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DAUGAVET- AND DELTA-POINTS IN BANACH SPACES

WITH UNCONDITIONAL BASES

TROND A. ABRAHAMSEN, VEGARD LIMA, ANDRÉ MARTINY,
AND STANIMIR TROYANSKI

Abstract. We study the existence of Daugavet- and delta-points in the unit
sphere of Banach spaces with a 1-unconditional basis. A norm one element x
in a Banach space is a Daugavet-point (resp. delta-point) if every element in
the unit ball (resp. x itself) is in the closed convex hull of unit ball elements
that are almost at distance 2 from x. A Banach space has the Daugavet
property (resp. diametral local diameter two property) if and only if every
norm one element is a Daugavet-point (resp. delta-point). It is well-known that
a Banach space with the Daugavet property does not have an unconditional
basis. Similarly spaces with the diametral local diameter two property do not
have an unconditional basis with suppression unconditional constant strictly
less than 2.

We show that no Banach space with a subsymmetric basis can have delta-
points. In contrast we construct a Banach space with a 1-unconditional basis
with delta-points, but with no Daugavet-points, and a Banach space with a
1-unconditional basis with a unit ball in which the Daugavet-points are weakly
dense.

1. Introduction

Let X be a Banach space with unit ball BX , unit sphere SX , and topological
dual X∗. For x ∈ SX and ε > 0 let Δε(x) = {y ∈ BX : ‖x− y‖ ≥ 2 − ε}. We say
that X has the

(i) Daugavet property if for every x ∈ SX and every ε > 0 we have BX =
convΔε(x);

(ii) diametral local diameter two property if for every x ∈ SX and every ε > 0
we have x ∈ convΔε(x).

In [Kad96, Corollary 2.3] Kadets proved that any Banach space with the Dau-
gavet property fails to have an unconditional basis (see also [Wer01, Proposi-
tion 3.1]). These arguments are probably the easiest known proofs of the absence
of unconditional bases in the classical Banach spaces C[0, 1] and L1[0, 1]. The di-
ametral local diameter two property was named and studied in [BGLPRZ18], but it
was first introduced in [IK04] under the name space with bad projections. (See the
references in [IK04] for previous unnamed appearances of this property.) Using the
characterizations in [IK04] we see that if a Banach space with the diametral local
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diameter two property has an unconditional basis, then the unconditional suppres-
sion basis constant is at least 2. But note that we do not know of any Banach space
with an unconditional basis and the diametral local diameter two property.

In the present paper we study pointwise versions of the Daugavet property and
the diametral local diameter two property in spaces with 1-unconditional bases.

Definition 1.1. Let X be a Banach space and let x ∈ SX . We say that x is

(i) a Daugavet-point if for every ε > 0 we have BX = convΔε(x);
(ii) a delta-point if for every ε > 0 we have x ∈ convΔε(x).

Daugavet-points and delta-points were introduced in [AHLP20]. For the spaces
L1(μ), for preduals of such spaces, and for Müntz spaces these notions are the same
[AHLP20, Theorems 3.1, 3.7, and 3.13]. However, C[0, 1] ⊕2 C[0, 1] is an example
of a space with the diametral local diameter two property, but with no Daugavet-
points [AHLP20, Example 4.7]. Stability results for Daugavet- and delta-points in
absolute sums of Banach spaces was further studied in [HPV20].

In Section 2 we consider Banach spaces with 1-unconditional bases and study a
family of subsets of the support of a vector x. We find properties of these subsets
that are intimately linked to x not being a delta-point. Quite general results are
obtained in this direction. We apply these results to show that Banach spaces with
subsymmetric bases (these include separable Lorentz and Orlicz sequence spaces)
always fail to contain delta-points.

In Section 3 we construct a Banach space with a 1-unconditional basis which
contains a delta-point, but contain no Daugavet-points. The example is a Banach
space of the type hA,1 generated by an adequate family of subsets of a binary tree.
The norm of the space is the supremum of the �1-sum of branches in the binary
tree.

In Section 4 we modify slightly the binary tree from Section 3 and the associated
adequate family, to obtain an hA,1 space with some remarkable properties: It has
Daugavet-points; the Daugavet-points are even weakly dense in the unit ball; the
diameter of every slice of the unit ball is two, but is has relatively weakly open
subsets of the unit ball of arbitrary small diameter.

Finally, let us also remark that the examples in both Section 3 and Section 4
contain isometric copies of c0 and �1. Both the �1-ness of the branches and c0-
ness of antichains in the binary tree play an important role in our construction of
Daugavet- and delta-points in these spaces (see e.g. Theorems 3.1 and 4.2, and
Corollary 4.3).

2. 1-unconditional bases and the sets M(x)

The main goal of this section is to prove that Banach spaces with a subsymmetric
basis fail to have delta-points. Before we start this mission, let us point out some
results and concepts that we will need. First some characterizations of Daugavet-
and delta-points that we will frequently use throughout the paper.

Recall that a slice of the unit ball BX of a Banach space X is a subset of the
form

S(x∗, ε) = {x ∈ BX : x∗(x) > ‖x∗‖ − ε},

where x∗ ∈ X∗ and ε > 0.
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Proposition 2.1 ([AHLP20, Lemma 2.3]). Let X be a Banach space and x ∈ SX .
The following assertions are equivalent:

(i) x is a Daugavet-point;
(ii) for every slice S of BX and for every ε > 0 there exists y ∈ S such that

‖x− y‖ ≥ 2− ε.

Proposition 2.2 ([AHLP20, Lemma 2.2]). Let X be a Banach space and x ∈ SX .
The following assertions are equivalent:

(i) x is a delta-point;
(ii) for every slice S of BX with x ∈ S and for every ε > 0 there exists y ∈ S

such that ‖x− y‖ ≥ 2− ε.

Let X be a Banach space. Recall that a Schauder basis (ei)i∈N of X is called
unconditional if for every x ∈ X its expansion x =

∑
i∈N

xiei converges uncon-
ditionally. If, moreover, ‖

∑
i∈N

θixiei‖ = ‖
∑

i∈N
xiei‖ for any x =

∑
i∈N

xiei ∈
X and any sequence of signs (θi)i∈N, then (ei)i∈N is called 1-unconditional. A
Schauder basis is called subsymmetric, or 1-subsymmetric, if it is unconditional
and ‖

∑
i∈N

θixieki
‖ = ‖

∑
i∈N

xiei‖ for any x =
∑

i∈N
xiei ∈ X, any sequence of

signs (θi)i∈N, and any infinite increasing sequence of naturals (ki)i∈N. Trivially a
subsymmetric basis is 1-unconditional. In the following we will assume that the
basis (ei)i∈N is normalized, i.e. ‖ei‖ = 1 for all i ∈ N. With (e∗i )i∈N we denote
the conjugate in X∗ to the basis (ei)i∈N. Clearly (e∗i )i∈N is a 1-unconditional basic
sequence whenever (ei)i∈N is. When studying Daugavet-points or delta-points in a
Banach space X with 1-unconditional basis (ei)i∈N we can restrict our investigation
to the positive cone KX generated by the basis, where

KX =

{
x =

∑
i∈N

xiei : xi ≥ 0

}
= {x ∈ X : e∗i (x) ≥ 0}.

