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Abstract—In order to estimate the channel gain (CG) between
the locations of an arbitrary transceiver pair across a geographic
area of interest, CG maps can be constructed from spatially
distributed sensor measurements. Most approaches to build
such spectrum maps are location-based, meaning that the input
variable to the estimating function is a pair of spatial locations.
The performance of such maps depends critically on the ability of
the sensors to determine their positions, which may be drastically
impaired if the positioning pilot signals are affected by multi-
path channels. An alternative location-free approach was recently
proposed for spectrum power maps, where the input variable to
the maps consists of features extracted from positioning signals,
instead of location estimates. The location-based and the location-
free approaches have complementary merits. In this work, apart
from adapting the location-free features for the CG maps, a
method that can combine both approaches is proposed in a
mixture-of-experts framework.

I. INTRODUCTION

Information regarding the channel gain (CG) between a pair
of wireless transceivers is critical in a plethora of resource
allocation (RA) algorithms. In the context of device-to-device
(D2D) communication and cognitive radios, judiciously de-
signed RA algorithms can boost the network performance
metrics significantly [1]. For instance, consider a cellular
system where regular cellular connections coexist with D2D
communication. A RA scheme can be implemented for chan-
nel assignment and/or power allocation across the pairs of
D2D devices, with the goal of maximizing the total aggregated
throughput or other relevant metrics. Such a RA scheme will
typically require estimates of the CGs between the cellular
users and the D2D users, and between the transmitter and the
receiver in each of the D2D links, in order to quantify the
expected interference caused from sharing the communication
channels. Given the difficulty of continuously measuring the
CG between arbitrary pairs of devices, the approach based on
the CG map is very useful [2], [3]. The RA performance de-
pends heavily on the accuracy of the CG estimates; therefore,
the accuracy of the map is critical. Moreover, in the case of
mobile networks, the CGs for the spatial locations where the
transceivers are expected to be in the future time slots are also
necessary. Thus, it is important to have CG estimates not only
where the transceivers are currently located, but also in the
arbitrary locations around them.
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In its simplest form, a CG map can be defined as a
function that maps a pair of spatial locations to an estimate
of the CG between them. The CG maps were estimated by
recovering the so-called spatial loss field [4], where the gain
was modeled as a distance-based loss plus a weighted integral
of the spatial loss field. This model accounts for the loss due
to the absorption from obstacles, but can be inaccurate in the
multi-path propagation environments where the signals may
get severely attenuated, or amplified by multiple reflections.

The data samples used to train the CG function are taken
from a set of pairs of sensing nodes spread across the
area to be covered by the map. Thus, the existing methods
typically rely on accurate sensor location estimates [2], [3].
However, under practical conditions (for instance, when the
localization is achieved using positioning pilots sent by base
stations), the sensing nodes might not be able to determine
their locations accurately. Specifically, the time (difference)
of arrival (ToA/TDoA) measurements may experience severe
bias due to non-line-of-sight (NLoS) conditions [5], with large
localization error as a consequence. The training data is thus
noisy in the input variable, which then translates into errors in
the map estimates. The error due to the NLoS propagation
in strong multi-path environments may even destroy many
location estimates, rendering the CG map uninformative.

Recently, in the simpler case of an interference power
map, which is a function of a single location, this issue was
mitigated by extracting features from the pilot signals directly,
and building the maps using kernel ridge regression (KRR) [6].
Such features have nature similar (but not exactly equal) to the
positioning features such as the ToA or TDoA. Following [6],
here the (standard) procedure of estimating the location of the
sensors from the available pilot signals, and training the map
as a function of a vector of spatial coordinates, is referred
to as the “location-based” (LocB) cartography. On the other
hand, the (novel) method of directly learning the map estimate
as a function of the pilot signal features is referred to as the
“location-free” (LocF) cartography.

