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Abstract This paper is concerned with the problem of H∞ model approximation for a class
of two-dimensional (2-D) discrete-time Markovian jump linear systems with state-delays
and imperfect mode information. The 2-D system is described by the well-known Fornasini-
Marchesini local state-space model, and the imperfect mode information in the Markov
chain simultaneously involves the exactly known, partially unknown and uncertain transition
probabilities. By using the characteristics of the transition probability matrices, together
with the convexification of uncertain domains, a new H∞ performance analysis criterion
for the underlying system is firstly derived, and then two approaches, namely, the convex
linearisation approach and iterative approach, to the H∞ model approximation synthesis
are developed. The solutions to the problem are formulated in terms of strict linear matrix
inequalities (LMIs) or a sequential minimization problem subject to LMI constraints. Finally,
simulation studies are provided to illustrate the effectiveness of the proposed design methods.
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1 Introduction

In recent years, there have been rapidly growing interests in the analysis and synthesis of
two-dimensional (2-D) systems Roesser (1975). The studies of 2-D systems are motivated
by their extensive applications in many modern engineering fields, such as process control
(thermal processes, gas absorption, water stream heating), multi-dimensional digital filtering,
and image processing (enhancement, deblurring, seismographic data processing) Kaczorek
(1985); Lu and Antoniou (1992); Lin (1999); Lin et al. (2001) and so on. Correspondingly,
various issues on 2-D systems, including stability analysis, stabilization, and filtering design,
have been investigated, and a large volume of open literature has been available Xu et al.
(2002, 2003, 2005); Xie et al. (2002); Lam et al. (2004); Paszke et al. (2004); Hoang et al.
(2005); Peng and Guan (2009).

On the other hand, Markovian jump linear systems (MJLSs) have great practical appli-
cations due to the forceful modeling ability of the Markov process in diverse communi-
ties, e.g. manufacturing systems, power systems and networked control systems, where ran-
dom failure, repairs and sudden environment changes may occur in Markov chains Boukas
(2005); Wang et al. (2009, 2010). It is known that some MJLSs have inherent 2-D struc-
ture, e.g. information propagation occurs from pass to pass and along a given pass in a gas
absorption Wu et al. (2008). Therefore, 2-D MJLSs emerge as a more reasonable descrip-
tion to account for the parameter jumping phenomenon in the two independent directions
of information propagation Roesser (1975). As a key factor, transition probabilities (TPs)
in the Markovian jumping process determine the system behavior to a large extent, and
many studies on the analysis and synthesis of MJLSs have been carried out in the context
of completely known information on TPs Wu et al. (2008); Xu et al. (2007); Liu et al.
(2008). However, in practice, imperfect mode information are often encountered especially
when efforts to measure or estimate the mode information are costly or time-consuming.
In such case, it is of both theoretical merit and practical interest, from control perspec-
tives, to further study more general jump systems with imperfect mode information Wang
et al. (2010); Karan et al. (2006); Souza (2006); Zhang and Boukas (2009); Zhao et al.
(2011). To mention a few, the authors in Karan et al. (2006) addressed the robust stabil-
ity analysis problem for a class of MJLSs with norm-bounded uncertain TPs; The author
in Souza (2006) investigated the robust stability analysis and stabilization problems for a
class of MJLSs with polytopic uncertain TPs; The authors in Zhang and Boukas (2009)
considered the H∞ filter synthesis problem for a class of MJLSs with partially unknown
TPs. Nevertheless, the aforementioned results are only referred to one-dimensional (1-D)
systems.

In addition, many complex physical systems can be usually modeled as high or even
infinite order mathematical models, which poses serious difficulties to the analysis and design
of the concerning systems. A logical step to take is to reduce the high-order models to some
simple lower-order models according to some given criteria Ghafoor and Sreeram (2008).
Model approximation/reduction thus plays an important role in the process of control system
design. During the past few decades, various efficient model approximation schemes have
been proposed, involving the Hankel norm approximation method Zhou (1995); Gao et al.
(2004), the H2 approach Yan and Lam (1999), the H∞ approach Zhang et al. (2003); Xu
et al. (2005); Wu et al. (2006); Gao et al. (2006); Wu and Zheng (2009) and the L2–L∞
approach Lam et al. (2005). More recently, the linear matrix inequality (LMI) technique has
been applied to deal with the model approximation problem for different classes of systems
Zhang et al. (2003); Wu and Zheng (2009); Lam et al. (2005). However, from the authors’ best
knowledge, few results have been reported on the model approximation for 2-D MJLSs with
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state-delays and imperfect mode information, which simultaneously comprises the exactly
known, partially unknown and uncertain TPs. This motivates us for the present study.

According to the issues mentioned above, in this paper, we will tackle the problem of
H∞ model approximation for a class of 2-D discrete-time MJLSs with state-delays and
imperfect mode information. The mathematical model of the 2-D system is described by the
Fornasini-Marchesini local state-space (FMLSS) model, and the imperfect mode information
simultaneously considers the exactly known, partially unknown and polytopic-type uncertain
TPs, which is a more practical scenario. By fully exploiting the properties of the transition
probability matrices (TPMs), together with the convexification of uncertain domains, a new
H∞ performance analysis criterion for the model error system will be firstly derived. To solve
the model approximation problem, two distinctly different approaches will be then developed.
The first approach converts the model approximation into a convex optimization problem
via a linearisation procedure, and the second one is based on the cone complementarity
linearisation (CCL) method El Ghaoui et al. (1997); Qiu et al. (2012), which casts the model
approximation into a sequential minimization problem subject to LMI constraints. Finally,
simulation studies will be performed to show the effectiveness of the proposed synthesis
methods.

Notations The notations used throughout the paper are standard. Rn and Rm×n denote,
respectively, the n-dimensional Euclidean space, and the set of all m × n real matrices; N

+
represents the sets of positive integers; the notation P > 0 means that P is real symmetric
and positive definite; I and 0 represent the identity matrix and a zero matrix, respectively;
(S, F, P) denotes a complete probability space, in which S is the sample space, F is the σ

algebra of subsets of the sample space, and P is the probability measure on F ; E[·] stands
for the mathematical expectation; ‖·‖ refers to the Euclidean norm of a vector or its induced
norm of a matrix; l2{[0,∞), [0,∞)} denotes the space of square summable sequences on
{[0,∞), [0,∞)}. Matrices, if not explicitly stated, are assumed to have appropriate dimen-
sions for algebra operations.

