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Abstract. A ∆-point x of a Banach space is a norm one element
that is arbitrarily close to convex combinations of elements in the
unit ball that are almost at distance 2 from x. If, in addition, every
point in the unit ball is arbitrarily close to such convex combina-
tions, x is a Daugavet-point. A Banach space X has the Daugavet
property if and only if every norm one element is a Daugavet-point.

We show that ∆- and Daugavet-points are the same in L1-
spaces, L1-preduals, as well as in a big class of Müntz spaces. We
also provide an example of a Banach space where all points on the
unit sphere are ∆-points, but where none of them are Daugavet-
points.

We also study the property that the unit ball is the closed convex
hull of its ∆-points. This gives rise to a new diameter two property
that we call the convex diametral diameter two property. We show
that all C(K) spaces, K infinite compact Hausdorff, as well as all
Müntz spaces have this property. Moreover, we show that this
property is stable under absolute sums.

1. Introduction

Let X be a real Banach space with unit ball BX , unit sphere SX , and
dual X∗. Recall that X has the local diameter two property (LD2P)
if every slice of BX has diameter two. Recall that a slice of BX is a
subset of the form

S(x∗, ε) = {x ∈ BX : x∗(x) > 1− ε},
where x∗ ∈ SX∗ and ε > 0.

For x ∈ SX and ε > 0 denote
∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.

We say that x ∈ SX is a ∆-point if we have x ∈ conv ∆ε(x), the norm
closed convex hull of ∆ε(x), for all ε > 0. The set of all ∆-points in
SX is denoted by ∆, i.e.

∆ = {x ∈ SX : x ∈ conv ∆ε(x) for all ε > 0}.

2010 Mathematics Subject Classification. Primary 46B20, 46B22, 46B04.
Key words and phrases. Diametral diameter two property, Daugavet property,

L1-space, L1-predual space, Müntz space.
R. Haller and K. Pirk were partially supported by institutional research funding

IUT20-57 of the Estonian Ministry of Education and Research.
1



2 T. A. ABRAHAMSEN, R. HALLER, V. LIMA, AND K. PIRK

We will sometimes need to clarify which Banach space we are working
with and write ∆X

ε (x) and ∆X instead of ∆ε(x) and ∆ respectively.
The starting point of this research was the discovery that if a Banach

space X satisfies BX = conv ∆, then X has the LD2P.
We study spaces that satisfy the property BX = conv ∆ in Section 5.

The case SX = ∆, i.e. x ∈ conv ∆ε(x) for all x ∈ SX and ε > 0, has
already appeared in the literature, but under different names: The
diametral local diameter two property (DLD2P) ([5]), the LD2P+ ([1]
and [2]), and space with bad projections ([13]). We will use the term
DLD2P in this paper. From [18, Corollary 2.3 and (7) p. 95] and [13,
Theorem 1.4] the following characterization is known.
Proposition 1.1. Let X be a Banach space. The following assertions
are equivalent:

(1) X has the DLD2P;
(2) for all x ∈ SX we have x ∈ conv ∆ε(x) for all ε > 0;
(3) for all projections P : X → X of rank-1 we have ‖Id−P‖ ≥ 2.
Related to the DLD2P is the Daugavet property. We have (cf. [18,

Corollary 2.3]):
Proposition 1.2. Let X be a Banach space. The following assertions
are equivalent:

(1) X has the Daugavet property, i.e. for all bounded linear rank-1
operators T : X → X we have ‖Id− T‖ = 1 + ‖T‖;

(2) for all x ∈ SX we have BX = conv ∆ε(x) for all ε > 0.
Clearly the Daugavet property implies the DLD2P, but the converse

is not true [13, Corollary 3.3].
We will say that x ∈ SX is a Daugavet-point if we have BX =

conv ∆ε(x) for all ε > 0. Every Daugavet-point is a ∆-point, but the
converse might fail (see Example 4.7 for an extreme example of this).

In our language, [18, (7) p. 95] states that a Banach space X the
DLD2P is equivalent to:

(D) For all projections P : X → X of rank-1 and norm-1 we have
‖Id− P‖ = 2.

This statement is repeated in [2, Theorem 3.2] and used in the argument
of [2, Theorem 3.5 (i)⇔ (iii)]. In the case of the Daugavet property, it
is enough to consider only norm 1 operators T . This follows by scaling
(see the argument below Definition 2.1 in [18]). However, a scaled
projection is not a projection. Upon request, neither the authors of [2]
nor [18] have been able to give a correct proof that (D) is equivalent
to the DLD2P. Thus the validity of this equivalence is still an open
question.

Through an investigation of ∆- and Daugavet-points in concrete
spaces, we have been able to show that for L1(µ)-spaces, where µ is a
σ-finite measure on an infinite set, and for L1(µ)-predual spaces, the
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property in (D) is equivalent to the DLD2P (and even to the Daugavet
property) (see Theorems 3.3 and 3.8 below).

In connection with the open problem just mentioned, it is worth
noting that for X = `1 a pointwise version of the property (D) holds
for some x ∈ SX even though SX has no ∆-points (see Proposition 2.3
and Theorem 3.1).

In the following we will bring in our main results. In Section 3 we
look at the ∆- and Daugavet-points in L1(µ) spaces when µ is a σ-finite
measure, preduals of L1(µ) spaces for such measure µ, and a big class
of Müntz spaces. We prove that ∆- and Daugavet-points are the same
in all these cases (see Theorems 3.1, 3.7, and 3.13).

In Section 4 we show that there are absolute normalized norms N ,
different from the `1- and `∞-norms, for which X ⊕N Y has Daugavet-
points, and also suchN for whichX⊕NY fails to have Daugavet-points.

In Section 5 we introduce the convex diametral diameter two prop-
erty (convex DLD2P) defined naturally using ∆-points. We show that
this property lies strictly between the properties DLD2P and LD2P
(see Corollary 5.6). We give examples of classes of spaces with the con-
vex DLD2P, more precisely we show that all C(K) spaces, K infinite
compact Hausdorff, as well as all Müntz spaces, have this property (see
Proposition 5.3 and Theorem 5.7). We also prove that if X and Y have
the convex DLD2P, then the sum X ⊕N Y has this property whenever
N is an absolute normalized norm (see Theorem 5.8).

2. Preliminaries

We start this section collecting some characterizations of ∆- and
Daugavet-points from the literature.

Lemma 2.1. Let X be a Banach space and x ∈ SX . The following
assertions are equivalent:

(1) x is a ∆-point, that is x ∈ conv ∆ε(x) for every ε > 0;
(2) for every slice S of BX with x ∈ S and for every ε > 0 there

exists y ∈ S such that ‖x− y‖ ≥ 2− ε;
(3) for every x∗ ∈ X∗ with x∗(x) = 1 the projection P = x∗ ⊗ x

satisfies ‖Id− P‖ ≥ 2.

Proof. The equivalence of (1)⇔ (2) is proved using Hahn-Banach sep-
aration.