While many works explored the use of advanced regression
techniques (such as those based on deep learning [7], [8]
or advanced kernel methods [9]) to improve the accuracy of
spectrum maps, most of these works build LocB maps. When
the estimation of the sensor locations is accurate, the maps
produced by these methods are also accurate. Consequently,
these methods rely on pilot signals from base stations only
when the LoS component is strong, but not in strong multi-
path environments. On the other hand, the results in [6] show
a promising gain in the power map accuracy especially in the
scenarios with significant multi-path effects. Note, however,



that the dimensionality of the feature space considered in
[6] grows with the number of base stations in the covered
area, and some locations may not receive signals from all
base stations; this can lead to having data points with missing
features, generating the need for dimensionality reduction and
data completion techniques. In opposition, LocB methods
consider as their feature space the set of possible locations,
which has constant dimensionality (2 or 3).

A. Main Contributions

The main idea of this work is to build a map estimation algo-
rithm that can combine both the LocB and the LocF methods in
a way that exploits the knowledge about location uncertainty.
Notice that the more precise the location information of a node
is, the more reliable the LocB map estimate is expected to be.
An uncertainty measure regarding the location estimate acts,
intuitively, as a measure of reliability of the LocB method (or
expert) relative to the LocF method (or expert).

It is demonstrated in this work that such an uncertainty
estimate can be exploited to build more accurate CG maps.
To this end, the proposed approach estimates the CG from: a)
the LocF features (e.g. center of mass (CoM) of the channel
impulse response as in [6]), b) the estimated location of trans-
mitter and receiver, and c) the location uncertainty information.
We postulate that the complementary benefits of the LocF
and LocB estimators can be exploited efficiently by learning
a LocB estimator and a LocF estimator, and combining their
outputs with a gating function that incorporates the localization
uncertainty. With higher uncertainty in the location estimation,
the final estimate relies more on a LocF estimator; while
otherwise, a LocB estimator has more weight on the final
estimate. The weights of the LocB and LocF estimates are
given by the gating function, which is optimized jointly with
the experts or estimators.

The aforementioned way of estimating the CG is also at-
tractive because of its simplicity, incorporating the divide-and-
conquer philosophy of the mixture-of-experts (MoE) methods
[10]. This is suitable for our development because we seek an
approach that enables estimating CGs at arbitrary locations, in
addition to the sensor positions (although the accuracy of such
estimates will be lower as compared to the accuracy obtained
at the locations with sensor nodes). We expect that in real
scenarios, some training points will have only one type of
feature available. For the other training points with both types
of features (LocB and LocF), the learning will be enhanced.

Moreover, this work is (to the best of our knowledge) the
first to apply the LocF approach to the estimation of CG maps.

The rest of the paper is structured as follows. In Sec. II, our
learning model is put forth in a mixture-of-experts (MoEs)
framework. In Sec. III, the CG cartography problem is for-
mulated. In Sec. IV a solution is derived, and the choice of
hyper-parameters is later discussed (Sec. IV-A). The results of
numerical experiments are presented in Sec. V, and Sec. VI
concludes the paper.

II. MODELING

Consider a transmitter located at xt ∈ R, and a receiver
located at xr ∈ R, where R is the region of interest
(typically a subset of R2 or R3). The CG between them is
denoted by Ct,r ∈ R. The main goal of CG cartography is
to learn a function that can give a point estimate ĉt,r of Ct,r,
given the information gathered at each of the two terminals.
Specifically, let x̂t denote an estimate of the transmitter’s
location, and et ∈ R+ an uncertainty measure regarding x̂t.
Let φt∈ RM denote the vector containing the LocF features
extracted from the pilot signals the same sensing node has
received, where M is the total number of features extracted
(more information about how φt is obtained can be found in
Sec. II-B). A representation of the available information at the
transmitter comes from stacking the aforementioned variables
in the vector ψt := [φ>t , x̂

>
t , et]

> (analogously for the
information at the receiver, ψr). The function we seek to
learn is expressed in the form

ĉt,r = f(ψt,ψr).

With the twofold goal of estimating CG at arbitrary pairs
of transmitter-receiver locations, and also where the sensing
nodes do not have an accurate location estimate, our goal is
to develop an approach such that for a query where φt and
φr are available and (x̂t, x̂r) have large uncertainty (or even
are missing), one can leverage the LocF technique [6]; and
whenever (x̂t, x̂r) are accurate and the features in φ are noisy,
it should work similarly to LocB approaches such as [2], [11].
And between these two extreme situations, the idea discussed
here is to combine both LocF and LocB estimates, exploiting
the knowledge of uncertainty in the location information.