2 Problem formulation and preliminaries

Consider the following 2-D discrete-time MJLSs, defined on a complete probability space
(S, F, P) and described by the FMLSS model with state-delays,

(�) : x(i + 1, j + 1) = A1(r(i, j + 1))x(i, j + 1) + A2(r(i + 1, j))x(i + 1, j)

+ Ad1(r(i, j + 1))x(i − d1, j + 1) + Ad2(r(i + 1, j))x(i + 1, j − d2)

+ B1(r(i, j + 1))u(i, j + 1) + B2(r(i + 1, j))u(i + 1, j)

z(i, j) = C(r(i, j))x(i, j) + B3(r(i, j))u(i, j), (1)

where x(i, j) ∈ Rnx is the state vector; z(i, j) ∈ Rnz is the output vector; u(i, j) ∈ Rnu is
the input vector which belongs to l2{[0,∞), [0,∞)}; and d1 and d2 are two constant pos-
itive integers representing delays along the vertical and horizontal directions, respectively.
A1(r(i, j +1)), A2(r(i +1, j)), Ad1(r(i, j +1)), Ad2(r(i +1, j)), B1(r(i, j +1)), B2(r(i +
1, j)), C(r(i, j)), and B3(r(i, j)) are real-valued system matrices. These matrices are func-
tions of r(i, j), which is described by a discrete-time, discrete-state homogeneous Markov
chain with a finite-state space I := {1, . . . , N } and a stationary transition probability matrix
(TPM) � = [πmn]N×N , where
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πmn = Pr(r(i + 1, j + 1) = n |r(i, j + 1) = m) = Pr(r(i + 1, j + 1)

= n |r(i + 1, j) = m), ∀m, n ∈ I,

with πmn ≥ 0 and
∑N

n=1 πmn = 1. For r(i + 1, j) = m ∈ I or r(i, j + 1) = m ∈ I, the
system matrices of the m-th mode are denoted by (A1m, A2m, Ad1m, Ad2m, B1m, B2m,

Cm, B3m), which are real known and with appropriate dimensions. Unless otherwise stated,
similar simplification is also applied to other matrices in the following.

In this paper, the TPs of the jumping process are assumed to be uncertain and partially
accessed, i.e., the TPM � = [πmn]N×N is assumed to belong to a given polytope P�

with vertices �s, s = 1, 2, . . . , M , P� :=
{
�

∣
∣
∣� = ∑M

s=1 αs�s;αs ≥ 0,
∑M

s=1 αs = 1
}

,

where �s = [πmn]N×N , m, n ∈ I, are given TPMs containing unknown elements still. For
instance, for system (�) with four operation modes, the TPM may be as,

⎡

⎢
⎢
⎣

π11 π̃12 π̂13 π14

π̂21 π22 π̃23 π24

π31 π̂32 π33 π̂34

π41 π̃42 π̂43 π̂44

⎤

⎥
⎥
⎦

where the elements labeled with “ˆ” and “˜” represent the unknown information and polytopic
uncertainties on TPs, respectively, and the others are known TPs. For notational clarity,
∀m ∈ I, we denote I = I(m)

K ∪ I(m)
UC ∪ I(m)

UK as follows,

I(m)
K := {n : πmn is known},

I(m)
UC := {n : π̃mn is uncertain},

I(m)
UK := {n : π̂mn is unknown}.

Moreover, if I(m)
K �= ∅ and I(m)

UC �= ∅, it is further described as

I(m)
K := {K1(m)

, . . . , Kt(m)
}, ∀1 ≤ t(m) ≤ N − 2

I(m)
UC := {U1(m)

, . . . , Uv(m)
}, ∀1 ≤ v(m) ≤ N

where Kt(m)
∈ N

+ represents the t(m)-th known element with the index Kt(m)
in the m-th row

of the TPM, and Uv(m)
∈ N

+ represents the v(m)-th uncertain element with the index Uv(m)
in

the m-th row of the TPM. Obviously, 1 ≤ t(m) + v(m) ≤ N . Also, we denote

π
(ms)
UK :=

∑

n∈I(m)

UK
π̂mn = 1 −

∑

n∈I(m)

K
πmn −

∑

n∈I(m)

UC
π̃ (s)

mn, (2)

where π̃
(s)
mn represents an uncertain TP in the s-th polytope, ∀s = 1, . . . , M .

The boundary conditions of system (�) in (1) are defined by,

{x(i, j) = φ(i, j), ∀ j ≥ 0, − d1 ≤ i ≤ 0};
{x(i, j) = ϕ(i, j), ∀i ≥ 0, − d2 ≤ j ≤ 0};
φ(0, 0) = ϕ(0, 0). (3)

Throughout this paper, the following assumptions are made.

Assumption 1 System (�) in (1) is stochastically stable.
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Assumption 2 The boundary conditions satisfy

lim
T1→∞ E

⎧
⎨

⎩

T1∑

j=0

0∑

i=−d1

(φT(i, j)φ(i, j))

⎫
⎬

⎭
+ lim

T2→∞ E

⎧
⎨

⎩

T2∑

i=0

0∑

j=−d2

(ϕT(i, j)ϕ(i, j))

⎫
⎬

⎭
< ∞.

(4)

To approximate the original 2-D MJLS (1), in this paper, we are interested in designing
the following mode-dependent reduced-order model,

x̂(i + 1, j + 1) = Ar1(r(i, j + 1))x̂(i, j + 1) + Ar2(r(i + 1, j))x̂(i + 1, j)

+ Ard1(r(i, j + 1))x̂(i − d1, j + 1) + Ard2(r(i + 1, j))x̂(i + 1, j − d2)

+ Br1(r(i, j + 1))u(i, j + 1) + Br2(r(i + 1, j))u(i + 1, j)

ẑ(i, j) = Cr (r(i, j))x̂(i, j) + Br3(r(i, j))u(i, j)

x̂(i, j) = 0, for i ≤ 0 or j ≤ 0, (5)

where x̂(i, j) ∈ Rnr (nr < nx ), ẑ(i, j) ∈ Rnz , and {Ar1(r(i, j + 1)), Ar2(r(i +
1, j)), Ard1(r(i, j +1)), Ard2(r(i +1, j))} ∈ Rnr ×nr , {Br1(r(i, j +1)), Br2(r(i +1, j))} ∈
Rnr ×nu , Cr (r(i, j)) ∈ Rnz×nr and Br3(r(i, j)) ∈ Rnz×nu are the gains of the reduced-order
models to be determined.

Define x̄(i, j) := [
xT(i, j) x̂T(i, j)

]T
, and z̄(i, j) := z(i, j) − ẑ(i, j). Then, by aug-

menting (1) and (5) the model error dynamics can be represented as follows,

(�̄) : x̄(i + 1, j + 1) = Ā1(r(i, j + 1))x̄(i, j + 1) + Ā2(r(i + 1, j))x̄(i + 1, j)

+ Ād1(r(i, j + 1))x̄(i − d1, j + 1) + Ād2(r(i + 1, j))x̄(i + 1, j − d2)

+ B̄1(r(i, j + 1))u(i, j + 1) + B̄2(r(i + 1, j))u(i + 1, j)

z̄(i, j) = C̄(r(i, j))x̄(i, j) + B̄3(r(i, j))u(i, j), (6)

where

Ā1(r(i, j + 1)) :=
[

A1(r(i, j + 1)) 0
0 Ar1(r(i, j + 1))

]

,

Ā2(r(i + 1, j)) :=
[

A2(r(i + 1, j)) 0
0 Ar2(r(i + 1, j))

]

,

Ād1(r(i, j + 1)) :=
[

Ad1(r(i, j + 1)) 0
0 Ard1(r(i, j + 1))

]

,

Ād2(r(i + 1, j)) :=
[

Ad2(r(i + 1, j)) 0
0 Ard2(r(i + 1, j))

]

,

B̄1(r(i, j + 1)) :=
[

B1(r(i, j + 1))

Br1(r(i, j + 1))

]

, B̄2(r(i + 1, j)) :=
[

B2(r(i + 1, j))
Br2(r(i + 1, j))

]

,

C̄(r(i, j)) := [
C(r(i, j)) −Cr (r(i, j))

]
, B̄3(r(i, j)) := B3(r(i, j)) − Br3(r(i, j)).