The equivalence (2)⇔ (3) is a pointwise version of [13, Theorem 1.4]
and the same proof works. �

Lemma 2.2. Let X be a Banach space and x ∈ SX . The following
assertions are equivalent:

(1) x is a Daugavet point, that is BX = conv ∆ε(x) for every ε > 0;
(2) for every slice S of BX and for every ε > 0 there exists y ∈ S

such that ‖x− y‖ ≥ 2− ε;
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(3) for every nonzero x∗ ∈ X∗, the rank-1 operator T = x∗ ⊗ x
satisfies ‖Id− T‖ = 1 + ‖T‖;

(4) for every x∗ ∈ SX∗ the rank-1 norm-1 operator T = x∗ ⊗ x
satisfies ‖Id− T‖ = 2.

Proof. The equivalence (2) ⇔ (3) is a pointwise version of Lemma 2.2
in [14]. The equivalence (1) ⇔ (2) follows by Hahn-Banach separation
as observed by [18, Corollary 2.3].

While (3)⇒ (4) is trivial the implication (4)⇒ (3) follows by scaling
as explained in the paragraph following Definition 2.1 in [18]. �

The next proposition shows that we cannot add a version of Lemma 2.2 (4)
to Lemma 2.1. In fact, we will see in Theorem 3.1 that no point on the
sphere in `1 is a ∆-point.

Proposition 2.3. Let X = `1 and x = (xi)∞i=1 ∈ SX a smooth point
with |x1| > 1/3. Then:

(1) for x∗ ∈ SX∗ with x∗(x) = 1, the projection P = x∗⊗x satisfies
‖Id− P‖ = 2;

(2) the projection P = x−1
1 e∗1 ⊗ x satisfies ‖Id− P‖ < 2.

Proof. Write x = (xi)∞i=1. Let x∗ := (sign xi)∞i=1 ∈ SX∗ and P := x∗⊗x.
Observe that x∗(x) = 1. If en is the n’th standard basis vector in X,
then

‖(Id− P )(en)‖ = ‖en − sign xnx‖ = |1− (sign xn)xn|+
∑
i 6=n
|xi|

= 1− |xn|+ ‖x‖ − |xn| = 2− 2|xn|,

and since this holds for all n we get ‖Id− P‖ = 2.
Let P := x−1

1 e∗1⊗x, where e∗i is the i’th coordinate vector inX∗ = `∞.
Observe that x−1

1 e∗1(x) = 1, so that P is a projection. If y ∈ SX we get

‖(Id− P )y‖ = ‖y − x−1
1 y1x‖ =

∑
i>1
|yi − x−1

1 y1xi|

≤
∑
i>1
|yi|+ |x1|−1|y1|

∑
i>1
|xi|

= 1− 2|y1|+ |x1|−1|y1| ≤ 1 +
∣∣∣2− |x1|−1

∣∣∣ < 2,

so ‖Id− P‖ < 2, and we are done. �

Let us note that both the DLD2P and property (D) pass from the
dual to the space.

Proposition 2.4. Let X be a Banach space. Then:
(1) if X∗ has the DLD2P, then X has the DLD2P;
(2) if ‖IdX∗ − P‖ = 2 for all norm-1 rank-1 projections P on X∗,

then ‖IdX −Q‖ = 2 for all norm-1 rank-1 projections Q on X.
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Proof. The second statement is trivial, while the first one only requires
a bit of rewriting: If Q is a rank-1 projection on X, then Q = x∗ ⊗ x
with x∗ ∈ X∗, x ∈ SX , and x∗(x) = 1. Then

P = Q∗ = x⊗ x∗ = (‖x∗‖x)⊗ x∗

‖x∗‖

is a rank-1 projection on X∗ and by assumption ‖IdX∗ −P‖ = ‖IdX −
Q‖ ≥ 2. �

As we noted in the Introduction, we do not know if the property
in (D) is equivalent to the DLD2P. We end this section by observing
that, just like the DLD2P, property (D) implies that all slices of the
unit ball of both the space and its dual have diameter two. (See [13,
Theorem 1.4] and [2, Theorem 3.5] for the corresponding DLD2P re-
sult.) The following result also shows that despite of Proposition 2.3,
`1 is not a candidate for separating property (D) and the DLD2P since
`1 does not have the LD2P.

Proposition 2.5. Let X be a Banach space. If ‖Id − P‖ = 2 for all
norm-1 rank-1 projections P on X, then X has the LD2P and X∗ has
the w∗-LD2P.

Proof. Let x∗ ∈ SX∗ and ε > 0 define a slice S(x∗, ε). Let δ > 0
such that δ < ε

2 . Find y∗ ∈ SX∗ such that y∗ attains its norm on BX

and ‖x∗ − y∗‖ < ε
2 . Let y ∈ BX be such that y∗(y) = 1 and define

P = y∗⊗y. Then ‖Id−P‖ = 2 by assumption and we can find z ∈ SX
such that

‖z − P (z)‖ = ‖z − y∗(z)y‖ > 2− δ.

We may assume that y∗(z) > 0. We have

y∗(z) = |y∗(z)| = ‖P (z)‖ ≥ ‖P (z)− z‖ − ‖z‖ > 2− δ − 1 > 1− ε

2 .

Hence

x∗(z) = y∗(z)− (y∗ − x∗)(z) > 1− ε

2 −
ε

2 = 1− ε,

i.e. z ∈ S(x∗, ε), and

‖z − y‖ ≥ ‖z − y∗(z)y‖ − ‖y∗(z)y − y‖ > 2− δ − |y∗(z)− 1| > 2− 2δ.

This proves that X has the LD2P.
To show that X∗ has the w∗-LD2P we start with a w∗-slice S(x, ε),

where x ∈ SX and ε > 0. Then we find a y∗ ∈ SX∗ where ‖Id∗ − P ∗‖
almost attains its norm. The proof is similar to the LD2P case. �
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3. ∆- and Daugavet-points for different classes of spaces

In the first two parts of this section we study ∆- and Daugavet-points
in Banach spaces X of the type L1(µ), C(K), and L1(µ)-preduals. Cru-
cial in our study is the discovery that a ∆-point f ∈ SX can be char-
acterized in terms of properties of the support of f (see Theorems 3.1
and 3.4). These characterizations of being a ∆-point are easy to check,
and we use them to prove that ∆- and Daugavet-points are in fact the
same in all such spaces X. For example, if X = C([0, ω]) = c then the
Daugavet-points are exactly the sequences with limits ±1.

In the last part of the section we study ∆- and Daugavet-points in
Müntz spaces X of the type M0(Λ) ⊂ M(Λ) ⊂ C[0, 1] (see Subsection
3.3 for a definition of a Müntz space). Our initial motivation for doing
this, was the known fact that such spacesX are isomorphic, even almost
isometrically isomorphic in the case X = M0(Λ), to subspaces of c (see
[17] and [16]). Based on this, the results from [3], and other results
from [16] one could expect similar results for Müntz spaces as for c.
And, indeed, this is the case, at least for X = M0(Λ) (see Theorem
3.13). In this class of Müntz spaces the ∆- and Daugavet-points are
the same and the Daugavet-points are exactly the functions f ∈ SX
for which f(1) = ±1.