The reason for this is that for every sequence of signs θ = (θi)i∈N the operator
Tθ : X → X defined by Tθ(

∑
i∈N

xiei) =
∑

i∈N
θixiei is a linear isometry. Hence x =∑

i∈N
xiei is a Daugavet-point (resp. delta-point) if and only if |x| =

∑
i∈N

|xi|ei
is.

The following result is well-known.

Proposition 2.3. Let X be a Banach space with a 1-unconditional basis (ei)i∈N.
If

∑
i∈N

biei is convergent and |ai| ≤ |bi| for all i, then
∑

i∈N
aiei is convergent and∥∥∑

i∈N

aiei
∥∥ ≤

∥∥∑
i∈N

biei
∥∥.

Moreover ‖PA‖ = 1 where, for A ⊂ N, PA is the projection defined by

PA(
∑
i∈N

xiei) =
∑
i∈A

xiei.

From this we immediately get a fact that will be applied several times throughout
the paper.

Fact 2.4. Let X be a Banach space with a 1-unconditional basis (ei)i∈N and let
x, y ∈ X and E ⊂ N. Then the following holds.

• If |xi| ≤ |yi| and sgnxi = sgn yi for all i ∈ E, then ‖y − PEx‖ ≤ ‖y‖.
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The upshot of Fact 2.4 is that it can be used to find an upper bound for the
distance between x ∈ SX and elements in a given subset of the unit ball. Indeed,
suppose we can find E ⊆ N, η > 0 and a subset S of the unit ball such that
‖x− PEx‖ < 1− η and the assumption in Fact 2.4 holds for any y ∈ S. Then

‖x− y‖ ≤ ‖x− PEx‖+ ‖y − PEx‖ < 2− η.

If such a set S is a slice (resp. a slice containing x), then x cannot be a Daugavet-
point (resp. delta-point). We will see in Theorem 2.17 that any unit sphere element
in a space with a subsymmetric basis, is contained in a slice of the above type.
Our tool to investigate the existence of slices of this type in a Banach space with a
1-unconditional basis, are certain families of subsets of the support of the elements
in the space.

Remark 2.5. If only the moreover part of Proposition 2.3 holds, then the basis is
called 1-suppression unconditional. In this case the conclusion of Proposition 2.3
still holds if sgn ai = sgn bi, for all i. This is all that is needed in Fact 2.4. Similarly,
one can check that all the results about 1-unconditional bases in the rest of this
section also holds for a Banach space X with a 1-suppression unconditional basis.

Definition 2.6. For any Banach space X with 1-unconditional basis (ei)i∈N and
for x ∈ X, define

M(x) := {A ⊆ N : ‖PAx‖ = ‖x‖ , ‖PAx− xiei‖ < ‖x‖ , for all i ∈ A} ,

MF (x) := {A ∈ M(x) : |A| < ∞} ,
and

M∞(x) := {A ∈ M(x) : |A| = ∞} .

We can think of M(x) as a collection of minimal “norm-giving” subsets of the
support of x. If for example X = c0 and x ∈ X, then M(x) = {{i} : |xi| = ‖x‖}
while if X = �p, 1 ≤ p < ∞ and x ∈ X, then M(x) = {supp(x)}.

Our first observation about the families M(x) is that they are always non-empty.

Lemma 2.7. Let X be a Banach space with 1-unconditional basis (ei)i∈N. Then
M(x) �= ∅ for all x ∈ X.

Proof. Let x ∈ X. Either A0 := supp(x) ∈ M(x) or there exists a smallest n1 ∈ A0

such that if we define A1 = A0 \ {n1}, then ‖PA1
x‖ = ‖x‖ and

‖PA1
x− xjej‖ < ‖x‖ for all j ∈ A0 ∩ {1, . . . , n1 − 1}.

Suppose we have found n1 < · · · < nk−1 such that Ak−1 = Ak−2 \ {nk−1} satisfies
‖PAk−1

x‖ = ‖x‖ and ‖PAk−1
x− xjej‖ < ‖x‖ for all j ∈ Ak−1 ∩ {1, . . . , nk−1 − 1}.

Then either Ak−1 ∈ M(x) or there exists a smallest integer nk greater than nk−1

such that Ak = Ak−1(x) \ {nk} satisfies ‖PAk
x‖ = ‖x‖ and

‖PAk
x− xjej‖ < ‖x‖ for all j ∈ Ak ∩ {1, . . . , nk − 1}.

Either this process terminates and Ak ∈ M(x), or we get a set N = {ni}∞i=1. Let
A =

⋂
k Ak = supp(x) \N and note that ‖PAx‖ = ‖x‖. If j ∈ A, find k such that

j < nk, then by 1-unconditionality

‖PAx− xjej‖ ≤ ‖PAk
x− xjej‖ < ‖x‖

and A ∈ M(x). �
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Our next goal is to prove that certain classes of subsets of MF (x) and M∞(x)
are finite (see Lemma 2.10 below). We will use the next result as a stepping
stone. In the proof, and throughout the paper, we will assume that the sets A =
{a1, a2, . . .} ∈ M(x) are ordered so that a1 < a2 < · · · < an < · · · , and we will use
A(n) to denote the set {a1, . . . , an}.
Lemma 2.8. Let X be a Banach space with 1-unconditional basis (ei)i∈N. If x ∈ X,
then for every n ∈ N,

(i) |{A(n) : A ∈ M(x), |A| > n}| < ∞;
(ii) |{A ∈ M(x) : |A| ≤ n}| < ∞.

In particular,
∣∣∣⋃D∈M∞(x) {D(n)}

∣∣∣ < ∞.

Proof. Let us prove (i) inductively. For k ∈ N, let Rk = I − PNk
, where Nk =

{1, . . . , k}. For n = 1 the result follows from ‖Rkx‖ → 0.
Now assume that |{A(n− 1) : A ∈ M(x), |A| > n− 1}| < ∞, and let sn−1 :=

max
{∥∥PA(n−1)x

∥∥ : A ∈ M(x), |A| > n− 1
}
< ‖x‖. Find k ∈ N such that ‖Rkx‖ <

‖x‖ − sn−1. Then by the triangle inequality, it follows that maxA(n) ≤ k for all
A ∈ M(x) with |A| > n.

For (ii), let A ∈ M(x) with |A| = n. Then
∥∥PA(n−1)x

∥∥ ≤ sn−1, and thus
maxA ≤ k, where as above k ∈ N is such that ‖Rkx‖ < ‖x‖ − sn−1. �

In order to find the sets E ⊆ N mentioned in the remarks following Fact 2.4 we
need the following families of subsets of M(x).

