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Abstract. In this paper, we present a pioneering solution to the problem of user
grouping and power allocation in Non-Orthogonal Multiple Access (NOMA) sys-
tems. There are two fundamentally salient and difficult issues associated with
NOMA systems. The first involves the task of grouping users together into the
pre-specified time slots. The subsequent second phase augments this with the
solution of determining how much power should be allocated to the respective
users. We resolve this with the first reported Reinforcement Learning (RL)-based
solution, which attempts to solve the partitioning phase of this issue. In particular,
we invoke the Object Migration Automata (OMA) and one of its variants to re-
solve the user grouping problem for NOMA systems in stochastic environments.
Thereafter, we use the consequent groupings to infer the power allocation based
on a greedy heuristic. Our simulation results confirm that our solution is able to
resolve the issue accurately, and in a very time-efficient manner.

Keywords: Learning Automata · Non-Orthogonal Multiple Access · Object Mi-
gration Automata · Object Partitioning

1 Introduction

The Non-Orthogonal Multiple Access (NOMA) paradigm has been proposed and pro-
moted as a promising technique to meet the future requirements of wireless capacity [6].
With NOMA, the diversity of the users’ channels and power is exploited through Suc-
cessive Interference Cancellation (SIC) techniques in receivers [1]. This technology in-
troduces questions concerning users who are ideally supposed to be grouped together,
so as to obtain the maximum capacity gain. Additionally, the power level of the signal
intended for each user is a crucial component for the successful SIC in NOMA oper-
ations. Consequently, it is an accepted fact that the performance of NOMA is highly
dependent on both the grouping of the users and the power allocation.

The user grouping and power allocation problems in NOMA systems are, in gen-
eral, intricate. First of all, the user grouping problem, in and of itself, introduces a
combinatorially difficult task, and is infeasible as the number of users increases. This is
further complicated by the channel conditions, and the random nature of the users’ be-
haviors in communication scenarios. For this reason, the foundation for grouping, and
consequently, for power allocation, can change rapidly. It is, therefore, necessary for a
modern communication system to accommodate and adapt to such changes.
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The user grouping in NOMA systems, is akin to a classic problem, i.e., to the Object
Partitioning Problem (OPP). The OPP concerns grouping “objects” into sub-collections,
with the goal of optimizing a related objective function, so as to obtain an optimal
grouping [3]. Our goal is utilize Machine Learning (ML) techniques to solve this, and
in particular, the ever-increasing domain of Reinforcement Learning (RL), and its sub-
domain, of Learning Automata (LA). When it concerns RL-based solutions for the OPP,
the literature reports many recent studies to solve Equi-Partitioning Problems (EPPs).
EPPs are a sub-class of the OPP, where all the groups are constrained to be of equal
size. Among these ML solutions, the Enhanced Object Migration Automata (EOMA)
performs well for solving different variants of EPPs [2]. They can effectively handle the
stochastic behavior of the users, and are thus powerful in highly dynamic environments,
similar to those encountered in the user grouping phase in NOMA systems.

Moving now to the second phase, the task of allocating power to the different users
of a group in NOMA systems, further complicates the NOMA operation. However, a
crucial observation is that the problem resembles a similar well-known problem in com-
binatorial optimization, i.e., the Knapsack Problem (KP). KPs, and their variants, have
been studied for decades [4], and numerous solutions to such problems have been pro-
posed. Among the numerous solutions, it is well known that many fundamental issues
can be resolved by invoking a greedy solution to the KP. This is because a greedy so-
lution can be exquisite to a highly complex problem, and can quickly utilize a relation
among the items, to yield a near-optimal allocation of the resources based on this rela-
tion. The power allocation problem in NOMA systems can be modeled as a variation of
a KP, and this can yield a near-optimal solution based on such a greedy heuristic.

