

Expanding Convolutional Tsetlin Machine
for Images with Lossless Binarization

JENS MARTIN HÅSÆTHER

SUPERVISOR
Lei Jiao
Ole-Christoffer Granmo

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering Sciences

Acknowledgements

I wish to show my gratitude to my supervisors for help, guidance and troubleshooting. I
wish to thank several academic staff and personal of the University of Agder that helped
with various issues ranging from academical to technical as well as for use of their com-
putational power. Finally I wish to express my deepest gratitude to my family, for being
supportive during the pandemic. Without the combined help and assistance of all these
this thesis would not have been possible.

Abstract

Deep convolutional neural networks (CNN) is known to be efficient in image classifica-
tion but non-interpretable. To overcome the black box nature of CNN a derivative of the
Tsetlin automata, the convolutional Tsetlin machine (CTM) which is transparent and in-
terpretable, was developed. As CTM handles binary inputs, it is important to transform
the input images into binary form with minimum information loss so that the CTM can
classify them correctly and efficiently. Currently, a relatively lossy mechanism, called
adaptive Gaussian thresholding, was employed for binarization. To retain as much infor-
mation as possible, in this thesis, we adopt an adaptive binarization mechanism, which
can offer lossless input to the CTM. In more details, we employ up to 8 bits in three colour
channels and arrange them in a certain way so that the CTM can handle all bits as in-
put. In addition, we can also select certain significant bits and ignore others to increase
efficiency of the system. Numerical results demonstrate that the newly proposed mecha-
nism has potential to achieve better results than those of adaptive Gaussian mechanism
when enough data is given after enough training epochs. The code used for this thesis
is available at the [11].

Contents

Acknowledgements

Abstract

1 Introduction 1
1.1 Project Description . 1

1.1.1 Previous Work . 2
1.1.2 Problem Statement . 2
1.1.3 Assumptions . 2
1.1.4 Hypothesis . 2
1.1.5 Scope . 2

1.2 Motivation . 3
1.3 Goal . 3

2 Background & State of the Art 4
2.1 Brief Explanation of Artificial Intelligence . 4

2.1.1 Archetypes of AI/ML . 5
2.2 Brief Overview of Tsetlin Technologies . 6

2.2.1 Tsetlin Machine . 6
2.2.2 Convolutional Tsetlin Machine . 7

2.3 Notes on Neural Networks . 7
2.3.1 Output Relation . 7
2.3.2 Convergence Time . 8
2.3.3 Inference Time . 8
2.3.4 Computing Power . 8
2.3.5 Dataset . 8

2.4 Thresholding . 9
2.5 Parameters for Performance Evaluations . 9

2.5.1 Accuracy . 10
2.5.2 Overfitting . 10

2.6 Output Interpretation . 10
2.6.1 100% and 0 learning curves . 10
2.6.2 Statistics . 11

3 Proposed Method 12
3.1 Method overview . 13
3.2 Initialising . 13

3.2.1 Version Control . 13
3.3 Importing Dataset . 13
3.4 Pre-Process Binarization . 14

3.4.1 Flowchart of Binarization Process . 14
3.4.2 Binarization . 16
3.4.3 Modelling 2s Complement as a Threshold 17

3.5 Train Model . 18
3.5.1 Convolutional Tsetlin Machine . 18
3.5.2 Hyperparameters . 18

3.6 Visual Comparison of Techniques . 19
3.6.1 Image Information Breakdown . 19
3.6.2 Example Image from Dataset . 20

4 Performance Evaluation 21
4.1 CTM Hyperparameters and Manual Loss . 21

4.1.1 Curves and Axis . 21
4.1.2 Observations . 21

4.2 Results . 22
4.2.1 Difference in Input-size . 23
4.2.2 Comparing LL4 to AGauss . 23
4.2.3 Scaling to Full Dataset . 24
4.2.4 Linear Input/Clauses Ratio Assumption 25
4.2.5 Manual Approximation for the Logistic Function 26

4.3 Convergence and Factor Analysis . 27
4.3.1 Speculation on the Slope Difference . 28

5 Discussion 29
5.1 Observation on the RBG Channels . 29
5.2 Experience and Epiphanies . 29
5.3 Retrospect . 29
5.4 Future Work . 30

5.4.1 Check Breakpoints/Equilibrium Methods 30
5.4.2 Expand System for IRN . 31
5.4.3 Expand System for Per-pixel Labelling 31

6 Conclusions 33

A Code Snippets & Misc i
A.1 Manual Import of CIFAR10 . i
A.2 Library Import of CIFAR10 . ii
A.3 Readout of "nvidia-smi" - Jupyterlab GPU . ii
A.4 Terminal Readout of CUDA and CPU capacity ii

Bibliography & Sources

List of Figures

2.1 A Tsetlin Automaton for two-action environments [18]. 6
2.2 Thresholding techniques comparison [26]. 9

3.1 Overview over the new proposed system. 12
3.2 Flowchart of the binarisation process using Diagrams [15]. 14
3.3 Pixel Extraction and per pixel data . 16
3.4 Pixel Extraction and per pixel data . 17
3.5 Comparison of techniques over an 32x32 image with hue-maps of Red,

Green, Blue, and RGB respectively . 19
3.6 Comparison of techniques on Cifar-10_Train_1 in multicolour RGB 20
3.7 Comparison of techniques on Cifar-10_Train_1 in monochrome G 20

4.1 Graph of mean of the accuracy per epoch of the mean accuracy per image. 21
4.2 Comparison of techniques on Cifar-10_Train_23099 in monochrome Yel-

low/Purple. 22
4.3 Comparison of AGauss and LL4 at 5000 images, 800 clauses. 23
4.4 Difference in Accuracy/∆a(x) for AGauss and LL4. 24
4.5 Comparison of AGauss and LL4 at 50000 images, 800 clauses 25
4.6 Juxtaposition of AGauss and LL4, where LL4 has 4xClauses 26
4.7 Left side showing Logistic Curve approximation, and right side combines it

with Figure 4.5. 26
4.8 Convergence sequences of different valued L and k for the logistics formula

using GeoGebra [31]. 27
4.9 Comparison of techniques on Cifar-10_Train_1123 inmonochrome Yellow/Pur-

ple . 28

5.1 Visualisation of the Tsetlin network . 32

A.1 Terminal showing CUDA Implementation being locked at 100% CPU Use . . ii
A.2 Terminal Showing CPU superseding 100% CPU use for the parallel imple-

mentation, i.e. using more than one CPU . iii

List of Tables

1 Acronyms & Abbreviations .

2.1 Output Relation-grid . 7

3.1 Versions used in current project of certain modules 13
3.2 Shapes of the imported CIFAR10 dataset. 14
3.3 Decimal and Binary representation of numbers 17
3.4 Binarization Scheme for the proposed system 18

4.1 Values and differentials from Figure 4.3 and Figure 4.5. 25

5.1 Transpose of the binary representation. 31

Explanation
2d/3d 2-dimensional/3-dimensional

AI Artificial Intelligence
AMT Adaptive Mean Thresholding
CNN Convolutional Neural Network
CPU Central Processing Unit
CTM Convolutional Tsetlin Machine
DAG Directed Acyclig Graph
DCNN Deep Convolutional Neural network
FFN Feed Forward Neural network
GAN Generative Adversarial Networks
GPU Graphics Processing Unit
LSTM Long-Short Term Memory
ML Machine Learning
NN Neural Network
OS Operating System
RGB Red-Green-Blue (Computer primary colours)
RNN Recurrent Neural Network
SotA State of the Art
TA Tsetlin Automata
TM Tsetlin Machine
VGG Visual Geometry Group

Table 1: Acronyms & Abbreviations

Chapter 1

Introduction

Research on the Tsetlin machine [18] has the potential to bring forth many new inno-
vations within the field of Machine Learning (ML). These include concepts such as more
explainable Artificial Intelligence (AI), from which we as human beings- more easily can
make intuitive guesses, as to why and how such systems learn patterns, and make deci-
sions. With this novel technology comesmany new and interesting challenges to overcome
in order for the Tsetlin and its derivatives to compete with the other state of the art meth-
ods. The Tsetlin machine requires input in binary form. Now you may ask yourself, isn’t
all data on a computer stored binary, but there is an important difference in certain data
structures. For example if you have a letter lets say "e", this can be represented as the
value 6516 = 10110 = 010000012. If we want to actually represent the decimal number 101,
the format would be the same 6516 = 10110 = 010000012. To make a long story short, there
is a sort of header to the data, that tells it what type this form of data is, where you can
have strings, integers, floats, etc. However its not always clear how to go between them.
E.g. if we had the decimal number 101 in integer form, and wanted it in string form-
what should be the correct output e?, 101?, one hundred and one?. This ambiguity is
what creates some of the interesting problems for what seems like an arbitrary decision
to read a decimal number as a binary number. There still needs to be a method to decide
how to convert the number. The state of the art method that is used today suffers from
loss and compression during the conversion of data. These losses may make it harder
for the Tsetlin to make accurate predictions.
In this master thesis we will explore another option to remove or minimise loss in raw
image format conversions. We will attempt to implement a new method that is lossless
and compare the results against the current lossy implementation.

