Process analysis of a biomass-based quad-generation plant for combined power, heat, cooling, and synthetic natural gas production

Souman Rudraa*, Lasse Rosendahlb, Morten B. Blarkeb

a Department of Engineering Sciences, University of Agder, Grimstad-4879, Norway.

b Department of Energy Technology, Aalborg University, DK-9220, Denmark.

Corresponding author: Souman Rudra

Department: Department of Engineering Sciences

Mail Address University of Agder, Serviceboks 509, 4898, Grimstad, Norway.

Zip code: 4879

Telephone: +47 37233036

Email: souman.rudra@uia.no

*To whom all correspondence should be addressed

E-mail: souman.rudra@uia.no (Souman Rudra)
Tel: +47 37233036
Process analysis of a biomass-based quad-generation plant for combined power, heat, cooling, and synthetic natural gas production

Souman Rudra*a, Lasse Rosendahlb, Morten B. Blarkeb

a Department of Engineering Sciences, University of Agder, Grimstad-4879, Norway.
b Department of Energy Technology, Aalborg University, DK-9220, Denmark.

Abstract:

A new concept for upgrading distributed co-generation plants to quad-generation plants, which combine the production of power, heating, cooling and synthetic natural gas (SNG), is designed and analyzed. Five cases with SNG production ranging from 0 to 100 % of total energy outputs are designed to simulate different modes of operation. The quad-generation system is simulated using ASPEN PLUS and described by simulating different portions of the system. This paper also describes the new process, which is of particular interest for improving the total first law efficiency. With this system, it is possible to increase the efficiency of natural resource utilization, minimize the environmental impact in distributed generation, and, by providing flexible operation, better support the integration of intermittent renewables such as wind power. Straw is used as a biomass feedstock for this simulation. The net energy efficiency is used to evaluate the performance of the quad-generation system. The results show that the most efficient case of the proposed system is providing 89.8 % net energy efficiency, which is almost 7.6 % higher than the lowest efficient case. Based on the flowsheet simulation, this energy assessment compares the proposed quad-generation system to the existing district heating system.

Key words: Quad-generation, Process integration, Straw, SNG.
1. Introduction

The increasing demand for energy, environmental concerns, and trends toward the deregulation of energy markets have become integral parts of energy policy planning. Flow-based energy resources are largely incompatible with the current energy infrastructure, and a new and more complex structure is required to produce a more sustainable energy system [1]. The development of energy-efficient production technologies has made cogeneration and tri-generation possible [2, 3] and now, the development trend is moving towards quad-generation and poly-generation. Meeting the future demand for power, heat, cooling, and bio-fuels with highly limited and fluctuating resources will require carefully planned allocation of the available renewable resources and a highly flexible system. All of these aspects have added new dimensions to energy planning. One of the renewable resources that could fulfill all of these demands is biomass, and one of the most efficient ways of utilizing this biomass is gasification [4, 5]. Thus, this study proposes and studies a novel hybrid configuration for a biomass-based quad-generation system. It shows how the plant owners can utilize their total capacity by producing different fuels according to the local demands.

In Denmark, there are a substantial number of biomass-fired district heating plants, and approximately 10 straw- or wood-chip-fired decentralized combine heat and power (CHP) are also in operation. The rest of the decentralized CHP plants are fuelled by natural gas. One in three of the decentralised DH plants and one in seven of the decentralised CHP plants use environmentally friendly biomass fuels such as straw, wood chips, wood pellets, and wood waste). But the majority of rest of the plants - use natural gas as a fuel [6]. From this starting point, a scenario framework has been suggested in which the Danish system is converted to 100 percent renewable energy sources (RES) by the year 2060, including reductions in space heating demands by 75 percent [7]. The European Commission has also developed political strategies to increase the share of renewable and sustainable energy in fulfilling the overall energy demand [8, 9].
Biomass conversion can be divided into two main pathways: thermochemical conversion and biochemical conversion [10]. The main thermochemical pathway for dry biomasses can be divided into combustion, gasification and pyrolysis [11]. Gasification converts the biomass into a syngas that can subsequently be used to generate heat and power or converted into fuels or other chemicals [12]. In this study, the existing methodology is replaced by gasification as it is one of the most efficient conversion methods.