In this paper, we concentrate on the problem’s stochastic nature and propose an
adaptive RL-based solution. More specifically, by invoking a technique within the OMA
paradigm, we see that partitioning problems can be solved even in highly stochastic en-
vironments. They thus constitute valuable methods for handling the behavior of compo-
nents in a NOMA system. In particular, we shall show that such methods are compelling
in resolving the task of grouping the users. Indeed, even though the number of possi-
ble groupings can be exponentially large, the OMA-based scheme yields a remarkably
accurate result within a few hundred iterations. This constitutes the first phase of our
solution. It is pertinent to mention that the solution is unique, and that we are not aware
of any analogous RL-based solution for this phase of NOMA systems.

The second phase groups users with different channel behaviors, and allocates power
to the respective users. Here, we observe that the power allocation problem can be
mapped onto a variation of a KP. Although the types of reported KPs are numerous,
our specific problem is more analogous to a linear KP. By observing this, we are able
to resolve the power allocation by solving a linear (in the number of users) number of
algebraic equations, all of which are also algebraically linear. This two-step solution
constitutes a straightforward, but comprehensive strategy. Neither of them, individually
or together, has been considered in the prior literature.

The paper is organized as follows. In Section 2, we depict the configuration of the
adopted system. Then, in Section 3, we formulate and analyze the optimization prob-
lem. Section 4 details the proposed solution for the optimization problem. We briefly
present numerical results in Section 5, and conclude the paper in Section 6.
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2 System description

Consider a simplified single-carrier down-link cellular system that consists of one base
station (BS) and K users that are to be divided into N groups for NOMA operation.
NOMA is applied to each group, but different groups are assigned to orthogonal re-
sources. For example, one BS assigns a single frequency band to the K users. The users
are to be grouped in N groups, each of which occupies a time slot. User k is denoted by
Uk where k ∈ K = {1,2, . . . ,K}. Similarly, the set of groups are denoted by G = {gn},
n ∈ N = {1,2, . . . ,N}, where gn is the set of users inside the n-th group. The groups
are mutually exclusive and collectively exhaustive, and thus, gn ∩ go = /0 with n 6= o.
When a User Uk belongs to Group n, we use the notation Un,k to refer to this user and
its group. We adopt the simplified notation Uk to refer to a user when the user’s group is
trivial or undetermined. Thus, if we have 4 users in the system, User 1 and User 3 could
belong to Group 1, and User 2 and User 4 belong to group 2. In this case, when we
want to refer to User 1 without its group, we use U1. Likewise, when we want to men-
tion User 4 belonging to Group 2, we apply U2,4. For mobility, the users are expected to
move within a defined area. The user behavior in a university or an office building are
examples of where the user behavior coincides with our mobility model.

2.1 Channel Model

The channel model coefficient for Uk is denoted by hk(t) and refers to the channel
fading between the BS and Uk along time. The channel coefficient is generated based
on the well-recognized mobile channel model, which statistically follows a Rayleigh
distribution [8]. The parameters of the channel configuration will be detailed in the
section describing the numerical results. Note that the LA solution to be proposed can
handle a non-stationary stochastic process, and the solution proposed in this work is
distribution-independent. Therefore, the current Rayleigh distribution can be replaced
by any other channel model, based on the application scenario and environment.

2.2 Signal Model

Based on the NOMA concept, the BS sends different messages to the users of a group
in a single time slot via the same frequency band. Consequently, the received signal yk
at time t for Un,k can be expressed as

yk(t) =
√

pn,khk(t)sk +
|gn|−1

∑
e=1

√
pn,ehk(t)se +nk, (1)

where e is the index of the users in the set gn\Un,k, which is the complementary set of
Un,k in gn. |gn| returns the number of users in gn. The received signal yk(t) has three
parts, including the signal intended for Un,k, the signal from all users other than Un,k in
the same group, and the additive white Gaussian noise (AWGN) nk ∼ CN (0,σ2

k) [10].
The transmitted signal intended for Un,k and Un,e is given by sk and se ∼ CN (0,1)
respectively. pn,k is the allocated power for Un,k, and the total power budget for group
gn is given by Pn.
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The BS’ signals are decoded at the users through SIC by means of channel coeffi-
cients in an ascending order [9]. As a result, through SIC, a user with a good channel
quality can remove the interference from the users of poor channel quality, while users
of poor channel quality decode their signals without applying SIC. Hence, for the User
Un,k, successful SIC is applied when |hn,w(t)|2 ≤ |hn,k(t)|2 fulfills, where w is the index
of the users that have lower channel coefficients than User k in the user Group gn.