1.1 Project Description

The current solution for handling computer images is by the use of Adaptive Gaussian
Thresholding to do a lossful compression of [0-255] down to [0-1]. The thesis seeks to
find an alternative solution that does not remove information from the given image.

1

1.1. PROJECT DESCRIPTION

1.1.1 Previous Work

The precursor to this thesis was a project called "Analysis of binarization techniques and
Tsetlin machine architectures targeting image classification" [39]. Some of the findings
of this paper will be used to further benchmark the quality of the new model.

1.1.2 Problem Statement

The TM and CTM only accepts 0 and 1 as input. Most common image formats has 0-255
(8-bit) for all 3 RGB channels. Creating a method or solution that enables lossless input
of 8-bit images, into a convolutional Tsetlin machine (CTM) [20] container that can only
read binary input.

1.1.3 Assumptions

• A strict one to one comparison of previous work, may not be representative as the
size of the input, and resulting convergence space will differ.

• A lossless version as opposed to a lossy version will provide information that the
lossy version does not.

• As this thesis focuses on the Artificial Intelligence part and not themathematics part
specifically, some approximationsmay be necessary, as opposed to perfect solutions.

1.1.4 Hypothesis

As the current method uses Gaussian thresholding which is a very lossful format, ex-
panding it to govern more of the data should be able to increase accuracy. By keeping
more data will mean higher training times, but the end result in the peak accuracy is
expected to be higher given enough training time. However as with anything, this effect
might not kick in, before the amount of data reaches a certain size. As we are taking in
more information, we will need more time to find the distinguishing features for a given
function. We will have room to find more than the baseline version, whether the effect
of this is significant enough will show in time. How much longer/extra we need to train
before this effects that to show is up for speculation.

1.1.5 Scope

This project seeks complete #1 and then work down the list as time allows for.

1. Enable the CTM to accept lossless 8 bit colour-depth images.

2. Compare the lossless method with Adaptive Gaussian Thresholding

3. Optimise the lossless function

4. Compare both methods to see, what problems each method excels on.

2

1.2. MOTIVATION

Challanges

Knowing exactly what an AI model would need to optimally solve a classification task,
would be the same as a perfect solution to the classification problem. However from a
bottom-up standpoint, this solution is for most problems infeasible to calculate. The
solution is then to try to limit what the AI model needs to learn, by giving it something
that can be referenced against, e.g., labels for a classification task.

Procedure

As the input needs to be in binary, we think it goes without saying that binarisation
would have to be involved at one stage or another in the process. Beyond this one could
speculate that as we are adding more information, the input needs to be larger, and
potentially training time needs to be extended. Some argument then needs to be made,
for when and/or if the new method will beat the old one.

1.2 Motivation

Being able to have a general conversion method between 8 bit colour-depth images and
binary, would enable the CTM to accept most image databases, assuming they employ
standard 8-bit colour-depth images.

1.3 Goal

Create a baseline that enables input of non binary coloured computer images, for the
CTM.
The remainder of the thesis is organised as follows. In Chapter 2, the background and
the related studies are summarised. The newly proposed binarization scheme and the
corresponding CTM system is detailed in Chapter 3. The performance of the proposed
mechanism is evaluated in Chapter 4 before the discussions and the conclusions are
given.

3

Chapter 2

Background & State of the Art

In this chapter we will try to introduce the reader into the relevant field(s) within AI/ML
research. We will present several key aspects of the state of the art, but focus mainly
on the ones that pertain to this thesis. We will also focus on how we will proceed in
troubleshooting and trying to get the method to work, as well as some limitations towards
what we will be focusing on.

2.1 Brief Explanation of Artificial Intelligence

The idea that you can teach a system to perform a task through mathematics is not a
new concept. However in recent years there have been great advances in this area, which
culminated in technologies such as the Learning Automata [40]. This technology, and
others like it, serves as a predecessor for what we today call Artificial Intelligence (AI)
and Machine Learning (ML). As there seems to be a looming possibility that AI/ML might
one day be on par with humans, there needs to be a convention for how it is developed.
Philosophers seem to agree that a top-down approach, that follow virtue ethics would be
the most nominal case [3][23][53], while not all- most state of the art AI/ML today follows
a bottom up approach[36][6]. The reason the bottom-up approach has gotten a sort of
reincarnation in interest in the last years, is as Moore’s Law [44] has steadily increased
the computing power in an exponential rate. Comparing it to earlier theories of Machine
Learning on checkers from 1959 [43], to take an example. Today such tasks as solving
checkers can be seen on as trivial (computing wise), even in a brute force sense. What
this exponential increase in computing power has effectively done, is making tasks that
would be seen as unfeasible a few decades prior such as the GPT-3 [5], to enter the realm
of possibilities. Despite Moore’s Law eventually coming to an end, as micro-transistors
are getting closer to the point where a single transistor, barely has a few atoms to check
the charge of, and quantum physics kicks in [12], there is still room to increase output by
use of technologies such as parallel programming and clustering [28]. This means that
even for the foreseeable future we can expect computing power to increase to new limits,
further increasing the likelihood a bottom-up AI/ML method, will manage to converge
meaningfully for a given task.

4

2.1. BRIEF EXPLANATION OF ARTIFICIAL INTELLIGENCE

2.1.1 Archetypes of AI/ML

Depending on what you are trying to predict, and what you are using for your prediction,
there are several options. Do note that we will be generalising some concepts. Even
though a technology is said to be good at handling images, there exists methods to present
certain data such as the 2d vector map representation of Navier-Stokes equations as
images [9], even though they explicitly aren’t.

FFN and Perceptron

If you can assume that your data points, have relatively low noise and that one input
can correspond to another (non cyclic), then a perceptron type network [45] could be a
proper fit. E.g. you are trying to predict whether someone is walking, cycling or driving
based on the relative speed/acceleration of a given object. While today, the advent of
technologies such as the Feed Forward Network [16] has become more popular than the
general perceptron, they are based on similar concepts.

LSTM/RNN

If you have either time-stepped information, or anything that can be represented as con-
tinuous (cyclic) data, then Long-Short-Term Memory (LSTM) [24] is commonly used. Just
as with the perceptron, there has been a predecessor in the Recurrent Neural Networks
(RNN) [54]. Weather or stocks is great examples of typical cyclic data, and that sometimes
you want to predict more than one unit ahead.

Finite Markov Decision Process and GAN

If you have a more complex task, that has multiple solutions, and multiple states- you
have two general options: If you can assume that within reason it is brute-force-able
and/or can be expressed as a Finite Markov Decision Process [46], then you can use
archetypes such as the Monte Carlo Tree Set [7] or Q-learning [47]; if on the other hand
you may need to change decision-state-space underway, but you can assume that the
task has a general pattern, then technologies such as a Generative Adversarial Networks
[17] is more common. Examples of tasks here is chess for Finite Markov Decision Process
and image generation of faces for variable decision state space.

Convolutional Neural Network

The last archetype we will go through, and the one that is most relevant to this thesis,
is the Convolutional Neural Network (CNN) [34]. It takes in portions or sliding windows
of a given image, and looks at how it will affect the function of the entire image, through
mathematical convolutions [27]. Examples of tasks/datasets that CNNs are commonly
used for is the ImageNet [14] or CIFAR [33] of which the latter will be used as a bench-
mark. Despite narrowing down the archetypes to only one, there is still a lot of competing
technologies within CNN. What this type of network does is try to segment the images
up into frames or sliding windows, and see if the corresponding pattern(s) of data has a

5

2.2. BRIEF OVERVIEW OF TSETLIN TECHNOLOGIES

structure. More mathematically speaking its how a sub-function over a given area, ef-
fects the overall function (rest) of the image [27]. A more standard version of a CNN using
the Tensorflow platform [50] and the Keras API [29] would look something like this [10].
There are limitations with some of these technologies that becomes apparent, first when
the sizes become very large, such as for gigapixel imagery. Just as there are competing
technologies for different problems, large scale image processing is done by Inception-
Resnet [48], VGG [22], DAG [49], DeepLab [8] and DenseNet [25] to mention a few. We
will however focus on the CTM [20] for this thesis.