Definition 2.9. Let X have 1-unconditional basis (ei)i∈N. Let x ∈ SX and define

Fn(x) :=
{
A ∈ MF (x) : A ∩D(n) �= D(n), for all D ∈ M∞(x)

}
,

Gn(x) := Fn(x) ∪
⋃

D∈M∞(x)

{D(n)},

En(x) :=
{
E ⊂

⋃
A∈Gn

A : E ∩A �= ∅, for all A ∈ Gn

}
.

If it is clear from the context what element x we are considering, we will simply
denote these sets by Fn,Gn, and En.

It is pertinent with a couple of comments about these families of sets. Trivially,
if M∞(x) = ∅, then Gn = Fn = M(x) for all n ∈ N. We can think of the elements
of En as essential for the norm of x, i.e. ‖x−PEx‖ < ‖x‖ for all E ∈ En. According
to Lemma 2.11 below the drop in norm is also uniformly bounded away from 0.
The main reason for this is that Fn and En are finite for all n ∈ N. We will prove
this now.

Lemma 2.10. Let X have 1-unconditional basis (ei)i∈N. If x ∈ SX , then for all
n ∈ N,

(i) |Fn| < ∞;
(ii) |En| < ∞.

In particular, if M∞(x) = ∅, then |M(x)| < ∞.

Proof. (i). There exists N ∈ N such that maxD∈M∞(x) D(n) ≤ N by Lemma 2.8.
Assume for contradiction that |Fn| = ∞. Then there exists a sequence (Ak) ⊂

Fn such that |Ak| ≥ k. By compactness of {0, 1}N and passing to a subsequence
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if necessary, we may assume that Ak → A ∈ N pointwise and A ∩ {1, . . . , N} =
Ak ∩ {1, . . . , N} for all k. In particular ‖PAx‖ = 1. By Lemma 2.7, there exists
B ⊆ A, such that B ∈ M(PAx) ⊆ M(x). Since A ∩ {1, . . . , N} = Ak ∩ {1, . . . , N},
we have |B| < ∞ by definition of Fn. Since B is finite Ak∩B is eventually constant.
Thus for some k ∈ N we have B � Ak ∈ M(x), a contradiction.

Finally, (ii) follows from (i) and Lemma 2.8. �

With the knowledge that the cardinality of En is finite for every n ∈ N, we now
obtain the following result.

Lemma 2.11. Let X be a Banach space with 1-unconditional basis (ei)i∈N. If
x ∈ SX , then

(i) ‖x− PEx‖ < 1 if E ∩A �= ∅ for all A ∈ M(x);
(ii) for any n ∈ N there exists γn > 0 such that

max
E∈En

‖x− PEx‖ = 1− γn.

Proof. (i). Assume that E ⊆ N with E ∩ A �= ∅ for all A ∈ M(x) such that
‖x− PEx‖ = 1. By Lemma 2.7 there exists B ∈ M(x− PEx). But M(x− PEx) ⊆
M(x) since ‖x− PEx‖ = 1 and this gives us the contradiction B ∩E = ∅.

Any E ∈ En satisfies E ∩ A �= ∅ for all A ∈ M(x) and En is finite, so (ii) follows
from (i). �

Let X be a Banach space and x ∈ SX . If x is a delta-point, then for every slice S
with x ∈ S, we have that x is at one end of a line segment in S with length as close
to 2 as we want. Suppose we replace the slice S with a non-empty relatively weakly
open subset W of BX with x ∈ W . If X has the Daugavet property, then x is at one
end of a line segment in W with length as close to 2 as we want ([Shv00, Lemma 3]).
Next we show that this is never the case if X has a 1-unconditional basis.

Proposition 2.12. Let X be a Banach space with 1-unconditional basis (ei)i∈N. If
x ∈ SX , then there exist δ > 0 and a relatively weakly open subset W , with x ∈ W ,
such that supy∈W ‖x− y‖ < 2− δ.

Proof. Assume that x ∈ SX ∩KX . Let E =
⋃

A∈M(x) A(1). By Lemma 2.11 there

exists γ1 > 0 such that maxF∈E1
‖x− PFx‖ = 1− γ1. Let δ = γ1/2.

Let W =
{
y ∈ BX : |e∗i (x− y)| < mink∈E

xk

2 , i ∈ E
}
. Then x ∈ W , and if y ∈

W , then yi ≥ xi

2 > 0 for all i ∈ E. Thus if y ∈ W we have

{i ∈ N : yi ≥
xi

2
} ∩E = E ∈ E1.

For any y ∈ W , we get that

‖x− y‖ ≤
∥∥∥∥x2

∥∥∥∥+

∥∥∥∥x2 − PE
x

2

∥∥∥∥+

∥∥∥∥PE
x

2
− y

∥∥∥∥ < 2− δ,

and we are done. �

Let us remark a fun application of the above proposition.

Remark 2.13. Let K be an infinite compact Hausdorff space. Then C(K) does not
have a 1-unconditional (or a 1-suppression unconditional) basis.

Let f be a function which attains its norm on a limit point of K. Arguing
similarly as in [AHLP20, Theorem 3.4] we may find a sequence of norm one functions
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gk with distance as close to 2 as we want from f that converge pointwise, and thus
weakly, to f . The conclusion follows from Proposition 2.12.

The next result is the key ingredient in our proof that there are no delta-points in
Banach spaces with subsymmetric bases. Its proof draws heavily upon Lemma 2.11.

Lemma 2.14. Let X be a Banach space with 1-unconditional basis (ei)i∈N and let
x ∈ SX . Assume that there exists a slice S(x∗, δ), an n ∈ N and some η > 0 such
that

(i) x ∈ S(x∗, δ),
(ii) y ∈ S(x∗, δ) implies that

{i : |yi| > η|xi|, sgn yi = sgn xi} ∩D(n) �= ∅
for all D ∈ M∞(x).

Then x is not a delta-point.

Proof. Assume that x ∈ SX ∩KX . Now for each A ∈ Fn find x∗
A ∈ SX∗ such that

x∗
A(PAx) = 1 with x∗

A(ei) = 0 for all i /∈ A, and x∗
A(ei) > 0 for all i ∈ A. Let

z∗ = 1
|Fn|+1

(∑
A∈Fn

x∗
A + x∗). Then z∗ ∈ BX∗ and

‖z∗‖ ≥ z∗(x) >
|Fn|+ 1− δ

|Fn|+ 1
= 1− δ

|Fn|+ 1
.

For any y ∈ S(z∗, ‖z∗‖ − 1 + δ
|Fn|+1 ), we get that

1− δ

|Fn|+ 1
<

1

|Fn|+ 1

( ∑
A∈Fn

x∗
A(y) + x∗(y)

)
≤ |Fn|+ x∗(y)

|Fn|+ 1
.

Solving for x∗(y) we get that

1− δ < x∗(y),

and similarly 1− δ < x∗
A(y). Thus, if 0 < η < 1− δ,

F := {i : yi ≥ ηxi}
⋂( ⋃

E∈Gn

E

)
∈ En.

