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Abstract. The survival rate of cancer patients depends on the type of
cancer, the treatments that the patient has undergone, and the severity
of the cancer when the treatment was initiated. In this study, we con-
sider adenocarcinoma, a type of lung cancer detected in chest Computed
Tomography (CT) scans on the entire lung, and images that are “sliced”
versions of the scans as one progresses along the thoracic region. Typi-
cally, one extracts 2D features from the “sliced” images to achieve various
types of classification. In this paper, we show that the 2D features, in
and of themselves, can be used to also yield fairly reasonable predictions
of the patients’ survival rates if the underlying problem is treated as a
regression problem. However, the fundamental contribution of this paper
is that we have discovered that there is a strong correlation between the
shapes of the 2D images at successive layers of the scans and these sur-
vival rates. One can extract features from these successive images and
augment the basic features used in a 2D classification system. These fea-
tures involve the area at the level, and the mean area along the z-axis.
By incorporating additional shape-based features, the error involved in
the prediction decreases drastically – by almost an order of magnitude.
The results we have obtained deal with the cancer treatments done on
60 patients1 at varying levels of severity, and with a spectrum of survival
rates. For patients who survived up to 24 months, the average relative
error is as low as 9%, which is very significant.
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1 Introduction

The past few decades have boasted significant progress in diagnostic imaging in
the domain of healthcare and medicine. This has, in turn, enhanced the process

⋆ Chancellor’s Professor; Life Fellow: IEEE and Fellow: IAPR. This author is also an
Adjunct Professor with the University of Agder in Grimstad, Norway.

1 Understandably, it is extremely difficult to obtain training and testing data for
this problem domain! Thus, both authors gratefully acknowledge the help given by
Drs. Thornhill and Inacio, from the University of Ottawa, in providing us with do-
main knowledge and expertise for understanding and analyzing the publicly-available
dataset
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of exposing internal structures hidden by skin and bones through, for example,
radiology. The spectrum of medical imaging techniques include, but are not lim-
ited to, X-rays, Magnetic Resonance Images (MRIs), ultrasounds, endoscopies,
etc., and a wide range of pathological phenomena can now be detected.

The application of these techniques can be refined depending on the sub-
system of the body that is under consideration (i.e., cardiovascular, respiratory,
abdominal, etc.), and the associated imaging technique. Cancer, as a subcategory
of these pathologies, constitutes over 100 different types.

Aspects of Lung Cancer: Apart from folklore, the statistics about cancer
are disheartening. The American Cancer Society (ACS) estimated their annual
statistics for 2018 based on collected historical data [1]. Lung cancer is now
the second leading type of cancer for newly diagnosed patients, behind breast
cancer, and it has the highest mortality rate out of all cancer sites. The ACS
projected 234,030 new cases of lung cancer. They also forecasted that 154,050
deaths would be caused by lung cancer. However, cancers diagnosed at an early
phase, such as Stage 1, can be treated with surgery and radiation therapy with
an 80% success rate. Late diagnosis, typically, implies a lower survival rate.

Radiomics is the field of study that extracts quantitative measures of tumour
phenotypes from medical images using data-characterization algorithms. These
features are explored to uncover disease characteristics that are not visible to
the naked eye, but which can then be used for prognosis and treatment plans.
Many researchers have worked on engineering the feature sets through a radiomic
analysis [2] [3]. Our goal, however, is that of predicting the survival rate of lung
cancer patients once they have been diagnosed, and the result of this study is to
demonstrate that a lot of this information resides in the 3D shape of the tumour.
We hope that our study can provide insight into the cancer’s severity, and also
aid in formulating the treatment plans so as to increase the chances of survival.

1.1 Contributions of this Paper

The contributions of this paper can be summarized as follows:

– Although the diagnosis of lung cancer has been extensively studied, the cor-
relation of the survival times to the tumour’s size/shape is relatively unex-
plored. Our first major contribution is to show that by a regression analysis,
we can predict the survival times based on various features of the tumour.
Predicting the survival times can essentially aid medical professionals to
judge the severity of the cancer, and to design treatment plans accordingly.