(7)

Before proceeding further, we introduce the following definitions.

Definition 1 System (6) is said to be stochastically stable if for u(i, j) = 0 and the boundary
conditions satisfying (4), the following condition holds

E

⎧
⎨

⎩

∞∑

i=0

∞∑

j=0

(‖x̄(i, j + 1)‖2 + ‖x̄(i + 1, j)‖2)

⎫
⎬

⎭
< ∞.
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Definition 2 Given a scalar γ > 0, system (6) is said to be stochastically stable with an H∞
disturbance attenuation performance index γ if it is stochastically stable with u(i, j) = 0,
and under zero boundary conditions φ(i, j) = ϕ(i, j) = 0 in (3), satisfies

‖z̃‖E2 < γ ‖ũ‖2 ,

for all non-zero u ∈ l2{[0,∞), [0,∞)}, where

‖z̃‖E2 :=

√
√
√
√
√E

⎧
⎨

⎩

∞∑

i=0

∞∑

j=0

(‖z̄(i, j + 1)‖2 + ‖z̄(i + 1, j)‖2
)
⎫
⎬

⎭
,

‖ũ‖2 :=
√
√
√
√

∞∑

i=0

∞∑

j=0

(‖u(i, j + 1)‖2 + ‖u(i + 1, j)‖2
)
. (8)

Thus, the purpose of this paper is to design a mode-dependent reduced-order model in
the form of (5) to approximate the system (1), such that the model error system (�̄) in (6)
with imperfect mode information is stochastically stable with a prescribed H∞ performance
index γ .

3 Main results

In this section, based on a Markovian Lyapunov-Krasovskii functional (MLKF), a new
bounded real lemma (BRL) for the 2-D MJLS (6) with imperfect mode information will
be firstly proposed. Then, two distinctly different approaches will be developed to solve the
H∞ model approximation problem formulated in the above section.

3.1 H∞ performance analysis

In this subsection, by fully exploring the properties of the TPMs, together with the convex-
ification of uncertain domains, an H∞ performance analysis criterion for the model error
system (6) with imperfect mode information is derived, which will play a key role in solving
the H∞ model approximation synthesis problem.

Proposition 1 The 2-D MJLS (6) with state-delays and imperfect mode information is sto-
chastically stable with a guaranteed H∞ performance γ , if there exist positive-definite sym-
metric matrices {P1m, P2m, Q1, Q2} ∈ R(nx +nr )×(nx +nr ), such that the following matrix
inequalities hold,

A T
m P(s)

n Am + C T
m Cm + 
m < 0, m ∈ I, n ∈ I(m)

UK, s = 1, . . . , M, (9)

where


m := diag{−P1m + Q1,−P2m + Q2,−Q1,−Q2,−γ 2I,−γ 2I},
Am := [

Ā1m Ā2m Ād1m Ād2m B̄1m B̄2m
]
,

Cm :=
[

C̄m 0 0nz×2(nx +nr ) B̄3m 0
0 C̄m 0nz×2(nx +nr ) 0 B̄3m

]

,
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P(s)
n :=

∑

n∈I(m)

K

πmn(P1n + P2n) +
∑

n∈I(m)

UC

π̃ (s)
mn(P1n + P2n) + π

(ms)
UK (P1n + P2n)

︸ ︷︷ ︸

n∈I(m)

UK

,

π
(ms)
UK := 1 −

∑

n∈I(m)

K

πmn −
∑

n∈I(m)

UC

π̃ (s)
mn . (10)

Proof Consider the following MLKF for the 2-D MJLS (6),

V (i, j) :=
2∑

k=1

Vk(x̄(i, j + 1), r(i, j + 1)) +
4∑

k=3

Vk(x̄(i + 1, j), r(i + 1, j)), (11)

where

V1(x̄(i, j + 1), r(i, j + 1)) := x̄T(i, j + 1)P1(r(i, j + 1))x̄(i, j + 1),

V2(x̄(i, j + 1), r(i, j + 1)) :=
i−1∑

k=i−d1

x̄T(k, j + 1)Q1 x̄(k, j + 1),

V3(x̄(i + 1, j), r(i + 1, j)) := x̄T(i + 1, j)P2(r(i + 1, j))x̄(i + 1, j),

V4(x̄(i + 1, j), r(i + 1, j)) :=
j−1∑

k= j−d2

x̄T(i + 1, k)Q2 x̄(i + 1, k). (12)

Then, based on the MLKF defined in (11), it is known that the following condition

� := �V (i, j) + ‖z̃‖2
E2

− γ 2 ‖ũ‖2
2 < 0, (13)

where

�V (i, j) := E

{
2∑

k=1

Vk(x̄(i + 1, j + 1), r(i + 1, j + 1))|x̄(i, j + 1), r(i, j + 1) = m

}

+ E

{
4∑

k=3

Vk(x̄(i + 1, j + 1), r(i + 1, j + 1))|x̄(i + 1, j), r(i + 1, j) = m

}

−
2∑

k=1

Vk(x̄(i, j + 1), r(i, j + 1)) −
4∑

k=3

Vk(x̄(i + 1, j), r(i + 1, j)),

and ‖z̃‖E2 and ‖ũ‖2 are defined in (8), guarantees that the 2-D model error system (6) is
stochastically stable with an H∞ performance γ under zero boundary conditions for any
nonzero u(i, j) ∈ l2{[0,∞), [0,∞)}.

Taking the time difference of V (i, j) along the trajectories of 2-D system in (6), yields

�V1 := E[ V1(x̄(i + 1, j + 1), r(i + 1, j + 1))| x̄(i, j + 1), r(i, j + 1) = m]
− V1(x̄(i, j + 1), r(i, j + 1))

= x̄T(i + 1, j + 1)

(
∑

n∈I
πmn P1n

)

x̄(i + 1, j + 1) − x̄T(i, j + 1)P1m x̄(i, j + 1)

123



Multidim Syst Sign Process

= x̄T(i + 1, j + 1)

⎛

⎜
⎝
∑

n∈I(m)

K

πmn P1n +
∑

n∈I(m)

UC

(
M∑

s=1

αs π̃
(s)
mn

)

P1n +
∑

n∈I(m)

UK

π̂mn P1n

⎞

⎟
⎠

× x̄(i + 1, j + 1) − x̄T(i, j + 1)P1m x̄(i, j + 1), (14)

�V2 := E[ V2(x̄(i + 1, j + 1), r(i + 1, j + 1))| x̄(i, j + 1), r(i, j + 1) = m]
− V2(x̄(i, j + 1), r(i, j + 1))