2.2 Brief Overview of Tsetlin Technologies

One of the precursors to modern day AI/ML that has until recently, mostly gone unnoticed
is the Tsetlin Automata, proposed by Michael Lvovitch Tsetlin in his 1963 paper "Finite
Automata and models of simple forms of behaviour" [51]. An example of how the Tsetlin
Automaton processes information:

Figure 2.1: A Tsetlin Automaton for two-action environments [18].

Above in Figure 2.1 we can see that the Automata learns by changing states, based on
rewards and penalties. The further away from the cutoff point between Action 1 and
Action 2 the system is, the further its confidence is increased that it has the right Action
for the its given state [19]. This technology has since been expanded upon to create
several automaton, working together to become what has been referred to as a Tsetlin
Machine [18].

2.2.1 Tsetlin Machine

While the properties on the Tsetlin Automata are interesting, they can not solve complex
problems. However, using Boolean logic, and binary arithmetic allows for chaining to-
gether several Tsetlin Automata to what can be described as an array/several Automata,
which we will henceforth refer to as a Tsetlin Machine (TM) [18]. TM has been employed
in many applications [13, 55] and the theoretical analysis of it can be found [56]. For
image processing, the technology has been tested on, and has showed promise for, is the
dataset MNIST [21]. However to be able to tackle more complex tasks that don’t directly

6

2.3. NOTES ON NEURAL NETWORKS

translate to a binary representation, there are further advancements to be made. It is
one of these advancements, of this technology called the CTM [20] that we will focus on
in this thesis.

2.2.2 Convolutional Tsetlin Machine

As mentioned in Section 2.1.1, one of the baselines for image processing is the use of
CNNs. Being able to determine how an area effects the overall function of an image, has
been crucial for the state of the art of image classification. While still having the limitation
of taking in only 0 or 1, the Tsetlin system has now the ability to perform mathemati-
cal convolutions with the new CTM [20] framework. What distinguishes it however from
standard CNN architectures is that instead of having standard convolutions, it instead
utilises convolution clauses, as well as storing information about the coordinates of said
clause. One of the upsides of doing it in this way, is that the CTM is transparent and
interpretable, which sets it apart, from almost any state of the art DCNN/CNN currently
employed. With systems slowly but surely being able to do more complex tasks, the need
to be able to see what led to a certain decision, becomes more and more valuable, at
least if you want to employ that technology among humans. One of the downsides, is as
mentioned the strictness about what the CTM can take as an input. To try to solve this
limitation is what this project will focus on.

2.3 Notes on Neural Networks

2.3.1 Output Relation

Output relation is how often the model(s) guess gets right, in relation to what the real
answer is. While most commonly used for binary output, (e.g. as seen in the the 2x2
grid below) output relation can also be used for some non-binary outputs.

True False
Positive 92% 1%
Negative 1% 6%

Table 2.1: Output Relation-grid

To extrapolate on this table: 92% of the time the model guessed a positive output, it cor-
responds with the real positive classification, and is wrong on this guess 1% of the time;
1% of the time it guesses a negative output, it corresponds with the real negative classi-
fication, and is wrong 6% of the time. For most applications this might be a very good
model, but if we take a viral disease test as an example, means that 6 of every hundred
patients walk out of the ward, thinking they are well(or at the very least something else
is the issue), when they are actually sick. The ability to reduce False Negatives, might
have a larger impact than increasing/reducing other factors in these situations. For non-
binary values you can use abstraction i.e. a stock rose when it actually fell, as opposed to
using the exact value the stock rose, or fell by. Alternatively see which categories it per-
forms good on, and which it performs bad on. What this helps you accomplish in terms

7

2.3. NOTES ON NEURAL NETWORKS

of over-fitting, is being able to determine the discriminant relation, i.e. what is hard to
learn, what is hard to differentiate, and what categories has overlapping features.

2.3.2 Convergence Time

There is also some factors that is not related to the data itself, but how the model handles
the data. One of these factors is how long it takes for the model to train, until it reaches
whatever accuracy/threshold set for the given task. Depending on the deadline of the
project, be that a product you sell a client, or annual updates that need to happen to the
model, if the time it takes to train/retrain your model is longer than this set time, then
the model might as well be useless.

2.3.3 Inference Time

Inference time refers to how long it takes a trained model to translate an input, to a pre-
diction. This can be important, especially if you have a continuous stream of data/input,
as you can end up with a bottleneck, if the inference time per data-point is longer than
the time between them.

2.3.4 Computing Power

If we take GPT-3 [5] as an example, even after training is done, performing a single infer-
ence, requires a cluster of computers to compute [5]. System specs the model is supposed
to work on can therefor be an important factor.

2.3.5 Dataset

The dataset is usually what the model takes in as input. If the dataset has labels, the
training is said to be supervised, as there are definite categories the NN is working to-
wards. If the dataset is without labels, it is said to be unsupervised, and the goal is
usually to find groupings, of similar data. This project does not seek to test capabilities
on a dataset specifically, but will use one as a benchmark, to talk comparatively about
other technologies. Since the previous project used the CIFAR-10, this is the dataset that
will be used for this purpose. CIFAR has 2 datasets respectively namely CIFAR10 and
CIFAR100 which refers to the datasets having 10 and 100 categories/labels respectively
[32]. The CIFAR10 dataset consists of 50000 training, and 10000 testing images, and
has a roughly even split between its 10 categories.

8

2.4. THRESHOLDING

2.4 Thresholding

Figure 2.2: Thresholding techniques comparison [26].

A standard thresholding technique would be to split the range of the data into a variable
V brackets, and then optionally do some operation to account for different weighting
of the values [42]. However as described best by Figure 2.2 standard thresholding has
its limitations when it comes to image noise. The optional operation mentioned earlier
can for example be Adaptive Mean Thresholding (AMT). The AMT does the following "The
threshold value is the mean of the neighbourhood area minus the constant C" [26], or
Adaptive Gaussian which instead does "The threshold value is a Gaussian-weighted sum
of the neighbourhood values minus the constant C" [26]. The different results can be
viewed in the bottom left and bottom right images respectively of Figure 2.2.

2.5 Parameters for Performance Evaluations

When considering performance evaluations there are a few things to take into consider-
ation. There are many different ways in which a model may be evaluated upon. Some
of the factors are: Accuracy, Over-fitting, Output relation, Convergence Time, Inference
Time and Computing Power. While these may affect the model to varying degrees, being
able to distinguish them help you combat them easier.

9

2.6. OUTPUT INTERPRETATION

2.5.1 Accuracy

Accuracy is one of the most common ways to measure a models effectiveness. What this
enables you to see, is how often you are able to make a correct output/guess, for a given
input/data point. What the metric accuracy effectively measures, is the neurons ability
to translate the input space, onto the output space. While at first glance it seems to be
a encompassing metric, it does not account for variables such as overfitting.

2.5.2 Overfitting

While a model might perform very well on its training/data-set, the real value of an
AI/ML model comes from being able to perform well on similar data, and not just the
exact dataset you have provided it. Overfitting refers to a situation where you perform
well on the dataset you trained on, but are unable to transfer the results to similarly
labelled and structured datasets. This is usually a symptom of having either too many
epochs on too little data, or too many neurons, for too few data-points. The result is that
you make the model learn too many/too few, features of a given data-point. Net result
is the model having no leeway in terms of similarity, despite two data-points being the
same reference/ground-truth. This metric is very difficult to get rid of all-together, as it
is hard to beforehand know the exact extent, of a given real-input-space vs model-input-
space. There exists methods to at least reduce the chances for overfitting, (beyond the
aforementioned epochs, and amount of data), such as output relation.

2.6 Output Interpretation

If a given model is producing weird output/predictions, it is usually (but not always)
problems with either the dataset, or the code. A consideration is that a model can not
output, something which you did not implement/input, either explicitly or implicitly.
With this inmind we can approach the problem of finding the reason for weird predictions,
in a much more constricted sense. While none of these methods are a catch-all-solve-all
solution, they give you the ability to eliminate one or more factors.

2.6.1 100% and 0 learning curves

There are many ways to force both 100% accuracy, and a gated learning curve. However
assuming that the task is complex enough, to warrant using AI in the first place, and
the dataset is sufficiently large, to do a 60/40 cutoff without compromising learning, we
can reach the following conclusions:

• 100% accuracy should never happen, and is either neuron space close to or equal
the permutation/combination space, of the input or overfitting through epochs.

• You have either capped the potential of the model, be that the surjective limit(too
small onto space), either via layers, neurons or output space.