A popular approach to combine the estimates into f is MoEs
[10]. It is common practice to use a convex combination of the
output of each of the experts, mainly because the combination
coefficients can be interpreted as conditional probabilities of
the events defining which of the experts has the best estimate
for a given data point. This can be expressed without loss of
generality by defining the gating function g̃(·):

f(ψt,ψr) = g̃(ψt,ψr)fl(x̂t, x̂r)+
(
1−g̃(ψt,ψr)

)
fp(φt,φr).

(1)
Such a gating mechanism is widespread in the ML literature
not only because it is used in MoE, but also because of its
presence in recurrent neural networks [12]. We postulate that
incorporating the location uncertainty measure in the input of
this gating function will result into an improved performance
of the MoE-based CG map. This approach is justified because
the LocB estimator is expected to perform better than the
LocF one when the location estimate is sufficiently good. What
”sufficiently good” means is something we expect the model
will learn from the data. Moreover, the mixture allows each
expert to focus its resources in learning its own part of the
CG map in those areas where it is expected to perform better.
The empirical results in Sec. V support this idea.



A. Simple MoE Model: Gating as a Function of the Localiza-
tion Uncertainty Measures

The main idea in the model in (1) is to restrict each
of the two experts in the mixture to have as input either
location estimates, or LocF features. In order to keep the model
complexity at the minimum, we propose to restrict the gating
function to take as input only the uncertainty in estimating the
locations x̂t, x̂r. This yields the simplest possible model that
combines the aforementioned experts, and takes the location
uncertainty into account.

With ex,t and ex,r respectively denoting the uncertainty
measures referring to estimating x̂t and x̂r, we will design
a gating function

g : R2
+ → [0, 1] (2)

that takes the localization error vector e := [ex,t, ex,r]>

as an input for any transmitter-receiver pair (t, r). A more
sophisticated model could also incorporate the uncertainty
associated with φ, but it is not clear if the gain in performance
would be significant. The MoE model can be written as:

f(ψt,ψr) = g(e)fl(x̂t, x̂r) + (1− g(e)) fp(φt,φr) (3)

For this model, it is clear that g(e) should give less emphasis
on fl(x̂t, x̂r) when either ex,t or ex,r is large.

Successful learning of the hybrid (MoE) model f(ψ) entails
some advantages: The information carried by the location
uncertainty measure allows to give as much weight as is
needed to the LocB and LocF estimates. Whenever the location
estimates are deemed reliable, the MoE gives more weight to
the location-based estimate, which mitigates the relative diffi-
culty of the location-free estimation to generalize due to the
higher dimensionality of the positioning features . To see this,
consider the case where two different queries are performed
for the same Tx-Rx pair, but the positioning (pilot) signals
are received from different location sources. While a pure
localization-free approach might fail to generalize, the CG
can still be estimated successfully if the localization algorithm
identifies the location correctly. One can even evaluate the
CG map for an arbitrary pair of locations when there is no
sensing node at either one or both locations. In such a case,
the estimate is simply given by fl(xt,xr).

The gating function should be component-wise non-
increasing, i.e.,

g(e) ≤ g(e′) ∀ (e, e′) such that e � e′

where the notation a � b denotes for a, b ∈ RN that [a]i ≥
[b]i ∀i ∈ [1, N ]. Under the assumption of symmetric channels,
g(e) should also be symmetric, i.e.

g([ex,t, ex,r]>) = g([ex,r, ex,t]
>); ∀ e ∈ R2

+.

For large ‖e‖, meaning an unknown location, the weight
given by the gating function to the LocB estimator should
vanish: lim‖e‖→∞ g(e) = 0. However, it is not necessary to
force g(0) = 1, as the LocB map is imperfect and a certain
contribution from the LocF one may give better performance,
even if some locations are deemed perfectly known.