3 Problem Formulation

In this section, we formulate the problem to be solved. The problem is divided into
two sub-problems. Specifically, in the first problem, we cluster the users into categories
based on the time average of the channel coefficients. In the second step, we group the
users based on the learned categories and solve the resultant power allocation problem.

3.1 Problem Formulation for the Clustering Phase

To initiate discussions, we emphasize that the channel coefficients of the users in a
group need to be as different as possible so as to achieve successful NOMA operation.
To group the users with different coefficients, we thus first cluster the users with similar
coefficients, and then select one user from each cluster to formulate the groups. The
first problem, the clustering problem, is formulated in this subsection. The problem for
user grouping, together with power allocation, is formulated later.

The criterion that we have used for clustering the users is the time average of the
channel coefficients, hk(t). The reason motivating this is because the user grouping is
computationally relatively costly, and the fact that the environment may change rapidly,
i.e., h(t) might change after channel sounding. If we cluster the users according to the
time average, we can reduce the computational cost, and at the same time, capture the
advantages of employing NOMA statistically.

We consider clustering users to clusters of the same size, where the number of the
clusters is Lc = K/N, and where Lc and N are integers4. Let qc be the set of users in
Cluster c, where c ∈ [1,2, . . . ,Lc] is the index of the cluster. Clearly, for the clustering
problem, the difference of coefficients in each cluster needs to be minimized, and the
problem can be formulated as

min
{ϕc,k}

Lc

∑
c=1

K

∑
k=1

ϕc,k|hk(t)−Ec|, (2a)

s.t.
Lc

∑
c=1

K

∑
k=1

ϕc,k = K, c ∈ C ,k ∈ K, (2b)

K

∑
k=1

ϕc,k = N, ∀c, (2c)

4 In reality, if Lc is not an integer, we can add dummy users to the system so as to satisfy this
constraint. Dummy users are virtual users that are not part of the real network scenario, but are
needed for constituting equal-sized partitions in the clustering phase.
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where ϕc,k is an indicator function showing the relationship of users and clusters, as
ϕc,k = 1 when Uk belongs to Cluster c, and 0 otherwise. Additionally, the mean value
of the channel fading in each cluster is denoted by the parameters Ec and δ, which are
given by Ec =

1
δ

∑
K
k=1 hk(t)ϕc,k, and δ = ∑

K
k=1 ϕc,k respectively. To explain the above

equation, we mention that Eq. (2a) states the objective function. Specifically, for all the
clusters, we want to minimize the difference of channel coefficients between the users
within each cluster. Eq. (2b) and Eq. (2c), state a description of the variable ϕc,k for
User k in c. Hence, the sum of the variables ϕc,k needs to be equal to the number of
users, meaning that all the users need to be a part of a single cluster, and in each cluster,
there needs to be an equal number of users.

The result of the clustering problem, i.e., the {ϕc,k} that minimizes the objective
function, formulates Lc sets of users, each of which has exactly N users.

3.2 Problem Formulation for the Power Allocation

From the output of the clustering, we know which users that are similar. Thus, when
we take one user from each cluster and construct N groups, the size of each group is
Lc. Without loss of generality, we can assume that the average channel coefficients are
sorted in ascending order, i.e., h1(t)≤ h2(t)≤ . . .≤ hK(t). If we consider user grouping
and power allocation based on average channel coefficients, the reduces to:

max
{gn},{pn,k}

R =
K

∑
k=1

b log2

(
1+

pn,k|hn,k|2

In,k +σ2

)
(3a)

s.t. gn∩go = /0, n 6= o, n,o ∈N , (3b)

∑
j,∀U j∈gn

pn, j ≤ Pn, n ∈N , (3c)