3.1. L1(µ) spaces. Let µ be a (countably additive, non-negative) mea-
sure on some σ-algebra Σ on a set Ω. We will assume that µ is σ-finite
even though it is not strictly necessary in all the results. As usual an
atom for µ is a set A ∈ Σ such that 0 < µ(A) <∞, and if B ∈ Σ with
B ⊆ A satisfies µ(B) < µ(A), then µ(B) = 0.

In this section we consider the space L1(µ) = L1(Ω,Σ, µ).
Theorem 3.1. The following assertions for f ∈ SL1(µ) are equivalent:

(1) f is a Daugavet point;
(2) f is a ∆-point;
(3) supp(f) does not contain an atom for µ.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3). Fix f ∈ SL1(µ). Let A be an atom in supp(f). Note that

a measurable function is a.e. constant on an atom. We may assume
that f |A = c a.e. for some positive constant c. Fix 0 < ε < 2cµ(A).

Let g ∈ BL1(µ) be such that ‖f − g‖ ≥ 2 − ε. We have g|A = d for
some constant d. Note that

2− ε ≤
∫

Ω
|f − g|dµ =

∫
Ω\A
|f − g|dµ+

∫
A
|f − g|dµ

≤
∫

Ω\A
|f |dµ+

∫
Ω\A
|g|dµ+

∫
A
|f − g|dµ

≤ 1−
∫
A
|f |dµ+ 1−

∫
A
|g|dµ+

∫
A
|f − g|dµ

= 1− cµ(A) + 1− |d|µ(A) + |c− d|µ(A).
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Therefore
cµ(A) + dµ(A) ≤ |c− d|µ(A) + ε.

If c ≤ d, then |c− d| = d− c and we get c ≤ ε
2µ(A) , and this contradicts

our choice of ε. Thus we have c ≥ d, and hence |c − d| = c − d and
d ≤ ε

2µ(A) < c.
If g1, . . . , gm ∈ ∆ε(f), then

‖f −
m∑
i=1

1
m
gi‖ ≥

∫
A
|f −

m∑
i=1

1
m
gi| dµ ≥ (c− ε

2µ(A))µ(A) > 0.

This shows that f /∈ conv ∆ε(f) for this choice of ε.
(3)⇒ (1). Let f ∈ SL1(µ) such that supp(f) does not contain atoms.

Let ε > 0, δ > 0, and x∗0 ∈ SL1(µ)∗ . By Lemma 2.2 we need to find
g ∈ SL1(µ) with ‖f − g‖ ≥ 2− ε such that g ∈ S(x∗0, δ).

Since µ is σ-finite (so that L1(µ)∗ = L∞(µ)) we can find a step-
function x∗ = ∑n

i=1 aiχEi ∈ SL1(µ)∗ such that ‖x∗ − x∗0‖ < δ (and the
Ei ∩ Ej = ∅ for i 6= j).

We may assume that |a1| = 1. Find subset a A of E1 such that∫
A |f |dµ < ε/2. Define

g := sign(a1)
µ(A) χA ∈ SL1(µ).

Then

x∗(g) =
n∑
i=1

∫
Ei
aigdµ = 1

µ(A)

∫
A
a1 sign(a1)dµ = 1,

‖f − g‖ =
∫
Ac
|f |dµ+

∫
A
|f − g|dµ ≥ |f |+ |g| − 2

∫
A
|f |dµ ≥ 2− ε,

and finally
x∗0(g) = x∗(g)− (x∗ − x∗0)(g) > 1− δ

as desired. �

Lemma 3.2. If µ is a measure with an atom, then L1(µ) does not have
the LD2P.

Proof. Assume that A is an atom and consider χA ∈ L1(µ)∗. We have
‖χA‖ = 1. If f ∈ S(BL1(µ), χA, ε), then

f(t) > 1− ε
µ(A) for a.e. t ∈ A,

and
f(t) ≤ 1

µ(A) for a.e. t ∈ A.

Hence ‖f |A‖ > 1− ε and ‖f |AC‖ < ε.
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Thus for f1, f2 ∈ S(BL1(µ), χA, ε) we have

‖f1 − f2‖ ≤
∫
Ac
|f1 − f2| dµ+

∫
A
|f1 − f2| dµ

≤ ‖f1|Ac‖+ ‖f2|Ac‖+
∫
A

ε

µ(A) dµ ≤ 3ε,

so this slice does not have diameter 2. �

Theorem 3.3. Consider X = L1(µ). The following assertions are
equivalent:

(1) ‖Id− P‖ = 2 for all norm-1 rank-1 projections on X;
(2) X has the Daugavet property.

Proof. If (1) holds, then X has the LD2P by Proposition 2.5. From
Lemma 3.2 we see that X does not have atoms. By [6] (see also [7] for
the explicit statement for L1(µ) spaces) X has the Daugavet property.

The other direction is trivial. �

3.2. C(K) and L1(µ)-predual spaces. In the following we explore
the ∆- and Daugavet-points in the class of L1(µ)-predual spaces and
C(K) spaces. We start with a characterization of both Daugavet and
∆-points in C(K) spaces.

Theorem 3.4. Let K be an infinite compact Hausdorff space. The
following assertions for f ∈ SC(K) are equivalent:

(1) f is a Daugavet point;
(2) f is a ∆-point;
(3) ‖f‖ = |f(x0)| for a limit point x0 of K.

Proof. (1) ⇒ (2) is trivial.
(3)⇒ (1). Let f ∈ SC(K) and assume that there is a limit point x0 of

K such that |f(x0)| = 1. We will show that f is a Daugavet-point. Fix
g ∈ BX , ε > 0, and m ∈ N. Consider a neighbourhood U of x0 such
that |f(x0) − f(x)| < ε for every x ∈ U . Since x0 is a limit point, we
can find m different points x1, . . . , xm ∈ U and corresponding pairwise
disjoint neighbourhoods U1, . . . , Um ⊂ U . For every 1 ≤ i ≤ m use
Urysohn’s lemma to find a continuous function ηi : K → [0, 1] with
ηi(xi) = 1 and ηi = 0 on K \ Ui. Define gi ∈ BC(K) by

gi(x) =
(
1− ηi(x)

)
g(x)− ηi(x)f(x0).

From gi(xi) = −f(x0) it follows that
‖f − gi‖ ≥ |f(xi)− g(xi)| = |f(xi) + f(x0)| > 2− ε.

Hence gi ∈ ∆ε(f). Note that g − gi = 0 on K \ Ui, and consequently

‖g − 1
m

m∑
i=1

gi‖ ≤
1
m

max
1≤i≤m

‖g − gi‖ ≤
2
m
.