B. Positioning Signal-Based Features

The LocF features extracted from the pilot signals that
will be used in this work are the centers of mass (CoMs)
described in [6]. Let CoMm,n denote the center of mass of
the cross-correlation between the pilot received at the n-th
sensing node from the m-th positioning signal source, and the
pilot received from the reference source (which is arbitrary
and the same for all sensing nodes). The feature vector is then
φn := [CoM1,n, . . . , CoMM,n]. The reason of the choice of
this kind of features is that they evolve smoothly over space
and are robust to the pilot distortions caused by multipath.
Therefore, the function fp can be easily learnt with such
features.

When the region to map is large, it is likely that some of
the base stations that send pilot signals are so far away from
a given location that some features become missing, either in
some of the training points, or in query points. While a few
missing TDoAs is not a big issue for a localization algorithm
as long as enough sources are visible, the way the LocF map
is designed requires all entries in the query feature vector to
carry values. The technique for imputing such missing features
in [6] can be seamlessly applied in the application in this work.
In a nuthshell, this technique is based in the assumption that
the LocF features lie in a low-dimensionality subspace. Such
a subspace is learnt from the training data using a low-rank
matrix completion technique.

C. Location Estimates and Uncertainty measures

Location estimates can be obtained in practice by extracting
TDoA measurements from the pilot signals [13], and solving
the localization problem e.g. along the lines of [5]. It is
assumed that the location estimator also gives a scalar measure
of the uncertainty of the location estimate. This measure
can be, e.g. the spectral radius of a covariance matrix, or
the diameter of an uncertainty region for a given level of
confidence. The procedure for obtaining such an uncertainty
measure is left out of the scope of the present paper. Our
experiments will rely on synthetically-generated uncertainty
measures.

III. PROBLEM FORMULATION

With Np denoting the number of training transmitter-
receiver pairs, let t(n) and r(n) respectively denote the
indices of the transmitter and the receiver of the n-th pair;
and let c̃n denote the measured CG between them (i.e., a
noisy observation of Ct(n),r(n)). Adopting a regularized least-
squares criterion, the CG map training can be expressed as:

minimize
f∈F

1

Np

Np∑
n=1

(
c̃n − f(ψt(n),ψr(n))

)2
+ λΩ̃(f) (4)

One valid approach is to define a neural network (NN)
architecture, let F denote the set of all functions that NN
can express, and define Ω̃ as a regularizer that depends on the
neural weights. However, the number of training samples for
such an NN to achieve good generalization may be far beyond
the number of samples available in a realistic practical case.



We aim at learning the function f in a structured way, by
using the MoE described in section II. We expect the number
of samples needed for good generalization to be much smaller
than that with a generic model.

The joint optimization of the experts and the gating function
is written as the regularized functional estimation problem
(5) at the bottom of the page, where G denotes the set of
instances of g(·) that have the properties discussed at the end
of section II-A, and Fp and Fl are model-specific spaces
or sets of functions: e.g. reproducing kernel Hilbert spaces
(RKHS) for a given kernel, or functions implemented by an
NN. The terms between parenthesis multiplying λp and λl are
intended for balancing the contribution of the regularization
terms for any value of g(en). If these terms were absent,
many algorithmic attempts to solve this problem would very
likely fall into one of the two trivial solutions, namely:
g(e) = 0 ∀e or g(e) = 1 ∀e, which respectively imply
f(ψn) = fp(φt(n),φr(n)), or f(ψn) = fl(x̂t(n), x̂r(n)).
The problem of estimating the coefficients of a set of kernel
machines whose outputs are combined using a given gating
function is presented and discussed in [14]. Differently, the
joint optimization of the experts and the gating function is
done in a novel way here, exploiting the problem structure
to yield a low-complexity algorithm. Upon scaling up the
objective by the constant Np, and defining

fl :=[fl(x̂r(1), x̂r(1)), . . . , fl(x̂t(Np), x̂r(Np))]
>, (6a)

fp :=[fp(φt(1),φr(1)), . . . , fp(φt(Np),φr(Np))]
>, (6b)

g :=
[
g(e1), g(e2), . . . g(eNp)

]>
, (6c)

the problem (5) can be rewritten equivalently as

minimize
fl∈Fl,fp∈Fp,g∈G

‖c̃− g � fl − (1− g)� fp‖2

+λl1
>gΩ(fl) + λp1

>(1− g)Ω(fp),
(7)

where � denotes element-wise vector (Hadamard) product.

