
A comparison between a two-feedback control loop and a reinforcement
learning algorithm for compliant low-cost series elastic actuators

Filippo Sanfilippo
Dept. of Engineering Sciences

University of Agder (UiA)
filippo.sanfilippo@uia.no

Tuan Minh Hua
Dept. of Science and Industry Systems
University of South-Eastern Norway (USN)

huaminhtuan94@gmail.com

Steven Bos
Dept. of Science and Industry Systems
University of South-Eastern Norway (USN)

steven.bos@usn.no

Abstract

Highly-compliant elastic actuators have become
progressively prominent over the last years for a
variety of robotic applications. With remarkable
shock tolerance, elastic actuators are appropriate for
robots operating in unstructured environments. In
accordance with this trend, a novel elastic actuator
was recently designed by our research group for
Serpens, a low-cost, open-source and highly-compliant
multi-purpose modular snake robot. To control
the newly designed elastic actuators of Serpens, a
two-feedback loops position control algorithm was
proposed. The inner controller loop is implemented as a
model reference adaptive controller (MRAC), while the
outer control loop adopts a fuzzy proportional-integral
controller (FPIC). The performance of the presented
control scheme was demonstrated through simulations.
However, the efficiency of the proposed controller is
dependent on the initial values of the parameters of
the MRAC controller as well as on the effort required
for a human to manually construct fuzzy rules. An
alternative solution to the problem might consist of
using methods that do not assume a priori knowledge:
a solution that derives its properties from a machine
learning procedure. In this way, the controller would
be able to automatically learn the properties of the
elastic actuator to be controlled. In this work, a novel
controller for the proposed elastic actuator is presented
based on the use of an artificial neural network (ANN)
that is trained with reinforcement learning. The newly
designed control algorithm is extensively compared with
the former approach. Simulation results are presented
for both methods. The authors seek to achieve a fair,
non-biased, risk-aware and trustworthy comparison.

1. Introduction

Biological limbless organisms like snakes are
capable of achieving locomotion by exploiting rocks,
stones, branches, obstacles, or other irregularities in

Alternative control algorithms

Sensory-
perceptual

data

External
system

commands Navigation

Guidance Control

Two-feedback loops
position control

algorithm

Reinforcement
learning algorithm

Figure 1. The underlying idea of developing a novel

low-level controller based on the use of an artificial

neural network (ANN) that is trained with

reinforcement learning (RL). The newly proposed

controller is extensively compared with a

two-feedback loops position control algorithm that

was previously developed by our research group.

the terrain as a means of propulsion [1]. This unique
capability enables biological snakes to be extremely
adaptable to various types of environments. Snake
robots that can mimic this range of behaviour could
enable a variety of possible applications for use
in challenging real-life operations and hazardous or
confined areas that conventional robots (i.e. wheeled,
tracked and legged) and humans are unable to access,
such as explorations of earthquake-hit areas, pipe
inspections for the oil and gas industry, fire-fighting
operations, and search-and-rescue activities (SAR) [2].
Snake robot locomotion in a cluttered environment
where the snake robot utilises a sensory-perceptual
system to exploit the surrounding operational space and
identifies walls, obstacles, or other external objects for
means of propulsion can be defined as perception-driven
obstacle-aided locomotion (POAL) [3, 4]. The
development of POAL is known to be challenging
because of the complex interaction between the snake
robot and the adjacent cluttered environment. From
a control point of view, achieving POAL requires
to precisely identify potential push-points and to
accurately determine achievable contact reaction forces.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 881
URI: https://hdl.handle.net/10125/63849
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