For any y ∈ S(z∗, ‖z∗‖ − 1 + δ
|Fn|+1 ) we now get from Lemma 2.11 that

‖x− y‖ ≤ ‖x− ηPFx‖+ ‖ηPFx− y‖
≤ η ‖x− PFx‖+ (1− η) ‖x‖+ 1

≤ η max
E∈En

‖x− PEx‖+ 2− η

≤ 2− ηγn < 2.

�

If x ∈ SX withM∞(x) = ∅ in the above lemma, then any slice S(x∗, δ) containing
x trivially satisfies Lemma 2.14 (ii). We record this in the following proposition.

Proposition 2.15. Let X be a Banach space with 1-unconditional basis and let
x ∈ SX . If M∞(x) = ∅, then x is not a delta-point.

We will also need the following lemma.
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Lemma 2.16. Let X be a Banach space with 1-unconditional basis (ei)i∈N. If
x ∈ KX , then for every A ∈ M(x) and every t > 0 we have ‖PAx+ tei‖ > ‖x‖ for
all i ∈ A.

Proof. Let x ∈ KX , A ∈ M(x) and t > 0. Since i ∈ A and A ∈ M(x) we have
xi > 0 and ‖PAx− xi‖ < ‖x‖ = ‖PAx‖. Put λ = xi/(t+ xi). Then 0 < λ < 1 and
PAx = λ(PAx+ tei) + (1− λ)(PAx− xiei), so

‖x‖ = ‖PAx‖ ≤ λ‖PAx+ tei‖+ (1− λ)‖PAx− xiei‖
< λ‖PAx+ tei‖+ (1− λ)‖PAx‖
= λ‖PAx+ tei‖+ (1− λ)‖x‖,

and the conclusion follows. �

Finally it is time to cash in some dividends and prove the main result of this
section.

Theorem 2.17. If X has subsymmetric basis (ei)i∈N, then X has no delta-points.

Proof. Assume x ∈ SX∩KX . By Proposition 2.15 we may assume thatM∞(x) �= ∅.
Let s := max{n : xn = maxi xi}. We first show that s ∈ A for all A ∈ M∞(x).

For contradiction assume that there exists A = {a1, a2, . . .} ∈ M∞(x) with
s �∈ A. Let a0 = 0 and j ∈ N be such that aj−1 < s < aj . Let t > 0 such
that xs = xaj

+ t and let As be A with aj replaced by s. Using that (ei)i∈N is
subsymmetric and Lemma 2.16 we get

1 ≥ ‖PAs
x‖ =

∥∥∥∥∑
i �=j

xai
ei + (xaj

+ t)ej

∥∥∥∥
=

∥∥∥∥∑
i∈N

xai
eai

+ teaj

∥∥∥∥ = ‖PAx+ teaj
‖ > 1

a contradiction.
If we let n = s, then s ∈ D(n) for all D ∈ M∞(x), and the slice S(e∗s, 1 − xs

2 )

and η = 1
2 satisfies the criteria in Lemma 2.14 and we are done. �

In the proof above we saw that if X has a subsymmetric basis, then for any
x ∈ SX either M∞(x) = ∅ or all A ∈ M∞(x) has a common element. In the case X
has a 1-symmetric basis we can say a lot about the sets M(x) for any given x ∈ SX .

Recall that a Schauder basis (ei)i∈N is called 1-symmetric if it is unconditional
and ‖

∑
i∈N

θixieπ(i)‖ = ‖
∑

i∈N
xiei‖ for any x =

∑
i∈N

xiei ∈ X, any sequence of
signs (θi)i∈N, and any permutation π of N. A 1-symmetric basis is subsymmetric
[LT77, Proposition 3.a.3].

Proposition 2.18. Let X be a Banach space with 1-symmetric basis (ei)i∈N and
let x ∈ SX .

(i) If M∞(x) �= ∅, then M(x) = {supp(x)};
(ii) If M∞(x) = ∅ and A,B ∈ M(x), then |A| = |B| and x is constant on

A�B.

Proof. Assume that x ∈ SX ∩KX .
(i). Let A ∈ M∞(x) and xl ∈ supp(x) \ A. Since |A| = ∞, there exists k ∈ A

and t > 0 with xk + t = xl. Using that (ei)i∈N is 1-symmetric and Lemma 2.16 we
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get

1 ≥
∥∥PA\{k}x+ xlel

∥∥ =
∥∥PA\{k}x+ xlek

∥∥ = ‖PAx+ tek‖ > 1,

a contradiction.
(ii). Suppose that x is not constant on A�B and let k, l ∈ A�B with xk �= xl,

say k ∈ A, l ∈ B, and xk < xl. Then argue as in (i) to get a contradiction, so x is
constant on A�B. As x is constant on A�B, we cannot have |A| < |B| since then
a subset of B would be in M(x) contradicting the definition of M(x). �

3. A space with 1-unconditional basis and delta-points

In this section we will prove the following theorem.

Theorem 3.1. There exists a Banach space XB with 1-unconditional basis, such
that

(i) XB has a delta-point;
(ii) XB does not have Daugavet-points.

Before giving a proof of the theorem we will need some notation. By definition,
a tree is a partially ordered set (T ,�) with the property that, for every t ∈ T ,
the set {s ∈ T : s � t} is well ordered by �. In any tree we use normal interval
notation, so that for instance a segment is [s, t] = {r ∈ T : s � r � t}. If a tree has
only one minimal member, it is said to be rooted and the minimal member is called
the root of the tree and is denoted ∅. We have ∅ � t for all t ∈ T . We say that t
is an immediate successor of s if s ≺ t and the set {r ∈ T : s ≺ r ≺ t} is empty.
The set of immediate successors of s we denote with s+. A sequence B = {tn}∞n=0

is a branch of T if tn ∈ T for all n, t0 = ∅ and tn+1 ∈ t+n for all n ≥ 0. If s, t ∈ B

are nodes such that neither s � t nor t � s, then s and t are incomparable. An
antichain in a tree is a collection of elements which are pairwise incomparable.

We consider the infinite binary tree, B =
⋃∞

n=0{0, 1}n, that is, finite sequences
of zeros and ones. The order � on B is defined as follows: If s = {s1, s2, . . . , sk} ∈
{0, 1}k ⊂ B and t = {t1, t2, . . . , tl} ∈ {0, 1}l ⊂ B, then s � t if and only if k ≤ l
and si = ti, 1 ≤ i ≤ k. As usual we denote with |s| the cardinality of s, i.e. |s| = k.
The concatenation of s and t is s�t = {s1, s2, . . . , sk, t1, t2, . . . , tl} ∈ {0, 1}k+l ⊂ B.
Clearly s � s�t and s+ = {s�0, s�1}. The infinite binary tree is rooted with
∅ = {0, 1}0.

Following Talagrand [Tal79,Tal84] we say that A ⊆ P(N) is an adequate family
if

• A contains the empty set and the singletons: {n} ∈ A for all n ∈ N.
• A is hereditary: If A ∈ A and B ⊆ A, then B ∈ A.
• A is compact with respect to the topology of pointwise convergence: Given
A ⊂ N, if every finite subset of A is in A, then A ∈ A.