The most stable state-of-the-art gasification technologies combined with the possibilities of cogeneration through the gasification of biomass have been described and compared in a Danish context [1], and it has been shown that the thermal gasification of biomass is both highly flexible and efficient. There are a number of scientific publications that address some novel concepts for polygeneration system design and energy analysis using different input fuels [13, 14]. These papers found that system integration with gasification technology made a significant contribution to the improvement of performance. The concepts of polygeneration and energy integration have been described using various examples of systems [15-17], and some papers have published the mathematical modeling and simulation of polygeneration energy systems [18-22]; however, these papers focus on the evaluation of new plants and technologies concerning the configuration design of the processes. With the aim of achieving higher efficiency and lower emissions, innovations in both power generation technologies and process integration strategies were taken into account in the development of a fully integrated plant [23-26]. The high efficiency of small-scale biomass gasification quad-generation based on gas engines provides an opportunity for converting natural gas fired heating plants into efficient quad-generation plants that have not been used previously. Natural gas-fuelled gas engine quad-generation plants can either be converted into pure biomass-based plants or dual fuel plants, operating on producer gas, natural gas or mixtures of both. The main advantage of the conversion of such plants is that the gas engine is already installed, and this
is normally a major part of the total investment. For high chemical conversion and effective energy utilization, a new biomass-based quad-generation system using existing gas engines and an additional synthesis unit for power, heat, cooling and SNG production is proposed in this paper.

Research into large-scale investment planning to convert existing plants to quad-generation energy systems is limited, albeit clearly crucial for strategic policy-making in regions and countries. This paper includes different scenarios according to the fuel demands of the specific plants and attempts to provide an overview of possible technical outcomes of a new green field quad-generation system regarding fuel production efficiency. It also endeavors to select the best case among the possible alternatives, in accordance with explicit technical objectives, i.e., efficiency.

2. Scope of this work

The Brovst district heating plant (DHP) is one of the district heating plants in the Jammerbugt municipality in Northern Denmark. Fig. 1 shows the heat production of the Brovst DHP. Scenario-1 represents the existing capacity of the Brovst DHP and assumed that is constant. The distance between the heat production curve and scenario 1 line embodies the free capacity. In the summer, especially from June to August, heat production is lower than in the rest of the year as it has less heat demand. During this period, it is necessary to shut down heat production from the engine. The motivation of this work is to utilize this free capacity between the plant capacity and the actual production by upgrading the existing system to quad-generation. It will also be possible to scale up the production like scenario 2 in fig. 1. Scenario 2 line represents the extended capacity for the quad-generation. Scenario 2 includes power, heat, cooling, and fuel demand and also constant energy demand. Feedstock selects 100 ton of biomass per day according to satiate the energy demand which represents in scenario 2 (own calculation) from fig. 1. The district heating requirements are based on historical requirements from an existing Brovst DHP, while the district
cooling requirements are loosely estimated based on what could be the space cooling requirements of the area’s commercial buildings. By installing a quad-generation system, the plant can satisfy public demand for heat while also producing power, cooling and SNG according to the demand and the market value of each. The use of fossil fuels is also associated with many concerns, among which are the security of the supply and the resulting air pollution. One of the ways to reduce the transportation sector’s dependency on fossil fuels is to use biofuels from quad-generation plants. In this region, a large amount of power is produced by wind farms, but the output is variable according to the availability of wind. In cases of excess power production from wind, the excess can be utilized to produce H₂ for CH₄ synthesis. Therefore, a quad-generation power plant can be used in conjunction with wind energy because it has flexible output.

3. Process description

3.1 Description of existing plant:

The Brovst DHP uses natural gas for the production of heat and power. Heat demand is approximately 37,200 MWh/year. The system inside the dotted line in Fig.2 represents the existing plant. Presently, it has two natural gas generator sets with an output of 3.1 MW of power and 4.1 MW of heat together, with the power being sold to the national grid. It also has two condensing hot water boilers with a total of 8.15 MW of heat production. A 1600 m³ storage tank has also been installed in this plant.

3.2 Description of proposed quad-generation plant:

A quad-generation system is proposed, as described by the flowsheet in Fig. 2. The process is described by the following steps:

1. The biomass is gasified in the presence of air.
2. The syngas leaving the gasifier will be cooled and cleaned by a gas cleanup unit. The particulate matter is removed from the raw syngas exiting the gasifier using a cyclone collector and a candle filter system.