= x̄T(i, j + 1)Q1 x̄(i, j + 1) − x̄T(i − d1, j + 1)Q1 x̄(i − d1, j + 1), (15)

�V3 := E[ V3(x̄(i + 1, j + 1), r(i + 1, j + 1))| x̄(i + 1, j), r(i + 1, j) = m]
−V3(x̄(i + 1, j), r(i + 1, j))

= x̄T(i + 1, j + 1)

(
∑

n∈I
πmn P2n

)

x̄(i + 1, j + 1) − x̄T(i + 1, j)P2m x̄(i + 1, j)

= x̄T(i + 1, j + 1)

⎛

⎜
⎝
∑

n∈I(m)

K

πmn P2n +
∑

n∈I(m)

UC

(
M∑

s=1

αs π̃
(s)
mn

)

P2n +
∑

n∈I(m)

UK

π̂mn P2n

⎞

⎟
⎠

×x̄(i + 1, j + 1) − x̄T(i + 1, j)P2m x̄(i + 1, j), (16)

�V4 := E[ V4(x̄(i + 1, j + 1), r(i + 1, j + 1))| x̄(i + 1, j), r(i + 1, j) = m]

−V4(x̄(i + 1, j), r(i + 1, j))

= x̄T(i + 1, j)Q2 x̄(i + 1, j) − x̄T(i + 1, j − d2)Q2 x̄(i + 1, j − d2). (17)

Therefore, based on the MLKF defined in (11), together with consideration of (6) and
(14)–(17), we have,

� = ςT(i, j)
[
A T

m

(
P̄1n + P̄2n

)
Am + C T

m Cm + 
m
]
ς(i, j), m, n ∈ I, (18)

where

ς(i, j) := [ x̄T(i, j + 1) x̄T(i + 1, j) x̄T(i − d1, j + 1)

x̄T(i + 1, j − d2) uT(i, j + 1) uT(i + 1, j) ]T,


m := diag{−P1m + Q1,−P2m + Q2,−Q1,−Q2,−γ 2I,−γ 2I},
Am := [

Ā1m Ā2m Ād1m Ād2m B̄1m B̄2m
]
,

Cm :=
[

C̄m 0 0nz×2(nx +nr ) B̄3m 0
0 C̄m 0nz×2(nx +nr ) 0 B̄3m

]

,

P̄ln :=
∑

n∈I(m)

K

πmn Pln +
∑

n∈I(m)

UC

(
M∑

s=1

αs π̃
(s)
mn

)

Pln +
∑

n∈I(m)

UK

π̂mn Pln, l = 1, 2. (19)
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Considering the fact that 0 ≤ αs ≤ 1,
∑M

s=1 αs = 1, and 0 ≤ π̂mn

π
(ms)
UK

≤ 1,
∑

n∈I(m)

UK
π̂mn

π
(ms)
UK= 1, (18) can be rewritten as,

� =
M∑

s=1

αs

∑

n∈I(m)

UK

π̂mn

π
(ms)
UK

[
ςT(i, j)

[
A T

m P(s)
n Am + C T

m Cm + 
m

]
ς(i, j)

]
,

m ∈ I, n ∈ I(m)
UK, s = 1, . . . , M, (20)

where

P(s)
n :=

∑

n∈I(m)

K

πmn(P1n + P2n) +
∑

n∈I(m)

UC

π̃ (s)
mn(P1n + P2n) + π

(ms)
UK (P1n + P2n)

︸ ︷︷ ︸

n∈I(m)

UK

,

π
(ms)
UK := 1 −

∑

n∈I(m)

K

πmn −
∑

n∈I(m)

UC

π̃ (s)
mn . (21)

According to (20), it is easy to see that (13) holds if and only if ∀s = 1, . . . , M ,

ςT(i, j)
[
A T

m P(s)
n Am + C T

m Cm + 
m

]
ς(i, j) < 0, m ∈ I, n ∈ I(m)

UK, (22)

which is implied by the condition (9). This completes the proof. �


Remark 1 By fully utilizing the properties of TPMs, together with the convexification of
uncertain domains, a new H∞ performance analysis criterion has been derived for the 2-D
MJLS (6) with state-delays and imperfect mode information in Proposition 1. It is noted
that the conditions given in (9) are nonconvex due to the presence of product terms between
the Lyapunov matrices and system matrices, which brings some troubles in the solutions of
model approximation synthesis problem. By applying some decoupling techniques, in the
following, two distinctly different approaches to solve the H∞ model approximation problem
will be developed.

3.2 Model approximation via convex linearisation approach

In this subsection, via a linearisation procedure, a unified framework for the solvability of the
H∞ model approximation problem will be proposed. It will be shown that the parametrised
representations of the approximation model gains can be constructed in terms of the feasible
solutions to a set of strict LMIs.

Theorem 1 Consider the 2-D MJLS (1) with state-delays and imperfect mode information,
and the approximation model in the form of (5). The model error system in (6) is stochasti-
cally stable with an H∞ performance γ , if there exist positive-definite symmetric matrices
{P1m, P2m, Q1, Q2} ∈ R(nx +nr )×(nx +nr ), and matrices Gm(1) ∈ Rnx ×nx , Gm(3) ∈ Rnr ×nx ,
{Gm(2), Ār1m, Ār2m, Ārd1m, Ārd2m} ∈ Rnr ×nr , {B̄r1m, B̄r2m} ∈ Rnr ×nu , Crm ∈ Rnz×nr , and
Br3m ∈ Rnz×nu , m ∈ I, such that the following LMIs hold,

⎡

⎣
P

(s)
n − Sym{Gm} 0 ¯Am

∗ −I Cm

∗ ∗ 
m

⎤

⎦ < 0, m ∈ I, n ∈ I(m)
UK, s = 1, . . . , M, (23)
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where


m := diag{−P1m + Q1,−P2m + Q2,−Q1,−Q2,−γ 2I,−γ 2I},
¯Am := [ Ā1m Ā2m Ād1m Ād2m B̄1m B̄2m

]
,

Cm :=
[

C̄m 0 0nz×2(nx +nr ) B̄3m 0
0 C̄m 0nz×2(nx +nr ) 0 B̄3m

]

,

Gm :=
[

Gm(1) H Gm(2)

Gm(3) Gm(2)

]

, H :=
[

Inr

0(nx −nr )×nr

]

,

Ā1m :=
[

Gm(1) A1m H Ār1m

Gm(3) A1m Ār1m

]

, Ā2m :=
[

Gm(1) A2m H Ār2m

Gm(3) A2m Ār2m

]

,

Ād1m :=
[

Gm(1) Ad1m H Ārd1m

Gm(3) Ad1m Ārd1m

]

, Ād2m :=
[

Gm(1) Ad2m H Ārd2m

Gm(3) Ad2m Ārd2m

]

,

B̄1m :=
[

Gm(1) B1m + H B̄r1m

Gm(3) B1m + B̄r1m

]

, B̄2m :=
[

Gm(1) B2m + H B̄r2m

Gm(3) B2m + B̄r2m

]

,

P(s)
n :=

∑

n∈I(m)

K

πmn(P1n + P2n) +
∑

n∈I(m)

UC

π̃ (s)
mn(P1n + P2n) + π

(ms)
UK (P1n + P2n)

︸ ︷︷ ︸

n∈I(m)

UK

, (24)

with C̄m, B̄3m, and π
(ms)
UK defined in (7) and (10), respectively.