Rn, j(t)≥ RQoS, j ∈K ,n ∈N , (3d)

hi(t)> h j(t), ∀i > j, i, j ∈K , (3e)
|gn∩qc|= 1, ∀c, ∀n, (3f)

∑
j,∀U j∈gn

τn, j = Lc, ∀n, (3g)

∑
n,∀n∈N

∑
j,∀U j∈gn

τn, j = NLc. (3h)

In Eq. (3a), In,k = ∑ j,
∀ j>k, {U j , Uk}∈gn

|hk|2 pn, j is the interference to User k in Group n. In

Eq. (3b), we state that the groups need to be disjoint. Hence, one user can only be in
one group. In (3c), we address the constraint for the power budget. The QoS constraint
is given in Eq.(3d), where Rn, j(t) is the achievable data rate for User j in Group n, and
Eq. (3e) gives the SIC constraint. The constraint in Eq. (3f) specifies that only a single
user is selected to formulate a group from each cluster. In Eq. (3g), we introduce an
indicator τn,k, stating whether Uk is in Group n, as τn,k = 1 when Uk belongs to Group
n, and 0 otherwise. Furthermore, all users should belong to a certain group, which is
given in Eq. (3h). Table 1 summarizes the notation.
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Notation Description Notation Description
h, h(t) Channel coefficient, and h for t pn,k Allocated power for Un,k

hk , hn,k h for Uk and Un,k nk , σ2 AWGN at Uk and Gaussian noise
hk(t), hn,k(t) The mean of h for Uk hk(t), hn,k(t) h for Uk and Un,k at t

K Total number of users In,k Interference from other users to Un,k
N Total number of groups Ec Mean of channel fading in qc
K Set of user indexes R Total data rate (capacity)
N Set of group indexes S Number of states per action
G Set of groups RQoS Minimum required data rate for a user
gn Set of users inside the n-th group vU ,vL Mobility factor and speed of light
|gn| Number of users inside gn fc, fd Carrier and Doppler frequency

Uk , Un,k User k and user k in group n Lc Number of clusters
gn\Un,k The complementary set of users in set gn qc Set of users in cluster c

/0 Empty set C Set of clusters
yk , yk(t) Signal from BS at Uk and Uk at time t ϕc,k Indicator of whether Uk is in cluster c

sk Transmitted signal intended for Uk δ Number of ϕc,k = 1 for a cluster
Pn Power budget for gn b Channel bandwidth
τn,k Indicator of whether Uk is in group n rk Rank of Uk
∆t Time period for average of h ϒk Ranking category of user k
εk Index of the current state of user k Θk Cluster of Uk

Q = (Ua,Ub) Input query of users to the EOMA W, Mbps Watt and Megabits per second
r Rank c Index of the set of clusters

Table 1. Summary of notations

4 Solution to User Grouping and Power Allocation

The problem of grouping and power allocation in NOMA systems is two-pronged.
Therefore, in Section 4.1, we only consider the first issue of the two, namely the group-
ing of users. We will show that our solution can handle the stochastic nature of the
channel coefficients of the users, while also being able to follow changes in their chan-
nel behaviors over time. This will ensure that the system will be able to follow the
nature of the channels in a manner that is similar to what we will expect in a real sys-
tem. Thereafter, in Section 4.2, we will present our solution to the power allocation
problem. Once the groups have been established in Section 4.1, we can utilize these
groups to allocate power among them either instantaneously, or over a time interval
using a greedy solution to the problem.