3. One of the streams from the syngas cleanup unit will be sent to the engine for power and heat production, while a compression heat pump is introduced. It is a flexible compressor-driven unit able to produce both cooling and heating.

4. The synthesis gas can contain a considerable amount of methane and other light hydrocarbons, representing a significant part of the heating value of the gas. Therefore, another stream from the gas clean-up section enters the CH₄ synthesis section to be converted to CO and H₂ driven by the addition of steam over a catalyst at high temperatures. Subsequently, it maintains a proper H₂:CO ratio for methane synthesis. In the water-gas shift reaction, CO and H₂O are converted to CO₂ and H₂.

5. In the methanation reactor, CO and H₂ are converted to CH₄ and H₂O in a fixed-bed catalytic reactor. It requires H₂ from external source. In this system H₂ is produced by electrolysis process. Because methanation is a highly exothermic reaction, the increase in temperature is controlled by recycling the product gas or using a series of reactors. After gas upgrading, SNG is ready for applications.

As the heat demand varies during the year, there is a need for different case studies for the best utilization of total capacity. Therefore, the above system is designed for five cases based on output ratios. And also this system is flexible to switch one case to other case according to demand in different seasons.

- SNG-0: In this case, natural gas is replaced by bio-syngas and the gasification unit, with 100% of the bio-syngas is used in the combined cycle to generate power, heat and cooling and no bio-syngas is used for SNG production.
• QUAD-75: In this scenario, 75% of the bio-syngas is converted to generate power, heat and cooling and 25% of the syngas is converted to H₂-rich gas is used in methane synthesis for SNG production.

• QUAD-50: In this scenario, 50% of the bio-syngas is used to generate power, heat and cooling, and the other 50% of the syngas is converted to H₂-rich gas to be used in methane synthesis for SNG production.

• QUAD-25: In this case, 25% of the bio-syngas is used for power, heat and cooling generation and 75% of the syngas is converted to H₂-rich gas to be used in methane synthesis for SNG production.

• SNG-100: All of the syngas is used in methane synthesis for SNG production.

4. Model simulation

The ASPEN PLUS process simulation software is used to model the systems evaluated in this paper. It offers a variety of thermodynamic property methods for process simulations. Some investigations conducted on biomass gasification [20, 27, 28] have shown that ASPEN PLUS is capable of predicting performance under diverse operating conditions. The Peng Robinson equation of state with the Boston-Mathias alpha function (PR-BM) has been used to estimate all of the physical properties of the conventional components in the gasification process [29, 30]. The alpha parameter in this property package is a temperature dependent variable that improves the correlation of the pure component vapor pressure at very high temperatures. For this reason, this property package is suitable for simulating gasification processes that involve fairly high temperatures. ‘HCOALGEN’ and ‘DCOALIGT’ are selected for the enthalpy and density property models, respectively, for both biomass and ash.

Regarding the process simulation, the following assumptions have been made:
The process is in steady state and isothermal.
This process is made up to occur instantaneously at equilibrium with volatile products mostly made of H\textsubscript{2}, CO, CO\textsubscript{2}, H\textsubscript{2}O, CH\textsubscript{4}, and C\textsubscript{2}H\textsubscript{4} [31, 32].

- The electricity and steam for gas cleanup unit is extracted from gas engine (CHP unit)

The process design parameter assumptions for the simulation are summarized in Table 1. The overall process is divided into different sections, which are described below.

4.1 Biomass Drying:

Biomass is specified as a non-conventional component in ASPEN PLUS and is defined in the simulation model using the ultimate and proximate analysis. Part of the moisture portion of the non-conventional component representing the biomass materials (Table 2) in ASPEN PLUS is converted to conventional liquid H\textsubscript{2}O in a stoichiometric reaction (RSTOIC) block. Air is pumped into the dryer. The moisture from biomass is evaporated in a countercurrent heat exchanger block using the process steam as a heat source. A small heat loss is modeled in the condensate return line and is assumed to be 2\% of the dryer thermal load. A FLASH2 block is used to separate the exhaust vapors from the biomass material, and dried product (DRYBIOM) exits the dryer with 10\% moisture content.