Accomplishing this with traditional rigidly-actuated
robots is extremely demanding because of the absence of
compliance. To ease the control complexity, compliant
motion and fine torque control is desirable. To achieve
this, Serpens, a newly-designed low-cost, open-source
and highly-compliant multi-purpose modular snake
robot with series elastic actuator (SEA), was introduced
by our research group [5, 6]. To control the newly
designed elastic actuators of Serpens, a two-feedback
loops position control algorithm was proposed [7].
The proposed controller has two loops: the inner
loop is implemented as a model reference adaptive
controller (MRAC), while the outer loop adopts a fuzzy
proportional-integral controller (FPIC). The advantage
of combining the FPIC and the MRAC controllers is
the possibility of achieving independence with respect to
imprecise system parameters. Experimental simulation
highlighted the effectiveness of the proposed algorithm
with respect to the influence of external torque on
the considered elastic actuator. Nonetheless, the
performance of the proposed controller is dependent
on the initial values of the parameters of the MRAC
controller as well as on the effort required for a human
expert to manually construct fuzzy rules. Specifically,
the challenge is that to synthesise an efficient control
law for the system, fuzzy rules must be provided by
an expert, which state the action(s) to do in typical
situations. The key to achieve an efficient controller
requires to master the semantics of the fuzzy rules.
If this is lacking, a learning methodology may be
more appropriate [8]. Particularly, an alternative
solution to the problem might consist of using methods
that do not assume a priori knowledge: a solution
that derives its properties from a machine learning
procedure. Accordingly, the controller would be able
to automatically learn the properties of the elastic
actuator to be controlled. The main contribution of
this work is a novel controller for the proposed elastic
actuator of Serpens. The novel controller is based on
the use of an artificial neural network (ANN) that is
trained with reinforcement learning (RL). The newly
designed control algorithm is extensively compared with
the former approach based on the two-feedback loops
position control. The authors seek to achieve a fair,
non-biased, risk-aware and trustworthy comparison.
This will make it possible to explore a new way
of looking at the considered control problem. The
underlying idea is shown in Fig. 1. The comparison
is performed by using the same model for the elastic
actuator. Only the controller is switched between
the two methods to be compared. This approach
guarantees identical conditions for the comparison. The
contributions of this article are the newly designed

control algorithm and the comparison with the former
method.

The paper is organised as follows. A review of the
related research work is described in Section 2. The
proposed mathematical model of the elastic actuator is
summarised in Section 3. The two considered control
methods are presented in Section 4. In Section 5, related
simulation results are outlined. Finally, conclusions and
future work are discussed in Section 6.

2. Related research works

Literature shows some examples of creating
controllers for elastic actuators by employing fuzzy
rules. For instance, a fuzzy position/force control
was implemented for a robot leg with a flexible gear
system [9, 10]. The fuzzy position/force control
approach and an intelligent walking strategy are
implemented into the robot leg to realise walking
on unknown and uneven terrain. By following a
similar approach, a two-feedback loops position
control algorithm was proposed by our research
group [7]. The inner controller loop is implemented
as an MRAC to cope with uncertainties in the system
parameters, while the outer control loop adopts an
FPIC to reduce the effect of external disturbances on
the load. The advantage of combining the FPIC and
the MRAC controllers is the possibility of achieving
independence with respect to imprecise system
parameters. Simulation results were used to prove the
efficiency of the presented control method. However,
one of the main limitations of fuzzy based controllers
is that rules and criterion must be understandable by
humans. Mostly these rules must be defined by a
domain expert. Essentially the fuzzy logic requires a
lot of human intervention [11]. An alternative approach
to this challenge might be based on the use of methods
that do not assume a priori knowledge. For instance,
a viable approach might consist in searching for a
solution that derives its properties from a machine
learning procedure. In this way, the controller would
be able to automatically learn the properties of the
elastic actuator to be controlled. A few examples can
be found in the literature. For instance, the application
of RL to improve the performance of highly dynamic
single legged locomotion with compliant series elastic
actuators was presented in [12]. Another example is
reported in [13], where a deep-learning approach is
adopted to learn the elasticity of a series elastic actuator
for accurate torque control. Regarding other elastic
actuators, an adaptive control and an adaptive ANN
control for tendon-driven robotic mechanisms with
elastic tendons was presented in [14]. One of the main

Page 882

(a) (b)

Figure 2. Elastic actuator model: (a) without

external force/ torque; (b) Compressed/tensed by

external action. The gear ratio is N = Nl/Nm.

advantages of this approach is that it can be applied
to serial or parallel tendon-driven manipulators having
linear or non-linear elastic tendons. However, research
about controlling elastic actuators with machine
learning procedures is still relatively limited, especially
when considering snake robots. The main contribution
of this paper is to propose such a method and compare
its performance with the former controller implemented
by our research group [7].