Moreover, if the above conditions have a set of feasible solutions (P1m, P2m, Q1, Q2,

Gm(1), Gm(2), Gm(3), Ār1m, Ār2m, Ārd1m, Ārd2m, B̄r1m, B̄r2m, Crm, Br3m), then an admis-
sible nr -order approximation model in the form of (5) can be constructed as,

Ar1m = G−1
m(2) Ār1m, Ar2m = G−1

m(2) Ār2m, Ard1m = G−1
m(2) Ārd1m,

Ard2m = G−1
m(2) Ārd2m, Br1m = G−1

m(2) B̄r1m, Br2m = G−1
m(2) B̄r2m, (25)

and Crm and Br3m can be obtained directly from (23).

Proof By Schur complement, (9) is equivalent to
⎡

⎢
⎣

−
(
P

(s)
n

)−1
0 Am

∗ −I Cm

∗ ∗ 
m

⎤

⎥
⎦ < 0, m ∈ I, n ∈ I(m)

UK, s = 1, . . . , M, (26)

where Am, Cm, P
(s)
n and 
m are defined in (10).

Performing a congruent transformation to (26) by diag{Gm, I2nz , I(4nx +4nr +2nu)}, it fol-
lows from

(
P(s)

n − Gm

)T (
P(s)

n

)−1 (
P(s)

n − Gm

)
≥ 0, (27)

that

− GT
m

(
P(s)

n

)−1
Gm ≤ P(s)

n − Gm − GT
m . (28)
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Based on (28), we have that the following inequality implies (26),
⎡

⎣
P

(s)
n − Sym{Gm} 0 GmAm

∗ −I Cm

∗ ∗ 
m

⎤

⎦ < 0, m ∈ I, n ∈ I(m)
UK, s = 1, . . . , M. (29)

For simplicity in the model approximation synthesis procedure, we first specify the slack
variables as,

Gm =
[

Gm(1) H G(2)

Gm(3) G(4)

]

, m ∈ I, (30)

where H := [
Inr 0nr ×(nx −nr )

]T
, Gm(1) ∈ Rnx ×nx , Gm(3) ∈ Rnr ×nx , and {G(2), G(4)} ∈

Rnr ×nr . Then, for matrix inequality linearisation purpose, similar to Zhang and Boukas
(2009); Gao et al. (2006), performing a congruent transformation to

[
Gm(1) + GT

m(1) H G(2) + GT
m(3)

∗ G(4) + GT
(4)

]

(31)

by diag
{

Inx , G(2)G
−1
(4)

}
yields,

⎡

⎣
Gm(1) + GT

m(1) H G(2)G
−T
(4) GT

(2) + GT
m(3)G

−T
(4) GT

(2)

∗ G(2)G
−T
(4) GT

(2) + G(2)G
−1
(4)GT

(2)

⎤

⎦

:=
⎡

⎣
Gm(1) + GT

m(1) H Ḡ(2) + ḠT
m(3)

∗ Ḡ(2) + ḠT
(2)

⎤

⎦ . (32)

Thus, instead of (30), one can directly specify the matrix Gm of the following form without
loss of generality,

Gm =
[

Gm(1) H Gm(2)

Gm(3) Gm(2)

]

, m ∈ I. (33)

It is noted that in this way the matrix variable Gm(2) can be absorbed by the approximation
model gain variables Ar1m, Ar2m, Ard1m, Ard2m, Br1m and Br2m by introducing

Ār1m := Gm(2) Ar1m, Ār2m := Gm(2) Ar2m, Ārd1m := Gm(2) Ard1m,

Ārd2m := Gm(2) Ard2m, B̄r1m := Gm(2) Br1m, B̄r2m := Gm(2) Br2m . (34)

This feature enables one to make no congruent transformation to the original matrix
inequality and all the slack variables can be set as Markovian switching.

Then, by substituting the matrix Gm defined in (33) into (29), together with consideration
of (34), one readily obtains (23).

On the other hand, the condition in (23) implies that −Gm(2) − GT
m(2) < 0, which means

that Gm(2) is nonsingular. Then, the approximation model gains can be constructed by (25).
The proof is thus completed. �

Remark 2 Theorem 1 provides a sufficient condition on the feasibility of H∞ model approx-
imation synthesis problem for the 2-D MJLSs with state-delays and imperfect mode infor-
mation. A desired approximation model can be determined by solving the following convex
optimization problem.
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Problem MALA (model approximation via linearisation approach)
Minimize γ subject to (23) for P1m, P2m, Q1, Q2, Gm(1), Gm(2), Gm(3), Ār1m, Ār2m ,

Ārd1m, Ārd2m, B̄r1m, B̄r2m, Crm, Br3m, m ∈ I.
It is noted that in order to obtain the strict LMIs-based conditions in Theorem 1, a relaxation

matrix H is imposed in the slack variable Gm , m ∈ I. This structural constraint unavoidably
brings some degree of design conservatism. To reduce the design conservatism, in the fol-
lowing subsection, we will resort to an iterative approach to solve the model approximation
problem.

3.3 Model approximation via iterative approach

As stated in the previous subsection, the design conservatism of Theorem 1 is mainly induced
by a structural constraint on the slack matrices. Another approach to the model approximation
synthesis depends heavily upon the celebrated elimination/projection lemma, which casts the
model approximation problem into some LMI conditions plus equality constraints Wu et al.
(2006); Wu and Zheng (2009). However, it is worth pointing out that due to the imperfect
mode information in 2-D MJLSs, the indices m ∈ I, n ∈ I(m)

UK, and s = 1, 2, . . . , M are
simultaneously involved in (9) in Proposition 1. Thus, the so-called projection approach Wu
et al. (2006); Wu and Zheng (2009) can not be utilized to derive the approximation model
gains in (9). In other words, for the 2-D MJLS in (1) with imperfect mode information, the
approximation model (5) can not be obtained by the projection approach as proposed in Wu
et al. (2006); Wu and Zheng (2009). Alternatively, in this subsection we may resort to a
direct approach to separate the Lyapunov matrices from the system matrices. The result is
summarized in the following theorem.