4.2 Gasification Unit:

Fig. 3 shows processes diagram for gasification unit. ‘DRYBIOM’ from the drying unit enters the ‘BIOMASS’ block at near-atmospheric pressure and the component yield of this block has to specify. It moves through an equilibrium reactor ‘DCOMBIOM’ and mix of air in a ‘MIXER’. The stream continues to a RGIBBS block. It separates tar components from the stream. A description of the different ASPEN PLUS reactor blocks are given in Table 3. The gasification reactions occur in (‘DCOMBIOM’) according to the reaction set shown in below.
C + 0.5O₂ → CO \hspace{1cm} (1)

C + CO₂ → 2CO \hspace{1cm} (2)

C + H₂O → CO + H₂ \hspace{1cm} (3)

C + 2 H₂ → CH₄ \hspace{1cm} (4)

CO + 0.5 O₂ → CO₂ \hspace{1cm} (5)

H₂ + 0.5 O₂ → H₂O \hspace{1cm} (6)

CO + H₂O → CO₂ + H₂ \hspace{1cm} (7)

CH₄ + H₂O → CO + 3 H₂ \hspace{1cm} (8)

H₂ + S → H₂S \hspace{1cm} (9)

0.5 N₂ + 1.5 H₂ → NH₃ \hspace{1cm} (10)

1. Raw syngas is produced from ‘GASIFIER’ with temperature 1100 °C and 25 bar. Then, the ash is separated from the syngas and flow into cleanup unit.

2. 4.3 Gas cleanup unit:

After the synthesis gas leaves the gasifier, it must be processed for further use. First, the synthesis gas passes through a gas cooling heat exchanger block, ‘SYN-HTX’, which generates process steam. The gasification of these biomass fuels will produce components such as H₂S, and NH₃, which can be harmful to equipment and produce pollutants during synthesis gas combustion.

Next, the gas passes through a wet scrubber, ‘H₂SABS’, to remove sulfur matter. After that the stream continues to block ‘CO₂ABS’ where it can produce ‘CO₂RICH’ stream and CO₂ is separated through block ‘B1’. The next stage in gas processing is the selective removal of harmful components through ‘N₂STRP’ block (Fig.4).
4.4 Power, heat and cooling production unit:

Clean syngas from the gas clean-up section enters the gas engine, where it combusts in ‘COMBA’ with air from ‘AIRSPT’ (Fig. 5). The stream continues into an expander (‘EXPN1’) and burns in a reactor (‘BURN’) in the presence of air. The flue gas is used to run ‘EXPN2’ and ‘EXPN3’. The total work from all the ‘EXPN’s are combined in ‘WORKMIX’ and are split (80:20) again into two streams, with 20% of the produced power used for the cooling system and the exhaust gas from ‘EXPN3’ used for district heating purposes. District heating water from the users (make-up water) returns as ‘DHWOUT1’ and ‘DHWOUT2’ and is heated by heat exchangers (‘B3’ and ‘B2’). Both ‘DHWOUT1’ and ‘DHWOUT2’ outputs from the heat exchangers are utilized for the district heating system.

4.5 SNG production unit:

The ‘SYNGASOT’ stream leaves the gas cleanup mix with additional hydrogen ‘H2IN’ in the ‘MIXER’ block and continues to the methanation reactor, ‘METHANT’. Additional H2 feed is necessary to provide CO/H2 ratio. Fig. 6 shows the CH4 synthesis process. In the methanation reactor, CO and H2 are converted to CH4 and H2O in a fixed-bed catalytic reactor.

\[
CO + 3H_2 \rightarrow H_2O + CH_4
\]

(11)

The produced CH4 still has some impurities, so it enters a separator unit, ‘CO2REMOV’, where the CH4 is separated from CO2.

4.6 System evaluation criteria

The net energy efficiency (NEE) of the quad-generation system can be defined as [12, 20]:

\[
\eta = \frac{\sum E_{\text{products}}}{\sum E_{\text{feedstocks}}}
\]
$$\frac{E_p}{E_{in} + E_{inH_2}} + \frac{E_H}{E_{in} + E_{inH_2}} + \frac{E_C}{E_{in} + E_{inH_2}} + \frac{E_{SNG}}{E_{in} + E_{inH_2}}$$

$$= \eta_p + \eta_H + \eta_C + \eta_{SNG}$$

where E_p, E_H, E_C and E_{SNG} are the output energies from power generation, heat production, cooling energy and the SNG process, respectively. E_{in} represents the total biomass energy input to this quad generation plant which includes power and heat input during gas cleanup unit, and E_{inH_2} is the hydrogen energy input to the SNG synthesis process. η is the net energy efficiency, and η_p, η_H, η_C and η_{SNG} are the power, heat, cooling and SNG efficiencies, respectively. The efficiency is calculated on the basis of the lower heating value (LHV). The amount of energy required for CO$_2$ separation is not included in this efficiency calculation.