We thus get g ∈ conv ∆ε(f), and so f is a Daugavet-point.
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(2) ⇒ (3). We assume that there is no limit point x of K such that
|f(x)| = 1 and show that f is not a ∆-point. Define

H := {x ∈ K : |f(x)| = 1}.
Then H is a set of isolated points. By compactness, H is finite since
otherwise it would contain a limit point. Note that H is (cl)open hence
δ = 1−maxx∈K\H |f(x)| > 0. Let εh := sign f(h) for all h ∈ H. Since
H 6= ∅ we can define

µ = 1
|H|

∑
h∈H

εhδh,

where δh ∈ SC(K)∗ is the point evaluation map at h. We have ‖µ‖ = 1
and 〈µ, f〉 = 1, hence P = µ⊗ f is a norm 1 projection.

Let g ∈ BC(K) and consider ‖(Id−P )g‖ = ‖g−Pg‖ = ‖g−〈µ, g〉f‖.
For x /∈ H we have

|g(x)− 〈µ, g〉f(x)| ≤ 1 + 1− δ = 2− δ.
While for x ∈ H we use that

〈µ, g〉 = 1
|H|

∑
h∈H

εhg(h)

and εhf(h) = |f(h)| = 1, so that

|g(x)− 〈µ, g〉f(x)| = |g(x)− 1
|H|

∑
h∈H

εhg(h)f(x)|

=
∣∣∣∣(1− 1

|H|

)
g(x)− 1

|H|
∑

h∈H\{x}
εhg(h)f(x)

∣∣∣∣
≤
(

1− 1
|H|

)
+ |H| − 1
|H|

= 2− 2
|H|

.

With ε = min{δ, 2/|H|} we have ‖(Id − P )g‖ ≤ 2 − ε < 2 for all
g ∈ BC(K) hence ‖Id− P‖ < 2. �

Let X be a Banach space such that X∗ is isometric to an L1(µ)-
space, that is, X is a Lindenstrauss space. For such spaces we have
X∗∗ is isometric to the space C(K) for some (extremally disconnected)
compact Hausdorff space K (see [15, Theorem 6.1]). Our next goal is
to show that for such spaces ∆- and Daugavet-points are the same. We
first need a lemma.

Lemma 3.5. Let X be a Banach space and let x, y ∈ SX . The following
assertions are equivalent:

(1) y ∈ conv ∆X
ε (x) for all ε > 0;

(2) y ∈ conv ∆X∗∗
ε (x) for all ε > 0.

Proof. (1) ⇒ (2) is trivial as ∆X
ε (x) ⊂ ∆X∗∗

ε (x).
(2) ⇒ (1). Let ε > 0 and δ > 0. Find y∗∗n ∈ BX∗∗ such that
‖x− y∗∗n ‖ ≥ 2− ε and ‖y −∑m

n=1 λny
∗∗
n ‖ < δ.
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Define E := span{x, y, y∗∗n }. Let η > 0 and use the principle of local
reflexivity to find T : E → X such that

(i) T (e) = e for all e ∈ E ∩X.
(ii) (1− η)‖e‖ ≤ ‖Te‖ ≤ (1 + η)‖e‖.

Then ‖x − Ty∗∗n ‖ = ‖T (x − y∗∗n )‖ ≥ (1 − η)‖x − y∗∗n ‖ > 2 − ε if η is
small enough. Also, if η is small enough,

‖y −
m∑
n=1

λnTy
∗∗
n ‖ ≤ (1 + η)‖y −

m∑
n=1

λny
∗∗
n ‖ < δ.

�

Remark 3.6. The argument shows that the conclusion in Lemma 3.5
also holds in the more general setting of X being an almost isometric
ideal (see [4] for a definition) in Z, replacing X∗∗ with Z.
Theorem 3.7. Let X be an (infinite dimensional) L1(µ)-predual and
x ∈ SX . The following assertions are equivalent:

(1) x is a ∆-point;
(2) x is a Daugavet point.

Proof. (1)⇒ (2). By Lemma 3.5 we get x ∈ conv ∆X∗∗
ε (x) for all ε > 0.

Since X∗∗ is isometric to a C(K)-space, we get from Theorem 3.4 that
x is a Daugavet-point in X∗∗, that is, BX∗∗ = conv ∆X∗∗

ε (x) for all
ε > 0. Using Lemma 3.5 again we get the desired conclusion.

(2) ⇒ (1) is trivial. �

Theorem 3.8. Let X be an L1(µ)-predual. The following assertions
are equivalent:

(1) ‖Id− P‖ = 2 for all norm-1 rank-1 projections P on X;
(2) X has the Daugavet property.

Proof. (2) ⇒ (1) is trivial.
(1)⇒ (2). If ‖Id−P‖ = 2 for all norm-1 rank-1 projections, then X∗

has the w∗-LD2P by Proposition 2.5 which is equivalent to X having
extremely rough norm. By [7, Theorem 2.4] this implies the Daugavet
property for L1(µ)-predual spaces. �

3.3. Müntz space. Now we explore ∆- and Daugavet-points in the
setting of Müntz spaces. Let us first clarify what we mean by such
spaces.
Definition 3.9. Let Λ = (λn)∞n=0 be an increasing sequence of non-
negative real numbers

0 = λ0 < λ1 < · · · < λn < · · ·
such that ∑∞i=1

1
λi

< ∞. Then M(Λ) := span{tλn}∞n=0 ⊂ C[0, 1] is
called the Müntz space associated with Λ.

We will sometimes need to exclude the constants and consider the
subspace M0(Λ) := span{tλn}∞n=1 of M(Λ).
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In order to prove a result about the Daugavet points in Müntz spaces,
we need the following result.

Lemma 3.10. For all ε > 0 and δ > 0, there exist k, l ∈ N with k < l
such that for f = (tλk− tλl)/‖tλk− tλl‖ one has f ≥ 0 and f |[0,1−ε] < δ.

Proof. Fix positive numbers ε and δ. Let k be such that

tλk |[0,1−ε] <
δ

2 .

Choose l > k such that ‖tλk − tλl‖ > 1/2. Then

tλk − tλl
‖tλk − tλl‖

<
δ/2
1/2 = δ

for any t ∈ [0, 1− ε]. �

Proposition 3.11. Let X = M(Λ) or X = M0(Λ). If f ∈ SX satisfies
f(1) = ±1, then f is a Daugavet point.

Proof. Fix f ∈ SX with f(1) = ±1 and ε > 0. We show that any
g ∈ SX can be approximated by the elements of conv ∆ε(f). For this
purpose, fix g ∈ SX , δ > 0 and choose m ∈ N with m ≥ 2/δ.

Let t1 ∈ (0, 1) be such that |f(1)−f(t)| < δ and |g(1)−g(t)| < δ for
all t ∈ [t1, 1]. We use Lemma 3.10 to obtain f1 such that f1|[0,t1] < δ/2.