– Our features are 2D features obtained from various scan slices. We show that
these features, by themselves, yield impressive estimates of survival times.

– The most significant contribution of this paper is the discovery of a distri-

bution for the shapes of the scans as they are processed sequentially. From
these images, we can obtain relatively simple indices that relate to some
geometric features of the sequence that can be used for classification and
regression. By augmenting the original 2D feature set with these, we have
been able to obtain significantly improved estimations for the survival rates.
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– While these results have been proven to be relevant for our lung cancer
scenario, we believe that these phenomena are also valid for other tumour-
based cancers, and hope that other researchers can investigate the relevance
of the same hypothesis for their application domains.

After acknowledging the source of the data and briefly surveying the field, we
shall discuss the feature extraction process, and analyze the individual features
against the “TumourDepth”, for any correlation of the measures at successive
layers. Section 5 summarizes all the regression results for the various feature
sets, and Section 6 concludes the paper.

1.2 Data Source

We have used the publicly available data from The Cancer Imaging Archive2

(TCIA), a service which hosts an archive of data for de-identified medical images
of cancer. The dataset used for this work is the “LungCT-Diagnosis” data [15] on
TCIA, uploaded in 2014. The set consists of CT scans for 61 patients that have
been diagnosed with adenocarcinoma, a type of lung cancer, with the number
of images totalling up to about 4, 600 over all the scans. However, considering
only images that have the presence of a cancer nodule, the count reduces to
approximately 450 images. With healthcare data, we are, of course, constrained
to work with what we have. As we will see, it suffices for the purpose of regression
analyses. Throughout the experiments and results explained in this paper, the
condensed dataset of 450 images has been consistently split into training and
testing data with a 70% and 30% split respectively, with the guarantee that
there was no overlap between the two subsets. The dataset also includes the
clinical metadata, where the survival time of the patient associated with each
scan, is listed.

1.3 Literature Review

Feature extraction schemes in biomedical applications have been found to be
specific to the medical context of the goal at hand, i.e., the features that are
used vary based on the type of image being processed, as well as the pathological
focus (lesions and nodules, texture variance, organ size and wall thickness, etc.).
However, it may be beneficial to derive a wide variety of features, and to then
reduce the set to those which prove to be most relevant [16]. This can be done
through the application of feature elimination or feature selection techniques.

The goal of forming a descriptor vector in the context of nodules and texture,
is a task of local feature extraction. Chabat et al. [17] and Kim et al. [18] aimed to
classify obstructive lung diseases based on texture patches as Regions of Interests
(ROIs). For each ROI, a statistical descriptor was calculated to describe the CT
attenuation characteristics.

However, Kim et al. [18] also included other features such as the co-occurrence
matrix and the top-hat transform. Additionally, they incorporated measurements

2 More information can be found at https://www.cancerimagingarchive.net/.
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to depict shapes in the ROIs, such as circularity and aspect ratios, which were
not well represented by statistical measures extracted for the textures. Similarly,
the authors of [19] expanded the aforementioned list with morphological features
to describe the shapes of the nodules in the ROIs.

The aforementioned features, however, were used in the context goal of clas-
sification of a medical pathology. We adapt the research goal of Grove et al. [15]
by computing and analyzing features that are indicative of the severity of the
cancerous nodule, whereby severity can be considered as being synonymous with
the survival time of a patient after the diagnosis of the cancer. Whereas their
study was, for the most part, a hypothesis-based testing methodology, ours is
more explorative in nature with the goal of finding descriptive quantitative mea-
surements. It is important to note that our focus is heavily on the construction
of the feature set, rather than the customization of regression models that have
been used as testing thresholds.

