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Abstract: An evaluation of hydrothermal liquefaction (HTL) char is investigated in this work.
Morphological studies, N2 adsorption behavior, FTIR analysis, thermal behavior, and elemental
composition are studied. The HTL char yield showed an increase with higher operating temperatures.
It increased from 11.02% to 33% when the temperature increased from 573 K to 623 K. At lower
temperatures, the residence time showed an impact on the yield, while close to the critical point,
residence time became less impactful. Elemental analysis showed that both higher operating temper-
atures and longer residence times increased the nitrogen content of the chars from 0.32% to 0.51%.
FTIR analysis suggested the char became more aromatic with the higher temperatures. The aliphatic
groups present diminished drastically with the increasing temperature. Residence time did not show
a significant impact as much as the temperature when considering the functional group elimination.
An increase in operating temperatures and residence times produced thermally stable chars. HTL
char produced at the lowest operating temperature and showed both the highest surface area and
pore volume. When temperature and residence time increase, more polyaromatic char is produced
due to carbonization.

Keywords: lignin; HTL char; FTIR; SEM; TGA; carbonization; pores

1. Introduction

Numerous research groups study hydrochar from the hydrothermal carbonization
(HTC) process. The morphological surface and chemical characteristics of that char have
been investigated profusely. Besides, comprehensive studies on char from the hydrothermal
liquefaction (HTL) process are sparse. HTL produces comparably less char yield than HTC.
Nevertheless, with a small yield, the char from HTL can be utilized for a valuable purpose.
Limited studies have suggested that hydrothermal char can help produce porous carbon [1].
Besides, hydrochar-based porous carbon can be an effective material in agriculture [2].
Porous carbon produced from hydrochar can be used as carbon storage in fields. Further,
hydrochar and biochar’s (pyrolysis char) diverse abilities in the nitrogen cycling process
were studied recently [3]. Notably, activated char can be used as an adsorbent for organic
pollutants [4].

Lignin makes itself a valuable resource, being the second most common earthbound
biopolymer available and the most significant naturally occurring source of aromatic
compounds [5]. As a significant by-product of the paper and pulp industry, lignin is mainly
used by paper mills to fuel energy recovery [6].

Hydrochar from HTC has been investigated thoroughly in recent studies. Falco et al.
showed the strikingly different behavior of different chars from HTC of cellulose and
glucose, where cellulose-derived char illustrated properties close to pyrolysis char [7].
Leng et al. investigated the hydrochar behavior of sewage sludge liquefaction with a
morphological study and a study on the oxygen-containing functional group in char.
Although the surface area and pore volume were low, oxygen-containing functional groups
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were high in char [8]. After that, their studies found that the rice husk-derived biochar was
effective on Malachite green (MG) removal from the aqueous phase [9]. An illustrative
study by Zhu et al. showed a positive correlation between the elemental compositions and
the porous carbon’s porosity.

Furthermore, the authors observed that lower maximum temperatures and retention
times lead to high porosity porous carbon [1]. Wahyudiono et al. observed that the func-
tional group distribution of char from lignin changes drastically during decomposition
in near supercritical water [10]. The impact of increasing temperature on the repoly-
merization of decomposed products from lignin was unearthed by Pinkowska et al. [11].
Char produced by the hydrothermal carbonization of cellulose, xylose, and lignin were
studied by Kang et al., where the chars’ carbon content was mainly investigated [12].
Moreover, many studies have been carried out to study the decomposition of lignin in
organic solvents [13–15].

Despite the considerable work on the HTL of lignin, most of studies have only focused
on the liquid phase from the output. Focusing on the char may give insight into the
decomposition pathways and possible ways to utilize the char as a helpful precursor
for other value-added products, such as soil stabilizers for agricultural purposes and
porous carbon production as well as anode production. Subsequently, pyrolysis char and
hydrochar from HTC are widely studied, and the behavior and evolution of pyrolysis char
and HTC char are widely accessible [1,16,17]. Besides, due to the different chemistry in
the process and the complex reactions and degradation mechanisms, HTL char could offer
different properties than pyrolysis and HTC char.

Char is a by-product of HTL, where in most of the studies, the bio-crude product
is given importance [18]. The motivation to study char extensively is to investigate the
possibility of using HTL char effectively. It could be either in porous carbon production, as
a fertilizer for agricultural purposes, or using it as a carbon capture material. Nevertheless,
this study focuses on evaluating HTL char properties and characteristics with different
operating temperatures and residence times. This study investigates the morphological,
surface, thermal, and chemical characteristics of lignin-derived HTL char. The functional
groups present in char are studied with Fourier transform infrared spectroscopy (FTIR),
where the structural and surface behavior is studied with scanning electron microscopy
(SEM). The thermal behavior of char is studied with thermogravimetric (TGA) analysis,
and the nitrogen adsorption/desorption method is used to determine the surface and pore
distribution of char. The chars are produced with different HTL operating temperatures
and residence times to study and understand the different char-derived attributes with
varying process parameters.

