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Abstract—Offshore jacket structures are regarded as a 
suitable type of support structure for offshore wind turbines in 
immediate water depths. Because of the welded tubular 
members used and environmental conditions, offshore jackets 
are often subjected to fatigue damages during their service life. 
Underwater sensors can provide measurements of the structural 
vibration signals and provide an efficient way to detect damages 
at early stages. In this work, simplified forms of the damages are 
assumed, random damages are imposed on the jacket structure, 
and damaged indicators are established from combination of 
modal shapes. Then, a response surface is constructed mapping 
the damage indicators and damages. Given that the efficiency of 
the damage identification depends on the locations of the 
damages and the location and number of sensor locations, a 
sensitivity study is performed to vary sensor location, sensor 
quantity, and damage severity. It is found that the effect of 
damage identification is better when sensor locations are closer 
to damage locations, and this effect is more sensitive to sensor 
placements when damages occur in the upper structures. 
Additionally, the identification effect is more sensitive to 
damage severity than to occurrence of multiple damages.  

Keywords—damage identification; jacket; structural modal 
analysis; artificial neural network; sensor. 

I. INTRODUCTION  

The offshore wind industry has been booming in the past 
decade. In  2018, Europe connected 409 new offshore wind 
turbines to the grid across 18 projects [1]. Among the various 
types of support structures for offshore wind turbines 
(OWTs), jackets were the second most used substructure, 
representing 24.5% of all foundations installed as of 2018 [1]. 
A typical offshore jacket support structure consists of slender 
steel structural members welded at tubular joints. Compared 
to other offshore structures like monopiles, jacket structures 
are subjected to minimal wave impacts because of the small 
cross section in the splash zone. Accordingly, jacket supported 
OWTs have the potential to be deployed at water depths 
beyond 50 meters. However, the development of jacket-
supported offshore wind farms also faces challenges during 
manufacturing and onshore storage [2]. Fatigue failure of 
jacket structures due to welded joints is another problem. To 
avoid premature failures, efforts have been made to predict the 
fatigue life accurately and to make reliability-based inspection 
planning at an early stage of a project [3, 4]. For example, 

Dong et al. [5] performed long-term fatigue analysis of welded 
multi-planar tubular joints for a jacket OWT in a water depth 
of 70 m, and dynamic response analysis is often involved 
because of the complexity of dynamic loads [6]. this document 
and are identified in italic type, within parentheses, following 
the example. Some components, such as multi-leveled 
equations, graphics, and tables are not prescribed, although the 
various table text styles are provided. The formatter will need 
to create these components, incorporating the applicable 
criteria that follow. 

On the other hand, damage identification based on sensor 
measurements provide another effective means for early 
detection of damages. Given that the dynamic properties of a 
structure like eigenmodes and eigenfrequencies are affected 
by the change in structural details, such properties, if 
measurable, could be utilised further in damage detection 
using an inverse method. Asgarian et al. [7] used the rate of 
signal energy of wavelet packet transform as a damage index 
and used measured accelerations of sensors to compute the 
damage indices. Mangalathu et al. [8, 9]  considered various 
machine learning techniques to identify the failure modes of 
beam-column joints and to estimate the shear strength. Guo et 
al. [10] applied artificial neural networks (ANNs) to examine 
the model updating of a suspended dome considering both 
experimental and numerical models. In another work, Guo et 
al. [11] proposed using partial modal results in the damage 
identification of offshore jackets and found that the prediction 
errors are sensitive to damage locations. These works 
demonstrate that machine learning methods together with 
numerical or experimental data can provide good estimate of 
damages. 

To reduce the operation and maintenance costs of jacket 
supported OWTs, we can consider the use of sensors for 
measuring the vibration signals of support structures and 
apply mathematical models to detect early failures. Because 
reliable off-the-shelf sensors like global positioning systems 
(GPS) and inertial measurement units (IMU) are expensive 
[12], it is interesting to know if minimum number of sensors 
can be used and how the damage identification results vary in 
different damage scenarios. To this end, this paper selects a 
representative jacket support structure of an OWT and carries 
out a sensitivity study applying the finite element method, a 



response surface methodology and the principle of Monte 
Carlo Simulations. The structure of the paper is as follows. 
Chapter 2 discusses the methodology; Chapter 3 presents a 
case study for a 5-megawatt (MW) OWT, followed by 
discussions of the results in Chapter 4. Finally, conclusions 
are drawn in Chapter 5. 