IV. OPTIMIZATION

At this point, the functions fp, fl, g can be learnt using
several different approaches. If such functions are expressed
parametrically, one can compute (automatically via back prop-
agation) the gradient of the cost function in (7) , and run a
gradient-based minimization algorithm to seek a local mini-
mum (as is common practice for NNs).

An alternative approach is to solve the problem in (7) using
block-coordinate minimization (BCM):

f
(k+1)
l := arg min

fl∈Fl

∥∥∥c̃− (1− g(k))� f (k)
p − g(k) � fl

∥∥∥2
+ λl1

>gΩ(fl) (8a)

f (k+1)
p := arg min

fp∈Fp

∥∥∥c̃− (1− g(k))� fp − g(k) � f (k+1)
l

∥∥∥2
+ λp1

>(1− g)Ω(fp) (8b)

g(k+1) := arg min
g∈G

∥∥∥c̃− f (k+1)
p − (f (k+1)

p − f (k+1)
l )� g

∥∥∥
+
(
λlΩ(f

(k+1)
l )− λpΩ(f (k+1)

p )
)
1>g (8c)

BCM converges monotonically to a local minimum of (7).
Whenever Fl is an RKHS (denoted by Hl) with associated

kernel κl(·, ·), and the regularizer Ω is the associated RKHS
norm ‖ · ‖2Hl

, the subproblem (8a) is a standard kernel ridge
regression (KRR) problem; the same applies to (8b). Accord-
ing to the Representer Theorem [15], there exist minimizers
for (8a) and (8b) with the following forms, respectively:

fl(x̂t, x̂r) =

Np∑
n=1

αl,nκl([x̂
>
t , x̂

>
r ]>, [x̂>t(n), x̂

>
r(n)]

>) (9a)

fp(φt,φr) =

Np∑
n=1

αp,nκp([φ>t , φ
>
r ]>, [φ>t(n), φ

>
r(n)]

>).

(9b)

and if we define the kernel matrix Kl such that [Kl]ij =
κl([x̂

>
t(i), x̂

>
r(i)]

>, [x̂>t(j), x̂
>
r(j)]

>); define Kp analogously,
and D(k) , Diag(g(k)); solving (8a-8b) boils down to:

α
(k+1)
l := arg min

αl

∥∥∥c̃− (I −D(k))Kpα
(k)
p −D(k)Klαl

∥∥∥2
+ λl1

>g α>l Klαl (10a)

α(k+1)
p := arg min

αp

∥∥∥c̃− (I −D(k))Kpαp −D(k)Klα
(k+1)
l

∥∥∥2
+ λp1

>(1− g)α>pKpαp (10b)

and it holds that fp = Kpαp, and fl = Klαl.
When both Fl and Fp are RKHSs, (10) can be substituted

with a joint optimization whose closed form is (11) (shown
at the top of next page). It turns out that a related model
is proposed and discussed in [14], but the gating function
there is a generic (softmax) function, which would make the
optimization in (8c) nonconvex. An alternative approach is
proposed in this paper, based on exploiting the structure of
the problem at hand to design a low-complexity solver.

Recall that in the RKHS case, (8a-8b) become convex
problems. If the optimization over g(·) is formulated as a
convex problem, one can expect much more efficient learning.

minimize
fp∈Fp,fl∈Fl,g∈G

1
Np

∑Np

n=1

(
c̃n − g(en)fl(x̂t(n), x̂r(n))− (1− g(en))fp(φt(n),φr(n))

)2
+
(

1
Np

∑Np

n=1 g(en)
)
λlΩ(fl) +

(
1
Np

∑Np

n=1 1− g(en)
)
λpΩ(fp), (5)



[
α

(k+1)
p

α
(k+1)
l

]
=

[
(INp −D(k))2Kp + λp1

>(1− g)INp (INp −D(k))D(k)Kl

D(k)(INp
−D(k))Kp (D(k))2Kl + λl1

>gINp

]−1 [
(INp −D(k))c̃

D(k)c̃

]
(11)