• While local minima/maxima can be hit, you rarely hit the same minima/maxima
multiple times for non wave-form-data tasks.

• You data is literally random noise.

10

2.6. OUTPUT INTERPRETATION

Information at hand we would gather to troubleshoot this would be:

1. Input Space (Model)

2. Neuron Space

3. Output Space (Model)

4. Epochs

It might also be an idea to change where the 60/40 cutoff is for the data and/or shuffle
the data.

2.6.2 Statistics

If applicable it can be a good idea to run general statistics, over all or some of the data
points. Some of the important values to get out are: Average Value, Mean Value, Variance,
Standard Deviation, Minimum Value, Maximum Value, and sometimes Q1+Q3. What
these values enables you to do is to say something about their general distribution, and
if there might be anomalies in the dataset. Sometimes though it might not be sufficient
with raw data, and graphing the data for visual inspection is another option.

Graphing

Visualisation can be a great tool to look for boundary values that differentiate highly
from the rest of the set. Sometimes there may be 2 big clusters, which can tell you that
you might have 2 different classes, while other times it might be stray values. These
stray values might interfere with training, so either removing them, or using a method
to prune them, such as to cut extremal values beyond a certain threshold might be the
best approach.

Cutting Extremal Values

Sometimes there may be either mislabel-ed data, data that is too far off the average value,
or errors occurring in reading/collecting. An example of this could be a accelerometer
measuring walking/jogging speed that you attach to your arm, and you suddenly wave
at a passerby. This might create a spike in the registered speed, while the whole set
might still be label-ed jogging. One way to deal with these extremal values is to take
advantage of the empirical rule [41] and prune data further than 3σ/std from mean.
What this means, is that the overall range of the distribution gets reduced, and you only
encompass 99.973...% of the actual data, (which gives roughly a 1 in 370 of it being wrong),
but has the upside of being more specific on average data.

Normalising

As input/data can sometimes come from multiple sources, it might be wise to normalise
values between 0 and 1. What this helps with is to make sure that even though systems
might be calibrated differently, the ratios are preserved. However if it is not used in
junction with other points mentioned in 2.6.2 they might sometimes produce problems.

11

Chapter 3

Proposed Method

Figure 3.1: Overview over the new proposed system.

12

3.1. METHOD OVERVIEW

In this chapter we will focus on attempting and working on the proposed new method.
One of the first things to take into account when one wants to set up any system, is what
the requirements for the modules that one need to import/implement are.

3.1 Method overview

Going from Figure 3.1 we can see in general terms what the method will do. It starts by
importing the dataset Cifar-10, which will then have a certain size (Chapter 3.3). In this
case, the training input set of the Cifar 10 has 50000 images, and the images are 32x32,
with one value for Red, Green, and Blue respectively giving it the final shape of [50000,
32, 32, 3]. Most of the values are the same for the training output set, albeit having 1
value as the label, as opposed to 3 for colours giving it the final shape [50000, 32, 32, 1].
The testing set only has 10000 images, but are otherwise of same shape as the training
set, giving it the final shape x/input = [10000, 32, 32, 3] and y/output = [10000, 32, 32,
1]. The next step is then to pre-process it, to fit the goals presented in Chapter 1.3. The
fine details of this pre-processing process will be explained in Chapter 3.4.2. The main
takeaway for now is that the shape will change. The next step is to train the model on
the training set, which now is pre-processed, with given hyper-parameters. Finally use
the trained model so see how good it is at predicting from the testing set which has also
undergone the same pre-processing. Finally we receive a matrix/list about how well it
performed and we can then analyse this data (Chapter 4).

3.2 Initialising

One of the first things to take into account when you want to set up any system, is what
the requirements for the modules that you need to import/implement are. Starting with
a version control, of what the system looks like, to easier replicate it.

3.2.1 Version Control

Machine OS Python Tensorflow
Desktop Windows 10 3.7.4 2.3.0

Jupyterlab Ubuntu 18.04.3 LTS 3.7.4 1.15.2

Table 3.1: Versions used in current project of certain modules

3.3 Importing Dataset

There are 2 ways of importing the CIFAR-10 dataset, one requires you to download the
modules, and construct each image from their respective colour channel, as can be seen
a solution for in Appendix A.1. The other arguably more convenient way is by the use of
either baseline Keras [29], or as a add-in from newer Tensorflow versions [30] as such,
as seen in Appendix A.2.

13

3.4. PRE-PROCESS BINARIZATION

Input Output
Training [50000, 32, 32, 3] [50000, 32, 32, 1]
Testing [10000, 32, 32, 3] [10000, 32, 32, 1]

Table 3.2: Shapes of the imported CIFAR10 dataset.

3.4 Pre-Process Binarization

3.4.1 Flowchart of Binarization Process

Figure 3.2: Flowchart of the binarisation process using Diagrams [15].

If we start in the upper-left corner and start the process there are a few things that need
to be initialised:

14

3.4. PRE-PROCESS BINARIZATION

• The input/data of the system (shape shown in this example)

• How many images/objects are being processed

• What is the width of an image.

– This system currently assumes all images have the same dimensions (which is
also a requirement for the CTM).

• What is the height of an image.

– This system currently assumes all images have the same dimensions (which is
also a requirement for the CTM).

• How many colour channels.

– Most standard imagery uses Red, Green and Blue channels to represent graph-
ics. This means 3 one for red, one for green and one for blue respectively.

• What is the colour depth.

– This number represents the amount of bits required to express the amount of
hues in binary. For standard imagery using 0-255 or 256 unique hues, this
results in colourDepth = d log 256

log 2 e = 8 bits.

• Shape/Dimension of the binarized dataset.

– This can be generalised to [images, pictureWidth, pictureHeight, coulourChan-
nels*colourDepth], but raw numbers were used for readability.

• Help variables

– Generalising for any programming language, there will need to be set 5 help
variables used in FOR loop handling.

After initialisation, the first thing it does is start the nested FOR loop chain, starting with
the amount of images. Next follows the dimensions of the image in width and height.
Finally there’s is colour channels and depth. The reason for this schema is to account
for the multidimensional array of both input and output. The deepest operation (trapeze)
utilises the AND function to check one bit at a time of a given hue value if it is 0 or 1 thus
binarizing the decimal number.

15

3.4. PRE-PROCESS BINARIZATION

3.4.2 Binarization

Figure 3.3: Pixel Extraction and per pixel data

From A. in Figure 3.3 imagine any image as raw input. From there crop out or use a slid-
ing window to get a sub-set of the image B. which is easier to handle. On a per pixel basis
of an image there is information regarding the red, green and blue colour saturation of
that pixel. Assuming that the image has a 8-bit colour depth, means that the numbers
range from 0-255.

16

3.4. PRE-PROCESS BINARIZATION

Figure 3.4: Pixel Extraction and per pixel data

From D. and E. in Figure 3.4 is how a computer would consider this crop/window. A list
of sets of 3 numbers. Both for binary and decimal representation, but can be thought of
as lists of [X, Y, 3] range.

27 26 25 24 23 282 21 20

R 000 0 0 0 0 0 0 0 0
G 150 1 0 0 1 0 1 1 0
B 255 1 1 1 1 1 1 1 1

Table 3.3: Decimal and Binary representation of numbers

The CTM however does not take a decimal input, it takes sets of binary inputs. This
means that at the very least, there needs to be some changes to make the system accept
our image. One of the solutions is to simply use the raw binary representation and make
the input 3×8=24 times bigger or [X, Y, Z] with colour depth α becomes [X, Y, α×Z]. While
this has the downside that if you are using very large images, the input gets larger. This
would still work feasibly from a categorical classification on a per small image basis,
which is what CIFAR-10 is.