II. METHODOLOGY 

A. Damage Identification indices 

The basic equation for structural modal analysis is known 
to be 

K ω M φ 0   
where K and M are respectively the structural stiffness matrix 
and mass matrix. For submerged parts, the mass matrix 
should include hydrodynamic added mass. 𝜔  and 𝜑  denote 
the ith-order structural eigenfrequency and modal shape, 
respectively.  Because of the orthogonality of the modal 
shapes, we can express the square frequency as 

ω φ Kφ φ Mφ⁄     (2) 

In the presence of structural damage, if the total stiffness 
matrix, K changes by ∆K and the square frequency and modal 
shape change by ∆ω  and ∆𝜑 , respectively, then (1) can be 
rewritten as 

 K ∆K ω ∆ω 𝑀 φ ∆φ 0 (3) 

Ignoring the high-order terms, (3) can be simplified as 
  ∆ω φ ∆Kφ φ Mφ⁄   (4) 

If the square frequency of the intact structures is defined 
as 𝜔 , then the relative difference of the square frequency for 
the ith-order can be expressed as: 

𝑅𝐸
∆ ∆

   (5) 

The difference for the ith modal shape can be expressed 
as 

  ∆φ φ φ    (6) 

where φ  and φ  are the ith-order modes for the damaged 
structure and the intact structure, respectively. For offshore 
structures like jackets, underwater sensors can be installed to 
measure nodal displacements and modal results. Although 
the high-order modes are more sensitive to structural 
damages than the low-order modes [13], accurate high-order 
modal results are often difficult to obtain possibly due to 
measurement errors and noise. The large number of damage 
indices also makes it difficult for data training. Accordingly, 
we consider partial modal results as suggested by Guo et al. 
[11] in this work. The sum of the first n modal results at each 
measurement position is expressed as the simplified damage 
index as follows 
 ∆Ψ ∑ ∆𝜑𝑥 ∑ ∆𝜑𝑦 ∑ ∆𝜑𝑧  (7) 

where ∆𝜑𝑥  , ∆𝜑𝑦 , and ∆𝜑𝑧 are the jth-order modal shape 

difference for the ith measurement position in the x-, y-, and 
z-directions, respectively. 

 

B. Damage identification method 

The damage identification method applied here can 
generally be referred to as an inverse method, because we 
would like to estimate the damage based on measurable 
damage identification indices as the input parameters. 

Response surface methods [14] can be applied to establish the 
mapping between the input and output parameters. Common 
response surfaces (RS) are polynomials, Kriging models, and 
ANNs. Applications of RS in offshore engineering can be 
found in [15-17]. In this work, we considered backpropagation 
neural networks to represent the RS, and used the combined 
damage index [𝑅𝐸, ∆Ψ] and the element damages (ΔE) as the 
training data for the networks. Here, the element damage is 
defined as the ratio of the young’s modulus between the 
damaged and intact structural elements: 

∆E E /E    (8) 
Note that the ratio will lie between 0 and 1. Fig. 1 

illustrates the damage identification process, where the 
structure of the ANNs can be identified by trial and error. 
When the RS is established by a set of training data, damage 
predictions can be made for any new input parameters. 

 

C. Procedure of analysis 

Fig. 2 shows the analysis procedure considered in this 
work. First, a finite element model is established to perform 
the modal analysis of the intact structure of interest and the 
results are verified against literature. Second, Monte Carlo 
Simulations are performed, imposing random damages on 
specified structural members, followed by modal analysis for 
the intact and damaged structures. From the modal analysis, 
eigenfrequencies and modal shapes are obtained, and they 
will be further used to calculate the damage indices. The 
dataset will be divided into a training sample and a test 

sample. The former will be used to establish the ANN 
structure, and the latter will be used to predict the damages.  

 
Fig. 2 Flowchart of this work 

 
Fig. 1 Illustration of the damage identification process 



The mean squared error (MSE) is the main metric used to 
calculate the summed errors between the predicted and 
original values of the test sample. If the sample consists of N 
data and is divided into r groups, and the variance of group i 
is  𝜎 , then MSE can be expressed as 

MSE
∑

   (9) 

III. CASE STUDY 

In this chapter, a case study of a 5-MW OWT is presented. 
The finite element modelling details are introduced, and the 
numerical study is described. 

A. Description of the jacket-supported offshore wind 
turbine 

As shown in Fig. 3 (left), a traditional jacket supported 
OWT has a rotor, a tower, a heavy transition piece, tubular 
members and leg piles. Fig. 3 (right) shows the support 
structure of a four-legged 5-MW jacket OWT that was 
originally designed for 70-m water depth in the North Sea [5]. 
The jacket foundation has a height of approximately 96 m and 
is partly submerged in seawater. 
 