2 Background

2.1 Computed Tomography (CT) Scans

The most common radiological imaging technique incorporates CT scans where
X-ray beams are used to take measurements or images (i.e., “slices”) from dif-
ferent angles, as shown in Figure 1, as the patient’s body moves through the
scanner. Depending on the section thickness and the associated reconstruction
parameters, a scan can range anywhere from 100 to over 500 sections or images
[5]. The scan records different levels of density and tissues which can then be
reconstructed to, non-invasively, create a 3D of the human body.

(a) Axial Plane (b) Coronal Plane (c) Sagittal Plane

Fig. 1: Planes captured in a Computed Tomography (CT) scan.

High-resolution Computed Tomography (HRCT) is specifically used in de-
tecting and diagnosing diffuse lung diseases [4] and cancerous nodules, due to
its sensitivity and specificity. It enables the detection and analysis of feature
aspects such as morphological lesion characterization, nodule size measurement
and growth, as well as attenuation characteristics.

Hounsfield Units: CT numbers are captured and represented as Hounsfield
Units (HUs), which serve as a universal standardized dimensionless metric as:
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HU = 1000×
µ− µwater

µwater − µair

, where, (1)

– µwater is the linear attenuation coefficient of water, and
– µair: is the linear attenuation coefficient of air.

Although measured in HUs, CT scans and other medical imaging reports
are saved in the standard Digital Imaging and Communications in Medicine
(DICOM) format. There are many DICOM viewer applications for observing
and analyzing medical scans specifically.

2.2 The Preprocessing Stage

Working with the images of Chest CT scans means processing data in the DI-
COM format. This format groups information in the datasets, enabling the at-
tachment of patient and pixel data, as well as technical data, such as the corre-
sponding encoding schemes and window measurements, through attribute tags.

The DICOM images are expressed as 16-bit integer values, where the stored
attribute tags specify the default, and include:

– Slice thickness;
– Number of rows and columns (i.e., image dimensions);
– Window centre and window width;
– Rescale intercept, m, and rescale slope3, b.

The latter are used in the linear conversion of the stored value, SV , to the
appropriate Hounsfield Unit (HU), U , where U = mSV + b.

As part of the preprocessing stage, the images, originally displayed as shown
in Figure 2a, are first converted to be representative of the HUs using the above
equation (i.e., U = mSV + b) for easier processing and visibility. The images are
then scaled to two different window specifications for the Lung Window view,
also known as the Pulmonary view, and the Mediastinal view, respectively. The
Lung Window view, shown in Figure 2b, displays the texture in the lung and
is attained by adjusting the window centre and window width, [C,W ], param-
eters to [−500, 1400]. The Mediastinal view, shown in Figure 2c, is attained by
adjusting the parameters to [40, 380].

Nodule Segmentation: Rather than segmenting the entire lung region as our
Region of Interest (ROI), in this research, we segmented only the cancerous
nodule in the “slices” where the presence of the tumour was observed. Similar
to the topic of lung segmentation, there is an abundance of published work
discussing the automation of so-called nodule segmentation and extraction [9],
[10] and [11].

3 It is important to note that more often than not, the rescale slope was valued at 1.
Indeed, we have not encountered a dataset which has a different rescale slope value.
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(a) Default View (b) Lung Window View (c) Mediastinal View

Fig. 2: Different Chest CT views based on window parameter adjustments.

We made masks of the tumours using the ImageJ software4. This was done
by manually tracing a contour around the nodule on the images where it was
present, filling the shape as “white”, and clearing the background to “black”. The
images that did not contain the nodule were cleared to a “black” background.The
CT scans were reviewed, and the segmentation of cancer tumours were validated
by a clinical doctor from the Ottawa Heart Institute.

3 Nodule-Based Feature Extraction

When computing and compiling a feature set, we considered the scans in a 2D
aspect, where each image or “slice” was treated as a single observation. For
instance, if a nodule in a scan ranged over 10 images, each image was treated as
a single observation or record, and amounted to 10 records in the dataset. Thus,
over 60 scans, we extracted approximately 475 images that contained a nodule.