In fact, one can directly incorporate the properties of g(·)
described in Sec. II-A in the definition of G, so that (8c)
becomes:

minimize
g∈RNp

∥∥∥c̃− f (k+1)
p −Diag(f

(k+1)
l − f (k+1)

p )g
∥∥∥2

+
(
λlΩ(f

(k+1)
l )− λpΩ(f (k+1)

p )
)
1>g (12a)

s. to: 0 � g � 1 (12b)
[g]i ≤ [g]j ∀ (i, j) s.t. ei � ej (12c)

which is a standard convex quadratic problem with affine
constraints. Regarding symmetry, it can be enforced easily
(not only on the gating function but also on fp and fl) by aug-
menting the training set, i.e., for each sample (c̃n,ψt,n,ψr,n),
adding its counterpart (c̃n,ψr,n,ψt,n) to the training set. Once
g is found, any gating function g(·) in agreement with (6c)
will be optimal for the training set for fixed fp,fl. Once
the overall procedure has converged, an instance of g(·) can
be recovered easily by interpolating the values in g with any
interpolation technique (e.g., KNN).

Remark. The collection of constraints in (12c) is written
with as many constraints as partial order relations in the set
{en}

Np

n=1, for clarity. The number of constraints grows super-
linarly with Np. To avoid excess of complexity, the number
of constraints can be reduced by building a directed acyclic
graph (DAG) with the latter order relations, and computing
its transitive reduction. This results into a DAG encoding
the minimal set of constraints (that implies all others by the
transitive property), yielding an equivalent problem with many
fewer constraints.

A. Hyperparameter selection

If a Gaussian/RBF kernel is used, the kernel functions
(κl, κp) have width parameters σl and σp. The proposed esti-
mator has then the following hyperparameters: λl, λp, σl, σp.
It may be challenging to adjust all these hyperparameters by
grid-search and cross-validation (CV), for two reasons: a) the
dimensionality of the search space is 4, as opposed to the
search space for LocB or LocF which is 2; b) the computation
required to train the MoE is much higher than that for each
of the experts separately, because of the iterative loop and the
relatively slow convergence of BCM. A simplified procedure
is proposed, based on selecting the hyperparameters which
are CV-optimal for the LocB and LocF estimators separately,
and then reusing the same hyperparameters for the MoE. The
procedure is tabulated as Alg. 1.

The computational cost of Alg. 1 depends on: a) the number
of elements in the grids where λp and λl are searched; b) the
number of training samples Np, and c) the number of iterations
required for the for loop in step 5 to converge. The dominating

step with a practical configuration is step 6, whose complexity
is O(N3

p ) due to the matrix inversion in (11).

Algorithm 1 Hyper-parameter selection and MoE training
Input: Training data {ψt,n,ψr,n, c̃n}Nn=1

Output: CG estimating function f(ψt,ψr)

1: Select hyperparameters (λp, σp) for the LocF CG estima-
tor via CV and grid search

2: Select hyperparameters (λl, σl)for the LocB CG estimator
via CV and grid search

3: Initialize g(e) = 1/2∀e by defining g = 1/2
4: Set (λl, λp, σl, σp) as hyperparameters for the MoE
5: for k = 1, 2, . . . do (until convergence)
6: Joint KRR coefficients optimization via (11)
7: Optimize gating function via (12)
8: Return f(ψt,ψr) via (3)

V. EXPERIMENTS

A wireless propagation environment is simulated using
an adapted version of the ray-tracing software in [16]. The
original code considers a set of walls and several sources to
generate a power map accounting for direct, first, and second
order reflected paths. The original source code has been
modified to generate CGs between any two points in the area
where the set of walls lie.