5 Results and discussion

The detailed energy consumptions for a quad-generation plant are shown in Table 4. For 100 tons per day of biomass input, SNG-0 utilizes 7625 kg/h syngas for power, heat and cooling production, while QUAD-25 uses 2287.5 kg/h for power, heat, and cooling production and 5337.5 kg/h for SNG production. The necessary amount of air for power production is reduced from SNG-0 to QUAD-25, as this case produces less electric power from the gas engine. The amounts of H$_2$ necessary for CH$_4$ synthesis are 66.24, 52.41, 42.31 and 35.76 kg/h for SNG-100, QUAD-25, QUAD-50 and QUAD-75, respectively, which are equivalent to 2.23 MW, 1.76 MW, 1.41 MW and 1.2 MW and it is presented by the LHV of H$_2$. H$_2$ is generated from an external source, but the increase of H$_2$ does not compensate for the energy loss those results from the smaller amount of carbon (C) in the syngas for CH$_4$ synthesis. Energy input required for the H$_2$ production is not
included in the efficiency calculations. Additionally, the flow rate of make-up water is 3 tons/h for each case. The SNG-100 case has the highest CO$_2$ capture ability mainly because of its maximum ability to convert CO to CO$_2$. This results in the most energy loss and the lowest percentage of CO$_2$ emissions in the exhaust.

Fig. 7 shows the energy balance for the quad-generation system. It also indicates the amounts of the four outputs from the SNG-0, QUAD-75, QUAD-50, QUAD-25, and SNG-100 cases. It should be noted that the amount of syngas produced from the gasifier has been kept constant for all of the cases. According to the different amounts of syngas utilization, this process produces approximately 49.728, 73.595, 95.22 and 134.34 m3/h of SNG for the QUAD-75, QUAD-50, QUAD-25 and SNG-100 cases, respectively. Simultaneously, it generates 11.1, 8.6, 6 and 5 MW of heat in the SNG-0, QUAD-75, QUAD-50 and QUAD-25 cases, respectively. Twenty percent of the power generation from the quad-generation plant is used for the cooling system. The SNG-0 case does not produce any SNG, as all the syngas is used for power, heat and cooling production.

The primary measure of energy efficiency for a power plant is the feedstock to net power production to the feedstock ratio, but because the waste heat generated in the quad-generation plant is used for heat production, cooling, and SNG production, this measure is not an accurate representation of the efficiency of quad-generation plants. In this case, the net energy efficiency also includes the efficiency of the biomass used by all of the individual outputs. In Fig 8, the entire individual energy efficiency factor for the quad-generation plant can be observed. It also shows that the power efficiency for SNG-0 is 22.5 %, while the efficiency for QUAD-25 is 6.9 %, which is relatively low as it uses less syngas for power production. In the case of heat utilization, heat production efficiency is higher than the other output efficiencies. The heat production efficiencies are 24.47 %, 29.37 %, 42.1 % and 54.34 % for QUAD-25, QUAD-50, QUAD-75 and SNG-0, respectively. Fig. 8 also shows the cooling efficiency, which is the least efficient for all the cases, as
it produces a smaller proportion of cooling relative to the total output. For SNG production, the
efficiency increases gradually from QUAD-75 to SNG-100. For the SNG-100 case, fig. 8 does not
show the power, heat and cooling efficiency as there is no production for this case. Similarly, fig. 8
does not include the SNG efficiency for the SNG-0 case.

Temperature, pressure, mass and mole flows of different streams are listed in table 5 which refers to
the numbers used the process diagram (fig. 2). The data from QUAD-50 case has reflected in this
table. For an input of 4167.67 kg/hr of straw input, 657.35 kg/hr of SNG can be produced. Stream
1, biomass composition is analyzed in table 2. Stream 3, syngas has more mole components like
H$_2$S, NH$_3$, S and the values are 14.15, 31.73, 0.29 kmol/hr respectively. Stream7 and 8 represents
the electricity to the grid and heat pump respectively.

