(f, t), although

the candidate wore two IMUs in this scenario. The falling duration consumed around 1.5 s.

The value of the observation interval Tobs was set to 3.5 s when evaluating the parameter

computation in (F.44). The Doppler frequencies had positive values as the candidate was

moving towards the Tx and Rx antennas. Thus, the propagation delays τM,n(t) were decreasing

and their rates of change τ̇M,n(t) were negative. Hence, the Doppler frequencies had positive

values according to (F.17) in Section F.2.3. The Doppler frequencies fn(t) had zero values

before time t ≈ 1.5 s. Then, they increased when the falling started, until they reached a

value of 120 Hz approximately at time t ≈ 2.5 s. At this time t ≈ 2.5 s, the candidate

almost approached the floor. Then, the Doppler frequencies fn(t) decreased rapidly until they

reached zero values in less than 0.5 s. The values of the parameter aM,n corresponding to

the falling activity are exhibited in Table F.3. These values are associated with the moving

scatterers corresponding the waist and head. According to the table, the waist has a higher

value than the head.

Figs. F.7(a) and F.7(b) demonstrate the analytical solutions of the spectrogram Sq(f, t)

and the auto-term S
(a)
q (f, t) of the IMU-driven channel model corresponding to the falling

activity, respectively. The cross-term in Fig. F.7(a) does not have a high impact as the number

of the moving scatterers N is 2 in the falling scenario. By comparing Figs. F.7(a) and F.7(b)

with Fig. F.6(b), there are slight degradation of the linear Doppler frequencies at time t ≈ 3 s.

However, the falling patterns are still obvious in Figs. F.7(a) and F.7(b).

Figs. F.8(a) and F.8(b) illustrate the spectrograms Ŝq(f, t) and Sq(f, t) corresponding to

the sitting activity of the measured CSI data and the IMU-driven channel model, respectively.

There is also a good match between Ŝq(f, t) and Sq(f, t). The values of the Doppler frequencies

were negative since the candidate was moving away down from the Tx and Rx. The value of

Tobs was chosen to be 3 s. The sitting duration was 1.5 s; however, the Doppler frequencies

fn(t) reached values of about -50 Hz, unlike those of the falling activity in Figs. F.8(a) and

F.6(b). That is because the candidate’s speed during the sitting activity was slower than that

of the falling activity. The values of the Doppler frequencies started to decrease at t ≈ 0.5 s

until they reached values of about -50 Hz at t ≈ 1.5 s. Then, they increased slowly until they

reached zero values. The values of the parameter aM,n corresponding to the sitting activity
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and associated with the waist and the head are depicted in Table F.3. Again, the waist has

a higher value than the head. Figs. F.9(a) and F.9(b) show the spectrograms Sq(f, t) and

S
(a)
q (f, t) corresponding to the sitting activity of the measured CSI data and the IMU-driven

channel model, respectively. A slight difference is depicted in Figs. F.9(a) and F.9(b) due to

the linear approximation of the Doppler frequencies; however, the spectrograms still provide

insightful results.

Fig. F.10(a) depicts the TV-MDSs B̂Hq(t) and Bfq(t) corresponding to the walking activity

of the collected CSI data and the IMU-driven channel model, respectively. The TV-MDSs

B̂Hq(t) and Bfq(t) in Fig. F.10(a) are matching. The TV-MDSs in Fig. F.10(a) provide the

same trends as those in Figs. F.4(a) and F.4(b), but with different values. This happens due

to the impact of the cross-terms. The TV-MDSs B̂Hq(t) and Bfq(t) corresponding to the

falling activity of the measured CSI data and the IMU-driven channel model are exhibited in

Fig. F.10(b), respectively. There is a good match between B̂Hq(t) and Bfq(t) in Fig. F.10(b).

The TV-MDSs in Fig. F.10(b) show the same trends as those in Figs. F.6(a) and F.6(b), but

with different values due to the influence of the cross-terms on the TV-MDSs. The TV-MDSs

B̂Hq(t) and Bfq(t) of the CSI data and the IMU-driven channel model corresponding to the

sitting activity are shown in Fig. F.10(c), respectively. A good match is shown between the

TV-MDSs B̂Hq(t) and Bfq(t) in Fig. F.10(c). The trends of B̂Hq(t) and Bfq(t) in Fig. F.10(c)

are matching the TV frequency patterns shown in Figs. F.8(a) and F.8(b); however, they

have different values as the cross-terms have influences on B̂Hq(t) and Bfq(t). Note that in

Figs. F.10(a) and F.10(c) the TV-MDSs Bfq(t) computed from the analytical solutions of

the spectrogram and the auto-term are still insightful although the Doppler frequencies are

linearly approximated.

F.5 Conclusion

In this paper, we demonstrated the possibility of designing an IMU-driven non-stationary

channel model for human activity recognition. Such a model enables the reproducibility of

micro-Doppler signatures. We modelled the non-stationary CTF fed with IMU data, TV

path gains, and TV Doppler shifts. Furthermore, we explored the micro-Doppler signature of

the proposed TV CTF by means of the spectrogram. We confirmed our proposed model by

comparing the micro-Doppler signatures of measured CSI data with a channel model fed with

IMU data. Both of the CSI and IMU data were measured simultaneously. The results showed

a good match between the micro-Doppler signatures of the IMU-driven channel model and

the CSI. For future work, we recommend to train fall classifiers with micro-Doppler signatures

or the TV-MDSs of the proposed model and test them with measured RF data.
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(a)

(b)

Figure F.3: Block diagrams for the (a) CSI data acquisition and processing and (b) IMU-driven

channel model.
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(a) (b)

Figure F.4: Walking activity spectrograms Ŝq(f, t) and Sq(f, t) of the (a) measured CSI data

and (b) IMU-driven channel model, respectively.

(a) (b)

Figure F.5: Approximate analytical solutions of (a) the spectrogram Sq(f, t) and (b) the

auto-term S
(a)
q (f, t) of the IMU-driven channel model corresponding to the walking scenario.
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(a) (b)

Figure F.6: Falling activity spectrograms Ŝq(f, t) and Sq(f, t) of the (a) measured CSI data

and (b) IMU-driven channel model, respectively.

(a) (b)

Figure F.7: Approximate analytical solutions of (a) the spectrogram Sq(f, t) and (b) the

auto-term S
(a)
q (f, t) of the IMU-driven channel model corresponding to the falling scenario.
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(a) (b)

Figure F.8: Sitting activity spectrograms Ŝq(f, t) and Sq(f, t) of the (a) measured CSI data

and (b) IMU-driven channel model, respectively.

(a) (b)

Figure F.9: Approximate analytical solutions of the spectrogram Sq(f, t) and (b) the auto-term

S
(a)
q (f, t) of the IMU-driven channel model corresponding to the sitting scenario.
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Figure F.10: The TV-MDSs B̂Hq(t) and Bfq(t) of the measured CSI and the IMU-driven

channel model, respectively, corresponding to the (a) walking, (b) falling, and (c) sitting

activities.
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