4.1 Clustering Through EOMA

The family of OMA algorithms are based on tabula rasa Reinforcement Learning.
Without any prior knowledge of the system parameters, the channels, or the clusters,
(as in our case), the OMA self-learns by observing, over time, the Environment that
it interacts with. For our problem, the communication system constitutes the Environ-
ment, which can be observed by the OMA through, e.g., channel sounding. By gaining
knowledge from the system behavior and incrementally improving through each in-
teraction with the Environment, the OMA algorithms are compelling mechanisms for
solving complex and stochastic problems. In the OMA, the users of our system need
to be represented as abstract objects. Therefore, as far as the OMA is concerned, the
users are called “objects”. The OMA algorithms require a number of states per action,
indicated by S. For the LA, an action is a solution that the algorithm can converge to. In
our system, the actions are the different clusters that the objects may belong to. Hence,
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based on the current state of an object, we know that object’s action, which is equal to
its current cluster in our system. Therefore, each object, or user in our case, has a given
state indicated by εk = {1,2, ...,SLc}, where εk denotes the current state of Uk, S is the
number of states per action, and Lc is the number of clusters. Clearly, because we have
Lc clusters, the total number of possible states is SLc. To indicate the set of users inside
Cluster c, where c ∈ [1,2, . . . ,Lc], we have qc. The cluster for a given User, k, is repre-
sented by Θk, where the set of clusters is denoted by C and Θk ∈ C = {q1,q2, . . . ,qLc}.

Algorithm 1 Clustering of Users
Require: hk(t) for all users K

while not converged do // Converged if all users are in the two innermost states of any action
for all K do

Rank the users from 1 to K // 1 is given to the user with lowest h (K to the highest)
end for
for K

N pairs (Ua,Ub) of K do // The pairs are chosen uniformly from all possible pairs
if ϒa = ϒb then // If Ua and Ub have the same ranking category

if Θa = Θb then // If Ua and Ub are clustered together in the EOMA
Process Reward

else // If Ua and Ub are not clustered together in the EOMA
Process Penalty

end if
end if

end for
end while // Convergence has been reached

The states are central to the OMA algorithms, and the objects are moved in and
out of states as they are penalized or rewarded in the Reinforcement Learning process.
When all objects have reached the two innermost states of an action, we say that the
algorithm has converged. When convergence is attained, we consider the solution that
the EOMA algorithm has found to be sufficiently accurate. In the EOMA, the number-
ing of the states follows a certain pattern. By way of example, consider a case of three
possible clusters: the first cluster of the EOMA has the states numbered from 1 to S,
where the innermost state is 1, the second innermost state is 2, and the boundary state
is S. The second cluster has the innermost state S+ 1 and the second innermost state
S+2, while the boundary state is 2S. Likewise, for the third cluster, the numbering will
be 2S+ 1 for the innermost and 2S+ 2 for the second innermost state, while 3S is the
boundary state.

Algorithm 1 presents the overall operation for the clustering of the users. The func-
tionality for reward and penalty, as the EOMA interacts with the NOMA system, are
given in Algorithms 2 and 3 respectively. In the algorithms, we consider the operation
in relation to a pair of users Ua and Ub, and so Q = {(Ua,Ub)}. The EOMA consid-
ers users in pairs (called queries, denoted by Q). Through the information contained
in their pairwise ranking, we obtain a clustering of the users into the different channel
categories. For each time instant, ∆t , the BS obtains values of hk(t) through channel
sounding, and we use the average of ∆t samples as the input to the EOMA (hk(t)). The
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BS then ranks the users, indicated by rk = {1,2, ...,K}, where each Uk is given a single
value of rk for each ∆t. For the ranks, rk = 1 is given to the user that has the lowest chan-
nel coefficient compared to the total number of users, and rk = K is given to the user
with the highest channel coefficient of the users. The others are filled in between them
with ranks from worst to best. Furthermore, the values of these ranks corresponds to
ranking categories, denoted by ϒk for Uk, where ϒk = {r ∈ [1,N] = 1,r ∈ [1+N,2N] =
2,r ∈ [1+2N,3N] = 3, . . . ,r ∈ [K−N +1,K] = Lc}. In this way, even if the users have
similar channel conditions, they will be compared, and the solution can work on finding
the current best categorization of the K users for the given communication scenario. As
depicted in Algorithm 1, we check the users’ ranking categories in a pairwise manner. If
the users in a pair (query) are in the same ranking category, they will be sent as a query
to the EOMA algorithm. The EOMA algorithm will then work on putting the users that
are queried together in the same cluster, which, in the end, will yield clusters of users
with similar channel coefficients. More specifically, if two users have the same ranking
category, they are sent as a query to the EOMA and the LA is rewarded if these two
users are clustered together (penalized if they are not together).