2. Materials and Methods
2.1. Material

Being obtained from Sigma Aldrich Co., Oslo, Norway, the lignin used in this study was
alkali lignin with a low sulfonate content and an average molecular weight of 10 kg/mole. In
total, 16 mL of slurry was fed into the reactor. The lignin and water weight ratio was 1:9,
which was maintained for all feedstock samples. All the analysis instruments used in the
study are mentioned in the Section 2.3 characterization.

2.2. Experimental Procedure

Experiments were carried out in a 24 mL tubular steel reactor from Graco High-
Pressure Equipment Inc. (HiP, Erie, PA, USA). A dead volume of 8 mL was kept in all the
experiments to hold space for produced gasses and expansions. The reactor was purged
with N2 to check for leakages and emit the air after the reactor was sealed. A fluidized
sandbath was used to heat the reactor, while an external shaking mechanism connected
to a frequency controller was deployed to shake the reactor during the reactions. In this
study, three temperature values and three residence times were used. The temperatures
used were 573 K, 603 K, and 623 K, while the residence times used ranged 10 min, 15 min,
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and 20 min. Therefore, every temperature value was studied with three residence times.
For the experiments’ consistency, every experiment was repeated five times, and average
values were used for analysis and are recorded below in Table 1. According to Table 1, each
char sample’s carbon content stayed very similar regardless of the operating temperature
or the residence time.

Table 1. Ultimate analysis results of the experimental samples (wt.% dry ash-free).

Sample C H N O

Lignin 51.500 ± 0.102 4.120 ± 0.021 0.350 ± 0.031 44.030 ± 0.154

Char 1 (573 K—10 min) 61.125 ± 0.315 4.780 ± 0.02 0.325 ± 0.075 33.770 ± 0.070

Char 2 (573 K—15 min) 63.105 ± 0.295 4.455 ± 0.045 0.346 ± 0.061 32.094 ± 0.279

Char 3 (573 K—20 min) 61.800 ± 0.160 4.140 ± 0.010 0.453 ± 0.024 33.607 ± 0.126

Char 4 (603 K—10 min) 63.930 ± 0.210 4.125 ± 0.025 0.368 ± 0.022 31.577 ± 0.163

Char 5 (603 K—15 min) 63.845 ± 0.005 3.875 ± 0.065 0.503 ± 0.015 31.777 ± 0.075

Char 6 (603 K—20 min) 63.710 ± 0.172 3.759 ± 0.032 0.517 ± 0.017 32.014 ± 0.221

Char 7 (623 K—10 min) 63.625 ± 0.105 3.770 ± 0.022 0.407 ± 0.013 32.198 ± 0.112

Char 8 (623 K—15 min) 58.920 ± 0.930 3.395 ± 0.015 0.461 ± 0.021 37.224 ± 0.966

Char 9 (623 K—20 min) 63.380 ± 0.165 3.590 ± 0.014 0.512 ± 0.018 32.518 ± 0.197

After the desired residence time and the reactor were dismantled from the shaker
and cooled with cold water for 30 min, acetone was used to extract the liquid and solid
products from the reactor. The reactor was then washed with acetone four times after
every experiment to ensure all the products were extracted. Furthermore, the solution
was filtered, and the solid product was separated. To ensure that the solid and liquid
phases were appropriately separated, solid residue (char phase) was again washed with
acetone and filtered. Then, the char phase was weighted and dried at 378 K for 24 h before
quantifying. A simple process diagram of the char separation and extraction from the HTL
output is shown in Figure 1.
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In this article, char yield denotes the amount of recovered solid residue after HTL,
based on Equation (1) [19].

Char yield (%) =
Char recoverd a f ter the heat treatment (g)

Initial amount o f lignin used f or the experiment (g)
× 100% (1)

2.3. Characterization

Several different analytical tools and methods were used in this study to determine
the char’s different properties and behaviors.

According to ISO standard procedures, the lignin’s proximate analysis was performed
using a muffle furnace LT 40/11/P330 (Nabertherm, Lilienthal, Germany). A PerkinElmer
2400 CHNS/O Series II elemental analyzer (PerkinElmer, Waltham, MA, USA) was used
for the ultimate analysis. Oxygen as calculated by the difference of the other elements,
where sulphur content was assumed to be negligible, although it is present in very low
percentages in lignin. EN 15148 was applied to measure the volatile matter. In the elemental
analysis, 1–1.5 mg of sample weight was used in all the test cases where samples were
weighted in an Sn capsule and then placed in the elemental analyzer. Calorific tests were
carried out using an IKA C6000 global standard-type bomb calorimeter (IKA®-Werke
GmbH & Co. KG, Staufen, Germany) according to the DIN 51900–1 standard test for solid
and liquid fuels. For the morphological study, scanning electron microscope (SEM) images
of the samples were obtained by using a JSM-7200F scanning electron microscope (JEOL,
Tokyo, Japan).