3.1 Texture and Shape-based Features

To adequately analyze the work done for this research, we first created a bench-
mark of prediction results based on the feature set used in the texture analysis
phase of the prior algorithm. This feature set, now referred to as the “Bench-
mark” feature set, consisted of the Haralick values [13] computed from the Ma-
hotas Python library, which constituted a 12-dimensional vector.

The hypothesis that we worked with in this research was that irregularities
in a tumour’s shape are indicative of it being cancerous. Thus, to further inves-
tigate the characterizing aspects of the tumour (when it concerns the survival
rates), we modified the benchmark feature set by computing additional features
relevant to the shape of the tumour, with the goal of being able to measure the
shape’s “regularity”. We shall reference these as the “2D Shape” feature set. We
appended the benchmark feature set by calculating the following:

4 The ImageJ Software is a Java-based image processing program developed at the
National Institutes of Health and the Laboratory for Optical and Computational
Instrumentation.
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– The tumour’s area, measured in pixels from its mask (see Figure 3a);
– Width and height of the tumour’s smallest bounding rectangle;
– Mean Squared Error of the boundary pixel from the center (with respect to

the radius of the tumour’s minimum enclosing circle (see Figure 3b));
– Moment values of the vector, formed by calculating the distance of the

boundary of the tumour from the centre in 10◦ increments for a full 360◦ (as
shown in Figure 3c), where k defines the kth central moment as in Eq. (2):

mk =
1

n

n∑

i=1

(xi − x̄)k. (2)

In the above, these reduce to the following for specific values of k:
• Variance (σ2), where for k = 2, σ2 = m2.
• Skewness (S), where for k = 3 and s, the standard deviation, S = m3

s3
.

• Kurtosis (K), where for k = 4 and s, the standard deviation, K = m4

s4
.

In our study, we also included σ2, S and K as additional features in the vector.

(a) (b) (c)

Fig. 3: Figures explaining the process of calculating the tumour’s shape features.

4 Feature Set Analysis

Analyzing the Shape Features: We are now in a position to explain how
we further analyzed these shape features, and to consider the values of these
quantities against the tumour’s depth. A tumour’s 3D shape will, generally,
start small and increase in size as it approaches the centre of the nodule and then
decrease in size again. To observe the trend of the tumour’s progression in size, we
placed the shape features, beginning with “Area”, against the “TumourDepth”,
and determined whether the average area and depth of the nodule displayed a
correlation with the target variable. We then replaced the “Area” feature with
the computed “MeanArea” given by Eq. (3):

MA =

i=n∑

i=1

(tdi ∗
ai∑
i=n

i=1
ai
), where, (3)

– MA: “MeanArea”;
– n: Number of slices which contain the tumour;
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– tdi: Tumour’s depth at slice i;

– ai: Tumour’s area at slice i.

This process was repeated for all the shape features and appended as new fea-
tures after removing the original shape feature. This feature set will be referred
to as the “Averaged 2D Shape” feature set.

Correlating the Shape Features against Survival Times: To better
understand how the shape features correlate against the survival times, we an-
alyzed the averaged “Area” feature further by plotting curves of the tumour’s
area in relation to the depth of the image in the tumour, in 6-month bins of
“SurvivalTime”. Figures 4a, 4b and 4c display plots of the curve for the [6, 12),
[12, 18) and [18, 24) months bounds respectively, where in the first case, the av-
erage area occurred at 59.1% tumour depth5. The overall results are summarized
in Table 1, where the area is plotted against the percentage of the tumour depth
for each 6-month bin present in the data. A notable observation is the steady
trend of the decreasing “Area” mean over the first four bins (i.e., those that have
a survival time within 2 years of diagnosis). Given this trend, we hypothesised
that we could also test the regression models for this survival time frame.