Theorem 2 Consider the 2-D MJLS (1) with state-delays and imperfect mode information,
and the approximation model in the form of (5). The model error system in (6) is stochasti-
cally stable with an H∞ performance γ , if there exist positive-definite symmetric matrices
{P1m, P2m, Q1, Q2, Xm} ∈ R(nx +nr )×(nx +nr ), and matrices {Ar1m, Ar2m, Ard1m, Ard2m} ∈
Rnr ×nr , {Br1m, Br2m} ∈ Rnr ×nu , Crm ∈ Rnz×nr , and Br3m ∈ Rnz×nu , m ∈ I, such that

⎡

⎣
X

(m)
n 0 �

(s)
m Am

∗ −I Cm

∗ ∗ 
m

⎤

⎦ < 0, n ∈ I(m)
UK, s = 1, . . . , M, (35)

(P1m + P2m)Xm = I, m ∈ I, (36)

where

X (m)
n := diag{XK1(m)

, . . . , XKt(m)
, XU1(m)

, . . . , XUv(m)
, Xn},

�
(s)
m :=

[
√

πmK1(m)
I, . . . ,

√
πmKt(m)

I,
√

π̃
(s)
mU1(m)

I, . . . ,
√

π̃
(s)
mUv(m)

I,
√

π
(ms)
UK I

]T

,

Am := [A1m + E1Grm F1 A2m + E2Grm F1 Ad1m + E1Grm F2 Ad2m + E2Grm F2

B1m + E1Grm F3 B2m + E2Grm F3
]
,

Cm :=
[ Cm + E3Grm F1 0 0nz×2(nx +nr ) B3m + E3Grm F3 0

0 Cm + E3Grm F1 0nz×2(nx +nr ) 0 B3m + E3Grm F3

]

,
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Grm :=
⎡

⎣
Ar1m Ard1m Br1m

Ar2m Ard2m Br2m

Crm 0 Br3m

⎤

⎦ , A1m :=
[

A1m 0
0 0

]

, A2m :=
[

A2m 0
0 0

]

,

Ad1m :=
[

Ad1m 0
0 0

]

, Ad2m :=
[

Ad2m 0
0 0

]

, B1m :=
[

B1m

0

]

, B2m :=
[

B2m

0

]

,

Cm := [
Cm 0

]
, B3m := B3m ,

E1 :=
[

0nx ×nr 0
I 0nr ×(nr +nz )

]

, E2 :=
[

0nx ×nr 0 0
0 Inr 0nr ×nz

]

,

F1 :=
[

0nr ×nx I
0 0(nr +nu )×nr

]

, F2 :=
[

0nx ×nr 0 0
0 Inr 0nr ×nu

]T

,

E3 := [
0nz×2nr −Inz

]
, F3 := [

0nu×2nr Inu

]T
,


m := diag{−P1m + Q1,−P2m + Q2,−Q1,−Q2,−γ 2I,−γ 2I},

π
(ms)
UK := 1 −

∑

n∈I(m)
K

πmn −
∑

n∈I(m)
UC

π̃ (s)
mn . (37)

Proof From Proposition 1, it is known that for m ∈ I, there exists an approximation model in
the form of (5) such that the model error system (6) is stochastically stable with a guaranteed
H∞ performanceγ if there exist matrices (P1m, P2m, Q1, Q2) satisfying (9). First, we rewrite
the matrices defined in (7) in the following compact form,

Ā1m := A1m + E1Grm F1, Ā2m := A2m + E2Grm F1, Ād1m := Ad1m + E1Grm F2,

Ād2m := Ad2m + E2Grm F2, B̄1m := B1m + E1Grm F3, B̄2m := B2m + E2Grm F3,

C̄m := Cm + E3Grm F1, B̄3m := B3m + E3Grm F3, (38)

where Grm, A1m, A2m , Ad1m , Ad2m , B1m , B2m, Cm, B3m, E1, E2, E3, F1, F2 and F3 are
defined in (37).

Then, by Schur complement to (9), and with the notationsI(m)
K := {K1(m)

, . . . , Kt(m)
}, I(m)

UC:= {U1(m)
, . . . , Uv(m)

}, we have that (9) is equivalent to

⎡

⎣
P̄

(m)
n 0 �

(s)
m Am

∗ −I Cm

∗ ∗ 
m

⎤

⎦ < 0, m ∈ I, n ∈ I(m)
UK, s = 1, . . . , M, (39)

where

P̄(m)
n := diag

{(
P1K1(m)

+ P2K1(m)

)−1
, . . . ,

(
P1Kt(m)

+ P2Kt(m)

)−1
,

(
P1U1(m)

+ P2U1(m)

)−1
, . . . ,

(
P1Uv(m)

+ P2Uv(m)

)−1
, (P1n + P2n)−1

}

,

�
(s)
m :=

[
√

πmK1(m)
I, . . . ,

√
πmKt(m)

I,
√

π̃
(s)
mU1(m)

I, . . . ,
√

π̃
(s)
mUv(m)

I,
√

π
(ms)
UK I

]T

. (40)

Setting Xm := (P1m + P2m)−1 and considering (40), it is easy to see that (39) is equivalent
to (35) and (36). This completes the proof. �
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Remark 3 Theorem 2 provides another sufficient condition for testing the solvability of nr -
order H∞ model approximation synthesis for 2-D MJLS (1) with state-delays and imperfect
mode information. It is noted that the condition in Theorem 2 is not strictly an LMI due to
the matrix equality in (36). However, with the CCL algorithm in El Ghaoui et al. (1997);
Qiu et al. (2012), we can resolve this nonconvex feasibility problem by formulating it into a
sequential optimization problem subject to LMI constraints. The basic idea of CCL algorithm

is that if the LMI

[
P I
I X

]

≥ 0 is feasible with the n × n matrix variables P > 0 and X > 0,

then T race(P X) ≥ n, and T race(P X) = n if and only if P X = I.

Based on the above discussions and using a CCL technique, the nonconvex feasibility
problem given in (35) and (36) is converted into the following minimization problem that
involves LMI conditions.

Problem MAIA (model approximation via iterative approach).

Minimize Trace

(
N∑

m=1
(P1m + P2m)Xm

)

subject to (35) and

[
P1m + P2m I

∗ Xm

]

≥ 0, ∀m ∈ I. (41)

Then, the suboptimal performance of γ can be obtained by the following algorithm. The
convergence of this algorithm is guaranteed in terms of similar results in El Ghaoui et al.
(1997); Qiu et al. (2012).

Algorithm MAIA: Suboptimal performance of γ

Step 1. Choose a sufficiently large initial γ > 0, such that there exists a feasible solution
to (35) and (41). Set γ0 = γ .

Step 2. Find a feasible set (P(0)
1m , P(0)

2m , X (0)
m , Q(0)

1 , Q(0)
2 , A(0)

r1m, A(0)
r2m, A(0)

rd1m, A(0)
rd2m,

B(0)
r1m, B(0)

r2m, C (0)
rm , B(0)

r3m,∀m ∈ I) that satisfies the conditions in (35) and (41). Set q = 0.
Step 3. Solving the following LMI problem over the variables P1m , P2m , Xm , Q1, Q2,

Ar1m , Ar2m , Ard1m , Ard2m , Br1m , Br2m , Crm , Br3m ,

Minimize Trace

(
N∑

m=1

(
(P(q)

1m + P(q)
2m )Xm + (P1m + P2m)X (q)

m

)
)

subject to (35) and (41).

(42)

Set P(q+1)
1m = P1m , P(q+1)

2m = P2m and X (q+1)
m = Xm .