Thermogravimetric analysis of the feedstock and the char samples was carried out
using a Mettler-Toledo Thermal Analyzer (TGA, Mettler-Toledo, Columbus, OH, USA).
Mainly, the TGA and derivative thermogravimetry (DTG) graphs were used in this study
to analyze the thermal behavior of char. The temperature was raised from 303 to 1273 K
with a heating rate of 20 K/min with nitrogen as the purging gas with a constant flow rate
of 25 mL/min. The mass loss in the sample was calculated using Equation (2).

Mass loss (%) = Initial mass (%)− Final mass (%) (2)

The sample’s infrared spectrum was measured using a Perkin Elmer FTIR spectrometer
(Perkin-Elmer Ltd., Cambridge, UK) equipped with a nitrogen-cooled mercury-cadmium-
telluride detector. Each dried sample dispersed in KBr as a 10% mixture was placed in a
sample cup of a Perkin Elmer diffuse reflectance accessory, and the surface of the sample
was carefully leveled flat. The spectrum of finely ground KBr was used as the background.
The spectrum was measured in the range 4000–600 cm−1, and a total of 32 scans were made
at a resolution of 4 cm−1. The resulting average reflectance spectrum was then transformed
into the Kubelka–Munk format and saved as the final spectrum.

N2 adsorption isotherms of hydrochar were determined at 77 K (NovaTouch, Quan-
tachrome, Boynton Beach, FL, USA). The Brunauer–Emmett–Teller (BET) model was used
to calculate the surface area [20]. Pore volume was evaluated with the quenched solid
density functional theory (QSDFT), using the calculation model for slits and cylindrical
pores on the adsorption branch [21]. Before each measurement of surface area and porosity,
samples were degassed at 423 K for 6 h. The total pore volume was defined from the
amount of N2 adsorbed at a p/p0 value of 0.99.

3. Results and Discussion
3.1. Char Yield

At 573 K char, the yield showed 11.02% w/w0, 11.06% w/w0, and 12% w/w0 at 10 min,
15 min, and 20 min residence times, respectively. When the operating temperature was
increased to 603 K, the char yield showed a rapid increase to 31% w/w0, followed by a rise
to 33.05% w/w0 at 15 min residence time and then to 34% w/w0 at 20 min residence time.
At 623 K for all the residence times, the char yield stayed around 33% w/w0. According
to Table 1, with increasing temperatures and longer residence times, the nitrogen content
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of the chars increased. Therefore, for all three operating temperature values, the longest
residence time reported the highest amount of nitrogen in the char. Similar behavior of
nitrogen content has been observed with hydrochar produced by HTC process [1].

Further, an increase in operating temperature also increased the char’s nitrogen con-
tent, where it showed the complete opposite to pyrolysis char, which showed a reduction
in nitrogen content with the increasing operating temperature [22]. Other research that
carried out the hydrothermal degradation of lignin has observed the same trend: the
lowest solid yield is obtained at the lowest operating temperature, and then the yield is
increased with the increase of the operating temperature [23–25]. Besides, in some studies,
the residence times used are relatively different from the current study. The relatively low
yield at 573 K could be due to the promotion of hydrolysis and a decomposition reaction at
lower temperatures than the repolymerization or rearrangement reactions. The relatively
high yields at 603 K and 623 K can be attributed to the promotion of repolymerization
and rearrangement reactions. Repolymerization reactions become prominent with the
higher operating temperatures and longer residence times, leading to the higher char
yield at higher temperatures [24,25]. With the increasing temperatures, free radicals from
the broken ether bonds could pair with other carbon atoms and create more rigid bonds
towards cleavage, which would create char-like structures [26]. Below, Table 2 shows the
char yield obtained at different temperatures and residence times.

Table 2. Char yields at different operating temperatures and residence times.

Sample Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9

Yield
(w/w0 %)

11.02 ±
0.3

11.06 ±
0.15

12.00 ±
0.21

31.00 ±
0.4

33.05 ±
0.23

34.00 ±
0.16

33.03 ±
0.11

33.03 ±
0.16

33.05 ±
0.22

3.2. FTIR Analysis

The normalized FTIR spectra of the chars are shown in Figure 2. All the char samples
obtained at different operating temperatures and residence times were analyzed, and the
FTIR spectrums were obtained. In general, from the color and the spectra, it was apparent
that the samples contain very little aliphatic content. The minor aliphatic character appear-
ing in the low-temperature samples seemed to disappear at a high-temperature treatment.
The aliphatic content also reduced in the samples treated at longer residence times.
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Figure 3 below illustrates a closer look at the FTIR spectrum from the char sample
obtained at 573 K and 10 min residence time, produced at the lowest temperature and the
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shortest residence time among all the samples. The fingerprint in the region 2000–600 cm−1