(a) 6-12 Months (b) 12-18 Months (c) 18-24 Months

Fig. 4: Area vs. TumourDepth Plots for tumours for patients with a survival rate of
6-12 months, 12-18 months and 18-24 months.

“SurvivalTime” Bin Average Area

(0, 6] 0.685
(6, 12] 0.591
(12, 18] 0.579
(18, 24] 0.555
(24, 30] 0.589
(30, 36] 0.566
(36, 42] 0.679
(42, 48] 0.671
(48, 54] 0.585
(54, 60] 0.546

Table 1: Averages of the tumour’s “Area” over bins of 6-Month durations.

5 The term “Tumour depth” refers to the level (or z-axis) along the tumour as it
progresses down the thoracic region.
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To verify this hypothesis, we performed a regression analysis on a subset of
the data which has a “SurvivalTime” of 24 months or less. Subsets were taken
of all of the aforementioned feature sets, and processed (with these augmented
features) to recalculate the errors by testing the corresponding regression models.

5 Results and Discussions

5.1 Model Evaluation

To evaluate the performance of the tested regression models, we utilized two
measures, namely the Mean Absolute Error (MAE), measured in months, and
the Mean Relative Error (MRE), both of which are defined in Eq. (4) and (5)
respectively:

MAE =
1

n

n∑

i=1

|yi − zi|, and (4)

MRE =
1

n

n∑

i=1

|yi − zi|

zi
, where: (5)

– n is the number of test-set data points,

– yi is the predicted value (i.e., the expected survival time in months), and

– zi is the true value (i.e., the survival time in months).

The MAE is the average difference between the true values and the predicted
values. It provides an overall measure of the distance between the two values,
but it does not indicate the direction of the data (i.e., whether the result is an
under or over-prediction). Furthermore, this is also seen to be a scale-dependent
measure, as the computed values are heavily dependent on the scale of the data,
and can be influenced by outliers present in the data [14]. In order to circumvent
the scale-dependency, we also computed the MRE which introduces a relativity
factor by normalizing the absolute error by the magnitude of the true value. This
means that the MRE should, generally, consist of values in the range [0, 1].

As mentioned earlier, all the regression tests were done on the data with a
70% to 30% split of the data for training and testing, respectively.

5.2 Regression Results

We used the scikit-learn machine learning library to implement the basic
models for regression on the 2D Benchmark feature set. When analyzing the
recorded metrics, we emphasize that we were attempting to minimize the error
and maximize the accuracy of all the tested models. Also, in the interest of
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uniformity, we consistently report the results obtained by invoking the three best
schemes, namely Linear Regression, kNN Regression and Gradient Boosting67.

Model MAE (months) MRE (%)

Linear Regression 12.30 0.76
kNN Regression 12.13 0.79

Gradient Boosting 12.49 0.77

Table 2: Performance of the Regression Models on the “Benchmark” Feature Set.

As can be seen from the MRE indices recorded in Table 2, the error seems
to be relatively high when compared to the results of the binary classification
attained for this feature set (discussed in [12]). While such a performance may
be undesirable, it is certainly not surprising when we consider the following:

1. Difference of context: This feature set was initially compiled with the
goal of a binary classification task between “Normal” and “Abnormal” lung
texture. Processing the entire region belonging to the lung parenchyma en-
ables the visibility of stark differences in texture which can correspond to
one of the two aforementioned classes.

2. Patch size: The prior algorithm processed a fixed patch size of 37 x 37 pixels,
whereas, in this research, we are processing varying patch sizes depending
on the size of the bounding box of the tumour in a 2D image.

3. Tumour isolation: In this research, we considered only the tumours and not
the texture around them in the 3Dmatrix compilations. Thus, any pixels that
were included in the bounding box but not seen to be a part of the tumour
were reduced to zero (i.e., black) and ignored from the feature computations.
This could surely affect the variability seen in different tumours.