3. Mathematical model

This mathematical model of the proposed elastic
actuator is briefly summarised in this section. For
further details, the reader is referred to [7]. The
schematics of Serpens’ elastic actuator [5, 6] are
illustrated in Fig. 2. There are two gears, the load and
the motor gears, whose numbers of teeth are Nl and
Nm, respectively. The gear ratio is N = Nl/Nm. The
torques depicted in the diagrams are: motor torque (τm),
spring reaction torque (τs) and external torque (τext).
The system with no external force/torque is illustrated
in Fig. 2-a, while the system influences by an external
action is illustrated in Fig. 2-b.

The mathematical model of the elastic actuator
system is:

dm + τm −N−1τs = Jmθ̈m +Dmθ̇m, (1)

τs = Ks(−N−1θm − θl) +Ds(−N−1θ̇m − θ̇l), (2)

dl + τs + τext = Jlθ̈l +Dlθ̇l, (3)

in which external disturbances affecting the motor and
the load behaviour are dm and dl, respectively, θm is the
motor angular position, θl is the load angular position,
Jm is the rotor inertia, Dm is the motor damping
coefficient, Ks is the stiffness coefficient of the spring,
Ds is the spring damping coefficient, Jl is the load
inertia, and Dl is the load damping coefficient.

Figure 3. The proposed nested system controller.

Equation 1 shows the relationship on the motor-side
between the motor torque, the spring torque, and the
motor angular position. The spring torque τs is obtained
by equation 2. The interaction between the spring
torque, the external torque, and the load angular position
is illustrated by equation 3.

4. Control methods

In this section, the two control methods to
be compared are described. The first method is
the previously presented two-feedback loops position
control algorithm. For further details, the reader is
referred to [7]. The second method is a novel controller
based on the use of RL.

4.1. Two-feedback loops position control
algorithm

For controlling the load position when considering
external disturbances on the load and uncertainties in
system parameters, a two-loop controller is proposed.
An FPIC is applied for the load-side to reduce the effect
of external disturbances on the load. The output of
the FPIC is used as the desired angular position of the
motor. An MRAC is used for the motor-side to deal
with uncertainties in system parameters. The proposed
control algorithm diagram is presented in Fig. 3.

4.1.1. Fuzzy PI Controller The effect of the
external disturbances on the elastic actuator system is
reduced by adopting the FPIC in the load-side. Inputs
for the FPIC are the feedback error (e) and the change
of this error (ė), while the output of the FPIC is the
change of control signal (u̇). The membership functions
for the input and the output are shown in Fig. 4 and
Fig. 5, in which c1 − c5 are parameters to be adjusted.
The membership functions for the error and the change
of error are similar, including the rules base of the
fuzzy model: negative big (NB), negative small (NS),
zero (ZE), positive small (PS), and positive big (PB).
The membership functions for the change of the control
signal are in singleton over the output, given NB, NS,
ZE, PS, and PB. On the basis of the input and output
membership functions, 25 fuzzy inference rules are

Page 883

Figure 4. Input membership functions [10].

Figure 5. Output membership functions.

established as shown in Table 1.

4.1.2. Model Reference Adaptive Controller
Firstly, the control law is derived. From the system
equations 1 and 2, the motor-side system equations
can be rewritten (ignoring the motor-side external
disturbance dm) as:

θ̇ =

[
θ̇m
θ̈m

]
= Aθ+B(τm+KsN

−1θl+DsN
−1θ̇l), (4)

in which the state matrix A, input matrix B and state
vector θ can be obtained as:

A =

[
0 1

KsN
−2

Jm
DsN

−2−Dm

Jm

]
, B =

[
0
1
Jm

]
, θ =

[
θm
θ̇m

]
.

(5)
The motor-side system equations have the form of

a second-order system, so the reference model is a
second-order system model with the desired signal θmd,

Table 1. Fuzzy inference rules.