Efficiency for different cases with individual power, heat, cooling and SNG production are
showed in fig. 8. It also presented the net energy efficiency (NEE) of five different cases. It can be
observed that with increasing SNG production, the change trend of NEE is like "M". The lower
NEE is also a result of transforming chemical energy into thermal energy, which is poorly
converted to electrical energy, instead of transferring chemical energy to electrical energy. This
means that the larger the power production shares, the lower the efficiency will be with respect to
SNG production. It also reflects the more SNG production gives higher SNG efficiency for this
system. The NEE for SNG-100 is relatively low as it captures the highest amount of CO$_2$ of all the
cases.

Fig. 9 shows a complete comparison of the input and output products of a quad-generation plant
and the Brovst DHP. Here input is included both biomass and H$_2$. The SNG-0 case is more
appropriate for the winter as the demand for heating rises in this season, while the QUAD-25 case
would be more appropriate in the summer because it can produce more SNG and still produce some
power, heat and cooling. In the case of excess power production from wind and a lower price for
heat from other heating plants, SNG-100 would be a good option for a quad-generation plant. A life cycle analysis and economic analysis have also done for quad-generation plant. It is found that Quad-generation offers significant CO$_2$ reductions and energy efficiency improvements, while the economic feasibility is jeopardized by high investment costs [34, 35]. In case of more heat production from quad-generation plant, it may serve the nearby localities as the municipality considered a joint distribution and production network. As described in the scope of the research, it is possible to utilize the maximum capacity of the plant by selecting different case studies and reducing the gap between the production and capacity curves.

6 Conclusion

The quad-generation processes for the production of power, heating, cooling and SNG were modeled and compared in terms of design and energy efficiency analysis. One of the advantages of this design is that the plant authority does not need to build storage for SNG as they already have access to the national natural gas grid. In this context, a process that converts biomass into SNG, which is equal in quality to fossil-derived natural gas, has been investigated. Such a product could easily be injected into the national gas grid to benefit from the existing distribution network for transport applications. With the increasing market share of gas engines in the transport sector, fossil fuels could therefore be partially substituted by a renewable fuel that is neutral in greenhouse gas emissions.

As the Danish Government aims to derive more of its energy from renewable fuels, this type of integrated quad-generation approach could be applied for any of the heating plants in other municipalities. This modeling approach can be used by other investigators who aim to change their operation strategies and plant designs from fossil fuel-based to renewable resource-based energy systems.
Acknowledgements

This project has been supported by The European Regional Development Fund, grant No: ERDFN-09-0060.

References:

[6]. Danish Energy Agency’s Large and small scale district heating plants. 2012:
Accessed September 2015

[7]. Lund H, Moller B, Mathiesen BV, Dyrelund A. The role of district heating in future

[8]. European Commission. Combating climate change and EU’s response. 2008:

[9]. Hetland J, Zheng L, Shisen X. How polygeneration schemes may develop under an
advanced clean fossil fuel strategy under a joint sino-European initiative. Applied

energy assessment – energy and the challenge of sustainability. New York, NY, USA:

society general meeting. IEEE. 2004; 1650–2.

[12]. Faaij A. Modern biomass conversion technologies. Mitig Adapt Strat Glob Change
2006; 11:343–75.

[13]. Qian Y, Liu J, Huang Z, Kraslawski A, Cui J, Huang Y. Conceptual design and
system analysis of a poly-generation system for power and olefin production from

[23]. Jhuma S, Yingru Z, Nilay S, Nigel PB. Performance analysis of integrated biomass
gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC)

oxide fuel cell and heat recovery steam generator for IGFC system Fronter Energy

[25]. Hoffmann BS, Szklo A. Integrated gasification combined cycle and carbon capture:
A risky option to mitigate CO2 emissions of coal-fired power plants. Applied Energy
2011; 88: 3917–3929.

[26]. Ilic DD, Dotzauer E, Trygg L. District heating and ethanol production through

[27]. Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass
gasification-solid oxide fuel cell power system using ASPEN PLUS. Energy 2010; 35:
4545-55.