Given an adequate family A, we define the Banach lattice �A,1 as the set of all
sequences x = (ai)

∞
i=1 satisfying ‖x‖ = supA∈A

∑
i∈A |ai| < ∞ (see e.g. [AM93,

Definition 2.1]). It is easy to see that, in general, the standard unit vectors (ei)i∈N

form a normalized 1-unconditional basic sequence in �A,1. We denote hA,1 the closed
subspace of �A,1 generated by (ei)i∈N. For example if A = {∅}∪{{n} : n ∈ N}, then
�A,1 = �∞, hA,1 = c0, and if N ∈ A, then �A,1 = hA,1 = �1. Since A is compact we
get that for every x ∈ hA,1 there exists A ∈ A such that ‖PAx‖ = ‖x‖.
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There is a bijection between B and N where the natural order on N corresponds
to the lexicographical order on B (see [AT04, p. 69]). The family A of all subsets
of N corresponding to the branches of B and their subsets is an adequate family.
We get that XB := hA,1 is a Banach space with 1-unconditional basis (et)t∈B. It
is worth pointing out that we use t ∈ B as indices for the basis. Thus, for x ∈ XB

and any non-negative integer n we write
∑

|t|>n e∗t (x)et, when referring to the sum∑
t∈B,|t|>n e∗t (x)et, that is, t ∈ B is implicit. A similar notation will be used in

Section 4.
Note that the span of the basis vectors corresponding to any infinite antichain

in XB is isometric to c0, and that the span of the basis vectors corresponding to
any branch in XB is isometric to �1.

Proof of Theorem 3.1 (i). Consider

x =
∑
|t|>0

2−|t|et.

Summing over branches we find that ‖x‖ = 1. We will show that x is a delta-point.
Define z∅ = 0 and then for t0 ∈ B

zt�0 0 = zt0 + et�0 1 and zt�0 1 = zt0 + et�0 0.

Here is a picture of z(0,0) and z(0,1):

z(0,0)

0

0 1

0 1 0 0

z(0,1)

0

0 1

1 0 0 0

From the definition it is clear that
1

2

(
zt�0 0 + zt�0 1

)
= zt0 +

1

2

(
et�0 0 + et�0 1

)
so by induction

yN :=
1

2N

∑
|t|=N

zt = x−
∑
|t|>N

2−|t|et.

Let x∗ ∈ SX∗
B

and δ > 0 such that x ∈ S(x∗, δ). Find N such that x∗(yN ) > 1− δ

which is possible since ‖
∑

|t|>N 2−|t|et‖ → 0 as N → ∞. But x∗(yN ) > 1−δ means

that there exists t0 with |t0| = N such that x∗(zt0) > 1 − δ. Let E = (ti)
∞
i=1 be

an infinite antichain of successors of t0. Then x∗(eti) → 0 as i → ∞. Find tn such
that

x∗(zt0 − etn) > 1− δ.

By definition of zt0 we have {u ∈ B : u � t0} ∩ supp(zt0) = ∅ hence zt0 − etn ∈
S(x∗, δ). Summing over a branch containing tn we get

‖x− (zt0 − etn)‖ ≥
∞∑

h=1,h �=|tn|
2−h + 2−|tn| + 1 = 2

as desired. �
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Next is the proof that XB does not have Daugavet-points. We first need a
general lemma about Daugavet-points.

Let (ei)i∈N be a 1-unconditional basis in a Banach spaces X. Define

EX = {E ⊂ N :
∑
i∈E

ei ∈ SX}.

Lemma 3.2. Let X be a Banach space with 1-unconditional basis (ei)i∈N. If x ∈ SX

is a Daugavet-point, then ‖x− PEx‖ = 1 for all E ∈ EX .

Proof. Assume x ∈ SX ∩KX and that there exists η > 0 and E ∈ EX such that
‖x− PEx‖ < 1− η.

Define x∗ = 1
|E|

∑
i∈E e∗i ∈ SX∗ . Choose γ > 0 such that maxi∈E

e∗i (x)
2 < 1 − γ.

If y ∈ S(x∗, γ
|E| ), then it follows that 1− γ < e∗i (y) for all i ∈ E and

‖x− y‖ ≤
∥∥∥x− PE

x

2

∥∥∥+
∥∥∥y − PE

x

2

∥∥∥ < 2− η

2
,

so x is not a Daugavet-point. �

Proof of Theorem 3.1 (ii). Assume x ∈ SXB
∩KXB

. Let E =
⋃

A∈M(x) A(1). From

Lemma 2.8 we see that |E| is finite. Note that E is an antichain. Indeed, assume
t0, t1 ∈ E with t0 � t1 where A(1) = {t1} for some A ∈ M(x). Then since x ∈ KXB

and

1 ≥ ‖PA∪{t0}x‖ ≥
∑

t∈A∪{t0}
e∗t (x) =

∑
t∈A\{t0}

e∗t (x) + e∗t0(x) ≥ ‖PAx‖ = 1

we must have t0 = t1.
We have ‖x − PEx‖ < 1 by Lemma 2.11 (i). From Lemma 3.2 we get that x is

not a Daugavet-point since E ∈ EXB
. �

Let us end this section with a remark about the proof of Theorem 3.1 (i). In order
to prove that XB has a delta-point we could have used dyadic trees. Recall that a
dyadic tree in a Banach space is a sequence (xt)t∈B, such that xt =

1
2 (xt�0+xt�1).

In fact, x =
∑

|t|>0 2
−|t|et is the root of a dyadic tree. In order to show this

one uses the same zt’s as in the above proof, but attach a copy of x to the node t.
Finally, we have the following result about dyadic trees and delta-points.

Proposition 3.3. If a Banach space X contains a dyadic tree (xt)t∈B ⊂ BX such
that

lim sup
n→∞

(min
|t|=n

{‖x∅ − xt‖}) = 2,

then x∅ is a delta-point.

Proof. Let ε > 0 and find n with ‖x∅ − xt‖ ≥ 2 − ε for all t with |t| = n. This
means that xt ∈ Δε(x∅). By definition of a dyadic tree

x∅ =
1

2n

∑
|t|=n

xt,

so we have x∅ ∈ convΔε(x∅). �
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4. A space with 1-unconditional basis and daugavet-points

In this section we will cut of the root of the binary tree and modify the norm from
the example in the previous section to allow the space to have Daugavet-points.

Let M =
⋃∞

n=1{0, 1}n be the binary tree with the root removed. Note that a
branch B = {tn}∞n=1 in M corresponds to the branch {tn}∞n=0 in B where t0 = ∅.

A λ-segment in M is a set S ⊂ M of the form S = [s, t] ∪ t+, where [s, t] is a
(possibly empty) segment of M. If [s, t] = ∅, then S = {(0), (1)}.

Using the lexicographical order ≤ on M we have a bijective correspondence to N

with the natural order. Let A be the adequate family of subsets of N corresponding
to subsets of branches and subsets of λ-segments. Using this adequate family we
get a Banach space XM := hA,1 with 1-unconditional basis (et)t∈M. We call XM

the modified binary tree space. Note that XM contains isometric copies of c0 and
�1 just like XB.