ė
e

NB NS ZE PS PB

NB PB PB PB PS ZE
NS PB PB PS ZE NS
ZE PB PS ZE NS NB
PS PS ZE NS NB NB
PB ZE NS NB NB NB

natural frequency ωn, and damping coefficient ξ:

θ̇ref =

[
θ̇r
θ̈r

]
= Arθref +Brθmd, (6)

in which the state matrix Ar, input matrix Br and state
vector θref of the reference model can be obtained as:

Ar =

[
0 1
−ω2

n −2ξωn

]
, Br =

[
0
ω2
n

]
, θref =

[
θr
θ̇r

]
.

(7)
A general control law for the system with state

equations 4 is:

τm = Mθmd − Lθ − K̂sN
−1θl − D̂sN

−1θ̇l. (8)

D̂m, Ĵm, K̂s, D̂s, D̂l, Ĵl are estimated parameters,
while matrices M and L need to be determined.

Secondly, the error equation is determined. The
feedback error, which is the difference between the
output of the real system and the output of the reference
model, is determined as:

e = θ − θref . (9)

The derivative of error is determined as:

ė = θ̇ − θ̇ref = Are+ Ψ(Φ− Φ∗), (10)

where it should be noted that:

Ψ = B
[
−θT θmd (−N−1θl) (−N−1θ̇l)

]
,

Φ =

LT

M

K̂s

D̂s

 , Φ∗ =

L∗T

M∗

Ks

Ds

 . (11)

Thirdly, the adaptation law is going to be obtained.
To achieve robustness, Lyapunov’s stability theory
is applied in this case. The Lyapunov function is
introduced as:

V =
1

2
γeTPe+

1

2
(Φ− Φ∗)T (Φ− Φ∗), (12)

where P is a 2-by-2 symmetric positive definite matrix
and γ is a learning rate. The function V is positive
definite. The derivative of V is obtained as:

V̇ =
1

2
γėTPe+

1

2
γeTP ė+ (Φ− Φ∗)T Φ̇

= −1

2
γeTQe+ (Φ− Φ∗)T (Φ̇ + γΨTPe)

, (13)

Page 884

Figure 6. The proposed reinforcement learning

system controller.

where ATr P + PAr = −Q and Q is a symmetric
positive definite matrix. The existence of matrix
Q is demonstrated by using the Kalman-Yakubovich
lemma [15]. If the adaptation law is chosen to be:

Φ̇ = −γΨTPe, (14)

then the derivative of Lyapunov function V̇ is negative
definite with all e 6= 0, which means that the feedback
error between the output of the real system and the
reference model will converge to zero when time goes
to infinity.

In this article, matrices P and Q are chosen as:

P =

[
p1 p2
p2 p3

]
, Q =

[
q1 0
0 q2

]
, (15)

where q1 and q2 will be tuned appropriately. From
equation ATr P + PAr = −Q, p1, p2 and p3 can be
obtained by using the following formulas:

p2 =
q1

2ω2
n

, p3 =
2p2 + q2

4ξωn
, p1 = 2ξωnp2 + ω2

np3.

(16)

4.2. Controller based on the use of an ANN
trained with reinforcement learning (RL)

The proposed control scheme is shown in Fig. 6.
The input signals are the motor angular position θm, the
motor angular velocity, θ̇m, the load angular position,
θl, the load angular velocity, θ̇l, the load desired angular
position, θld, the error between the load desired position
and the load actual position, ε = θld − θl, and the error
derivative ε̇. The output signal is the motor torque τm.

The goal of RL is to design a policy π that maps
states to probabilities of selecting each possible action
of the controller, and improving it so that π is optimal
(i.e. maximises the expected reward) [16]. Policies
can be either stochastic π(a|s), which given a state s,
each action a ∈ A(s) has an associated probability
distribution, or deterministic π(s), which directly maps
a state s to a determined action a. The steps of a RL
algorithm can be summarised as shown in Fig. 7.

Generating
samples

Fitting a
model /

Estimating
the return

Improving
the policy π

Has π
converged

to π∗

stop

yes

Figure 7. The steps of a RL algorithm [16].

The different RL algorithms available in the
literature follow these steps. Among all available classes
of algorithms, the class of policy gradient algorithms is
the one used in this work. In particular, an alternative
controller is developed based on the RL technique called
Proximal Policy Optimisation (PPO). For further details,
the reader is referred to [17, 16]. In particular, PPO
adopts an ANN to approximate the ideal function that
maps an agent’s observations to the best action an agent
can take in a given state.