Let t2 ∈ (0, 1) be such that f1|[t2,1] < δ/2. We use Lemma 3.10 again
to obtain f2 such that f2|[0,t2] < δ/2.

We continue finding t0 < t1 < · · · < tm < tm+1 =: 1 and f1, . . . , fm.
Define gi := g−[g(1)+1]fi for i = 1, . . . ,m. Then ‖gi‖ ≤ 1+δ. Indeed,
for t ∈ [0, 1] \ [ti, ti+1] we have that fi(t) < δ/2 and therefore

|gi(t)| ≤ |g(t)|+ (1 + g(1))fi(t) < 1 + 2δ2 = 1 + δ,

while for t ∈ [ti, ti+1] we have

|gi(t)| ≤ |g(1)− [g(1) + 1]fi(t)|+ |g(t)− g(1)|
≤ |g(1)|(1− fi(t)) + fi(t) + δ

≤ 1− fi(t) + fi(t) + δ = 1 + δ.

Denote by si the unique point in (ti, ti+1) where fi(si) = 1. We have

‖gi − f‖ ≥ |gi(si)− f(si)|
= |(g(si)− (g(1) + 1))− f(si)|
≥ |1 + f(si)| − |g(1)− g(si)|
≥ 2− δ − δ = 2− 2δ.

Hence

‖(1 + δ)−1gi − f‖ ≥ ‖gi − f‖ − ‖(1 + δ)−1gi − gi‖ ≥ 2− 3δ
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since

‖(1 + δ)−1gi − gi‖ = |(1 + δ)−1 − 1|‖gi‖ ≤ |(1 + δ)−1 − 1|(1 + δ) ≤ δ.

We get that (1 + δ)−1gi ∈ ∆ε(f) whenever 3δ < ε. Finally

‖g −
m∑
i=1

1
m

(1 + δ)−1gi‖ = ‖(1− (1 + δ)−1)g + (1 + δ)−1[g(1) + 1]
m∑
i=1

1
m
fi‖

≤ δ

1 + δ
‖g‖+ (g(1) + 1)

m(1 + δ) ‖
m∑
i=1

fi‖

≤ δ

1 + δ
+ 2
m

(1 + (m− 1)δ2)

≤ δ + δ + δ ≤ 3δ.

Hence g ∈ conv ∆ε(f). �

Proposition 3.12. Let X be a Müntz space M0(Λ) with λ1 ≥ 1. If
f ∈ SX with |f(1)| < 1, then f /∈ ∆.

Proof. First note that from the full Clarkson-Erdös-Schwartz theorem
(see [10]), f is the restriction to (0, 1) of an analytic function on Ω =
{x ∈ C \ (−∞, 0] : |z| < 1}. Let I be the set of points in [0, 1]
where f attains its norm, and put I± = {x ∈ I : f(x) = ±1}. From
the assumptions we have I ⊂ (0, 1) since every g ∈ M0(Λ) satisfies
g(0) = 0.

Suppose I is infinite. Then either I+ or I− is infinite. Suppose with-
out loss of generality that I+ is. Then I+ must have an accumulation
point a in [0, 1]. By the continuity of f we must have f(a) = 1, so
0 < a < 1. Since f is analytic on Ω and I+, I+ has an accumulation
point in (0, 1) ⊂ Ω, we must have 1 − f = 0 everywhere, which is a
contradiction.

Suppose I is finite and that f attains its norm on (yk)mk=1 ⊂ (0, 1)
with 0 < y1 < y2 < · · · < ym < 1, i.e. 1 = ‖f‖ = |f(yk)| for every
k = 1, . . . ,m. By density it suffices to show that there is ε > 0 such
that f 6∈ conv(∆ε(f) ∩ P ) where P = span(tλn)∞n=1 ⊂ X. To this
end, let s be a point satisfying (1 + ym)/2 < s < 1. By the Bernstein
inequality [9, Theorem 3.2], there exists a constant c = c(Λ, s) such
that for any p ∈ P

‖p′‖[0,s] ≤ c‖p‖[0,1].

Since f ∈ C[0, 1] there exists δ > 0 such that for all x, y ∈ [0, 1]

|x− y| < δ =⇒ |f(x)− f(y)| < 1.

By choosing δ smaller if necessary we may assume that cδ < 1/2 and
that ym + δ/2 < s. Let Ik,δ := (yk − δ/2, yk + δ/2). Note that f does
not change sign on any Ik,δ.
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Put Iδ := ∪mk=1Ik,δ, and M := sup{|f(y)| : y ∈ [0, 1] \ Iδ}. Since
[0, 1] \ Iδ is compact and since f is continuous, the value M is attained
and thus M < 1. Let 0 < ε < min{1/(2m), 1−M, 1/4}. Then

|f(x)| ≥ 1− ε =⇒ x ∈ Iδ.
Assume that p ∈ ∆ε(f)∩P . Since ‖f−p‖ ≥ 2−ε the norm is attained
on Iδ. Therefore there exist k and x ∈ Ik,δ such that

|f(x)− p(x)| ≥ 2− ε.
Since |f(x)| ≥ 1− ε and f does not change sign on Ik,δ we must have
|f(x)− f(yk)| ≤ ε hence
|f(yk)− p(yk)| ≥ |f(x)− p(x)| − |f(yk)− f(x)| − |p(x)− p(yk)|

≥ 2− 2ε− ‖p′i‖[0,s]|x− yk| > 3/2− cδ > 1.
Now, let n ∈ N and p1, . . . , pn ∈ ∆ε(f) ∩ P . Find r ∈ N such that
(r − 1)m < n ≤ rm. By the pigeonhole principle, there is an interval
Ij,δ where at least r of the polynomials (pi)ni=1 satisfy |f(yj)−pi(yj)| > 1.
Put

L := {i ∈ {1, . . . , n} : |f(yj)− pi(x)| > 2− 2ε, x ∈ Ij,δ}.
We get that

|f(yj)−
1
n

n∑
i=1

pi(yj)| ≥ |f(yj)−
1
n

∑
i∈L

pi(yj)| −
1
n

∑
i/∈L
|pi(yj)|

> 1− 1
n

∑
i/∈L

1 ≥ r

n
≥ 1
m
> ε.

Hence f /∈ conv(∆ε(f) ∩ P ). �

Theorem 3.13. Let X be a Müntz space M0(Λ) with λ1 ≥ 1. The
following assertions for f ∈ SX are equivalent:

(1) f is a Daugavet point;
(2) f is a ∆-point;
(3) ‖f‖ = |f(1)|.

Proof. (1) ⇒ (2) is trivial, (2) ⇒ (3) follows from Proposition 3.12,
and (3) ⇒ (1) is Proposition 3.11. �

4. Stability results

Let us recall that a norm N on R2 is absolute if
N(a, b) = N(|a|, |b|) for all (a, b) ∈ R2

and normalized if
N(1, 0) = N(0, 1) = 1.