3.4.3 Modelling 2s Complement as a Threshold

What differentiates this new technique from normal thresholding is that instead of choos-
ing one cutoff per threshold, it accounts for sets of thresholds as result of using the 2’s
complement translation of the value. This effectively gives us the following sets of thresh-
olds T2n for the exponent of two n, represented by 1 if the formula x mod 2n+1 ≥ 2n holds
true:

17

3.5. TRAIN MODEL

2n 7 6 5 4
(256 > T27 > 128) (256 > T26 > 192)

∨
(256 > T25 > 224)

∨
(256 > T25 > 240)

∨
(128 > T26 > 64) (192 > T25 > 160)

∨
(224 > T24 > 208)

∨
(128 > T25 > 96)

∨
(192 > T24 > 176)

∨
(64 > T25 > 32) (160 > T24 > 144)

∨
(128 > T24 > 112)

∨
(96 > T24 > 80)

∨
(64 > T24 > 48)

∨
(32 > T24 > 16)

2n 3 2 1 0
∀x ∈ T ; ∀x ∈ T ; ∀x ∈ T ; ∀x ∈ T ;

x mod 23+1 ≥ 23; x mod 22+1 ≥ 22; x mod 21+1 ≥ 21; x mod 20+1 ≥ 20;
256 > x > 0; 256 > x > 0; 256 > x > 0; 256 > x > 0;
x ∈ N0 x ∈ N0 x ∈ N0 x ∈ N0

Table 3.4: Binarization Scheme for the proposed system

By the time we reach 23 we are starting to see a pattern. The include-exclude schema is
starting to get long we, so we switched to discrete notation. Lets take an example from
the discrete notation above.
Assume you want to know if the 23 bit is 1 when x is 255 e.g:
x mod 2n+1 ≥ 2n → 255 mod 23+1 ≥ 23 = 255 mod 16 ≥ 8 = 15 ≥ 8 → True.
Next is the 21 bit 1 when x is 80 e.g:
x mod 2n+1 ≥ 2n → 80 mod 21+1 ≥ 21 = 80 mod 4 ≥ 2 = 0 ≥ 2 → False.

3.5 Train Model

3.5.1 Convolutional Tsetlin Machine

There are currently several versions implemented for the CTM. They are as following:

1. Convolutional Tsetlin Machine [20]

2. Paralell/CPU CTM [1]

3. GPU/CUDA CTM [2]

Depending on what your setup is they each have their own pros and cons. The Jupyterlab
we used, had access to 42 CPUs and one GPU for which specs can be seen in Appendix
A.3. Regardless having access to that many CPUs, makes the Paralell version better by
default so it is the one we will be using. The CUDA implementation should be the fastest,
assuming equal setup. In Appendix A.4 we show the CUDA implementation being CPU
capped, and therefor bottle-necked, leading to the choice of Paralell Tsetlin CNN.

3.5.2 Hyperparameters

As the previously mentioned thesis [39] decided to use the following:

18

3.6. VISUAL COMPARISON OF TECHNIQUES

• T = 75

• s = 10

• patch_Dim = (8, 8)

We will be using this as a baseline. Below can be seen a flowchart explaining how the
entire system should be set up.

3.6 Visual Comparison of Techniques

3.6.1 Image Information Breakdown

Figure 3.5: Comparison of techniques over an 32x32 image with hue-maps of Red, Green,
Blue, and RGB respectively

.

Above in Figure 3.5 the ground-truth image (bottom left) has 4 rows of hues. The first-
most column of images is ground-truth, second is Adaptive Gauss, and third to tenth
is binarization in descending order of 2s exponents 27 → 20. Rows split up from top to
bottom: Red colour channel, Green colour channel, Blue colour channel and composite
image respectively. Composite image not added for binarization techniques as the com-
posite would technically just be ground-truth. Do notice that since the image used is
32x32, it is only possible to show 32 unique hues, for that image length. This means
that there will exist no information beyond d log 32

log 2 e = 5 bits, in the lossless binarization
technique (apart from the base colour).

19

3.6. VISUAL COMPARISON OF TECHNIQUES

3.6.2 Example Image from Dataset

Figure 3.6: Comparison of techniques on Cifar-10_Train_1 in multicolour RGB

In Figure 3.6 all the techniques can be seen on an actual image from the dataset.

Figure 3.7: Comparison of techniques on Cifar-10_Train_1 in monochrome G

It can be hard to differentiate between what information is stored for each respective
channel, for images of larger complexity, when they are also split by colours. Therefor we
have in Figure 3.7 used a green representation for all the colour channels. Keep in mind
here that green refers to 1, and black refers to 0.

20

Chapter 4

Performance Evaluation

4.1 CTM Hyperparameters and Manual Loss

4.1.1 Curves and Axis

The x axis/horizontal curve will represent epochs, or one session of training for the neural
network per point. The y axis/vertical curve will represent the mean accuracy per epoch,
of the mean accuracy per image in percentage per point. The epochs are 0 indexed, so
the value at 0 will represent the value after one epoch/training across the input. AGauss
will be represented in crosses x while LL4 will be represented as dots *.

4.1.2 Observations

Searching the hyper-parameter space is one of the things that allows you to fine tune an
already working model. However graphing one of the results per epoch, shows something
interesting.

Figure 4.1: Graph of mean of the accuracy per epoch of the mean accuracy per image.

21

4.2. RESULTS

What one can observe from this curve is that the function in Figure 4.1 resembles a Sig-
moid function. However it appears to converge before 1, which is more in line/similar to
a logistics function. The reason this is important is it gives 3 factors to consider for con-
vergence and not one. To reiterate, this means that just taking the hyper-parameter that
throws the highest value for the last epoch is insufficient, as one also need to consider the
slope of the function. A manual loss calculation to determine the best hyper-parameters
would require at minimum, a 3 variable equation (and a 299 variable at maximum).
Therefore, the hyper-parameter search will fall outside the scope of this thesis.

4.2 Results

The first/initial results of the proposed method referred to as LL8 or lossless 8 bits yielded
21% accuracy with 500 images, 800 clauses and 50 epochs. While at first this seems
very low, keep in mind that random/chance would be 10%, and we are feeding the system
an array that is almost the cube of the input size per image compared to the Adaptive
Gauss or AGauss of [39]. The next thing to consider is to look at a few images to see if
we can compress the amount of noise being given to the system, to see if we can make it
converge faster.

Figure 4.2: Comparison of techniques on Cifar-10_Train_23099 in monochrome Yel-
low/Purple.

Above in Figure 4.2 we have expanded upon the idea from Chapter 4.1, but changed the
binary representation to 2 colours that is easier to distinguish from each other. We use
yellow to signify 1 and purple to signify 0, we have also added labels of explanation to
each column. As shown in Figure 4.2 you can see that even in lower brackets, a lot of
the information seems to be preserved. However it doesn’t seem to add much beyond the
first few spectrum’s. It was therefor concluded to only utilise 27 − 25 as input, as there
seems to be mostly noise past this level in images such as Figure 3.7. For the next run
we therefor omit 24 − 20 and see if reducing the noise can make it converge faster. This
method of using only the 27 − 25 bits, will be referred to as LL4 or lossless 4 bits.

22

4.2. RESULTS

4.2.1 Difference in Input-size

The size of the input is vastly different for AGauss, LL4 and LL8. If we assume that the
input from the AGauss is standard, we can refer to that as I.
The input size of the LL4, i.e. using only 27 − 24 is equal to I(I + 1) = I2 + I.
The input size of the LL8, i.e using the full 27 − 20 is equal to I(I2 − 1) = I3 − I.

4.2.2 Comparing LL4 to AGauss

Figure 4.3: Comparison of AGauss and LL4 at 5000 images, 800 clauses.

Consider from Figure 4.3 the current input of the LL4 is bigger than the square of the
input of the AGauss method. While it is not most obvious from the entire graph, if you
pay close attention to the slope of the red and blue trajectories, it is a lot steeper for
AGauss than for LL4.

23

4.2. RESULTS

Figure 4.4: Difference in Accuracy/∆a(x) for AGauss and LL4.

Graphing the difference in epochs value, i.e. ∆Accuracy = ∆a(x) = a(x+1)−a(x) and then
zoom in x/epochs between 50 and 100 to get Figure 4.4. From Figure 4.4 it is observed
that the blue values seem to be a little higher, however not only are they higher, they
are almost double on average. The difference between the AGauss and the LL4 is slowly
decreasing with epochs, as the slope of the AGauss is steeper. The LL4 is clearly learning
faster, but as it has a lower initial value, it does not overtake AGauss within 300 epochs.

4.2.3 Scaling to Full Dataset

As the new system takes in more information, one way to check the latter part of the
hypothesis from Section 1.1.4, is to see if the gap closes for more data, and more epochs.
As epochs is somewhat already confirmed from Figure 4.4, the next focus will be on data.
For the next run we then include the entire training set of 50000 images.

24

4.2. RESULTS

Figure 4.5: Comparison of AGauss and LL4 at 50000 images, 800 clauses

From Figure 4.5 it is observed that the difference of AGauss and LL4 at the 300th epoch
has been reduced to only 4.91% compared to the one from Figure 4.3 of 9.99% at the
300th epoch. While it is less obvious, the slope of AGauss is still steeper, and converges
faster.

AGauss_5k AGauss_50k ∆_AGauss LL4_5k LL4_50k ∆_LL4
Epoch 1 20.96% 43.23% 22.27% 19.06% 36.59% 17.53%
Epoch 50 43.28% 51.65% 8.37% 31.95% 46.38% 14.43%
Epoch 150 45.46% 52.71% 7.25% 34.90% 47.66% 12.76%
Epoch 300 45.85% 53.03% 7.18% 35.86% 48.12% 12.26%

Table 4.1: Values and differentials from Figure 4.3 and Figure 4.5.