As we saw in the proof of Theorem 3.1 (ii) the antichains in the tree play an
important role for the existence of Daugavet-points.

Define

F := {0} ∪ {z ∈ SXM
: z(M) ⊂ {0,±1}}.

The set EXM
from Section 3 can be described as the set of all non-void finite

antichains E of M such that |A∩E| ≤ 1 for all A ∈ A. Clearly supp(z) ∈ EXM
for

every z ∈ F \ {0} and every z with supp(z) ∈ EXM
and z(M) ⊂ {0,±1} belongs

to F. It is also clear that for every E ∈ EXM
there exists a branch B such that

B ∩ E = ∅. We will see in Lemma 4.1 and Theorem 4.2 that the sets EXM
and F

will play an essential role in characterizing the Daugavet-points of XM.
If M is a finite subset of M, then we will use the notation KM = {

∑
t∈M atet :

at ≥ 0} and FM = {z ∈ F : supp(z) ⊂ M}.
First we prove a lemma which says that convex combinations of elements in F

are dense in the unit ball of XM.

Lemma 4.1. Let M be a finite subset of M. Then

span {et : t ∈ M} ∩BXM
= conv (FM )

that is, for every x ∈ span {et : t ∈ M} ∩BXM
we have

(1) x =
N∑

k=1

λkzk

where zk ∈ FM , λk > 0,
∑N

k=1 λk = 1. In particular, ext(KM ∩BXM
) = KM ∩FM .

Proof. With Mn denote the subset of M which corresponds to {1, . . . , n} ⊂ N. We
will show, by induction, that for every x ∈ KM2n

∩BXM
we have

x =

N∑
k=1

λkzk,

where zk ∈ Ksupp(x)∩F, λk > 0 and
∑N

k=1 λk = 1. As KM ⊆ KM2n
for some n ∈ N

and zk ∈ Ksupp(x) ∩ F, the result will follow.
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The base step is x ∈ KM2
∩BXM

with e∗t (x) ≥ 0 for t ∈ M2 = {(0), (1)}. Write
e∗(0)(x) = a0 and e∗(1)(x) = a1. Define c = 1 − a0 − a1, z0 = e(0), and z1 = e(1).

Then

x = (c · 0 + a0z0 + a1z1)

is a convex combination of elements in Ksupp(x) ∩ F.
Assume the induction hypothesis holds for n ∈ N. Let x ∈ KM2(n+1)

∩BXM
. Let

t ∈ M be the node such that t�0 corresponds to 2n+ 1 and t�1 to 2n+ 2. Define

x′ = x− e∗t�0(x)et�0 − e∗t�1(x)et�1.

By assumption we have x′ =
∑N

k=1 λkzk with λk > 0,
∑N

k=1 λk = 1 and zk ∈
Ksupp(x′) ∩ F.

Define the segment A = {s ∈ M : s � t} and the sets

I = {k ∈ {1, . . . , N} : PAzk = 0} and J = {1, . . . , N} \ I.

For k ∈ I we let

zk,0 := zk + et�0 and zk,1 := zk + et�1.

Since zk ∈ Ksupp(x′) ∩ F we get zk,0, zk,1 ∈ Ksupp(x) ∩ F and∑
s∈A

e∗s(x
′) =

∑
s∈A

e∗s(x) =
∑
k∈J

λk.

Thus, by definition of the norm we have,

0 ≤ e∗t�0(x) + e∗t�1(x) ≤ 1−
∑
s∈A

e∗s(x) =
∑
k∈I

λk.

Write e∗t�0(x) = a0 and e∗t�1(x) = a1. Define c =
∑

k∈I λk − a0 − a1. Let m =∑
k∈I λk. It follows that

x = x′ + a0et�0 + a1et�1

=
∑
k∈J

λkzk +
∑
k∈I

λkzk +
∑
k∈I

λk

(a0
m

et�0 +
a1
m

et�1

)

=
∑
k∈J

λkzk +
∑
k∈I

λk
(a0 + a1 + c)

m
zk +

∑
k∈I

λk

(a0
m

et�0 +
a1
m

et�1

)

=
∑
k∈J

λkzk +
∑
k∈I

λk

(a0
m

zk,0 +
a1
m

zk,1 +
c

m
zk

)

which is a convex combination of elements in Ksupp(x) ∩ F. �

With the above lemma in hand we are able to characterize Daugavet-points in
XM in terms of EXM

. This will give us an easy way to identify and give examples
of Daugavet-points.

Theorem 4.2. Let x ∈ SXM
, then the following are equivalent

(i) x is a Daugavet-point;
(ii) ‖x− PEx‖ = 1, for all E ∈ EXM

;
(iii) for any z ∈ F, either ‖x− z‖ = 2 or for all ε > 0 there exists s ∈ M such

that z ± es ∈ F and ‖x− z ± es‖ > 2− ε.
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Proof. As usual we will assume that x ∈ KXM
throughout.

(i) ⇒ (ii) is Lemma 3.2.
(ii) ⇒ (iii). Let ε > 0, z ∈ F and E = supp(z). We have assumed that

‖x− PEx‖ = 1.
By definition of M(x − PEx) we have A ∩ E = ∅ for every A ∈ M(x − PEx).

If there, for some A ∈ M(x − PEx), exists t ∈ E and s0 ∈ A such that t � s0, or
t ∈ E such that s � t for all s ∈ A, then we are done since e∗t (x) = 0 and

‖x− z‖ ≥
∑
s∈A

|e∗s(x)|+ |e∗t (z)| = 2.

So from now on we assume that no such A exists.
Assume that there exists A ∈ M(x − PEx) that is a subset of a branch B. By

definition of the norm, we have e∗t (x) = 0 for t ∈ B \ A, and by the assumption
above, we also have B ∩E = ∅. Since |e∗t (x)| → 0 as |t| → ∞ for t ∈ B we can find
s ∈ B with |e∗s(x)| < ε/2 and hence

‖x− z ± es‖ ≥
∑

t∈A,t�=s

|e∗t (x)|+ |e∗s(x)± 1| ≥ 2− ε.

This concludes the case where A is a subset of a branch.
Suppose for contradiction that no A ∈ M(x−PEx) is a subset of a branch, then

every B ∈ M(x− PEx) is a subset of a λ-segment. By Lemma 2.10 we must have
|M(x− PEx)| < ∞.

Choose any B ∈ M(x− PEx) and write

B = {b1 ≺ b2 ≺ · · · ≺ bn} ∪ {b�0, b�1},
where bn � b. In particular e∗s(x) �= 0 for s ∈ b+.

Let R = {t ∈ E : b�0 ≺ t} and E1 = (E ∪ {b�0}) \ R. From the assumptions
above E ∩ {t : t � b�0} = ∅, so E1 ∈ EXM

.
Let C ∈ M(x − PE1

x). Notice that C ∩ {t : b�0 � t} = ∅. Otherwise, by
definition of the norm, we get the contradiction

1 = ‖PC∩{b�0}x‖ =
∑
t∈C

|e∗t (x)|+ |e∗b�0(x)| >
∑
t∈C

|e∗t (x)| = ‖PCx‖ = 1.