[28]. Nikoo Mehrdokht B, Mahinpey N. Simulation of biomass gasification in fluidized bed

[29]. ASPEN Technology Inc. (2010), Getting started building and running a process
model, Burlington.

[30]. Ramzan N, Ashraf A, Naveed S, Malik S. Simulation of hybrid biomass gasification
using ASPEN PLUS: A comparative performance analysis for food, municipal solid and

[31]. Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on
101.

Figure Captions:

1. Fig. 1 Heat demand and total capacity over a year for the Brovst DHP
2. Fig. 2 Simplified scheme of the proposed quad-generation system
3. Fig. 3 ASPEN PLUS model for the gasification unit
4. Fig. 4 Gas clean-up model
5. Fig. 5 Power, heat and cooling production model
6. Fig. 6 SNG synthesis process
7. Fig. 7 Energy balances of the SNG-0, QUAD-75, QUAD-50, QUAD-25 and SNG-100 cases for one hour of operation.
8. Fig. 8 Power, heat, cooling and SNG efficiencies for five cases
9. Fig. 9 Comparison of a quad-generation plant to an existing district heating plant
Fig. 1 Heat production and total capacity over a year for the Brovst DHP
Fig. 2 Simplified scheme of the proposed quad-generation system
Fig. 3 ASPEN PLUS model for the gasification unit
Fig. 4 Gas clean-up model
Fig. 5 Power, heat and cooling production model
Fig. 6 SNG synthesis process.
Fig. 7: Energy balances of the SNG-0, QUAD-75, QUAD-50, QUAD-25 and SNG-100 cases for one hour of operation.
Fig. 8 Power, heat, cooling and SNG efficiencies for five cases
Fig. 9 Comparison of a quad-generation plant to an existing district heating plant
Table captions:

1. Table 1: Process design parameter assumptions for simulation
2. Table 2: Biomass characteristics (DM: dry matter; DAF: dry ash free) [32]
3. Table 3: Description of the reactor blocks utilized in the simulation
4. Table 4: The material balance, power, heat, cooling and SNG produced, and utilities of five cases
5. Table 5: Parameters of the main points of the quad-generation system
Table 1: Process design parameter assumptions for simulation

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasification unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>1100</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar</td>
<td>25</td>
</tr>
<tr>
<td>Air for gasification</td>
<td>t/h</td>
<td>96</td>
</tr>
<tr>
<td>Gas cleanup unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ removal</td>
<td>%</td>
<td>95</td>
</tr>
<tr>
<td>Sulphur removal</td>
<td>%</td>
<td>95</td>
</tr>
<tr>
<td>Electricity [30]</td>
<td>kJ/mol (CO₂ +</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>H₂S)</td>
<td></td>
</tr>
<tr>
<td>Steam [30]</td>
<td>kg/mol (CO₂ +</td>
<td>6.97</td>
</tr>
<tr>
<td></td>
<td>H₂S)</td>
<td></td>
</tr>
<tr>
<td>Power, heat and cooling unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas engine inlet temperature</td>
<td>°C</td>
<td>650</td>
</tr>
<tr>
<td>Gas engine inlet pressure</td>
<td>bar</td>
<td>25</td>
</tr>
<tr>
<td>Air for gas engine</td>
<td>t/h</td>
<td>100</td>
</tr>
<tr>
<td>Isentropic efficiency of expanders</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>Isentropic efficiency of main compressors</td>
<td>%</td>
<td>88</td>
</tr>
<tr>
<td>Mechanical efficiency main compressor</td>
<td>%</td>
<td>98</td>
</tr>
<tr>
<td>recycled water for heating</td>
<td>kg/h</td>
<td>2000</td>
</tr>
<tr>
<td>recycled water for cooling</td>
<td>kg/h</td>
<td>1000</td>
</tr>
<tr>
<td>SNG synthesis unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNG synthesis temperature</td>
<td>°C</td>
<td>270</td>
</tr>
<tr>
<td>SNG synthesis pressure</td>
<td>bar</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 2: Biomass characteristics (DM: dry matter; DAF: dry ash free) [33].