The Table 4.1 was created to better observe the difference in convergence speeds. Just
to reiterate ∆_AGauss = AGauss_50k - AGauss_5k. What this table shows is that for
larger amounts of data, the LL4 closes the difference to AGauss, while maintaining a
more gradual slope. Just increasing the data, reduced the difference between them with
a substantial margin, and epochs keeps increasing the accuracy for longer for LL4.

4.2.4 Linear Input/Clauses Ratio Assumption

As the input is 4 times larger than the AGauss setup, what would happen if we ran LL4
with 4 times the clauses to compensate for this, and then compare methods.

25

4.2. RESULTS

Figure 4.6: Juxtaposition of AGauss and LL4, where LL4 has 4xClauses

Keep in mind that clauses is strongly correlated to accuracy and convergence [56] so this
linear assumption might have some flaws to it, but it highlights the importance of slope
for a given function. Even though LL4 starts at a lower value, and converges slower, its
maximum potential is higher relative to starting value.

4.2.5 Manual Approximation for the Logistic Function

Figure 4.7: Left side showing Logistic Curve approximation, and right side combines it
with Figure 4.5.

26

4.3. CONVERGENCE AND FACTOR ANALYSIS

4.3 Convergence and Factor Analysis

Figure 4.8: Convergence sequences of different valued L and k for the logistics formula
using GeoGebra [31].

One of the reasons we put such emphasis on the LL4 increasing values for longer for
example in Figure 4.4, is to do with the slope of the function. From the image in Figure
4.1 we can see that the shape of the curve roughly fits a sigma curve/sigmoid function.
However as the max value may not approach 1, it then better fits the form of a logistic
growth curve. While there exists many ways to get a better approximation to what the
exact function of the curve is [52] that falls outside the scope of this thesis. We therefor
assumed that the general formula for sigma curves is insufficient, i.e.:

S(x) = 1
1 + e−x

= ex

ex + 1 =
{

1 if x → ∞
0 if x → −∞

And instead used the logistic curve/logistic function defined as following.

l(x) = L

1 + e−k(x−x0) =
{
L if x → ∞
0 if x → −∞

where L is the maximum value, k is the growth/slope of the curve, and x0 is the functions
mid/center (l′′(x) = 0). For my example x will be epochs. Both the value L and the value
k is important here. The L value because its the maximum theoretical accuracy, while k
tells us if worth training past a given number of epochs.

27

4.3. CONVERGENCE AND FACTOR ANALYSIS

From Figure 4.8 we have plotted 3 different graphs and take the assumption that we
train for 300 epochs/x and the y axis represents accuracy. The baseline graph is the
green l(x), and only takes the input as is from the image into the logistics formula. The
red graph t(x) assumes that the maximum accuracy L, is 10% lower, but the slope k is
doubled. The orange line q(x), assumes the maximum value L is 10% higher, but the
slope k is halved. What we can see from the graph is that even though the t(x) graph
seems like the clear winner for this example, we can calculate that: l(x) will overtake
t(x) for x = 409; q(x) will overtake t(x) for x = 596; and q(x) will overtake l(x) for x = 868.
Now its not always the case that it is feasible to let x get to a certain number, however for
examples sake, if x/epochs were doubled, l(x) would win, and if tripled q(x) would win,
and stay the winner for all further epochs. If we then compare these to Figure 4.1 we can
make assumptions about how steep the slope/k value is for that given approximation.
The reason this is important is how long it is necessary to train a model overall, and how
much room for improvement there is.

4.3.1 Speculation on the Slope Difference

For most tests, the initial value of the AGauss is higher, but the learning rate is a lot
slower. While going through the full prediction list we noticed that images such as Figure
4.2 were images that the Gauss method usually performed well on. Images that has little
background noise, and and looks similar between the Lossy Gauss and the Lossless 27

for their respective channels.

Figure 4.9: Comparison of techniques on Cifar-10_Train_1123 in monochrome Yel-
low/Purple

Images such as Figure 4.9, were some of the images the AGauss method performed worse
on, comparative to LL4. One can see there is more noise in the AGauss, compared to
Lossless 27. One can therefor speculate that the Gauss method will encounter problems
where the method fails to remove noise in a similar manner as presented in lower right
Figure 2.2. We did not have the time test this, but it could be part some future work.

28

Chapter 5

Discussion

5.1 Observation on the RBG Channels

One thing to take note of is that from both Figure 3.7 and Figure 4.9 is the information
between the RGB channels for the AGauss method is hardly noticeable, so it would be
interesting to compare results using only one of the RGB spectrums.

5.2 Experience and Epiphanies

The goal of the thesis was to enable Tsetlin to have an option of lossless input for computer
imagery. This was implemented successfully, however were reduced to account for the
latter images being prone to a lot of noise, and to reduce training time. During the earlier
stage of testing there were small differences that ended up in the prediction matrix having
very different values between the standard deviation of the Gauss and lossless method,
leading to some wrong conclusion. This culminated in a lot of writing, and testing that
ended up null as the results were not comparable. In the comparison of the techniques
we assume the size of input, and clause convergence space is linear and parallel i.e
if we double the input size, we should also double clauses to create an even match-
up between the 2 technologies. Solving this problem would require knowing the octo-
equilibrium of hyper-parameters vs input size, which may not even exist, but a best fit
should theoretically exist.

5.3 Retrospect

• If you could do the project again, what would you do different?

1. Get hold of version control and/or earlier code as early as possible
We spent a lot of time trying to get this to run on a baseline setup of python
3.6 and tensorflow 2.3 as it was something we had pre-installed and knew were
working. However as it turns out, while the code may work on this configura-
tion, it requires quite a few modifications, in lieu of the Tsetlin system having a
python parser via ctypes, and running baseline C.

2. Thoroughly read through any code obtained from other sources
One of the things we received, was a known working solution for the AGauss

29

5.4. FUTURE WORK

method, that would, and did make troubleshooting a lot easier. However one
minor detail, in how themethod did the predictionmatrix, was that it performed
the mean calculation after the training was done, meaning that the final matrix
included the prediction for every image. While not normally a problem, it did a
standard deviation across all the images, as proposed to the mean or average
of them. This bug ended up being a basis for which that we based assumptions
on. Most if not everything of the work being done, between receiving the known
working method, and discovering the bug ended up being scrapped, as it was
based on the wrong conclusions.

3. Explore back-end capabilities
At the start of the project, the proxy used to connect to Jupyterlab were locked
to a 2 hour session. This means that any task requiring more than 2 hours
would be terminated, as the proxy session would be terminated. However as
the system allowed for parentless running (& operator in bash), meant that
processes could be left running in the background, despite the session end-
ing. The proxy were eventually changed to be sessionless, but knowing about
parentless running would have given a lot more time to train and test early on.

4. Don’t have a too low baseline for testing
When exploring for potential methods, one of the mistakes made was to assume
that most methods would be able to gain a few percent above chance, even for
as small test as 50 images 800 clauses. This turned out to be enough for most
compression/lossful methods, but not enough for lossless methods. This ended
up causing some repeat tests needed to be done, to double check the viability
of some methods.

5.4 Future Work

One of the main proponents that should be explored is what happens on larger image
datasets. While very good for benchmark purposes, the CIFAR10 dataset does not in
any way check if either technology works good on scale. While we suspect that both the
AGauss, and the LL4/LL8 methods actually works, whether or not they translate their
effectiveness to images with higher resolution and complexity is another topic.

5.4.1 Check Breakpoints/Equilibrium Methods

While we conclude that the new method will scale up better in the long run, there will
of course exist a breakpoint for when you should use which method. At least in terms
of clauses and data this can possibly be solved. One of the ways to cross reference, how
much a input increase of I2 + 1 with I as Gauss baseline input would effect the system,
was to check what would happen if: You quadruple the input, and copied the original
value for the remaining bits I.E. (1→ 1, 1, 1); You quadruple the input, and added random
noise r to the last digits (1→ r, r, r); You quadruple the input, and swapped the last digits
for the new system (1 → 26, 25, 24). While this wouldn’t outright give you the breakpoint,
it would give a good indicator as to the overall effect of increasing input size.

30

5.4. FUTURE WORK

5.4.2 Expand System for IRN

Right now the system works specifically for 2 dimensional images, albeit being effectively
3d input because of the RGB split. However there exists images such as hyper-spectral
imaging either in the form of multidimensional layering [37], data going beyond the visible
spectrum of the electromagnetic field [38], or simply data being represented in image
form [4]. For this reason it would be an idea to create a generator based on the number
of dimensions needed for the problem.

