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Abstract—Indoor space classification is an important part of
localization that helps in precise location extraction, which has
been extensively utilized in industrial and domestic domain.
There are various approaches that employ Bluetooth Low En-
ergy (BLE), Wi-Fi, magnetic field, object detection, and Ultra
Wide Band (UWB) for indoor space classification purposes.
Many of the existing approaches need extensive pre-installed
infrastructure, making the cost higher to obtain reasonable
accuracy. Therefore, improvements are still required to increase
the accuracy with minimum requirements of infrastructure. In
this paper, we propose an approach to classify the indoor space
using geomagnetic field (GMF) and radio signal strength (RSS) as
the identity. The indoor space is an open big test bed divided into
different indiscernible subspace. We collect GMF and RSS at each
subspace and classify it using cascaded Long Short Term Memory
(LSTM). The experimental results show that the accuracy is
significantly improved when GMF and RSS are combined to
make distinct features. In addition, we compare the performance
of the proposed model with the state-of-the-art machine learning
methods.

Index Terms—geomagnetic field, radio signal strength, LSTM,
deep recurrent neural network

I. INTRODUCTION

Location identification is more and more important for
informational services, real time tracking, address extraction
and other entertainment purposes. Global Positioning System
(GPS) is limited to outdoor area, and therefore for indoor
positioning, other techniques must be employed, such as BLE,
GMF, UWB, and Wi-Fi [1]. Those techniques can provide, in
the indoor environment, necessary information to be utilized
for positioning purpose. Once the information are gathered,
the position algorithms estimate the position of an object. In
addition to traditional positioning algorithms, such as trian-
gular positioning, AI based solutions become more and more
popular, among which, the fingerprinting method is one of
the most effective approach because of its low complexity in
smartphone based localization [2]. Fingerprinting method has
two phases: (1) offline phase, which is the data collection stage
and (2) online phase, where the live data is compared with
stored data to give final localization. Despite of having various
methodologies to realize positioning, there are still room to
improve the accuracy with reduced cost. In this article, we are
aiming to increase positioning accuracy and reduce cost in a
better manner, using the latest AI-based techniques.

RSS is the most used metrics for positioning because of its
easy availability from BLE and Wi-Fi. However, it has certain
drawbacks like instability due to multi-path effect and device

heterogeneity. Hence, the channel state information (CSI)
comes to the picture that provides much more information
from multiple sub-carriers and antennas [3] [4]. Despite of
its better performance, it is a device specific metrics and
thus it is less practical choice for positioning as compared
to RSS. There are two major types of positioning approaches:
deterministic and probabilistic. The most common approach
for deterministic methods are K-nearest neighbor (KNN) and
its variants [5] [6]. For probabilistic method, it adopts the
statistical evaluation between trained and measured RSS us-
ing Bayes rule [7]. In addition, the fusion of deterministic
approach and probabilistic approach are usually employed
for fine grained location extraction [8]. Although there are
various measures to deal with the ambiguity nature of RSS,
there still lacks the proper technique to completely discard the
RSS fluctuation. Hence, deep learning has been utilized for
learning the pattern in RSS to classify various location [9].
More specifically, the location classification can be enhanced
using Recurrent Neural Network (RNN) by making use of
sequential relation of RSS measurements [10].

Different from RSS, which is generated by pre-installed
devices, GMF is a magnetic force that surrounds the earth. It is
generated by earth’s rotation and the movement of molten iron
in the earth’s core, which is omnipresent. The GMF generated
are not uniform inside the building areas due to materials
like iron, steel, concrete, and other equipment [11]. Due to
these interference in the GMF inside buildings, it can be used
as one of the technologies of location based service (LBS).
Basically, GMF based LBS heavily relies on deep learning due
to randomness in data unlike RSS. Many existing works that
is based on magnetic field are related to robot navigation that
uses Simultaneous Localization and Mapping (SLAM) [12].
The ubiquitous nature of GMF has shown good performance
in the indoor landmark classification using RNN [13].

To improve the classification accuracy, there are several
existing studies that adopt an integration of various sensors,
such as GMF, light sensors, Inertial Measurement Unit (IMU),
and visual sensors [14] [15]. Inspired by those studies, in
this paper, we propose a hybrid model based on GMF data
and RSS data as references, which most of the modern smart
phones have, for indoor space classification using cascaded
Long Short-Term Memory (LSTM). We have witnessed that
LSTM is suitable for long sequence data that captures the
sequential pattern from the given features [16]. Similarly, such
property of LSTM is also applicable in GMF for landmark



classification [17]. Therefore, in this article, we are motivated
to employ those two types of information and eventually show
that using RSS along with GMF can give a better distinctive
feature for indoor space classification and can increase the
accuracy with significant margin. In more details, we make
use of cascaded LSTM that combines both unidirectional and
bidirectional model of LSTM to classify the space based on
variable length input sequence of GMF and RSS, which is to
be detailed below.