The adopted ANN topology is shown in Fig. 8. It is a
four-layer ANN which consists of one input, one output
and two hidden layers. Each neuron in the network
is fully connected with every other neuron of the next
layer. Adaptive weights are associated to the neuron’s
interconnections. A Swish self-gated activation function
is used [18].

The remaining configuration parameters of the PPO
algorithm are detailed in Table 2.

The following rules are considered for the
reinforcement learning controller:

• the generated torque τm must be within τmmin
and τmmax to prevent damage;

• the resulting θm must be within θmmin deg and
θmmax to prevent damage;

Page 885

Table 2. Parameters used in the PPO algortithm.

Parameter Value

Episode length 50000 ts
Batch size 64 eps

Optimisation steps 1.0e5
Discount (γ) 0.995
Learning rate 3.0e-4

• the motor angular angular velocity, θ̇m, must
reach stable state (reward exponentially);

• the feedback error, ε, must be minimised over
time;

• the time to reach a stable state must be as fast as
possible, giving exponential penalty for time.

Based on these rules, the proposed reward function
is given by:

rt = e−α|ε| + e−α|ε̇| + e−α|θ̇m|, (17)

where α is a scaling reward factor. In this work, this
scaling factor is empirically set to 0.001.

5. Simulation results

In this section, the two presented control methods
are considered for an extensive comparison. This
comparison is performed in simulation. The Unity [19]
real-time development platform is chosen to implement
the model and the controllers to be compared.
To implement the controller based on the neural
network trained with reinforcement learning, the Unity
ML-Agents Toolkit [20] is adopted. This toolkit is an
open-source Unity plugin that enables simulations to
run as environments for training intelligent agents. In
this case study, agents are trained using reinforcement
learning through a simple-to-use Python Application
Programming Interface (API). During training, a block

…

…

…

!m

Output lay
er

Hi
dd

en
lay

ers

Input lay
er

3l 3l
.3ld 5 5.3m 3m

.

Figure 8. The adopted neural network topology.

Table 3. System parameters.

Parameter Value Parameter Value

Gear ratio(N) 1
Spring stiffness

(Ks)
100

Load damping
coefficient(Dl)

0.006
Motor damping
coefficient(Dm) 0.6

Load inertia
(Jl)

0.065
Motor inertia

(Jm) 0.1

Spring damping
coefficient(Ds)

5
Sampling rate

(T) 0.0001

of agent experiences is generated. These experiences
become the training set for a neural network used to
optimise the agent’s policy. To apply reinforcement
learning, the neural network optimises the policy by
maximising the expected rewards. The output of
the training process is a model file containing the
optimised policy. This model file is a TensorFlow [21]
data graph containing the mathematical operations and
the optimised weights selected during the training
process. The considered elastic actuator is simulated
in the Unity environment, as shown in Fig. 9. The
simulation environment also shows the plots related to
the load (position and velocity), the motor (position and
velocity), the torque and the error.

The responses of the considered elastic actuator with
a step input are presented for both the control methods
to be transparently compared. In this article, the system
parameters are shown in Table 3.

5.1. Response of the load-side system with
step signal without external torque

This section demonstrates the response of the
load-side system without external torque for both
control methods to be compared. Regarding the
two-feedback loops position control algorithm, the step
response is shown in Fig. 10, in which the red dashed
line is the desired input, the blue solid line in the upper
diagram is the load angular position and the blue solid
line in the lower diagram is the load angular velocity.
There is an unstable stage at the beginning of the
simulation, in which the MRAC is in a learning phase.
As shown in Fig. 10, the response on the load-side of
the elastic actuator depends on the motor-side system,
which has a second order system form.

Likewise, for the method based on reinforcement
learning, the step response is shown in Fig. 11.

The two considered control methods show
comparable performances. However, the method
based on reinforcement learning show slightly worse
results in terms of position error. Moreover, the method

Page 886

Figure 9. The elastic actuator is simulated in the Unity environment.

based on reinforcement learning is also able to perform
a quicker response (about 5s quicker). Furthermore,
from an energy perspective, the method based on
reinforcement learning generally required slightly more
torque (more fluctuations) for the joints over time.