mainly arises from the condensed products containing O, N, and sulfur compounds of
lignin used in the experiments. The area under the region 3000–2850 cm−1 is an indication
of the aliphatic content.
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The FTIR spectra intensity variation reflects the variety of different functional groups
as the temperature and residence time increase [27]. Figure 4a below shows the normalized
FTIR spectra of the chars obtained with a residence time of 10 min at different temperatures
of 573 K, 603 K, and 623 K, where Figure 4b shows the normalized FTIR spectra of the chars
obtained at different residence times at 573 K.
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The spectrum of char produced at 573 K with a 10 min residence time shows bands
corresponding to aliphatic and aromatic -OH (3415 cm−1), aromatic ring modes (1595 cm−1

and 1140 cm−1), carbonyl group (1684 cm−1), aliphatic -CH3 (2944 cm−1) and CH2 groups
(1453 cm−1), symmetric -CH3 stretching of the methoxyl groups (2851 cm−1), and symmet-
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ric -CH3 stretching (1035 cm−1) and C-H in Syringyl, Guaiacyl (857 cm−1 and 807 cm−1,
respectively), as well as the nitro compounds (1353 cm−1) [28].

As temperature and residence time increase, the depth of aliphatic -CH3 (2944 cm−1),
the symmetric -CH3 stretching of the methoxyl groups (2851 cm−1), -CH3 and CH2 groups
(1453 cm−1), and the symmetric -CH3 stretching (1035 cm−1) [10,16], all decreased rapidly.
This indicates how the polar functional groups decrease with increasing operating tem-
perature and increasing residence time [29]. These groups are reduced to produce an
aromatic char [10,16]. Such aromatic rings would result in producing fused aromatic rings
after losing oxygen and hydrogen. Therefore, the increasing temperatures and the longer
residence times promote fused ring production, resulting in more char. Although the
aliphatic groups were eliminated from the chars produced at higher temperatures, many
studies have shown that those aliphatic groups can be found in the liquid phase [11,24].

The peaks corresponding to Syringyl, Guaiacyl C-O (1272 cm−1) [30], which are
characteristic of softwood lignin, started to diminish clearly. At 623 K and with longer
residence times, most groups decreased. Subsequently, pyrolysis char and HTC char still
presented some of the groups at 623 K [16,17]. Meanwhile, the small amount of aromatic
and aliphatic OH (3415 cm−1) was seen to vanish with the increasing operating temperature.
This can be mainly credited to the improvement of the dehydration reaction [31]. The band
at 1595 cm−1 [10,16], corresponding to the aromatic ring and carbonyl group (1684 cm−1),
seemed to be increasing drastically with the increase of operating temperature. This means
the C-C and C-H bonds are consumed throughout the hydrothermal liquefaction process.
Although the aromatic ring (1595 cm−1) increased with the longer residence time, it was
not as significant as the operating temperature.

Meanwhile, the carbonyl group (1684 cm−1) seemed to decrease with the longer
residence time. A possible reason for this observation could be reduced carbonyl group
consumption, C-C, and C-H bonds with the longer residence time. Further, the nitro
compounds (1353 cm−1) were observed to increase slightly with the increase of both the
operating temperature and residence time. This can be attributed to the increase of nitrogen
content in the char samples.

O-containing functional groups in char can be used to measure using char as an
adsorptive material. When the O-containing functional groups are enhanced, biochar has
shown improved heavy metal sorption ability [32,33]. Although aromatic ring and carbonyl
groups are increased with the increase of operating temperature, aromatic and aliphatic
OH and Guaiacyl C-O are significantly decreased. Therefore, for particular purposes such
as heavy metal sorption, optimum operating parameters should be used to obtain the
maximum possible O-containing functional groups.

The longer residence times cannot help consuming C=C and C-H bonds effectively
as the temperature does. Because of the dealkylation reaction, CH3 and CH2 groups are
primarily removed from the chars, and this reaction could be more influenced by the
operating temperature than the residence time. The fact that the aromatic ring keeps
growing with the increasing operating temperatures and residence times means that an
increase of fused aromatic rings is further observed. The chars’ aromatic nature increases
with the rise in operating temperature monitored with pyrolysis char and hydrochar from
hydrothermal carbonization [12,16,34].

The spectrum depicts a vanishing of the small aliphatic content with the residence
time increase. Nevertheless, the reduction of the peak relating to the aliphatic content is
slower with the residence time increase than the operating temperature increase. Therefore,
both higher operating temperatures and longer residence times result in removing the
aliphatic content from the chars in HTL. However, the impact of the operating temperature
is more significant in removing the chars’ aliphatic groups than the residence time.