The remaining sections of the paper are organized as
follows. In Section II, the proposed models are presented. In
Section III, the proposed LSMT is examined extensively. The
paper concludes in Section IV.

II. PROPOSED MODEL

In this section, we will present in detail the network
structure, the data collection procedure, and the training and
validation procedure for the RNN based solution.

A. Neural Network Structure

Recurrent neural network (RNN) is a type of deep learning
technique that is not only dependent on current input but also
on the previous input. Basically, it is applicable to the scenario
where the data have a sequential correlation. However, when
dealing with a long sequence of data, it has a problem of
vanishing and exploiting gradient. To overcome this effect,
an LSTM is used which has an internal memory states that
adds forget gate. This gate controls the time dependence and
the effect of previous input. There are other variations, like
BiRNN and BiLSTM, which not only reflect previous inputs
but also consider the future inputs of a particular time frame.
In this study, inspired by [17], we propose the cascaded
unidirectional LSTM and bidirectional LSTM (BiLSTM) RNN
model as shown in Fig. 1. The model consists the first layer of
bidirectional RNN combined with a unidirectional RNN layer.
The bidirectional LSTM consists of forward and backward
track for learning patterns in both directions.

The Eq. (1) and Eq. (2) show the operations of forward and
backward track.
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den state, the internal state of the current state for forward and
backward LSTM track respectively. xn is the input sequence,
P is the LSTM cell parameter. The output from both tracks are
combined as in Eq. (3) and forwarded into the second layer.
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Bidirectional RNN is followed by unidirectional RNN,
which transforms data into a more abstract form and aids
in learning spatial dependencies [18]. The output from the
unidirectional layer is obtained using Eq. (4).
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Fig. 1. Cascaded unidirectional and bidirectional LSTM-based DRNN model.

where the output from the lower layer Ol−1
n is combined

with previous internal state iln−1 and hidden state hl
n−1 to

obtain output Ol
n of layer l, and P l represents a parameter

of the LSTM cells. The input data contains a sequence of
GMF and RSS samples (x1, x2, ..., xN ), where each feature
xn is observed at time n (n = 1, 2, ..., N). The data is
primarily divided into windows of time segment N and fed
into the cascaded LSTM. At the output, we obtain a prediction
scores vector for each time step (OL

1 , O
L
2 , ..., O

L
N ). The overall

prediction score is obtained by combining the prediction scores
vector for the entire window N . The fusion of the scores
is performed by applying the sum rule as shown in Eq. (5),
which performs better than other methods used in [19]. The
prediction scores are finally converted into probabilities by a
softmax layer over Y .

Y =
1

N

N∑
(n=1)

OL
n . (5)

B. Data Collection

The data collections are carried out in a rectangular indoor
space using smartphone sensors. The test space contains
elements that distort magnetic field like iron doors, metals,
steel tables and chairs. It is also equipped with 6 BLE devices
as shown in the Fig 2. The GMF and RSS data are collected
with android application developed using a smartphone. These
features designed for GMF are precisely selected to create a
distinctive pattern in each subspace. The structure for GMF
data collections are shown in Table I. RSS are collected from
6 BLE devices that are attached to the wall, namely BLE1
to BLE6. These data are combined together to obtain final
data set that has 13 features for each subspace. The data set
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Fig. 2. Floor model where GMF and RSS data are collected.

has around 3000 number of samples for the combined GMF
and RSS in each subspace, altogether making it around 30,000
samples.

TABLE I
STRUCTURE OF INPUT FOR GMF

GMF Data
X-AXIS Y-AXIS Z-AXIS AVG X-ROT Y-ROT Z-ROT

C. Training and Validation Methodology

We divided our data set in the ratio of 8 : 2, where 80 % is
used for the training and the remaining 20 % is used for the
testing. The mean cross-entropy between actual and predicted
labels were calculated using cost function L(O,Opred) [20],
which can be calculated as:

L(O,Opred) = −
k∑

(c=1)

oc log2(pc), (6)

where O and Opred are the actual and predicted class respec-
tively. oc and pc are the prediction label and probability of
each class respectively.