If X and Y are Banach spaces and N is an absolute normalized norm
on R2, then we denote by X ⊕N Y the product space X × Y with the
norm ‖(x, y)‖N = N(‖x‖, ‖y‖).
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In this section we analyze how ∆- and Daugavet-points behave while
taking direct sums with absolute normalized norm N . First note a
useful result that simplifies the proofs.

Lemma 4.1. Let m ∈ N. Then for all ε > 0, all λi > 0 with ∑m
i=1 λi =

1, there exists n ∈ N, k1, . . . , km ∈ N such that
m∑
i=1

∣∣∣∣∣λi − ki
n

∣∣∣∣∣ < ε and
m∑
i=1

ki = n.

In particular, every convex combination of elements in a normed vector
space can be approximated arbitrarily well with an average of the same
elements (each repeated ki times). Furthermore, given two such convex
combinations, we can express them both as an average of the same
number of elements.

Proof. By Dirichlet’s approximation theorem given N ∈ N there exist
integers k1, . . . , km and 1 ≤ n ≤ N such that∣∣∣∣∣λi − ki

n

∣∣∣∣∣ ≤ 1
nN1/m .

Then ∣∣∣∣∣n−
m∑
i=1

ki

∣∣∣∣∣ = n

∣∣∣∣∣
m∑
i=1

λi −
m∑
i=1

ki
n

∣∣∣∣∣ ≤ n
m∑
i=1

1
nN1/m = m

N1/m .

By just choosing N so large that N−1/m < ε and mN−1/m < 1 we get
the desired conclusion. By choosing ε > 0 smaller if necessary we can
make sure that ki ≥ 0 for i = 1, . . . ,m. �

It is not hard to see that if a Banach space X has a ∆-point, then
X ⊕N Y has a ∆-point too for any Banach space Y . Moreover, if
x ∈ ∆X and y ∈ ∆Y , then for all a, b ≥ 0 with N(a, b) = 1 we have
(ax, by) ∈ ∆Z (see the proof of Theorem 5.8). This implies that if
X and Y both have the DLD2P then X ⊕N Y has the DLD2P for
any absolute normalized norm N on R2 (this was shown in [13] using
slices). In contrast, there are absolute normalized norms N for which
the space X⊕N Y has no Daugavet-points. Therefore there even exists
a space where every unit sphere point is a ∆-point, but none of them are
Daugavet-points. However, the matter of the existence of Daugavet-
points in direct sums is more complex as can be seen from the following
propositions.

Definition 4.2. An absolute normalized norm N on R2 is positively
octahedral [12] if there exist a, b ≥ 0 such that N(a, b) = 1, and

N ((0, 1) + (a, b)) = 2 and N ((1, 0) + (a, b)) = 2.

Proposition 4.3. Let N be a positively octahedral norm on R2. If
X and Y are two Banach spaces that both have Daugavet-points, then
X ⊕N Y also has a Daugavet-point.



DELTA- AND DAUGAVET-POINTS IN BANACH SPACES 15

Proof. Let X and Y be Banach spaces and N a positively octahedral
absolute normalized norm. Denote Z = X ⊕N Y . Let x ∈ SX and
y ∈ SY be Daugavet points. Since N is positively octahedral, there
exist a, b ≥ 0 such that N(a, b) = 1 and N((a, b) + (c, d)) = 2 for every
c, d ≥ 0 with N(c, d) = 1. We will show that (ax, by) is a Daugavet
point.

Let ν := N(1, 1). Fix ε > 0, (u, v) ∈ SZ , and δ > 0. First consider
the case u 6= 0 and v 6= 0. Since u/‖u‖ ∈ conv ∆X

ε/ν(x) and v/‖v‖ ∈
conv ∆Y

ε/ν(y), we have x1, . . . , xm ∈ ∆X
ε/ν(x) and y1, . . . , ym ∈ ∆Y

ε/ν(y)
such that (here we use Lemma 4.1 to get the same number of vectors
in X and Y )∥∥∥∥ u

‖u‖
− 1
m

m∑
i=1

xi

∥∥∥∥ < δ and
∥∥∥∥ v

‖v‖
− 1
m

m∑
i=1

yi

∥∥∥∥ < δ.

Therefore ∥∥∥∥(u, v)− 1
m

m∑
i=1

(
‖u‖xi, ‖v‖yi

)∥∥∥∥
N

= N
(
‖u‖

∥∥∥∥ u

‖u‖
− 1
m

m∑
i=1

xi

∥∥∥∥, ‖v‖∥∥∥∥ v

‖v‖
− 1
m

m∑
i=1

yi

∥∥∥∥)
≤ δN

(
‖u‖, ‖v‖

)
= δ.

Note that
‖ax− ‖u‖xi‖ ≥ a+ ‖u‖ − ε/ν

and
‖by − ‖v‖yi‖ ≥ b+ ‖v‖ − ε/ν

by the reverse triangle inequality. This implies that
(
‖u‖xi, ‖v‖yi

)
∈

∆Z
ε (ax, by) since

N
(
‖ax− ‖u‖xi‖ , ‖by − ‖v‖yi‖

)
≥ N

(
a+ ‖u‖ − ε/ν, b+ ‖v‖ − ε/ν

)
≥ N

(
a+ ‖u‖, b+ ‖v‖

)
−N

(
ε/ν, ε/ν

)
= 2− ε.

If u = 0 or v = 0, the proof is simpler. �

Definition 4.4. We will say that an absolute normalized norm N on
R2 has property (α) if for every c, d ≥ 0 with N(c, d) = 1, there exist
ε > 0 and neighbourhood W of (c, d) in R2 such that:

• if a, b ≥ 0 satisfies N(a, b) = 1 and

N((a, b) + (c, d)) ≥ 2− ε,

then (a, b) ∈ W ;
• either sup(a,b)∈W a < 1 or sup(a,b)∈W b < 1.
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Remark 4.5. The `p-norm, 1 < p <∞, on R2 has property (α).
Given c, d ≥ 0 with ‖(c, d)‖p = 1 for all δ > 0 there exists ε > 0

such that for all (a, b) with ‖(a, b)‖p ≤ 1 and ‖(a, b) + (c, d)‖p ≥ 2− ε
we have (a, b) ∈ B((c, d), δ) =: W . Choosing δ small enough we have
either sup(a,b)∈W a < 1 or sup(a,b)∈W b < 1.

Similarly, any strictly convex absolute normalized norm N on R2 has
property (α).
Proposition 4.6. Let X and Y be Banach spaces and N an abso-
lute normalized norm on R2 with property (α). Then X ⊕N Y has no
Daugavet points.

Proof. Let X and Y be Banach spaces and N an absolute normalized
norm on R2 with property (α). Denote Z = X ⊕N Y and let z =
(x, y) ∈ SZ .

Let (c, d) = (‖x‖, ‖y‖). From the definition of property (α) there ex-
ists ε > 0 and a neighbourhood W of (c, d). Without loss of generality
we may assume that sup(a,b)∈W a < 1 since the case sup(a,b)∈W b < 1 is
similar. Choose δ > 0 such that sup(a,b)∈W ≤ 1− δ.