Step 4. Substituting the gains Ar1m , Ar2m , Ard1m , Ard2m , Br1m , Br2m , Crm , Br3m obtained
in Step 3 into (9) and if the LMIs in (9) are feasible with respect to the variables P1m , P2m ,
Q1 and Q2, then set γ0 = γ and return to Step 2 after decreasing γ to some extent. If (9)
are infeasible within the maximum number of iterations allowed, then exit. Otherwise, set
q = q + 1, and go to Step 3.

Remark 4 It is worth mentioning that the conditions given in Theorem 1 are strictly convex,
and thus can be readily solved with commercially available software. The design conservatism
of Theorem 1 mainly originates from the bounding inequality in (28) with the slack variable
of a structural constraint in (33). Thus, Theorem 1 is only a sufficient condition of the
performance analysis criterion in (9). In the iterative approach, however, the conditions given
in (35) and (41) are equivalent to the corresponding performance analysis results in (9). This
is the main advantage of Theorem 2 over Theorem 1. However, the numerical computation
cost involved in Algorithm MAIA is also much larger than that involved in Theorem 1
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(MALA), especially when the number of iterations increases. It will also be shown in the
simulation section that Theorem 2 is generally less conservative than Theorem 1 but with
more computational burden.

4 Simulation studies

In this section, we use a simulation example to demonstrate the effectiveness of the proposed
model approximation method to 2-D MJLSs.

Consider a 2-D MJLS with state-delays in the form of (1) with parameters as follows,

⎡

⎣
A11 Ad11 B11
A21 Ad21 B21
C1 B31

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.5 0 0 0 −0.1 0 0 0.4
0 0 −0.5 0 0 0 −0.1 0 0.8
0 0 0 −0.25 0 0 0 0 0.1

−0.15 0 0 0 0 0 0 0 0
0 −0.5 0 −0.5 0 −0.1 0 −0.1 0.2
0 0 −0.5 0 0 0 −0.1 0 0

−0.1 0 0 0 0 0 0 0 0.5
0 0 0 −0.25 0 0 0 0 −0.3

0.1 0.3 0.8 −0.5 0.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
A12 Ad12 B12
A22 Ad22 B22
C2 B32

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.2 0 0 0 −0.05 0 0 0.9
0 0 −0.2 0 0 0 −0.05 0 −0.5
0 0 0 −0.16 0 0 0 0.05 0.8

0.16 0 0 0.24 0 0 0.05 0 1
0 −0.5 0 −0.5 0 −0.05 0 −0.12 0.6
0 −0.24 0 −0.24 0 0 −0.05 0 0

0.2 0 0 0.24 0 0 0.05 0 0.6
0 0 0 −0.2 0.05 0 0 0 −0.6

0.5 0 −0.3 0.2 0.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
A13 Ad13 B13
A23 Ad23 B23
C3 B33

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.4 −0.2 0 0.2 0 −0.12 0 0 0.5
0.1 0 −0.4 0 0 0 −0.12 0 −0.5
0 0.1 0 0.2 0 0 0 0.08 0.4

0.2 0 0 −0.2 0 0 0.08 0 1
0.2 −0.12 0 −0.12 0 −0.12 0 −0.12 0.6
0 −0.2 −0.12 0 0 0 −0.12 0 0

0.2 0 −0.16 0 0 0 0.06 0 0.4
0 0.16 0 0.3 0 0.08 0 0 −0.5

0.4 0 −0.6 0.6 0.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
A14 Ad14 B14
A24 Ad24 B24
C4 B34

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.4 0 0 0 −0.1 0 0 0.3
0 0 −0.4 0 0 0 −0.1 0 0.5
0 0 0 −0.2 0 0 0 0 0

−0.12 0 0 0 0 0 0 −0.06 −0.2
0 −0.4 0 −0.4 0 −0.1 0 −0.1 0.4
0 0 −0.4 0 0 0 −0.1 0 0

−0.16 0 0 0 0 0 0 −0.06 0.2
0 0 0 −0.24 0 0 0 0 0.3

0.3 0.2 0.6 −0.5 0.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Four different cases for the TPM are given in Table 1, where the TPs labeled with “ ˆ ”
and “ ˜ ” represent the unknown and uncertain elements, respectively. Specifically, Case 1,
Case 2, Case 3, and Case 4 stand for the completely known TPs, imperfect mode informa-
tion (including known, partially unknown and uncertain TPs), partially unknown TPs, and
completely unknown TPs, respectively.
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Table 1 Four different TPMs
Case 1: Completely known TPM Case 2: Imperfect TPM1
⎡

⎢
⎣

0.3 0.2 0.1 0.4
0.3 0.2 0.3 0.2
0.1 0.5 0.3 0.1
0.2 0.2 0.1 0.5

⎤

⎥
⎦

⎡

⎢
⎣

0.3 0.2 0.1 0.4
π̂21 π̂22 0.3 0.2
π̂31 π̃32 π̂33 π̃34
0.2 π̂42 π̂43 π̂44

⎤

⎥
⎦

Case 3: Imperfect TPM2 Case 4: Completely unknown TPM
⎡

⎢
⎣

0.3 0.2 0.1 0.4
π̂21 π̂22 0.3 0.2
π̂31 π̂32 π̂33 π̂34
0.2 π̂42 π̂43 π̂44

⎤

⎥
⎦

⎡

⎢
⎣

π̂11 π̂12 π̂13 π̂14
π̂21 π̂22 π̂23 π̂24
π̂31 π̂32 π̂33 π̂34
π̂41 π̂42 π̂43 π̂44

⎤

⎥
⎦

Table 2 Comparison of minimum H∞ performance for different TPMs

TPMs Three-order Two-order One-order

Theorem 1
(MALA)

Theorem 2
(MAIA)

Theorem 1
(MALA)

Theorem 2
(MAIA)

Theorem 1
(MALA)

Theorem 2
(MAIA)

Case 1 1.3014 0.9 1.5670 1 1.6634 1.3

Case 2 1.8750 1.4 2.2072 1.5 2.2890 1.8

Case 3 2.3404 1.7 2.6960 1.9 2.8472 2.2

Case 4 3.2954 2.8 3.9645 3.3 4.3270 3.7

For Case 2, it is assumed that the uncertain TPs comprise three vertices �s, s = 1, 2, 3,
where the third rows �s(3), s = 1, 2, 3, are given by

�1(3) = [
π̂31 0.2 π̂33 0.4

]
,

�2(3) = [
π̂31 0.5 π̂33 0.3

]
,

�3(3) = [
π̂31 0.3 π̂33 0.1

]
,

and the other rows in the three vertices are given with the same elements, that is

�s(1) = [
0.3 0.2 0.1 0.4

]
,

�s(2) = [
π̂21 π̂22 0.3 0.2

]
,

�s(4) = [
0.2 π̂42 π̂43 π̂44

]
, s = 1, 2, 3.