Monomeric radicals can be created by splitting weak bonds in the lower operating
temperatures. The produced radicals can potentially create new radicals by attracting
hydrogen to form monomeric phenolic compounds. When the operating temperature is
further increased, C-C bonds can also be broken to create phenolic monomeric compounds.
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Meanwhile, these phenolic compounds can be polymerized and potentially produce more
char as well. With the residence time increase, polymerization is further supported, and
more char is made. When the operating temperature is further increased and comes
close to the critical point, more fused aromatic rings could also be produced. In this
study, the longest residence time used was 20 min. Besides, even at 623 K, increasing
residence time did not significantly increase the char yield. Therefore, the impact of
residence time on producing phenolic monomeric compounds and generating more char
with polymerization must be studied further with longer residence times. Hydrothermal
char could have certain advantages over pyrolysis char, such as easy decomposition, easy
feedstock preparation, abundant functional group availability, and the possibility of coating
pre-formed nanostructures with carbonaceous shells [35].

3.3. Thermal Stability of Char

Char residues are studied for their thermal stability in an N2 atmosphere with
a 20 K/min heating rate. Mass loss (TGA) curves of the lignin and chars are shown
in Figure 5.
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According to Figure 5, the chars from hydrothermal liquefaction are further heated
and decomposed until temperatures reach up to 1273 K. A mass loss due to water vapor-
ization can be observed around 373 K. Chars obtained at lower operating temperatures
decomposed earlier. Furthermore, at the same operating temperature, chars produced
from longer residence times took longer to decompose than the chars produced at shorter
residence times, which should be attached to the remaining active functional groups. This
can be supported by the FTIR results shown in Section 3.2, which clearly showed the
decrease of the availability of aliphatic functional groups and the increase of aromatic func-
tional groups in chars produced with increasing operating temperatures and increasing
residence times.

At 1273 K, the remaining solid residue percentage increased with the hydrothermal
liquefaction operating temperature of chars, extending from 36.47% of the original lignin
to 63.95% of the char prepared with 623 K and 20 min residence time. This observation
indicated that more thermally stable structures are established at higher hydrothermal
liquefaction operating temperatures and longer residence times. Similar behavior has
been shown in pyrolysis char from lignin as well [36]. Below, Figure 6 shows the mass
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lost from each char sample at 1273 K as a percentage. It also presents a clear connection
between the operating temperature, residence time, and the remaining solid residue. For
each hydrothermal liquefaction operating temperature, the char produced with the shortest
residence time showed the highest percentage mass loss. In contrast, the longest residence
time showed the most negligible percentage mass loss.
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Chars produced with lower operating temperatures and shorter residence times could
have more volatiles in them and weaker bonds in the chemicals in them. That could be
a possible reason for the higher mass loss percentage. When FTIR analysis conclusions
are taken into consideration, the chars become more aromatic with increasing temperature
and residence time. Thus, the stability of the chars could go up with stronger bonds
in the aromatic rings. Therefore, creating more stable structures with higher operating
temperatures and longer residence times is a finding that can be drawn from this study.

Mass loss rate (DTG) curves of the lignin and chars are shown in Figure 7. According
to the DTG graphs illustrated in Figure 7, the maximum mass loss peak was reduced and
moved towards higher temperatures with the increasing HTL operating temperatures
and residence time. This indicates that the chars produced at higher temperatures and
residence times took longer to decompose and decomposed at higher temperatures due to
more thermally stable structures.

The mass loss peak observed from 300 K to 420 K could be due to the moisture loss
and the low boiling organic compounds loss. This is a widespread phenomenon with
hydrochar. The maximum mass loss peak observed from 500 K to 800 K could be due to
the carboxylation and cleavage of methoxyl groups. Moreover, the height of the mass loss
peak was considerably reduced towards the higher HTL operating temperatures. This
could explain the elimination of the methoxyl groups from the chars produced at higher
HTL operating temperatures and longer residence times. Secondary reforming reactions of
aromatic carbon skeletons could be the primary source for the evolution after 750 K.

Biochar interacts with soil fractions in different ways, and such interactions determine
the influences on soil fractions by biochar [37]. Since the properties of biochar or HTL char
are determined by the process conditions and feedstock properties, the influence on soil
directly depends on how the char is produced. Biochar could positively and negatively
impact soil, such as water-holding capacity, surface area, and bulk density [37]. Since
HTL char and biochar chemistry are similar, these facts can also be actual with HTL char.
Moreover, more stable char can be helpful from a climate mitigation point of view and
regarding agronomic effects [38]. Further, with HTL char, higher operating temperatures
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and residence times produced more stable chars while also having higher nitrogen content.
Therefore, chars produced at higher operating conditions and residence times could be
beneficial in soil.
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3.4. Adsorption of N2 at 77 K

The surface area, pore size distribution, and pore volume are the main factors that
can explain the chars’ solid internal structure. The Brunauer–Emmett–Teller (BET) surface
area and the density functional theory (DFT) pore volume of different chars obtained by
hydrothermal liquefaction are shown in Table 3. For the N2 adsorption studies, chars
produced at a residence time of 10 min at 573 K, 603 K, and 623 K temperatures are used.

Table 3. Surface area and pore volume variation at different operating temperatures at 10 min residence time.