Assume that (u, v) ∈ ∆ε(z). Then
2− ε ≤ N(‖u− x‖, ‖v − y‖) ≤ N(‖u‖+ ‖x‖, ‖v‖+ ‖y‖),

hence (‖u‖, ‖v‖) ∈ W from property (α). In particular, ‖u‖ ≤ 1− δ.
Let w ∈ SX and consider (w, 0) ∈ SZ . Given (x1, y1), . . . , (xn, yn) ∈

∆ε(z) we have ‖xi‖ ≤ 1− δ for each i = 1, . . . , n and∥∥∥∥(w, 0)− 1
n

n∑
i=1

(xi, yi)
∥∥∥∥
N
≥ ‖w − 1

n

n∑
i=1

xi‖ ≥ ‖w‖ −
1
n

n∑
i=1
‖xi‖

≥ 1− 1
n

n∑
i=1

(1− δ) = δ.

Using Lemma 4.1 we see that this means that (w, 0) /∈ conv ∆ε(z), and
we conclude that z is not a Daugavet-point. �

Example 4.7. Consider the space X = C[0, 1]⊕2 C[0, 1].
C[0, 1] has the Daugavet property and in particular the DLD2P,

hence X has the DLD2P [13, Theorem 3.2]. But, by Proposition 4.6,
X has no Daugavet-points even though every x ∈ SX is a ∆-point.

5. The convex DLD2P

In this last section we consider Banach spaces X with the property
that BX = conv(∆). We show that this property is a diameter two
property that differs from the already known diameter two properties.
We also give examples of spaces with this new property.
Definition 5.1. Let X be a Banach space. If BX = conv(∆), then
we say that X has the convex diametral local diameter two property
(convex DLD2P).
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Proposition 5.2. Let X be a Banach space. If X has the convex
DLD2P, then X has the LD2P.

Proof. Let x∗ ∈ SX∗ , ε > 0, and consider the slice
S(x∗, ε) = {x ∈ BX : x∗(x) > 1− ε}.

Pick some x̂ ∈ S(x∗, ε/4). Choose (xi)ni=1 ⊂ ∆ and a convex combina-
tion x := ∑n

i=1 λixi with ‖x − x̂‖ < ε/4. Now at least one of the xi’s
must be in S(x∗, ε/2) otherwise

x∗(x) =
n∑
i=1

λix
∗(xi) <

n∑
i=1

λi(1− ε/2) < 1− ε/2

which contradicts the fact that x̂ ∈ S(x∗, ε/4) and ‖x̂−x‖ < ε/4. Now
let xk be one of the xi’s which are in S(x∗, ε/2) and use the same idea
as above to produce some y ∈ ∆ε(xk) such that y ∈ S(x∗, ε). Since
xk ∈ S(x∗, ε/2) ⊂ S(x∗, ε) and ‖xk − y‖ > 2− ε we are done. �

Proposition 5.3. If K is an infinite compact Hausdorff space, then
C(K) has the convex DLD2P.

Proof. We only need to show that SC(K) ⊂ conv ∆. Let f ∈ C(K)
with ‖f‖ = 1. If |f(x)| = 1 for some limit point of K, then f ∈ ∆ by
Theorem 3.4. Assume that |f(x)| < 1 for every limit point of K and
let x0 be a limit point of K.

Let ε > 0 and choose a neighbourhood U of x0 such that |f(x) −
f(x0)| < ε for every x ∈ U . We use Urysohn’s lemma to find a function
η : K → [0, 1] such that η(x0) = 1 and η = 0 on K \ U . Define

f+(x) := (1− η(x))f(x) + η(x)(1),
f−(x) := (1− η(x))f(x) + η(x)(−1).

Then f± ∈ BC(K) and both are in ∆ by Theorem 3.4. Let λ := 1+f(x0)
2

and consider
g(x) := λf+(x) + (1− λ)f−(x).

Then

g(x) =

f(x) x ∈ K \ U,
(1− η(x))f(x) + η(x)f(x0) x ∈ U.

We get
‖g − f‖ ≤ max

x∈U
|η(x)(f(x)− f(x0))| < ε.

Since ε > 0 was arbitrary we get that f ∈ conv ∆. �

Corollary 5.4. Both c = C([0, ω]) and `∞ = C(βN) have the convex
DLD2P.

Remark 5.5. In c the points in ∆ are exactly the sequences with limit
1 or −1. For `∞ we have that ∆ consists of all sequences (xn) ∈ `∞
such that | limU xn| = 1, where U is a non-principal ultrafilter on N. In
particular, none of these spaces have the DLD2P.
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For c0 we have ∆ = ∅ since ∆-points in c0 have to be ∆-points in
`∞ by Lemma 3.5. Hence the convex DLD2P is not inherited from the
bidual unlike the LD2P. The convex DLD2P is also not inherited by
subspaces of codimension 1, since c0 is of codimension 1 in c.

Considering the facts that `∞ does not have the DLD2P and c0 has
the LD2P, Remark 5.5, and Corollary 5.4, we can conclude that the
convex DLD2P is a new diameter-2 property, different from the ones
observed so far.

Corollary 5.6. Let X be a Banach space. Then
DLD2P =⇒ convex DLD2P =⇒ LD2P,

where the implications cannot be reversed.

Our next aim is to show that Müntz spaces also have the convex
DLD2P.

Theorem 5.7. Let X = M(Λ) or X = M0(Λ) be a Müntz space. Then
X has the convex DLD2P.

Proof. It is enough to show that SX ⊂ conv ∆. Since P := span{tλn}
is dense in X, it is enough to show that if f ∈ BP with ‖f‖ = 1− s for
some 0 < s < 1, then f ∈ conv ∆. To this end, given n ∈ N we define

f+
n (x) = f(x) + (1− f(1))xλn

and
f−n (x) = f(x)− (1 + f(1))xλn .

From Proposition 3.11 we see that f±n are candidates for being ∆-points
since

f±n (1) = f(1)± (1∓ f(1)) = ±1.
If we define µ = f(1)+1

2 , that is, 2µ − 1 = f(1), we have a convex
combination

µf+
n (x) + (1− µ)f−n (x) = f(x) +

(
2µ− 1− f(1)

)
xλn = f(x).

We need to show that when n is large enough we have f±n ∈ SP .
Since f ∈ P we can write

f(x) =
m∑
k=0

akx
λk .

Now, f , f ′, and f ′′ are all generalized polynomials so by Descartes’ rule
of signs, see e.g. [11, Theorem 3.1], they only have a finite number of
zeros on (0, 1]. Hence there exists t0 ∈ (0, 1) such that neither f ′ nor
f ′′ changes sign on (t0, 1). Without loss of generality we may assume
that f ′ < 0 on (t0, 1). (If f ′ > 0 on (t0, 1) we consider −f .)