A set of positioning sources (e.g., base stations) are also
simulated, and their pilot signals are transmitted through
the aforementioned environment, so the received pilots are
affected by the same multipath and attenuation that creates
the CGs. The features to be used by the LocF estimators are
obtained as the CoM of the cross-correlation between each
pair of localization source pilots [cf. Sec. II-B]. The location
estimates x̂ to be used by the LocB estimator are generated
syntheticallyby adding random noise ∼ N (0, σ2

xI) to the true
locations of the simulated nodes. The location uncertainties
ex are also synthetically generated by adding random noise
∼ N (0, σ2

e) to the Euclidian distance between the true location
and its estimate. For these experiments, σx := 7 m, and
σe := 0.3 m (so that the uncertainty is significant and its
measure is consistent with the deviation of the estimate from
the true location). Training and testing data are generated by
spreading the sensing UE terminals in the area uniformly at
random, and generating for each pair (t(n), r(n)) the channel
gain observation c̃n := Ct(n),r(n) + εn, with εn ∼ N (0, σ2

c ).
Channel gains are expressed in dB, and σc = 2dB.

A first experiment is run to visualize the estimators resulting
from the proposed algorithm. Steps 1 and 2 produce a LocF
and a LocB CG estimators, which are not part of any mixture.
Once the joint optimization of fl,fp, g is done (steps 5-7),
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Fig. 1: Colormaps for several slices of the CG map produced by each estimator in experiment 1. Dark lines represent walls, and stars
represent positioning pilot signal sources. Each pixel’s color indicates the estimated CG in dB between a transmitter located at the triangle
and a receiver located at the pixel center. Each column corresponds to a different estimator, where ”MoE.locF” (”MoE.locB”) denotes the
LocFree (LocBased) expert of the mixture; Np = 2000 samples.

not only the final estimator f(·, ·) is available, but also fl(·, ·)
and fp(·, ·) as a by-product1, which are different from the
estimators trained in steps 1 and 2. Fig. 1 shows a subset of
the estimated CGs for each of these 5 estimators, and also
shows the true gains for comparison. It can be observed that,
in the first two rows, MoE.locF underestimates the CG in
several areas, whereas MoE.locB tends to overestimate them.
Interestingly, in the third row one can observe the converse
situation.

To analyze the difference in performance between the
proposed mixture estimator MoE, and the simple estimators
LocB and LocF, a second experiment is run. The goal is to
compare the normalized mean square error (NMSE) incurred
by each of the aforementioned estimators for different number
of training samples, shown in Fig. 2. The NMSE is defined as

NMSE = E{|f(ψt,ψr)− Ct,r|2}/var{Ct,r}

where the expectation and variance are taken over locations
uniformly distributed across the region of interest. The main
feature to remark in Fig. 2 is that, above a certain number of
training samples (800 for this experiment), the MoE estimate
(which combines MoE.locB and MoE.locF) achieves a better
performance than the (simple) LocF or LocB estimators. This
suggests that a training set with too few samples does not carry
enough information to successfully learn the three functions
involved in MoE.

The increase of the NMSE incurred by MoE.locB when
the number of samples becomes higher is also remarkable. A
possible explanation for this behaviour is that the MoE.locB

1The functions f , fl and fp are respectively labeled in Fig. 1 as MoE,
MoE.locB and MoE.locF.
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Fig. 2: Comparison of test NMSE for several different learning
instances with a different number of training samples. Hyperparam-
eters determined by Alg. 1. Results averaged over 30 Monte Carlo
realizations.

spatial function becomes more complex (rougher) in an at-
tempt to make the MoE fit the data better. Increasingly
complex estimators usually lead to overfitting but, according
to Fig. 2, MoE does not overfit. This suggests that the gating
function is successfully filtering out the abrupt changes in
MoE.locB.
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VI. CONCLUSIONS

A mixture-of-experts (MoE) model has been proposed to
map CG between the locations of any transceiver pair in the
area of interest. The location-free (LocF) and location-based
(LocB) approaches are combined using a gating function that
incorporates the uncertainty associated with the location esti-
mate. The proposed algorithmic approach learns the MoE.locF
and MoE.locB components and the gating function using a
block-coordinate minimization approach. Experiments with
simulated data confirm the ability of the proposed approach
to perform with lower error than the simple LocF or LocB
estimators. These results motivate future work extending the
experimental setup with more realistic and diverse propagation
scenarios.
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