Algorithm 2 Process Reward
Require: Q = (Ua,Ub) // A query (Q), consisting of Ua and Ub
Require: The state of Ua (εa) and Ub (εb)

if εa mod S 6= 1 then // Ua not in innermost state
εa = εa−1 // Move Ua towards innermost state

end if
if εb mod S 6= 1 then // Ub not in innermost state

εb = εb−1 // Move Ub towards innermost state
end if
return The next states of Ua and Ub

When the algorithm converges to obtain the groups that are needed for the power
allocation, we rank the users within each cluster based on hk(t) that was obtained in
the clustering process, and then formulate the groups that consist of one user from each
cluster with the same rank.

4.2 Power Allocation Through a Greedy Solution

Once the grouping of the users has been established, we can allocate power to different
users in such a way that the joint data rate (R) is maximized. There are numerous ways
of power allocation in various communication scenarios [5, 10]. The power allocation
can be replaced by any other algorithm and will not change the nature of the Rein-
forcement Learning procedure. However, in this paper, we will consider the problem of
power allocation as a variation of the KP, and solve it through a greedy solution.

Our aim for the greedy solution is that of maximizing the total data rate of the
system. Thus, the weakest user will always be limited to the minimum required data
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Algorithm 3 Process Penalty
Require: Q = (Ua,Ub) // A query (Q), consisting of Ua and Ub
Require: The state of Ua (εa) and Ub (εb)

if εa mod S 6= 0 and εb mod S 6= 0 then // Neither of the users are in boundary states
εa = εa +1, εb = εb +1 // Move Ua and Ub towards boundary state

else if εa mod S 6= 0 and εb mod S = 0 then // Ub in boundary state but not Ua
εa = εa +1, temp = εb
x = unaccessed user in cluster of Ua which is closest to boundary state
εx = temp, εb = εa

else if εb mod S 6= 0 and εa mod S = 0 then // Ua in boundary state but not Ub
εb = εb +1, temp = εa
x = unaccessed user in cluster of Ub closest to boundary state
εx = temp, εa = εb

else // Both users are in boundary states
εy = ε{a or b} // y equals a or b with equal probability, and y is the staying user
εz = ε{a or b} // z is the moving user, and is a if b was chosen as y (b if a was chosen)
temp = εz
x = unaccessed user in cluster of Uy closest to boundary state
εx = temp
εz = εy // Move Uz to cluster of Uy

end if
return The next states of Ua and Ub

rate. The heuristic involves allocating the majority of the power to the users with higher
values of h, and this will result in a higher sum rate for the system. Consequently,
the stronger users are benefited more from the greedy solution than those with weaker
channel coefficients. However, the weak users’ required data rate is ensured and can be
adjusted to the given scenario. The formal algorithms are not explicitly given here in
the interest of brevity, and due to space limitations. They are included in [7].

5 Numerical Results

The techniques explained above have been extensively tested for numerous numbers of
users, power settings etc., and we give here the results of the experiments. In the interest
of brevity, and due to space limitations, the results presented are a very brief summary
of the results that we have obtained. More detailed results are included in [7] and in the
Doctoral Thesis of the First Author.

We employed Matlab for simulating the values of the channel coefficient, h. Addi-
tionally, we invoked a Python script for simulating the LA solution to the user grouping
and the greedy solution to power allocation. The numerical results for the power alloca-
tion solution are based on the results obtained from the EOMA clustering and grouping.
For the simulations, we used a carrier frequency of 5.7GHz and an underlying Rayleigh
distribution for the corresponding values of h(t). For the mobility in our model, we
utilized a moving pace corresponding to the movement inside an office building, i.e.,
vU = 2 km/h. We sampled the values of h according to 1

2 fd
, where fd is the Doppler

frequency and fc is the carrier frequency. The Doppler frequency can be expressed as
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fd = fc(
vU
vL
) and vL is the speed of light. Therefore, in the following figures, we use

“Sample Number” as the notation on the X-axis. Fig. 1 illustrates the snap-shot of h
values for four users and the principle for the simulation when the number of users
increased.
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Fig. 1. Example of the simulated h(t) for four different users. In the interest of clarity, and to
avoid confusion, we did not plot all the 20 users.
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Fig. 2. A plot of the average number of iterations needed before convergence, as a function of
number of users, where there were two users in each group. This was obtained by executing 100
independent experiments.