Hence PC(x− PE1
x) = PC(x− PEx) and C ∈ M(x− PEx).

We have M(x − PE1
x) ⊆ M(x − PEx), but since B ∩ E1 �= ∅ we have B /∈

M(x− PE1
x) so the inclusion is strict.

We now have |M(x − PE1
x)| < |M(x − PEx)| and no C ∈ M(x − PE1

x) is a
subset of a branch. We can use the argument above a finite number of times until
we are left with Em ∈ EXM

with ‖x − PEm
x‖ = 1 and M(x − PEm

x) = ∅ which
contradicts Lemma 2.7.

Finally, (iii) ⇒ (i). Choose ε > 0. Let y ∈ BXM
with finite support. Then by

Lemma 4.1, we can write y =
∑n

k=1 λkzk, with zk ∈ F, λk ≥ 0 and
∑n

k=1 λk = 1.
Let D1 = {k ∈ {1, . . . , n} : ‖x− zk‖ = 2} and D2 = {1, . . . , n} \ D1. We can,
by assumption, for each k ∈ D2 find sk ∈ M such that zk ± esk ∈ F with
‖x− zk ± esk‖ > 2− ε. Then y ∈ convΔε(x) since

y =
∑
i∈D1

λkzk +
∑
k∈D2

λk

2
(zk + esk) +

∑
k∈D2

λk

2
(zk − esk).

The set of all such y is dense in BXM
, hence BXM

= convΔε(x) so x is a Daugavet-
point. �
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Corollary 4.3. If x ∈ SXM
such that ‖PAx‖ = 1 for all branches A, then x is a

Daugavet-point.

Proof. Let E ∈ EXM
. There exists a branch B such that B ∩ E = ∅. Then

‖x− PEx‖ ≥ ‖PBx‖ = 1. By Theorem 4.2 x is a Daugavet-point. �

With a characterization of Daugavet-points in hand we can now prove the main
result of this section.

Theorem 4.4. In XM we have that

(i) there exists x ∈ SXM
which is a Daugavet-point;

(ii) there exists w ∈ SXM
which is a delta-point, but not a Daugavet-point.

Proof. Let x =
∑

t∈M
2−|t|et. We have that x is a Daugavet-point by Corollary 4.3.

The next part of the proof is similar to the proof of Theorem 3.1 (i). We will
show that a shifted version of x is a delta-point which is not a Daugavet-point.
Define an operator on the modified binary tree:

L

⎛
⎝∑

|t|>0

atet

⎞
⎠ =

∑
|t|≥0

a0�te0�t +
∑
|t|≥0

a1�te(1,0)�t,

where t = ∅ when |t| = 0.
Define w = L(x). Let x∗ ∈ SX∗

M
and δ > 0 such that w ∈ S(x∗, δ). Just as in

the proof of Theorem 3.1 (i) we can find zt0 ∈ SXM
whose support is an antichain

(i.e. zt0 ∈ F) and we can find etn such that zt0 − etn ∈ S(x∗, δ). Summing over a
branch containing tn we get ‖w − (zt0 − etn)‖ = 2.

Let E = {(0), (1, 0)}. Then ‖w − PEw‖ =
∑∞

i=2 2
−i = 1

2 < 1 so by Theorem 4.2
w is not a Daugavet-point. �

In [AHLP20], the property that the unit ball of a Banach space is the closed
convex hull of its delta-points was studied. We will next show that XM satisfies
something much stronger, the unit ball is the closed convex hull of a subset of its
Daugavet-points.

If D is the set of all Daugavet-points in XM define

DB = {x ∈ D : ‖PBx‖ = 1 for all branches B of M}.
The proof of Theorem 4.4 shows that DB is non-empty.

For t0 ∈ M, let St0 be the shift operator on XM that shifts the root to t0, that
is

(2) St0(
∑
t∈M

atet) =
∑
t∈M

atet�0 t

It is clear that St0 is an isometry on XM.

Proposition 4.5. The space XM satisfies BXM
= conv (DB).

Proof. Let y ∈ BXM
. We may assume that y has finite support, since such y are

dense in BXM
. By Lemma 4.1, we can write y =

∑n
k=1 λkzk where zk ∈ F, λk ≥ 0

and
∑n

k=1 λk = 1.
Fix z ∈ F. Let m := max{|t| : t ∈ supp(z)}.

B = {t ∈ M : |t| = m,
∑
s�t

|e∗s(z)| = 0}.
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Choose any x0 ∈ DB and use the shift operator in (2) to define

x :=
∑
t∈B

St(x0).

Observe that z ± x takes its norm along every branch, so by Corollary 4.3 both
z ± x ∈ DB .

Repeat this construction for zk to create xk for k ∈ {1, . . . , n}. Then

y =
n∑

k=1

λk

2
(zk + xk) +

n∑
k=1

λk

2
(zk − xk),

is a convex combination of Daugavet-points in DB . �
Our next result is thatXM has the remarkable property that the Daugavet-points

are weakly dense in the unit ball. So in a sense there are lots of Daugavet-points,
but of course not enough of them in order for XM to have the Daugavet property.
First we need a lemma. For t ∈ M, St denotes the shift operator defined in (2)
above.

Lemma 4.6. Let x∗ ∈ SX∗
M

and s ∈ B. For any x ∈ SXM
and ε > 0 there exist

some infinite antichain E = {ti}∞i=1 with the following properties

(i) ‖
∑n

i=1 eti‖ = 1 for all n ∈ N;
(ii) s � t for all t ∈ E;
(iii) |x∗(Stx)| < ε for all t ∈ E.

Proof. Pick any x∗ ∈ SX∗
M
, s ∈ B and x ∈ SXM

. It is not difficult to find an
infinite antichain E = {ti}∞i=1 satisfying (i) and (ii). Since E is an antichain we
have ‖

∑n
i=1 Sti(x)‖ = 1 for all n ∈ N. Hence

lim
i→∞

x∗ (Stix) = 0,

and then we can find n ∈ N such that |x∗ (Stix)| < ε for all i ≥ n. Now E′ =
E \ {ti}ni=1 satisfies (i), (ii) and (iii). �
Theorem 4.7. In XM every non-empty relatively weakly open subset of BXM

con-
tains a Daugavet-point.

Proof. Since vectors with finite support are norm dense in BXM
, it enough show

that for any y ∈ BXM
with finite support and any relatively weakly open neigh-

bourhood of y of the form

W := {x ∈ BXM
: |x∗

i (y − x)| < ε, i = 1, . . . , n},
where x∗

i ∈ SX∗
M
, i = 1, . . . , n and ε > 0, contains a Daugavet-point.

Let m := max{|t| : t ∈ supp(y)}, and for t ∈ M with |t| = m define

μt := 1−
∑
s�t

|e∗s(y)|

and
N := {t ∈ M : |t| = m,μt > 0}.