6. Conclusion and future work

A novel elastic actuator was recently designed by
our research group for Serpens, a low-cost, open-source
and highly-compliant multi-purpose modular snake
robot [5, 6]. To control the newly developed elastic
actuators of Serpens, a robust and reliable control
algorithm is required. In this perspective, our
research group previously proposed a two-feedback
loops position control algorithm. The performance
of the presented control scheme was demonstrated
through simulations [7]. However, the efficiency of the
proposed controller is dependent on the effort required
for a human to manually construct fuzzy rules and
to tune the control parameters. In this paper, the
authors explore an alternative approach to the problem
based on the use of methods that do not assume a
priori knowledge: a solution that derives its properties
from a machine learning procedure. This makes it
possible to automatically learn the properties of the

elastic actuator to be controlled. In particular, a novel
controller is presented based on the use of a neural
network that is trained with reinforcement learning
by applying Proximal Policy Optimisation (PPO). The
former two-feedback loops position control algorithm
and the newly proposed neural network approach
were considered for an extensive comparison in a
simulated environment. According to the obtained
results, the two considered control methods show
similar performances. However, the method based on
reinforcement learning showed slightly better response
(about 5s quicker) but worse results in terms of position
error. Moreover, from an energy point of view, the
method based on reinforcement learning also required
slightly more torque for the joints over time. It is
quite logical to suppose that bigger differences may
be identified when controlling redundant manipulators
with several actuators. The lesson learned from this
study is the significance of applying a machine learning
procedure to reduce the need of manually defining
fuzzy rules for controlling elastic actuators. However,
the implementation of the method based on machine
learning requires also requires human intervention in
terms of deciding the topology the neural network as
well as the parameters of the PPO algorithm. Even
though our results show that the two-loop controller

Page 887

Figure 10. Load-side step response with the two-loop controller.

Figure 11. Load-side step response with the neural-network controller.

slightly out-perform the method based on machine
learning, it might be useful to adopt the former when
the definition of fuzzy rules is more complex. In the
authors’ opinion, the neural network with reinforcement
learning may excel when the model of the system is
difficult or impossible to obtain [22].

As future work, iterative machine learning (IML)
techniques may be tested to improve the overall
performance of the control method based on machine
learning. This is in line with the findings presented
in [23]. When considering the use of elastic actuators
for safety-critical applications, there is a significant need
for designing robust machine learning systems that can
generate reliable and trustworthy results in the presence
of hardware-level faults while also preserving security

and privacy [24]. This aspect must be investigated in
the future. Furthermore, the control of multiple degrees
of freedom may be taken into consideration. Moreover,
the validation of the two compared controllers with the
physical robot will be implemented. This will also
make it possible to realise a general virtual and physical
rapid-prototyping framework that allows for the design,
simulation and control of series elastic actuators.

References

[1] H. Marvi, C. Gong, N. Gravish, H. Astley,
M. Travers, R. L. Hatton, J. R. Mendelson,
H. Choset, D. L. Hu, and D. I. Goldman,
“Sidewinding with minimal slip: Snake and
robot ascent of sandy slopes,” Science, vol. 346,

Page 888

no. 6206, pp. 224–229, 2014.

[2] F. Sanfilippo, Ø. Stavdahl, and P. Liljebäck,
“Snakesim: a ros-based control and simulation
framework for perception-driven obstacle-aided
locomotion of snake robots,” Artificial Life and
Robotics, pp. 1–10, 2018.

[3] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A.
Transeth, Ø. Stavdahl, and P. Liljebäck, “A review
on perception-driven obstacle-aided locomotion
for snake robots,” in Proc. of the 14th International
Conference on Control, Automation, Robotics and
Vision (ICARCV), Phuket, Thailand, pp. 1–7,
2016.

[4] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A.
Transeth, Ø. Stavdahl, and P. Liljebäck,
“Perception-driven obstacle-aided locomotion
for snake robots: the state of the art, challenges
and possibilities,” Applied Sciences, vol. 7, no. 4,
p. 336, 2017.