5.4.3 Expand System for Per-pixel Labelling

R 000 G 150 B 255
20 0 0 1
21 0 1 1
22 0 1 1
23 0 0 1
24 0 1 1
25 0 0 1
26 0 0 1
27 0 1 1

Table 5.1: Transpose of the binary representation.

Another solution for input handling, as showed above in Table 5.1, where the transpose
of the binary representation is used. What this enables us to do is get 8 binary matrices
that’s 3 times as big as the original image. Each binary matrix consists of R, G and B 2X

representations, for example R20
0 , G

20
0 , B

20
0 , R

20
1 ... and a final size of [α, Z, X, Y] or [α*Z, X,

Y]. While the current solution works good on a classification based solution, since one
may have access to per pixel labelling such as the CAMELYON dataset[35]. It would be a
waste to potentially lose information about position or dimensions. A third solution, and
workaround for this, is to simply split the RGB into each of their own respective matrices,
giving a total of 24 matrices for our example, or α*Z[X, Y] in general. This has the ad-
vantage that position is not lost, and no alteration needs to be done to the per-pixel labels.

Output Handling

At this point we have a 24-bit output, as opposed to a single bit. There are ways to
interpret this output such as majority vote, or some weighted form of this. However one
could hypothesise that the lower representation bits, might have less impact on deciding
the outcome of the class, as a variation from 144-145 is less significant than 1-65. Spec-
ulating more, this would also mean that if all colours are very light, then some of the
higher representation bits might simply be noise. The solution is that instead of using
heuristics to try to determine the weight of each number, we will simply use a Tsetlin
Machine[18] as this could be said to be a variation of the one-armed bandit problem,
which the TM has shows great performance on [18]. The net result of all this, gives us a
network that looks something like Figure 5.1 below.

31

5.4. FUTURE WORK

Figure 5.1: Visualisation of the Tsetlin network

What this form of neural network allows is not having to do any changes to the labels for
the per-pixel classification. For Binary Classification there would need need to be some
form of heuristic that decides what is enough data to count one area being affected. The
reason that the Tsetlin Machine template remains unchanged is that for both cases, you
need to combine the binary representations back to a single output, and that is done by
considering each output of each individual CTM. The main difference is that for BinClass
you only need to perform this action once, while for PerPixel you need to do this operation
for every single pixel. Also keep in mind that for non binary classification, you would need
to change the output of the TCNN, to be either one-hot encoded, or binarized in a similar
fashion to the one used for the colours, as the TM can only accept 0 or 1.

32

Chapter 6

Conclusions

The primary goal of the project was to create a method for lossless input of computer
images, assuming that the input needs to be in a binary form, and one such method were
presented in this thesis. Based on the findings from Section 4.2 and assumptions done
in Section 4.3, it is enough to conjecture that the LL4 will eventually beat the AGauss
for large enough datasets and/or enough epochs. Beyond this the project sought to see
where the proper applications for this method, could be utilised, and while not giving
a complete answer, we feel we covered a lot of ground for potential issues. The method
should be implementable in other languages than Python, as it requires only nested
lists and Boolean operators/mathematics. There is probably room for improvement to
efficiency in the code, such as using a python parser down to C level in similar fashion to
how the CTM does it. However as we are utilising NumPy already, the overall gain from
a pure port is most likely minimal. We hope this thesis will contribute to enable the use
of a bigger selection of datasets to be used for the Tsetlin framework, and possibly even
make Tsetlin competitive for some of them.

33

Appendix A

Code Snippets & Misc

A.1 Manual Import of CIFAR10

1 import random as rand
2 import numpy as np
3
4 c i far_ labe l_d ic t = {
5 0: ' airplane ' ,
6 1: ' automobile ' ,
7 2: ' bird ' ,
8 3: ' cat ' ,
9 4: ' deer ' ,

10 5: ' dog ' ,
11 6: ' frog ' ,
12 7: ' horse ' ,
13 8: ' ship ' ,
14 9: ' truck '
15 }
16
17 def importCifarDataModule (f i l e) :
18 import pickle
19 return pickle . load (open (f i le , " rb ") , encoding= ' bytes ')
20 def exampleImageFromTheDataset (d) :
21 print ("\t ␣Image␣ Info ")
22 print (" Image␣Channels:\ t\t " , "RGB␣ : ␣ [X, ␣Y, ␣3] ")
23 print (" Color␣Depth:\ t\t " , "8bi t ␣ : ␣0−255")
24 randomIndice = rand . randint (0 , len (d [b ' data ']) −1)
25 imageArray = d [b ' data '] [randomIndice]
26 redChannel = imageArray [:1023]
27 blueChannel = imageArray[1024:2047]
28 greenChannel = imageArray [2048:]
29 help , help2 = 0, 0
30 image = np. zeros ((32 ,32 ,3))
31 print ("\t ␣Example␣Image")
32 for x , y , z in zip (redChannel , blueChannel , greenChannel) :
33 i f help == 32:
34 help2 += 1
35 help = 0
36 #Note as pyplot uses a normalisation of the 8 b i t channels to f i t between 0

and 1 , you need to normalise the input
37 image [help2] [help] [0] = (x − 0)/(255−0)#x
38 image [help2] [help] [1] = (y − 0)/(255−0)#y
39 image [help2] [help] [2] = (z − 0)/(255−0)#z
40 help += 1
41 print (" Label−L i tera l :\ t\t " ,d [b ' labels '] [randomIndice])
42 print (" Label−HumRead. :\ t\t " , c i far_ labe l_d ic t [d [b ' labels '] [randomIndice]])
43 showImageAsPyplot (image)
44
45 cifarPackedLocation = "%DATAPATH%/ci far −10−batches−py/"
46 fu l lF i lePath = cifarPackedLocation+" filename "

i

A.2. LIBRARY IMPORT OF CIFAR10

47 imageSet = importCifarDataModule (fu l lF i lePath)
48 exampleImageFromTheDataset (imageSet)

A.2 Library Import of CIFAR10

1 # I f you are using tensorflow
2 from tensorflow . keras . datasets import cifar10
3 #Or i f you are using baseline keras
4 from keras . datasets import cifar10
5 #and f ina l l y
6 (X_train , Y_train) , (X_test , Y_test) = cifar10 . load_data () # Load a l l data

A.3 Readout of "nvidia-smi" - Jupyterlab GPU

1 +−−−+
2 | NVIDIA−SMI 450.66 Driver Version : 450.51.06 CUDA Version : 11.0 |
3 |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
4 | GPU Name Persistence−M| Bus−Id Disp .A | Volat i l e Uncorr . ECC |
5 | Fan Temp Perf Pwr :Usage/Cap| Memory−Usage | GPU−Ut i l Compute M. |
6 | | | MIG M. |
7 |===============================+======================+======================|
8 | 0 Tesla K80 On | 00000000:84:00.0 Off | 0 |
9 | N/A 38C P8 27W / 149W | 0MiB / 11441MiB | 0% Default |

10 | | | N/A |
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−+
12
13 +−−−+
14 | Processes : |
15 | GPU GI CI PID Type Process name GPU Memory |
16 | ID ID Usage |
17 |===|
18 | No running processes found |
19 +−−−+

A.4 Terminal Readout of CUDA and CPU capacity

Figure A.1: Terminal showing CUDA Implementation being locked at 100% CPU Use

ii

A.4. TERMINAL READOUT OF CUDA AND CPU CAPACITY

Figure A.2: Terminal Showing CPU superseding 100% CPU use for the parallel imple-
mentation, i.e. using more than one CPU

iii

Bibliography & Sources

[1] K Darshana Abeyrathna et al. “Massively Parallel and Asynchronous Tsetlin Ma-
chine Architecture Supporting Almost Constant-Time Scaling”. In: arXiv preprint
arXiv:2009.04861 (2020).

[2] K Darshana Abeyrathna et al. “Massively Parallel and Asynchronous Tsetlin Ma-
chine Architecture Supporting Almost Constant-Time Scaling”. In: arXiv preprint
arXiv:2009.04861 (2020).

[3] Colin Allen, Iva Smit, and Wendell Wallach. “Artificial morality: Top-down, bottom-
up, and hybrid approaches”. In: Ethics and information technology 7.3 (2005), pp. 149–
155.

[4] Alexander E Bondarev and Vladimir A Galaktionov. “Multidimensional data analy-
sis and visualization for time-dependent CFD problems”. In: Programming and Com-
puter Software 41.5 (2015), pp. 247–252.