B. Finite element modelling 

The support structure excluding the nacelle or the blades 
is modelled using the APDL programming language provided 
by ANSYS [18]. The PIPE59 element type with tension-
compression, torsion, and bending capabilities was selected 
for the bracings. This element type has six degrees of freedom 
at each node. The welds were not modelled explicitly. A 
Poisson’s ratio of 0.3 and a density of 7850 kg/m3 were 
applied for the steel members. For the intact jacket, a young’s 
modulus of 2.1 10  Pa for the steel members is 

considered. A convergency study is carried out to determine 
the mesh size, and a mesh size of 0.2 m was considered. The 
soil-pile interaction of the jacket piles was not modelled, and 
the jacket structure is assumed to be rigidly fixed to the seabed 
in this paper. The influence of soil-pile interaction on the 
structural eigenfrequencies is expected to be small [5].  

C. Sensor location and imposed damages 

Although the underwater sensors can be installed at any 
locations, we focus on the nodal points of the jacket structure, 
as these points can be more sensitive to the global modes of 
the structure. Fig. 4 illustrates the top, centre, and bottom 
locations of the sensors. For each ease, 12 sensors, marked by 
green dots, are shown. We did not consider random sensor 
locations here but gradually increase or decrease the sensor 
numbers in the sensitivity study.  It is intuitive that the more 
sensors, the more effective the damage identification. For 
installation and maintenance purposes, sensors close to the 
waterline are preferred.  

In the numerical study, random damages were imposed on 
the damaged structural members by modifying the young’s 
modulus by Monte Carlo Simulations. For most cases, the 
damage severity denoted by the ratio according to Equation 
(6) lies between 0 and 0.5. For the cases with severe damages, 
the damage severity is between 0.5 and 1.0, depending on the 
random number generated. Both specified damage locations 
and random damage locations were considered in the analysis.  

D.  Training and testing of samples 

As aforementioned, a training sample will be used for 
training of the ANNs with the purpose of reducing the errors 
between actual damages and predicted damages. Then, the 
trained ANNs will be applied to predict new damages given 
new inputs. For each scenario, 10000 testing data and 2000 
training data were selected for the training and testing 
samples, respectively, after a preliminary study. Further 
increase in the testing sample leads to better prediction effect 
but may also involve additional computational time. For the 
ANNs, the sigmoidal function was selected as the activation 
function, and a three-layered structure was determined. The 
numbers of neurons for the input, hidden, and output layer are 
18, 17, 8, respectively. This structure was determined by trial 
and error. 

 

 

Fig. 3 Schematic of a jacket support structure for an offshore wind 
turbine 

 

Fig. 4 Illustration of the three sensor locations considered in this work 



IV. RESULTS AND DISCUSSION 

A. Validation of the structural model 

As structural eigenmodes and eigenfrequencies are of 
most interest, modal analysis of the intact jacket support 
structure was carried out, and the first six modal shapes are 
presented in Fig. 5. As shown, the first four modes correspond 
to global mode shapes including side-side and fore-aft modes, 
whereas the fifth mode has a local mode with bending of a 
horizontal bracing. As the jacket structure is symmetrical 
about the z-axis, some mode shapes have the same magnitude 
in the tower-top offset. 

Table 1 Comparison of the eigenfrequencies of the present model and [5]. 

 First eigenmode (Hz) Second eigenmode (Hz) 

Present model 0.3575 1.6821 

Reference  0.3486 1.6863 

Relative 
difference (%) 

2.55 0.25 

 
Table 1 compares the first and second eigenfrequencies of 

the modelled support structure with the reference. The relative 
differences for both modes are less than 3% and can be 
deemed acceptable. Thus, the present structural model, mesh 
size, and element types are further used in damage 
identification.  