<table>
<thead>
<tr>
<th>Properties /Biomass</th>
<th>Straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHV(MJ/kg)</td>
<td>17.65</td>
</tr>
<tr>
<td>Ultimate Analysis (DAF)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>48.39</td>
</tr>
<tr>
<td>H</td>
<td>6.15</td>
</tr>
<tr>
<td>O</td>
<td>44.68</td>
</tr>
<tr>
<td>N</td>
<td>0.58</td>
</tr>
<tr>
<td>S</td>
<td>0.09</td>
</tr>
<tr>
<td>Cl</td>
<td>0.30</td>
</tr>
<tr>
<td>Proximate Analysis (DM)</td>
<td></td>
</tr>
<tr>
<td>VM</td>
<td>77.36</td>
</tr>
<tr>
<td>FC</td>
<td>19.25</td>
</tr>
<tr>
<td>Ash</td>
<td>5.58</td>
</tr>
</tbody>
</table>
Table 3: Description of the reactor blocks utilized in the simulation

<table>
<thead>
<tr>
<th>Block ID</th>
<th>Aspen floowsheet Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RYIELD</td>
<td>BIOMASS</td>
<td>Yield reactor-converts non-conventional biomass to conventional components by using FORTAN statement.</td>
</tr>
<tr>
<td>RSTOIC</td>
<td>DCOMBIOM</td>
<td>Specify operating conditions, reactions, reference conditions for heat of reaction calculations, product and reactant components for selectivity calculations</td>
</tr>
<tr>
<td>MIXER</td>
<td>MIXER</td>
<td>Mix of air and decomposed biomass feed from DCOMBIOM and feed to GASIFIER.</td>
</tr>
<tr>
<td>RGIBBS</td>
<td>GASIFIER</td>
<td>Specify reactor operating conditions and phases to consider in equilibrium calculations</td>
</tr>
<tr>
<td>SEPRATOR</td>
<td>SEPARATOR</td>
<td>Separates gases from ash by specifying split faction.</td>
</tr>
</tbody>
</table>
Table 4: The material balance, power, heat, cooling and SNG produced, and utilities of five cases

<table>
<thead>
<tr>
<th>Items</th>
<th>Units</th>
<th>SNG-100</th>
<th>QUAD-75</th>
<th>QUAD-50</th>
<th>QUAD-25</th>
<th>QUAD-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>t/day</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Syngas for Power, heat and cooling</td>
<td>kg/h</td>
<td>7625</td>
<td>5718.75</td>
<td>3812.5</td>
<td>1906.25</td>
<td>0</td>
</tr>
<tr>
<td>Syngas for SNG</td>
<td>kg/h</td>
<td>0</td>
<td>1906.25</td>
<td>3812.5</td>
<td>5718.75</td>
<td>7625</td>
</tr>
<tr>
<td>Air for gasification</td>
<td>t/h</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Air for gas engine</td>
<td>t/h</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Make up water</td>
<td>t/h</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>H2 input</td>
<td>kg/h</td>
<td>0</td>
<td>36.76</td>
<td>42.231</td>
<td>52.41288</td>
<td>66.241</td>
</tr>
<tr>
<td>Waste Product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>Kg/h</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>CO2 capture during gas cleanup</td>
<td>Kg/h</td>
<td>326.98</td>
<td>326.98</td>
<td>326.98</td>
<td>326.98</td>
<td>326.98</td>
</tr>
<tr>
<td>CO2 capture during SNG</td>
<td>Kg/h</td>
<td>0</td>
<td>131.78</td>
<td>156.23</td>
<td>182.565</td>
<td>204.682</td>
</tr>
</tbody>
</table>

production
Table 5: Parameters of the main points of the quad-generation system

<table>
<thead>
<tr>
<th>Stream</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
<th>Mass flow (kg/h)</th>
<th>Mole flow (kmol/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N₂</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>1.01</td>
<td>4167.67</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>1.01</td>
<td>1000</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>1205.10</td>
<td>28</td>
<td>7209.68</td>
<td>32.6</td>
</tr>
<tr>
<td>4</td>
<td>650</td>
<td>25</td>
<td>7625</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>650</td>
<td>25</td>
<td>3812.5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>1.01</td>
<td>2000</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1.01</td>
<td>362.35</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>1.01</td>
<td>502.75</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>614.58</td>
<td>1.01</td>
<td>7689.24</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>1.01</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>270</td>
<td>20</td>
<td>257.29</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>270</td>
<td>20</td>
<td>657.35</td>
<td>-</td>
</tr>
</tbody>
</table>