[5] Tom B Brown et al. “Language models are few-shot learners”. In: arXiv preprint
arXiv:2005.14165 (2020).

[6] Eike Budinger et al. “Non-sensory cortical and subcortical connections of the pri-
mary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of
neuronal information via field AI”. In: Brain research 1220 (2008), pp. 2–32.

[7] George Chang, Wayne C Guida, and W Clark Still. “An internal-coordinate Monte
Carlo method for searching conformational space”. In: Journal of the American
Chemical Society 111.12 (1989), pp. 4379–4386.

[8] Liang-Chieh Chen et al. Rethinking Atrous Convolution for Semantic Image Segmen-
tation. Accessed: 12.09.2020. 2017. url: https://arxiv.org/pdf/1706.05587.pdf.

[9] Alexandre Joel Chorin. “Numerical solution of the Navier-Stokes equations”. In:
Mathematics of computation 22.104 (1968), pp. 745–762.

[10] CNN Basic setup @ Tensorflow. url: https : / / www . tensorflow . org / tutorials /
images/cnn. Accessed: 03.12.2020).

[11] Codebase at Github. url: https://github.com/Ikantra/losslessBinarizationTsetlin.
Accessed: 07.01.2021.

[12] Robert Colwell. “The chip design game at the end of Moore’s law”. In: 2013 IEEE
Hot Chips 25 Symposium (HCS). IEEE Computer Society. 2013, pp. 1–16.

[13] K. Darshana Abeyrathna et al. “The regression Tsetlin machine: A novel approach to
interpretable nonlinear regression”. In: Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences 378.2164 (2020), p. 20190165.
doi: 10.1098/rsta.2019.0165.

[14] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[15] Flowchart Draw.io - Diagrams. url: https://app.diagrams.net/. Accessed: 18.12.2020.
[16] Marcus Frean. “The upstart algorithm: A method for constructing and training

feedforward neural networks”. In: Neural computation 2.2 (1990), pp. 198–209.
[17] Ian Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks”. In: arXiv

preprint arXiv:1701.00160 (2016).
[18] Ole-Christoffer Granmo. The Tsetlin Machine − A Game Theoretic Bandit Driven Ap-

proach to Optimal Pattern Recognition with Propositional Logic. 2018. url: https:
//arxiv.org/pdf/1804.01508.pdf. Accessed: 10.09.2020.

[19] Ole-Christoffer Granmo et al. “Learning automata-based solutions to the nonlin-
ear fractional knapsack problem with applications to optimal resource allocation”.
In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 37.1
(2007), pp. 166–175.

[20] Ole-Christoffer Granmo et al. The Convolutional Tsetlin Machine. 2019. url: https:
//arxiv.org/pdf/1905.09688.pdf. Accessed: 11.09.2020.

[21] Patrick Grother and Kayee Hanaoka. “NIST special database 19 handprinted forms
and characters 2nd Edition”. In: National Institute of Standards and Technology,
Tech. Rep (2016).

[22] Kaiming He et al. Deep Residual Learning for Image Recognition. Accessed: 14 Nov
2020. 2015. url: https://arxiv.org/pdf/1512.03385.pdf.

[23] Bruce Headey, Ruut Veenhoven, and Alex Weari. “Top-down versus bottom-up the-
ories of subjective well-being”. In: Citation Classics from Social Indicators Research.
Springer, 2005, pp. 401–420.

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[25] Gao Huang et al. Densely Connected Convolutional Networks. Accessed: 14 January
2020. 2018. url: https://arxiv.org/pdf/1608.06993.pdf.

[26] Image Thresholding − Python − OpenCV. url: https://docs.opencv.org/3.4/d7/
d4d/tutorial_py_thresholding.html. Accessed: 23.11.2020.

[27] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A convolutional neural
network for modelling sentences”. In: arXiv preprint arXiv:1404.2188 (2014).

[28] Anantharaman Kalyanaraman et al. “Efficient clustering of large EST data sets on
parallel computers”. In: Nucleic Acids Research 31.11 (2003), pp. 2963–2974.

[29] Keras API Homepage. url: https://keras.io/. Accessed: 27.11.2020.
[30] Keras Library for Tensorflow. url: https://www.tensorflow.org/api_docs/python/

tf/keras. Accessed: 04.10.2020.
[31] Knuth: Computers and Typesetting. url: https://www.geogebra.org/. Accessed:

01.09.2020.
[32] Alex Krizhevsky. The CIFAR10 dataset − Toronto Uni. 2009. url: https://www.cs.

toronto.edu/~kriz/cifar.html. Accessed: 03.09.2020.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

[34] Steve Lawrence et al. “Face recognition: A convolutional neural-network approach”.
In: IEEE transactions on neural networks 8.1 (1997), pp. 98–113.

[35] Geert Litjens et al. 1399 H&E-stained sentinel lymph node sections of breast can-
cer patients: the CAME- LYON dataset [Online]. https : / / www . researchgate . net /
publication / 325479909 _ 1399 _ HE - stained _ sentinel _ lymph _ node _ sections _ of _
breast_cancer_patients_the_CAMELYON_dataset. Accessed: 08 January 2020. 2017.

[36] Xiaoping Liu et al. “A bottom-up approach to discover transition rules of cellular au-
tomata using ant intelligence”. In: International Journal of Geographical Information
Science 22.11-12 (2008), pp. 1247–1269.

[37] Guolan Lu and Baowei Fei. “Medical hyperspectral imaging: a review”. In: Journal
of biomedical optics 19.1 (2014), p. 010901.

[38] Dimitris Manolakis and Gary Shaw. “Detection algorithms for hyperspectral imag-
ing applications”. In: IEEE signal processing magazine 19.1 (2002), pp. 29–43.

[39] ErikMathisen andHalvor S. Smørvik. Analysis of binarization techniques and Tsetlin
machine architectures targeting image classification. Accessed: 3 Sept 2020. 2020.

[40] Kumpati S. Narendra and M. A. L. Tthatthachar. Tsetlin Automata. 1974. url: http:
//www.dklevine.com/archive/refs4481.pdf. Accessed: 10.09.2020.

[41] Friedrich Pukelsheim. “The three sigma rule”. In: The American Statistician 48.2
(1994), pp. 88–91.

[42] Prasanna K Sahoo, SAKC Soltani, and Andrew KC Wong. “A survey of threshold-
ing techniques”. In: Computer vision, graphics, and image processing 41.2 (1988),
pp. 233–260.

[43] Arthur L Samuel. “Some studies in machine learning using the game of checkers”.
In: IBM Journal of research and development 3.3 (1959), pp. 210–229.

[44] Robert R Schaller. “Moore’s law: past, present and future”. In: IEEE spectrum 34.6
(1997), pp. 52–59.

[45] I Stephen. “Perceptron-based learning algorithms”. In: IEEE Transactions on neural
networks 50.2 (1990), p. 179.

[46] Richard S Sutton. “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming”. In: Machine learning proceedings
1990. Elsevier, 1990, pp. 216–224.

[47] Richard S Sutton. “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming”. In: Machine learning proceedings
1990. Elsevier, 1990, pp. 216–224.

[48] Christian Szagedy et al. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. Accessed: 12 Jan 2020. 2016. url: https://arxiv.org/
pdf/1602.07261.pdf.

[49] Christian Szagedy et al. Rethinking the Inception Architecture for Computer Vision.
Accessed: 13.11.2020. 2015. url: https://arxiv.org/pdf/1512.00567v3.pdf.

[50] Tensorflow Platform Homepage. url: https : / / www . tensorflow . org/. Accessed:
29.11.2020.

[51] Mikhail L’vovich Tsetlin. “Finite automata andmodels of simple forms of behaviour”.
In: RuMaS 18.4 (1963), pp. 1–27.

[52] Anastasios Tsoularis and James Wallace. “Analysis of logistic growth models”. In:
Mathematical biosciences 179.1 (2002), pp. 21–55.

[53] Wendell Wallach, Colin Allen, and Iva Smit. “Machine morality: bottom-up and
top-down approaches for modelling human moral faculties”. In: Ai & Society 22.4
(2008), pp. 565–582.

[54] Ronald J Williams and David Zipser. “A learning algorithm for continually running
fully recurrent neural networks”. In: Neural computation 1.2 (1989), pp. 270–280.

[55] Rohan Kumar Yadav et al. “Human-Level Interpretable Learning for Aspect-Based
Sentiment Analysis”. In: The Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-21). AAAI. 2021.

[56] Xuan Zhang et al. “On the Convergence of Tsetlin Machines for the IDENTITY-and
NOT Operators”. In: arXiv preprint arXiv:2007.14268 (2020).