From Corollary 4.3 we have that g =
∑

s∈M
2−|s|es is a Daugavet-point. By

Lemma 4.6 for each t ∈ N there exists t � bt such that |x∗
i (Sbtg)| < ε/2m for

i = 1, . . . , n. Now put

x = y +
∑
t∈N

μtSbt(g).
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By construction x ∈ SXM
and we have x ∈ W since

|x∗
i (y − x)| =

∣∣∣∣∣x∗
i

(∑
t∈N

μtSbt(g)

)∣∣∣∣∣ ≤
∑
t∈N

μt|x∗
i (Sbkg)| <

ε

2m

∑
t∈N

μt < ε.

Using Theorem 4.2 we will show that x is a Daugavet-point. Indeed, let E ∈ EXM
.

Then there exists a branch A with A ∩ E = ∅. Let t ∈ A with |t| = m. If t /∈ N ,
then

‖x− PEx‖ ≥
∑
s�t

|e∗s(y)| = 1.

If t ∈ N , then since Sbt(g) is a Daugavet-point, there exists a branch B with t ∈ B
such that ‖Sbt(g)− PESbt(g)‖ =

∑
s∈B |Sbt(g)s| = 1. Thus

‖x− PEx‖ ≥
∑
s�t

|e∗s(y)|+
∑
s∈B,
sbt

μt|Sbt(g)s| = 1− μt + μt = 1,

and we are done. �

Question 4.8. How “massive” does the set of Daugavet-points in SX have to be
in order to ensure that a Banach space X fails to have an unconditional basis?

If S is a slice of the unit ball of XM, then the above proposition tells us that
S contains a Daugavet-point x. Then by definition of Daugavet-points there exists
for any ε > 0 a y ∈ S with ‖x− y‖ ≥ 2− ε. Thus the diameter of every slice of the
unit ball of XM is 2, that is XM has the local diameter two property.

The next natural question is whether the diameter of every non-empty relatively
weakly open neighborhood in BXM

equals 2, that is, does XM have the diameter
two property? The answer is no, in fact, every Daugavet-point in DB has a weak
neighborhood of arbitrary small diameter. Let us remark that the first example
of a Banach space with the local diameter two property, but failing the diameter
two property was given in [BGLPRZ15]. While we have used binary trees, their
construction used the tree of finite sequences of positive integers and they even
showed that every Banach space containing c0 can be renormed to have the local
diameter two property and fail the diameter two property.

Proposition 4.9. In XM every x ∈ DB is a point of weak- to norm-continuity for
the identity map on BXM

. In particular, XM fails the diameter two property.

Proof. Let ε > 0 and x ∈ DB. Let n ∈ N be such that ‖
∑

|t|>n xtet‖ < ε
8 . Consider

the weak neighborhood W of x

W = {y ∈ BXM
: |e∗t (x− y)| < ε

2|t|+3
, |t| ≤ n}.

We want to show that the diameter of W is less than ε. Let y =
∑

t∈M
ytet ∈ W .

Let A be a subset of a branch or of a λ-segment in M. Since |xt − yt| < ε2−|t|−3

for |t| ≤ n, ‖
∑

|t|>n xtet‖ < ε
8 , and x attains its norm along every branch of M, we

have ∑
t∈A
|t|≤n

|yt| >
∑
t∈A
|t|≤n

|xt| − |xt − yt| >
∑
t∈A
|t|≤n

|xt| −
ε

8
> 1− ε

4
.
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Hence
∑

t∈A
|t|>n

|yt| < ε
4 , and thus

∑
t∈A

|xt − yt| =
∑
t∈A
|t|≤n

|xt − yt|+
∑
t∈A
|t|>n

|xt − yt|

<
∑
t∈A
|t|≤n

ε2−|t|−3 +
∑
t∈A
|t|>n

|xt|+
∑
t∈A
|t|>n

|yt|

<
ε

8
+

ε

8
+

ε

4
=

ε

2
.

From this it follows that the diameter of W is less than ε. �

Recall from [ALL16] that a Banach space X is locally almost square if for every
x ∈ SX and ε > 0 there exists y ∈ SX such that ‖x± y‖ ≤ 1 + ε.

It is known that every locally almost square Banach space X has the local di-
ameter two property. As noted above XM has the local diameter two property, but
it is not locally almost square as the following proposition shows.

Proposition 4.10. XM is not locally almost square.

Proof. Consider x = 1
4e(0) +

3
4e(1). Let 0 < ε < 1

4 and suppose there exists

y =
∑

t∈M
ytet ∈ SXM

with ‖x ± y‖ ≤ 1 + ε < 5
4 . Then clearly |y(1)| ≤ 1

4 + ε. By
considering −y if necessary we may assume that y(1) ≥ 0. Then

1 + ε ≥ max
±

{|1
4
± y(0)|+ |3

4
± y(1)|}

≥ |1
4
− y(0)|+

3

4
+ |y(1)|

≥ |y(0)| −
1

4
+

3

4
+ |y(1)|,

which yields |y(0)|+ |y(1)| ≤ 1
2 +ε < 3

4 . Thus since ‖y‖ = 1 there must exist a subset
A of a branch or a λ-segment such that |A∩ {(0), (1)}| = 1 and

∑
t∈A |yt| = 1. Let

s ∈ A ∩ {(0), (1)}.

5

4
> ‖x± y‖ = max

±
|xs ± ys|+

∑
t∈A
t�=s

|yt| = |xs|+ |ys|+ 1− |ys|

and we get the contradiction |xs| < 1
4 . �

Recall from [HLP15] that a Banach space X is locally octahedral if for every
x ∈ SX and ε > 0, there exists y ∈ SX such that ‖x± y‖ ≥ 2− ε.

It is known that every Banach space with the Daugavet property is octahedral.
Even though the modified binary tree space have lots of Daugavet-points, as seen
in Proposition 4.5, it is not even locally octahedral.

Proposition 4.11. XM is not locally octahedral.

Proof. Consider x = 1
2 (e(0) + e(1)) ∈ SXM

. We want to show that for all y ∈ SXM

we have min ‖x± y‖ ≤ 3
2 .



DAUGAVET-, DELTA-POINTS AND UNCONDITIONAL BASES 397

Let y =
∑

t∈M
ytet ∈ SXM

. Let A be a subset of a branch or a λ-segment. If
A �= {(0), (1)}, then

∑
t∈A

|xt ± yt| ≤
{

1
2 +

∑
t∈A |yt|; A ∩ {(0), (1)} �= ∅∑

t∈A |yt|; A ∩ {(0), (1)} = ∅
≤

{
3
2

1

If A = {(0), (1)}, then, since |y(0)| + |y(1)| ≤ 1 and a convex function attains its
maximum at the extreme points, we get

|1
2
+ y(0)|+ |1

2
+ y(1)|+ |1

2
− y(0)|+ |1

2
− y(1)| ≤ 3.

Hence min ‖x± y‖ ≤ 3
2 . �
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