The objective is to design a reduced-order model of the form (5) to approximate the
above system such that the 2-D model error system (6) is stochastically stable with an H∞
performance γ . By solving the problems MALA and MAIA with the maximum number
of iterations allowed as 40, a detailed comparison between the minimum H∞ performance
indices γmin obtained based on Theorems 1 and 2 is summarized in Table 2. By inspection
of Table 2, it is easy to see that the results based on Theorem 2 (MAIA) are much less
conservative than those based on Theorem 1 (MALA). It is also shown from Tables 1 and 2
that the more information on TPs is available, the better H∞ performance can be obtained,
which is effective to reduce the design conservatism. Therefore, the introduction of the
uncertain TPs is necessary and significant.
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Specifically, for nr = 2, we obtain γmin = 2.2072 by Theorem 1 with imperfect TPM1
shown in Table 1, and the two-order model parameters are given by,

⎡

⎣
Ar11 Ard11 Br11

Ar21 Ard21 Br21

Cr1 Br31

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.0144 −0.3696 0.0008 −0.0300 −0.5806
0.0531 0.3009 −0.0020 0.0373 −3.1155

−0.3281 −0.3916 −0.0098 0.0153 −1.1580
−0.0470 −0.0137 −0.0042 0.0029 1.5450
−0.3670 −0.1127 0.1905

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar12 Ard12 Br12

Ar22 Ard22 Br22

Cr2 Br32

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0124 −0.0804 0.0002 −0.0122 −1.1958
−0.0142 0.0307 −0.0007 0.0080 1.2120
−0.0700 −0.1604 −0.0197 0.0304 −2.1266
0.0124 −0.0818 0.0179 −0.0266 0.5815

−0.3554 0.0772 0.5801

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar13 Ard13 Br13

Ar23 Ard23 Br23

Cr3 Br33

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.2166 −0.1689 0.0007 −0.0308 −0.4424
−0.1656 −0.0145 −0.0024 0.0431 0.7975
0.2238 −0.0535 −0.0083 0.0121 −2.3599

−0.0314 −0.0320 0.0095 −0.0156 −0.1542
−0.0897 0.1612 0.1385

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar14 Ard14 Br14

Ar24 Ard24 Br24

Cr4 Br34

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.0510 −0.4391 0.0007 −0.0305 −1.1082
−0.0289 0.3892 −0.0016 0.0381 −1.5092
−0.1714 −0.1138 −0.0133 0.0200 −1.3469
−0.1113 −0.0227 −0.0073 0.0105 0.5674
−0.3626 −0.2193 0.4410

⎤

⎥
⎥
⎥
⎥
⎦

.

For nr = 2, we obtain γ = 1.5 by solving the Algorithm MAIA after 40 iterations with
imperfect TPM1 shown in Table 1, and the two-order model parameters are given by,

⎡

⎣
Ar11 Ard11 Br11

Ar21 Ard21 Br21

Cr1 Br31

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0836 −0.2639 −0.0201 −0.0439 −1.0852
0.0023 0.2601 −0.0150 0.0251 −0.8008

−0.1013 −0.0694 −0.0187 0.0426 −0.6650
−0.0940 −0.1282 −0.0075 0.0306 −0.4783
−0.4129 −0.1966 0.2871

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar12 Ard12 Br12

Ar22 Ard22 Br22

Cr2 Br32

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0516 −0.0104 −0.0097 −0.0211 −1.7817
−0.1369 0.1520 −0.0304 −0.0301 2.0060
−0.0412 −0.0509 −0.0178 0.0718 −1.2370
0.0507 −0.1461 −0.0015 −0.0436 −2.2016

−0.2852 0.1028 0.3190

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar13 Ard13 Br13

Ar23 Ard23 Br23

Cr3 Br33

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.2750 −0.2253 −0.0353 −0.0654 −0.6949
−0.1390 −0.1134 −0.0289 −0.0172 2.0973
0.1214 0.0335 −0.0088 0.0252 −1.5701

−0.0458 0.1194 0.0161 −0.0538 −1.2259
−0.0309 0.3206 0.4700

⎤

⎥
⎥
⎥
⎥
⎦

,

⎡

⎣
Ar14 Ard14 Br14

Ar24 Ard24 Br24

Cr4 Br34

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0923 −0.1168 −0.0232 −0.0379 −0.9278
0.0658 0.3308 −0.0050 0.0011 −0.3380

−0.1338 0.0774 −0.0248 0.0524 −1.0029
−0.0862 −0.1913 −0.0050 0.0250 1.2849
−0.3808 −0.2745 0.2460

⎤

⎥
⎥
⎥
⎥
⎦

.
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Fig. 1 One possible system mode evolution
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Fig. 2 Output error between the original system and the three-order approximation model with imperfect
TPM1 based on Theorem 1 (MALA)

The feasible solutions for the other cases are omitted for brevity.
In order to further illustrate the effectiveness of the proposed approach, we present the

simulation results with the above obtained reduced-order models under Case 2 in Table 1.
Let the boundary conditions be

x(t, i) = x(i, t) =
{[−1 1.4 0.5 0.4

]T
, 0 ≤ i ≤ 10,

[
0 0 0 0

]T
, i > 10,

where −5 ≤ t ≤ 0, and choose the delays d1 = 5 (vertical direction), d2 = 5 (horizontal
direction), and the disturbance input w(i, j) as

w(i, j) =
{

0.2, 0 ≤ i, j ≤ 10,

0, otherwise.

123



Multidim Syst Sign Process

Fig. 3 Output error between the
original system and the two-order
approximation model with
imperfect TPM1 based on
Theorem 1 (MALA)
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Fig. 4 Output error between the
original system and the one-order
approximation model with
imperfect TPM1 based on
Theorem 1 (MALA)
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Fig. 5 Output error between the
original system and the
three-order approximation model
with imperfect TPM1 based on
Theorem 2 (MAIA)
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With one possible realization of the Markovian jumping mode shown in Fig. 1, the out-
put errors between the original system and the approximation models based on Theorem 1
(MALA) and Theorem 2 (MAIA) are displayed in Figs. 2, 3, 4 and 5, 6, 7, respectively. It can
be clearly observed from the simulation curves that, despite the existence of the imperfect
TPs, the obtained reduced-order models can approximate the original system very well.
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Fig. 6 Output error between the
original system and the two-order
approximation model with
imperfect TPM1 based on
Theorem 2 (MAIA)
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Fig. 7 Output error between the
original system and the one-order
approximation model with
imperfect TPM1 based on
Theorem 2 (MAIA)
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5 Conclusions

This paper has addressed the problem of H∞ model approximation for a class of 2-D MJLSs
with state-delays and imperfect mode information. By fully exploring the properties of the
TPMs, together with the convexification of uncertain domains, a new H∞ performance analy-
sis criterion for the 2-D model error system has been firstly developed. Then, two distinctly
different approaches, namely, the convex linearisation approach and iterative approach, have
been developed to solve the model approximation problem. It has been shown that the desired
approximation models can be obtained by solving a set of strict LMIs or a sequential mini-
mization problem subject to LMI constraints. Simulation studies have been given to illustrate
the effectiveness of the proposed methods.

Finally, it is worth mentioning that applications of the proposed results to some real-world
complex 2-D systems such as the image data processing and transmission Roesser (1975),
thermal processes Xie et al. (2002), gas absorption Xu et al. (2005), and water stream heating
Hoang et al. (2005) etc., are part of our future works.
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