Sample Surface Area (m2/g) DFT Pore Volume (cm3/g)

573 K—10 min 5.82 0.0158

603 K—10 min 1.77471 0.0065

623 K—10 min 2.65 0.0045

Below, Figure 8 shows the behavior of the Brunauer–Emmett–Teller surface areas
and the quenched solid density functional theory (QSDFT) pore volume of different chars
with their respective carbon contents in the chars. The lowest operating temperature
produced the highest pore volume and surface area, where the pore volume shrunk with
the increasing HTL operating temperature of the chars. The surface area showed the
behavior of inverse dependability to the carbon content of the sample. Nevertheless, this
behavior must be further investigated to observe a strong relationship between the surface
area and the sample’s carbon content.

The chars produced at 573 K showed both the highest surface area value and the
highest pore volume value. The surface area of HTL char produced at 573 K (5.82 m2/g)
was considerably higher than of the lignin pyrolysis char (about 0.5 m2/g) and pyrolysis
char from wood (2.39 m2/g) produced at the same temperature [16,39]. At 603 K, both
pyrolysis char (about 2 m2/g) and HTL char (1.77 m2/g) showed similar surface area
values, whereas the HTL char produced at 623 K (2.65 m2/g) showed a lesser value than
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the pyrolysis char (about 5 m2/g) produced at the same temperature [16]. Nevertheless,
the surface area of both HTL and pyrolysis-derived char ranged in the same values. The
chars’ surface area exciting behavior reduced the surface area at 603 K and increased it
at 623 K.
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Pore volumes between 1.45 and 32.7 nm diameter were calculated by the QSDFT
adsorption method. The maximum pore volume of 0.0158 cm3/g was observed with char
produced at 573 K, whereas the lowest value of 0.0045 cm3/g was observed with the char
produced at 623 K. Similar pore volume variation was observed with hydrochar produced
by hydrothermal carbonization (HTC) [1]. Nevertheless, the pore volume of pyrolysis
char from wood at 573 K was smaller (0.00256 cm3/g) than the values reported here [39].
Since the hydrochar (from HTC process)-based porous carbon inherits its parent material
properties, the HTL char produced at 573 K may produce porous char with the highest
porosity [1]. Nevertheless, to investigate the behavior of porous carbon from HTL, porous
carbon produced from HTL must be further investigated with different activator kinds. The
adsorbed volume distribution against micropore radius and adsorbed volume distribution
against relative pressure for all three temperatures are shown in Figure 9a,b, respectively.
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Chars obtained at 573 K and 623 K showed a wide range of pore diameter distribution
from 1.45 nm to 32.7 nm, whereas the chars produced at 603 K were limited to a pore
distribution from around 9 nm to 29 nm. The adsorption volume of chars produced at 573 K
and 623 K were observed to be 2.04 × 10−4 to 1.01 × 10−4 cm3/(g·nm) and 1.19 × 10−4 to
6.74 × 10−6 cm3/(g·nm), respectively, whereas for char produced at 603 K, the adsorption
volume was between 1.08 × 10−4 to 8.85 × 10−6 cm3/(g·nm). No pores over 30 nm
were observed with the char produced at 603 K. Nonetheless, all the samples showed
an incomplete pore distribution close to the most minor pore size limit. Although the
pores’ distribution was a bit more complicated with the three different char samples, more
conclusions could be drawn from the following section’s morphological analysis.

According to Figure 9b, in the low relative pressure region from 0.2 to 0.8, a slight
increment in the adsorption volume was observed with all the samples indicating the
mesopores’ existence with a broad distribution. Meanwhile, a sudden increase was noted
in the relative pressure region from 0.8 to 1.0, showing a small microporosity of chars
produced at all three temperatures [34,40]. Overall, char produced at 573 K showed a
greater porosity.

In the HTL temperatures, volatiles are formed due to the strong decompositions.
These volatiles could initiate the char structure’s pores when cooled if they are not scattered
to the water medium. Higher temperatures might be capable of diffusing the volatiles
faster. Therefore, the pores are not created abundantly. Moreover, the chars produced at
603 K had a higher carbon content and might have stacked better than the other chars
produced at different temperatures. This could be a possible reason for the low surface area
at 603 K. However, chars produced at 573 K showed the highest surface area, which can
be attributed to the higher amount of volatile matter production during the liquefaction.
This fact was ultimately proven by the char produced at 573 K having the highest pore
volume among all three samples. At high temperatures, pores can be shrunk, resulting in
macropores collapses [34]. Another explanation could be that due to further carbonization,
pores could be melted, fused, combined, collapsed, or filled up by material around the
pores [41]. This can be a possible reason behind the lower pore volumes of chars produced
at higher temperatures. Due to the small pore sizes, CO2 adsorption is preferred over N2
adsorption for porosity and surface area analysis of HTC char. Therefore, the same basis
could be applied to HTL char as well [35].