4. Correlation of depth and survival time: Although the depth of the im-
age with regards to the tumour would yield different feature measurements,
all slices throughout the tumour would correspond to the same value for
the target value since it belonged to a single scan. This would, apparently,
reduce the correlation between the features and the target variable.

Model MAE months) MRE (%)

Linear Regression 12.13 0.70
kNN Regression 14.48 0.89

Gradient Boosting 8.82 0.54

Table 3: Performance of Regression Models with Shape Features

6 In the interest of conciseness, we do not discuss the details of the Machine Learning
methods invoked. We assume that the reader is aware of them. Additional results,
which also detail the results of other methods, are included in the thesis of the first
author [12], and not given here in the interest of space.

7 The thesis publication can be found on the Carleton University website, linked as
follows: https://doi.org/10.22215/etd/2019-13731.
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To further support our initial hypothesis, we ran the same regression models
(as we earlier did for the baseline results) with the benchmark feature set and
the new shape features, i.e., the 2D Shape feature set. The results that we
obtained and the respective error values, are listed in Table 3. As can be seen, the
Linear Regression models improved in both the MAE and MRE measures. While
the kNN Regression digressed with a larger error, Gradient Boosting performed
significantly better – with an improvement of 23%.

Model MAE (months) MRE (%)

Linear Regression 11.95 0.70
kNN Regression 14.52 0.86

Gradient Boosting 7.40 0.45

Table 4: Performance of Regression Models with Averaged 2D Shape Feature Set

For the “Averaged 2D Shape” feature set, the Linear Regression displayed
a minor improvement in the MAE, while the MRE remained the same. On the
other hand, the kNN regression digressed for the MAE measure but improved for
the MRE by about 3%. The Gradient Boosting scheme, however, had the best
improvement with a decrease of approximately 15% in both the MAE and MRE,
confirming the advantage of considering the nodule in its 3-dimensional entirety,
compared to the previous 2D feature sets, and to methods that incorporated
minimal changes in the Linear and kNN regression schemes. Again, even superior
results were obtained on a subset of the data which had a “SurvivalTime” of 24
months or less. Table 5 displays the results of the regression models with respect
to each feature set. The results of the MAE improved by at least 60% for all
feature sets and regression models. The most notable improvement was with the
Gradient Boosting scheme for these modified features, where we obtained a total
improvement of almost 70% in the MRE, bringing the absolute error down to
1.29%. This is, by all metrics, remarkable.

Evaluation Regression Model
Feature Set Metric Linear kNN Gradient Boosting

Benchmark
MAE 4.27 5.22 4.56
MRE 0.35 0.40 0.37

2D Shape
MAE 3.53 4.60 1.79
MRE 0.27 0.35 0.12

Average 2D Shape
MAE 3.23 5.33 1.24
MRE 0.26 0.41 0.09

Table 5: Regression Results with Data Subset: ‘SurvivalTime’ Less Than 24 Months
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6 Conclusion

In this paper, we discussed the domain of healthcare imaging for diagnostics
and the implementation of radiomics on CT scans, in particular, to predict the
survival rates of lung cancer patients. We first tested the feature set that was
used in a prior algorithm, where the goal was to examine regression models.

By modifying the existing features by including shape descriptors, which
were focused on the cancer nodule itself, we were able to obtain improvements
in the best regression models. These new features were then analyzed against
the “TumourDepth”’, from which a strong correlation between the images at
successive layers of the scan was discovered. Further investigating the shape
aspects of the tumour, we observed the progression of the “Area”-based feature
values versus tumour progressions in bins of “SurvivalTime”, and were able to
observe a notable trend for survival rates up to 24 months. By performing a
regression testing for the data within this subset yielded an MRE of as low as
9%, and we even obtained a total improvement of almost 70% in the MRE.

With regard to future work, the feature sets that have been explored, should
also be tested on other collections of CT scans to ensure consistency. We also
believe that similar methods can be used for other tumour-based cancers.
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