The cost function, L(O,Opred), is minimized using Adam
optimization, which uses back-propagation of gradient to
update the model parameters. To avoid over-fitting, we have
employed dropout as a regularization technique. The output of
the final LSTM layer is passed to the soft-max classifier, which
converts the output predictions into respective probabilities.
Since the input data is segmented with constant N , the
model is able to generalize and learn the patterns in the data
quickly. Also, the use of mini-batch processing deals with
efficient memory utilization and gradient explosion problem.
Nevertheless, the training time is slightly increased due to the
large number of batches utilized in this work.

III. RESULT AND DISCUSSION

In this section, we detail the performance of proposed
model of cascaded LSTM. There are 10 indoor subspace to
be classified and the features used are combination of GMF
and RSS as mentioned earlier. Fig. 3 shows the training and
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Fig. 3. The accuracy of our proposed data (GMF and RSS) for cascaded
LSTM over mini-batch training iterations.

20 40 60 80 100

Training Epoch

0

0.5

1

1.5

2

2.5

3

3.5

L
os

s 
(C

ro
ss

 E
nt

ro
py

)

Test Loss

Train Loss

Fig. 4. The cost of our proposed model for the designed data set over mini-
batch training iterations.

testing accuracy for our proposed model. It can be seen that
the accuracy increases as the model generalizes the data.
Similarly, the cost function decreases as the model reaches
optimal learning checkpoint, which also means the model deals
effectively with data over-fitting. Fig. 4 shows the training
and testing cost of out model. If we use the GMF only as
the input features for classifying those 10 indoor subspace,
we get relatively less accuracy than the proposed method.
The accuracy and cost of the GMF based classification using
cascaded LSTM are shown in Fig. 5 and 6. However, we can
see that the performance of RSS based classification performs
significantly lower than GMF data using cascaded LSTM. The
RSS data collected at each subspace heavily affected by multi-
path and fading effect. Hence, the accuracy and cost looks
slightly lower on this case as shown in Fig. 7 and 8. The
training accuracy for RSS only and GMF only data are 96.10%
and 99.2% respectively. Here, it is clear that the cascaded
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Fig. 5. The accuracy of GMF data for cascaded LSTM over mini-batch
training iterations.
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Fig. 6. The cost of GMF data for cascaded LSTM over mini-batch training
iterations.

model is able to learn the GMF quite efficiently compared
to RSS only data within 100 epochs. Also the losses for GMF
data are less compared to RSS data. However, in the case of
GMF and RSS data together, the training and testing accuracy
reaches up to 100% and 98.95% respectively. Altogether, we
can see that the proposed combined data outperforms both
individually used data. The accuracy and its loss for training
and testing phases are shown in table II and III respectively.
In addition, the confusion matrix in Fig. 9 gives an overview
of the classification result for the proposed method in test set.
It shows the per class precision and recall results as well.

We compared our model with other machine learning meth-
ods such as logistic regression, support vector machine (SVM),
decision tree (DT), and Gaussian Naı̈ve Bayes (GNB). Our
model surpasses other machine learning methods in terms of
accuracy on proposed combined GMF and RSS data, which
can be shown in Fig. 10. Although some machine learning
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Fig. 7. The accuracy of RSS data for cascaded LSTM over mini-batch training
iterations.
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Fig. 8. The cost of RSS data for cascaded LSTM over mini-batch training
iterations.

methods perform close to our model, the data modelling
capacity of shallow structure methods fails to capture reliable
features as size of the data set increases. Therefore, we believe
that if a large number of samples are present, our model can
still perform better than other methods.

IV. CONCLUSION

In this paper, we propose cascaded unidirectional and bidi-
rectional model for indoor space classification using GMF and
RSS data. We experimentally collect data at various indoor
subspaces and then propose an LSTM based structure for
learning. We evaluate the performance of our model and com-
pare it with other approaches. The result shows that our model,
when both GMF data and RSS data are employed, outperforms
the other evaluated methods. The improved performance is
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Fig. 9. Confusion matrix of the test data for proposed method.

TABLE II
TRAINING AND TESTING ACCURACY

Methods Train Accuracy Test Accuracy
RSS 96.10% 92.01%
GMF 99.2% 93.49%

GMF + RSS 100% 98.95%

mainly due to the capability of our model for extracting
distinctive features.

In the future, the study can be carried out when magnetic
sensor is better calibrated for building a more accurate data set.
Besides, the number of subspaces can be increased in bigger
indoor place for commercial and industrial application.
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