HTL char can be used for many applications, including HTL char-based catalysts,
biochar-supported metal catalysts, and the availability of high surface functional groups
as carbon storage to reduce fertilizers’ use in agricultural farms. Activated production for
anode production for battery technology is also a possibility. Due to the high porosity, char
produced at 573 K can be a good precursor for porous carbon production since it boasts
considerably higher porosity to biochar produced at the same temperature.

3.5. SEM Analysis

Scanning electron microscope (SEM) images of the char sample obtained at 573 K are
shown in Figure 10.

As shown in Figure 10a, a significant part of the char sample formed at 573 K consists
of large particles (>10 um) with a smooth surface. A high-resolution SEM image showed
the spores distributed all over the surface of these particles (Figure 10b). However, a
small portion of the char sample showed smaller particles with a rough surface, where
many vesicles adhered to the surface could be seen (Figure 10c). During char formation,
lignin particles soften, melt, fuse, and release volatile materials [41]. The emission of
volatile materials leads to the formation of open pores, consequently increasing the surface
area. However, vesicles are often formed and adhere to the surface if volatiles are not
completely diffused out [42]. This may result in pore blockage and, consequently, a reduced
surface area.

At low operational temperatures (<603 K), the hydrothermal char is reported to exhibit
minimum vesicle formation compared to the pyrolysis char, and this inhibition is suggested
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to be due to the permeation of water into the pores [42]. This is also consistent with the N2
adsorption studies presented in the previous section. A significantly higher surface area
and pore volume were observed compared to the pyrolysis char.

Hydrothermal char produced at 603 K showed most of the phase with small particles
with a large number of vesicles adhered to the surface. A small number of larger particles
with a relatively smooth surface was also present (Figure 11).
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High-resolution images showed the presence of pores on the surface of these particles.
An increase in vesicle formation with the rise in operation temperature could be due to
the strengthening of the degradation process and intense release of gaseous materials that
did not entirely diffuse out and subsequently condensed during the cooling process. A
further increase of the temperature to 623 K assists the release of gaseous materials to some
extent so that volatiles have sufficient energy to escape the lignin matrix timely [42]. This
is evident from the SEM image in Figure 12 (left panel), where the larger particles with a
smoother surface are observed to increase. These particles have minimal vesicles and a
large density of open pores. This is consistent with the N2 adsorption results, where an
increase in the char’s surface area was observed when the operation temperature increased
from 603 K to 623 K.
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3.6. Proposed Formation Pathway of Lignin Char at Hydrothermal Conditions

Lignin might not fully dissolve in water when the operating temperature is below
650 K [15]. Being a phenolic polymer, undissolved lignin can become polyaromatic char
through solid–solid conversion [12]. Dissolved lignin can take part in hydrolysis reactions
and produce phenolics in the process, which can be a main conversion route in this
process. These phenolics can further polymerize and produce secondary char with aromatic
properties. Additionally, polymerization can take place on the surface of the undissolved
lignin as well. In low temperatures, lignin can be partially hydrolyzed because of the high
bond energy.

Further, due to high ionic product and dielectric constant of water, ionic reactions are
the most likely to happen. Mainly because of the hydrolysis reactions and possible free
radical reactions, phenolic compounds can be produced [24,43]. In the FTIR analysis, the
chars produced at 573 K showed relatively higher carbonyl, CH3, CH2, and OH groups.
When the residence time and temperature are further increased, phenolic compounds
such as guaiacol can be produced due to C-C bonds’ cleavage [24]. Nevertheless, guaiacol
is an intermediate during the lignin liquefaction process and converts into catechol and
phenols with increased temperature and residence time [6,11]. Furthermore, these phenolic
compounds, such as guaiacol, can further polymerize and produce more char as well [24].
Around 573 K, guaiacol has shown the maximum production, and with the temperature
increased, the production rate has gone down [24,43]. This could be a possible reason for
the high surface area, the pore volume observed in N2 adsorption, and the chars’ SEM
analysis. Besides, around 603 K, vesicles are often and abundantly formed because of the
high degradation and fast and intense release of volatiles.
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Nevertheless, the vesicles adhere to the surface when the volatiles are not completely
diffused out. These closed vesicles create smooth surfaces. Thus, the surface area can be
decreased at 603 K and then increased at 623 K since the pores are opened up due to the
uncovering of vesicles.

The increase of peaks corresponding to the aromatic ring (1595 cm−1) and carbonyl
(1684 cm−1) with the increasing temperature show the aromatization or the fusion of the
chars’ ring structures. Further, the consumption of C-C and C-H bonds is also portrayed
by increasing those peaks. When the temperature is around 603 K the CH3, and the CH2
groups start eliminating, the char has shown a more aromatic nature already. With the
further incrementation of the temperature and residence time, fused ring structures can be
formed by carbonizing the aromatic rings. Most of the functional groups except aromatic
groups are expelled from the chars at this moment. Close to the critical point, radical
reactions become dominant and more influential than ionic reactions due to the property
change of water [24]. Because of the medium’s high radical nature, the phenolic radicals
could depolymerize and contribute to the char phase. At this temperature, most of the
volatiles may be emitted, and only a smaller amount of volatiles is available to leave the
structure and create pores. This could be a possible reason for chars produced at 623 K
showing the least pore volume and showing a significantly smaller surface area value than
the chars produced at 573 K. Furthermore, the peaks corresponding to nitro compounds
(1353 cm−1) show the increase of nitrogen compounds with the increase of the operating
temperature and residence time. This could be mainly due to the aromatization process in
the char [29]. With the results found and the literature data, a possible reaction mechanism
for char formation from lignin HTL is illustrated in Figure 13.
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4. Conclusions