 
 

 
 

 

 
 
 
 
 
 
 
 

Fig. 5 Illustration of the first six modal shapes of the jacket structure 

 
Fig.7 Variation of mean square error with sensor number, with eight 
damaged members at the top 

 
Fig. 8 Variation of mean square error with sensor number, with eight 
damaged members in the centre 

 
Fig. 9 Variation of mean square error with sensor number, with eight 
damaged members at the bottom 

 
Fig. 6 Illustration of eight damaged members at the top, in the middle 
and at the bottom (from left to right) 



B. Effect of sensor location and sensor number on damage 
identification 

Specified damaged members at different locations of the 
jacket are illustrated in Fig. 6. For these members, the 
variation of MSE with sensor location and sensor number is 
shown. The sensor number is increased from 1 to 16. In the 
legends of Figs. 7-9, “top to centre”, “centre to bottom”, 
“centre to top”, and “bottom to centre” refer to the order of 
sensor number increment. The sensors are initially placed at 
the top nodal points. For example, for “top to centre” in Fig.7, 
the first four sensors are placed at nodes 31, 25, 27, 29, 
respectively, followed by nodes 19, 1, 7, 13 if the sensor 
number rises to eight. For the case of eight damaged members 
at the top (Fig.7), the MSE for the sensor placement of “top to 
centre” stays the lowest among the four placements. This is 
reasonable as the damage identification effect is expected to 
be good when the damages occur in proximity to the sensors. 
Comparing the three figures for a sensor number, the effect of 
the sensor placements on MSE appears to be the smallest 
when the damaged members are in the bottom. This 
observation is probably because damages in the upper 
structural parts result in greater changes in the modal 
information, as indicated by the modal shapes and boundary 
 conditions. Since this study assumes random occurrence of 
damages, the top sensor placement is preferred.  Another 
question arises about the proper sensor number. In general, the 
MSE experiences a steep descent when the sensor number 
increases from 1 to 10. Further increase in the sensor number 
may still slightly improve the MSE with additional costs.  

Fig. 10 presents the MSE results considering 12 sensors 
with varying sensor and damage locations. The observation is 
in line with previous figures, as MSE continues to be lowest 
when sensor and damage locations are close. The spread 
sensor scenario is included in addition. As shown, when the 
12 sensors are spread over the jacket structure, the average 
MSE maintains the minimum. Although this can be difficult 
in practice, the industry should evaluate this option when 
considering damage identification. 

C. Sensivity to damage severity 

 Here, 12 sensors are assumed to be installed either at the 
top or at the centre, but damages are imposed on random 
structural members; see Fig. 11 for the case of three and four 
damaged members. Two levels of damage severity are 
considered. The first level has light damages with 0-50% 

changes in the steel’s young’s modulus and the second level 
has severe damages with 50-80% changes in the young’s 
modulus. As shown in Fig. 12, MSE has a substantial decrease 
when the severity level increases, indicating the potential 
improvements in the damage prediction accuracy. As the 
damaged members are randomly selected, there is limited 
difference between the two predetermined sensor locations. 
Interestingly, for both damage levels, the MSE does not 
change too much when the number of damaged members 
increase from 1 to 4.  This indicates that the damage 
identification approach is valid for different damage 
scenarios. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11 Schematic of 12 sensors located at the top and random damage 
locations (left: three damaged members; right: four damaged members) 

 

Fig. 12 Effect of damage severity on damage identification with 
varying number of damaged elements 
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Fig. 10 Effect of sensor location on the mean square error of damage 
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V. CONCLUSION 

This paper presents a damage identification of a jacket 
support structure of an offshore wind turbine. Artificial neural 
networks are used to establish the response surface which 
correlates the damage indices with damages. A sensitivity 
study is carried out in a finite element program, assuming 
simplified forms of damages and imposing random damages 
on the structural members. Based on the study, the following 
conclusions are drawn: 

 When damages are in the upper regions of the jacket 
structure, the influence of sensor placement on the 
sensitivity of the mean square error of damage 
identification is relatively small.  

 The damage identification method achieves good 
results when the damages occur in the proximity to 
sensor placements.  

 The damage identification effect is affected by the 
number of sensors used, especially when the sensor 
number is small. More than 10 sensors should be 
used for damage identification purposes. Note that 
for a jacket of different sizes, this number may also 
change. 

  For a given number of randomly selected damaged 
members, the effect of damage identification is 
improved significantly when the damage severity 
increases. 

 

VI. FUTURE WORK 

This work presents an application of a damage 
identification approach to the jacket-supported offshore wind 
turbines. The wind turbine components including blades and 
nacelle are not included in the structural model. It is 
interesting to further verify this approach in damage 
identification of blade or drivetrain components. As the jacket 
structure is primarily submerged underwater, the 
hydrodynamic added mass is expected to affect the modal 
modes and frequencies [19]. This work does not examine the 
influence of added mass on the damage identification, either. 
This aspect is relevant for practical deployment of jacket wind 
turbines. Finally, simplified assumptions are made for the 
damages by reducing the young’s modulus and by considering 
random damages throughout the structure. These 
simplifications can be improved by more realistic 
considerations in future. 
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