For evaluating the simulation for the clustering phase, we recorded whether or not
the LA were able to determine the clusters that corresponded to the minimized differ-
ence between the users in a cluster, based on the users’ mean values of h in the simu-
lations. Remarkably, in the simulation, the EOMA yielded a 100 % accuracy in which
the learned clustering was identical to the unknown underlying clustering in every sin-
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gle run for the example provided with −10dB difference between values of h within
the different clusters. This occurred for groups of sizes 4,6,8,10,12,14,16,18 and 20,
where the number of users in a group was equal to two. The difference between the
users can be replaced by any “equivalent metric”, and it should be mentioned that these
values were only generated for testing the solution, since in a real scenario, the “True
partitioning” is always unknown. The number of iterations that it took the EOMA to
achieve 100 % accuracy for the different number of users is depicted in Fig. 2. Notably,
the EOMA retains its extremely high accuracy as the number of users increased, and
yielded 100 % accuracy both for 4 users as well as 20 users.
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Orthogonal Multiple Access
NOMA

Fig. 3. Data rate for orthogonal multiple access compared to NOMA for time averages of h. Based
on averages over 500 samples of h.

The simulation for the greedy solution to the power allocation phase, was carried
out based on the groups established in the LA solution. Again, in the interest of brevity,
we only report the results for the cases with 20 users in total and 2 users in each group,
and more extensive results are included in [7] and in the Doctoral Thesis of the First
Author. The optimal power allocation for 2 users in a group was obtained when we
gave the minimum required power to the user with smaller h value and then allocated
the rest to the user with lager h value. The optimality of the greedy algorithm for the 2
user-group case was verified by an alternate independent exhaustive search. For illus-
trating the advantages of our NOMA greedy solution when NOMA was employed, we
compared it with the data rate that would be achieved with orthogonal multiple access5.

5 The achieved data rate for User k in Group n in orthogonal multiple access is given by

Rn,k =
1
2 log2

(
1+ Pn|hn,k |2

σ2

)
. The factor 1

2 is due to the multiplexing loss when 2 users share
the orthogonal resource.
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In Fig. 3, we depict the results obtained for the greedy NOMA solution together with
the orthogonal multiple access, for an average over ∆t = 5 samples of h. Further, with
regard to the parameters used, the data rate for the simulations depicted in Fig. 3 was
based on the following configuration: The minimum required data rate was configured
to 2.0 Mbps, the noise to 10−8 W , the bandwidth to 1 MHz, and the power level for all
groups to 0.125 W . As illustrated, the simulation results obtained show that the greedy
solution to the power allocation is higher than the data rate achieved with orthogonal
multiple access. From the graph in Fig. 3 we see that the average difference between
the orthogonal multiple access and NOMA was approximately 28.17 Mbps.

6 Conclusions

In this paper, we have proposed a novel solution to the user grouping and power alloca-
tion problems in NOMA systems, where we have considered the stochastic nature of the
users’ channel coefficients. The grouping has been achieved by using the tabula rasa
Reinforcement Learning technique of the EOMA, and the simulation results presented
demonstrate that a 100 % accuracy for finding clusters of similar h(t) over time can
be obtained within a limited number of iterations. With respect to power allocation, we
proposed a greedy solution, and again the simulation results confirm the advantages of
the NOMA solution. Our solutions offer flexibility, as both the grouping and the power
allocation phases, can be used as stand-alone components of a NOMA system.
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