There exists N such that
(5.1) tλn0 < s/2 for n > N.
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For n > N we get
|f−n (x)| ≤ 1− s+ (1 + f(1))s/2 ≤ 1

on [0, t0] and on [t0, 1] we have
d

dx
(f−n (x)) = f ′(x)− λn(1 + f(1))xλn−1 < 0.

We have |f−n (x)| ≤ 1 in both endpoints of [t0, 1]. Hence ‖f−n ‖ ≤ 1.
It remains to find n > N such that also f+

n ∈ SP . We consider two
cases.
Case I: Assume there exists 0 < t0 < 1 such that f ′ < 0 and f ′′ > 0

on (t0, 1). For n > N we have d2/dx2(f+
n ) > 0 on (t0, 1), hence f+

n is
convex on [t0, 1] and (by using (5.1))
‖f+

n ‖ ≤ max(f+
n (t0), f+

n (1)) ≤ max(1− s+ (1− f(1))tλnn , 1) ≤ 1
since also f+

n (x) > f(x) ≥ −1 for all x ∈ [0, 1].
Case II: Assume there exists 0 < t0 < 1 such that f ′ < 0 and f ′′ < 0

on [t0, 1].
Let δ := f(t0)− f(1) > 0. Define

tn := λn

√
1− δ

1− f(1) ,

that is
tλnn = 1− f(1)− δ

1− f(1)
Note that tn → 1.

Write gn(x) = (1− f(1))xλn . Then g′n(x) = (1− f(1))λnxλn−1 and

g′n(tn) = (1− f(1))λn
1− f(1)− δ

1− f(1)

(
1− f(1)− δ

1− f(1)

)−1/λn

= λn(1− f(1)− δ)
(

1− f(1)− δ
1− f(1)

)−1/λn

.

Note that g′n(tn) → ∞ (since we assume that ∑∞n=1 λ
−1
n < ∞). Let

M := maxx∈[t0,1] |f ′(x)|. Choose n > N such that t0 < tn < 1 and
g′n(tn) > M.

Then for x ∈ [tn, 1] we have
d

dx
(f+
n (x)) = f ′(x) + λn(1− f(1))xλn−1 > −M + g′n(tn) > 0

hence f+
n (x) ≤ f+

n (1) on [tn, 1].
For x ∈ [t0, tn] we get

f+
n (x) = f(x) + gn(x) ≤ f(1) + δ + (1− f(1))tλnn

= f(1) + δ + (1− f(1)− δ) ≤ 1.
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While on [0, t0] we have, by using (5.1),

|f+
n (x)| ≤ ‖f‖+ 2 · s/2 ≤ 1.

Hence ‖f+
n ‖ ≤ 1. �

It is known that given Banach spaces X and Y , they have the Dau-
gavet property if and only if X⊕1Y or X⊕∞Y has Daugavet property
(see [14, Lemma 2.15] and [8, Corollary 5.4]). For the DLD2P we have
that for any absolute normalized norm on R2, both X and Y have
the DLD2P if and only if X ⊕N Y has the DLD2P [13, Theorem 3.2].
The following theorem shows that the convex DLD2P also behaves well
under direct sums.

Theorem 5.8. Let N be an absolute normalized norm on R2. If X
and Y have the convex DLD2P, then X ⊕N Y has the convex DLD2P.

Proof. Assume thatX and Y are Banach spaces with the convex DLD2P.
Denote Z = X ⊕N Y .
Claim: If a, b ≥ 0 with N(a, b) = 1, x ∈ ∆X , and y ∈ ∆Y , then

(ax, by) ∈ ∆Z .
Proof of claim. Let ε > 0 and 0 < γ < ε. Since x ∈ ∆X and

y ∈ ∆Y , we have x1, . . . , xm ∈ ∆X
ε (x) and y1, . . . , ym ∈ ∆Y

ε (y) such
that (using Lemma 4.1)∥∥∥∥x− 1

m

m∑
i=1

xi

∥∥∥∥ < γ and
∥∥∥∥y − 1

m

m∑
i=1

yi

∥∥∥∥ < γ.

Note that∥∥∥∥(ax, by)− 1
m

m∑
i=1

(
axi, byi

)∥∥∥∥
N

= N
(
a
∥∥∥∥x− 1

m

m∑
i=1

xi

∥∥∥∥, b∥∥∥∥y − 1
m

m∑
i=1

yi

∥∥∥∥)
≤ N(γa, γb) = γN(a, b) = γ,

and ∥∥∥(ax, by)− (axi, byi)
∥∥∥
N

= N(a‖x− xi‖, b‖y − yi‖)
≥ N(a(2− ε), b(2− ε))
= (2− ε)N(a, b) = 2− ε.

This concludes the proof of the claim.
Now let (x, y) ∈ SZ . We will show that (x, y) ∈ conv ∆Z .
Let δ > 0. First consider the case x 6= 0 and y 6= 0. Then

x
‖x‖ ∈ conv ∆X and y

‖y‖ ∈ conv ∆Y by the assumption; hence there are
x1, . . . , xn ∈ ∆X and y1, . . . , yn ∈ ∆Y such that (here we use Lemma 4.1
again) ∥∥∥∥ x

‖x‖
− 1
n

n∑
i=1

xi

∥∥∥∥ < δ and
∥∥∥∥ y

‖y‖
− 1
n

n∑
i=1

yi

∥∥∥∥ < δ.
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By the claim above we have (‖x‖xi, ‖y‖yi) ∈ ∆Z . All that remains is
to note that∥∥∥∥(x, y)− 1

n

n∑
i=1

(
‖x‖xi, ‖y‖yi

)∥∥∥∥
N

= N
(
‖x‖

∥∥∥∥ x

‖x‖
− 1
n

n∑
i=1

xi

∥∥∥∥, ‖y‖∥∥∥∥ y

‖y‖
− 1
n

n∑
i=1

yi

∥∥∥∥)
≤ N

(
δ‖x‖, δ‖y‖

)
= δN

(
‖x‖, ‖y‖

)
= δ.

Now consider the case where y = 0 (a similar argument holds for the
case x = 0). We have

‖(x, 0)‖N = N(‖x‖, 0) = ‖x‖,
so that (x, 0) ∈ conv ∆Z follows from x ∈ conv ∆X since the claim
above shows that (xi, 0) ∈ ∆Z when xi ∈ ∆X . �

Remark 5.9. Let X and Y be Banach spaces. If X has the convex
DLD2P and N is the `∞-norm, then X ⊕N Y has the convex DLD2P.

Although we have mostly settled the results about the question
whether the direct sum with absolute normalized norm has a ∆-point/a
Daugavet-point/the convex DLD2P (there are some norms left to look
at in the Daugavet-point case), the results about the components of a
direct sum with a given property having the same property, are all still
unknown.

Problem 1. Given X ⊕N Y with a ∆-point/a Daugavet point/the
convex DLD2P, does X have a ∆-point/a Daugavet point/the convex
DLD2P?
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