HTL chars produced from lignin at 573 K, 603 K, and 623 K and residence times of
10 min, 15 min, and 20 min were studied. Both increasing operating temperature and
residence time resulted in a positive impact on the nitrogen content of the chars.

The aromatic ring and the carbonyl group were strengthened drastically with increased
operating temperature, and chars became more aromatic, while aliphatic groups were
observed to vanish. Although the impact was considerably low, the same trend could be
seen with the residence time too. Nevertheless, the carbonyl group showed contradictive
behavior with temperature and residence time, where it showed an increase with increasing
operating temperature, while a decrease was observed with the longer residence times.
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With the increasing temperature, the pore volume decreased at all the operating
temperatures, where the surface area showed the minimum at 603 K. According to the
SEM analysis, the char sample formed at 573 K consists of large particles (>10 um) with a
smooth surface. A high-resolution SEM image showed the presence of pores distributed
all over the surface of these particles. Possibly because of the permeation of water into
the pores at 603 K, minimum vesicle formation was exhibited by the char, compared to
the pyrolysis char. Besides, at 623 K, the vesicles seemed to be opened and increased the
surface area slightly.

Higher operating temperatures and longer residence times produced more thermally
stable chars, where the residence time substantially impacted the thermal stability of chars
produced at 573 K. At lower temperatures, the cleavage of the weak bonds can be seen,
where polymerization was observed at higher temperatures and longer residence times.
Carbonization is the main process of creating char. Longer residence times helped create
more polyaromatic rings by assisting further carbonization.

Author Contributions: Conceptualization, M.J.; methodology, M.J. and S.R.; formal analysis, M.J.;
investigation, M.J., S.R., N.A. and A.A.C.; resources, M.J.; data curation, M.J.; writing—original draft
preparation, M.J.; writing—review and editing, M.J., S.R., N.A. and A.A.C.; visualization, M.J., N.A.
and A.A.C.; supervision, S.R.; project administration, S.R.; funding acquisition, S.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was conducted as part of the Ph.D. research at the Department of Engineering
Sciences, funded by the Faculty of Engineering and Science, University of Agder.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to the privacy. The data presented in
this study are available on request from the corresponding author. The data are not publicly available
due to ongoing research.

Acknowledgments: The authors would like to thank Giulia Ravenni from the Technical University
of Denmark for assisting with char sample analysis and J.A. Godwin for the contribution at the initial
phase of the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous

Carbon for Their Sustainable Application. ACS Sustain. Chem. Eng. 2015, 3, 833–840. [CrossRef]
2. Okoro, O.V.; Sun, Z. The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate

biomass. Biomass Convers. Biorefinery 2020. [CrossRef]
3. Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [CrossRef]
4. Arun, J.; Varshini, P.; Prithvinath, P.K.; Priyadarshini, V.; Gopinath, K.P. Enrichment of bio-oil after hydrothermal liquefaction

(HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresour. Technol.
2018, 261, 182–187. [CrossRef]

5. Arturi, K.R.; Strandgaard, M.; Nielsen, R.P.; Søgaard, E.G.; Maschietti, M. Hydrothermal liquefaction of lignin in near-critical
water in a new batch reactor: Influence of phenol and temperature. J. Supercrit. Fluids 2017, 123, 28–39. [CrossRef]

6. Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363.
7. Falco, C.; Baccile, N.; Titirici, M.-M. Morphological and structural differences between glucose, cellulose and lignocellulosic

biomass derived hydrothermal carbons. Green Chem. 2011, 13, 3273–3281. [CrossRef]
8. Leng, L.; Yuan, X.; Huang, H.; Shao, J.; Wang, H.; Chen, X.; Zeng, G. Bio-char derived from sewage sludge by liquefaction:

Characterization and application for dye adsorption. Appl. Surf. Sci. 2015, 346, 223–231. [CrossRef]
9. Leng, L.; Yuan, X.; Zeng, G.; Shao, J.; Chen, X.; Wu, Z.; Wang, H.; Peng, X. Surface characterization of rice husk bio-char produced

by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 2015, 155, 77–85. [CrossRef]
10. Wahyudiono; Sasaki, M.; Goto, M. Recovery of phenolic compounds through the decomposition of lignin in near and supercritical

water. Chem. Eng. Process. Process Intensif. 2008, 47, 1609–1619. [CrossRef]
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