[5] F. Sanfilippo, E. Helgerud, P. A. Stadheim, and
S. L. Aronsen, “Serpens: A highly compliant
low-cost ros-based snake robot with series elastic
actuators, stereoscopic vision and a screw-less
assembly mechanism,” Applied Sciences, vol. 9,
no. 3, p. 396, 2019.

[6] F. Sanfilippo, E. Helgerud, P. A. Stadheim, and
S. L. Aronsen, “Serpens, a low-cost snake robot
with series elastic torque-controlled actuators and
a screw-less assembly mechanism,” in Proc.
of the IEEE 5th International Conference on
Control, Automation and Robotics (ICCAR),
Beijing, China, pp. 133–139, 2019.

[7] T. M. Hua, F. Sanfilippo, and E. Helgerud,
“Serpens, a low-cost snake robot with series
elastic torque-controlled actuators and a screw-less
assembly mechanism,” in Proc. of the IEEE
International Conference on Systems, Man, and
Cybernetics (IEEE SMC 2019), Bari, Italy, 2019.

[8] D. Dubois and H. Prade, “Basic issues on fuzzy
rules and their application to fuzzy control,”
in International Joint Conference on Artificial
Intelligence, pp. 1–14, Springer, 1991.

[9] A. Yang and K. H. Low, “Fuzzy position/force
control of a robot leg with a flexible gear system,”
in Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), vol. 2,
pp. 2159–2164, 2002.

[10] C. W. De Silva, Intelligent control: fuzzy logic
applications. CRC press, 2018.

[11] H. Ying, “General analytical structure of

typical fuzzy controllers and their limiting
structure theorems,” Automatica, vol. 29, no. 4,
pp. 1139–1143, 1993.

[12] P. Fankhauser, M. Hutter, C. Gehring,
M. Bloesch, M. A. Hoepflinger, and R. Siegwart,
“Reinforcement learning of single legged
locomotion,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), pp. 188–193, 2013.

[13] B. Yu, J. de Gea Fernández, Y. Kassahun,
and V. Bargsten, “Learning the elasticity of a
series-elastic actuator for accurate torque control,”
in Proc. of the International Conference on
Industrial, Engineering and Other Applications
of Applied Intelligent Systems, pp. 543–552,
Springer, 2017.

[14] H. Kobayashi and R. Ozawa, “Adaptive neural
network control of tendon-driven mechanisms
with elastic tendons,” Automatica, vol. 39, no. 9,
pp. 1509–1519, 2003.

[15] K. J. Åström and B. Wittenmark, Adaptive control.
Courier Corporation, 2013.

[16] G. C. Lopes, M. Ferreira, A. da Silva Simões, and
E. L. Colombini, “Intelligent control of a quadrotor
with proximal policy optimization reinforcement
learning,” in Proc. of the IEEE Latin American
Robotic Symposium, Brazilian Symposium on
Robotics (SBR) and Workshop on Robotics in
Education (WRE), pp. 503–508, 2018.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[18] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish:
a self-gated activation function,” arXiv preprint
arXiv:1710.05941, vol. 7, 2017.

[19] Unity Technologies, “Unity Real-Time
Development Platform.” https://unity.
com/, 2019. [Online; accessed 14-June-2019].

[20] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao,
H. Henry, M. Mattar, and D. Lange, “Unity:
A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[21] TensorFlow, “An end-to-end open source
machine learning platform.” https:
//www.tensorflow.org/, 2019. [Online;
accessed 14-June-2019].

[22] N. M. Yazdani and A. Y. Seqerloo, “Performance
comparison between classic and intelligent

Page 889

methods for position control of dc motor.,”
International Journal of Electrical & Computer
Engineering (2088-8708), vol. 4, no. 3, 2014.

[23] N. Banka, W. T. Piaskowy, J. Garbini, and
S. Devasia, “Iterative machine learning for
precision trajectory tracking with series elastic
actuators,” in Proc. of the IEEE 15th International
Workshop on Advanced Motion Control (AMC),
pp. 234–239, 2018.

[24] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman,
and M. Shafique, “Robust machine learning
systems: Reliability and security for deep neural
networks,” in Proc. of the IEEE 24th International
Symposium on On-Line Testing And Robust System
Design (IOLTS), pp. 257–260, 2018.

Page 890

