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Abstract

This paper presents a sparse code multiple access (SCMA) system with massive antennas
at the base station. This system is referred to as M-SCMA system. A spectrally-efficient
and massive access next-generation wireless network is realized through massive antennas
and non-orthogonal SCMA techniques. Two detection algorithms, namely, modified mes-
sage passing algorithm (MMPA) and extended message passing algorithm (EMPA) are pro-
posed to detect multiple users’ symbols in M-SCMA. A deep learning (DL)-based detec-
tion scheme is also proposed for M-SCMA so as to avoid channel estimation and to lower
the detection complexity. Numerical results show that the DL-based detection has simi-
lar performance as MMPA even when the channel information is not estimated explicitly.
Furthermore, authors also establish the sum rate trade-off between SCMA and orthogonal
multiple access in a massive antenna system. The impact of various M-SCMA parameters
such as the number of antennas and the overloading factor, on the proposed DL, MMPA,
and EMPA-based detection are also investigated.

1 INTRODUCTION

Recently non-orthogonal multiple access (NOMA) schemes are
gaining interest for 5G and beyond wireless networks [1–6]
NOMA-based systems have higher spectral efficiency than the
orthogonal multiple access (OMA). Therefore, NOMA can sup-
port higher user density in next-generation wireless networks.
Furthermore, multiple input and multiple output (MIMO) tech-
nology also increases spectral efficiency and/or improves wire-
less networks’ performance. Upcoming wireless networks will
be massive MIMO-based to enhance a system’s performance
[7–9]. Therefore, NOMA and MIMO will play a crucial role to
design next-generation networks.

In the literature [1, 4, 10–15], NOMA techniques are cate-
gorized into two: power domain (PD) and code domain (CD).
In CD-NOMA, the users occupy more than one orthogonal
resources for communication and they are distinguished by dif-
ferent codewords. Examples for CD-NOMA include sparse
code multiple access (SCMA) and pattern division multiple
access (PDMA) methods. SCMA is more efficient than the
PDMA due to high shaping and coding gain [16]. SCMA is gain-
ing more interest than the PD-NOMA and PDMA [1]. There-
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fore, in this paper, we focus on the design and analysis of mas-
sive MIMO-based uplink SCMA system.

Related works: In [11], a beamforming technique is analysed
for downlink NOMA system by considering the intra-beam
interference in the system. However, [11] only focused on PD-
NOMA based approach. In [10], a joint MIMO and SCMA
detection is considered using message passing algorithm (MPA).
However, the considered approach is analysed for only two
antennas and has a very high complexity for large number of
antennas. In [17], downlink SCMA capacity is analysed using
multiple antennas, however, symbol error rate (SER) is not con-
sidered in [17]. In [18], spatial modulation SCMA system is anal-
ysed for small number of antennas. A space time block coding
is also analysed in [19] for SCMA system. Furthermore, mostly
work in MIMO-based NOMA systems are analysed for PD-
NOMA in literature [20, 21]. Furthermore, some deep learn-
ing (DL)-based approaches are also analysed for SCMA system
design [22, 23]. However, SCMA system with massive MIMO
is not analysed by considering MPA or DL based detection
method in SCMA literature. Therefore, it is interesting and use-
ful to study a massive MIMO SCMA system by considering
MPA or DL-based symbols detection.
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Contributions: This paper proposes and analyses uplink mas-
sive MIMO SCMA system (referred to as M-SCMA system)
Both SCMA and massive MIMO give higher throughput and
improved system performance. The main contributions in the
paper are summarized as follows:

∙ We propose DL-based detection for M-SCMA system. Since
DL methods do not require channel information explicitly
for data symbol detection and also has lower complexity as
compared to conventional MPA-based detection.

∙ The deep neural network (DNN) model is trained offline
from the simulated data, then it is used for online signal detec-
tion. The number of hidden layers and number of neurons at
each layer are fixed in DNN by considering the multiple train-
ing to get a good SCMA system’s performance.

∙ We propose a modified MPA (MMPA) to decode the data
symbol in the proposed M-SCMA system. The MMPA offers
receive beamforming gain at the base station (BS) for sim-
ple detection in M-SCMA. Furthermore, an extended MPA
(EMPA) is proposed for M-SCMA to get both beamform-
ing and detection gain. EMPA offers two contributions: (1)
The min-sum approximation is used in lieu of the standard
sum-product principle, and (2) the messages are damped
in order to ensure correct convergence. The complexity of
EMPA increases as the number of antennas increases at
the BS as compared to MMPA. However, due to the min-
sum approximation, the complexity of the detector reduces
significantly. This point is further elaborated later in this
paper.

∙ Analysis of the proposed M-SCMA system design in terms of
bit error rate and the sum rate are carried out.

∙ The impact of M-SCMA system’s parameters such as num-
ber of antennas and overloading factor are also analysed.
Effect of imperfect channel information (ICI) is also studied
in MMPA and EMPA-based detection since accurate chan-
nel information in M-SCMA is not practically viable [24].1

Finally, we show numerical results to demonstrate the effi-
cacy of MMPA, EMPA, and DL detection in the proposed
M-SCMA system.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed M-SCMA system model. Furthermore, DL,
MMPA, and EMPA-based detection is also proposed in Sec-
tion 2. Detection complexity is highlighted in Section 3. Numer-
ical results and discussions are presented in Section 4. Finally,
Section 5 concludes the paper.

Notations:  (0, N0IK ) denotes the complex Gaussian dis-
tribution of zero mean and variance N0 and IK represents the
identity matrix of size K × K . || and ‖(⋅)‖ denote the cardinal-
ity of the set  and the Euclidean norm of a signal (⋅), respec-
tively. ℝ and ℂ denote the real and complex numbers, respec-
tively. The diag(h) represents the diagonal matrix correspond-
ing vector h when elements of h are arranged in diagonal of
the matrix.

1 Accurate channel information in M-SCMA needs complex processing due to non-
orthogonal nature of system.

2 PROPOSED M-SCMA SYSTEM
MODEL

In this section, M-SCMA-based communication system is pro-
posed to enhance the system’s capacity and detection perfor-
mance. Uplink M-SCMA system has J users and K orthog-
onal resources with J > K and referred as J × K M-SCMA
system. In M-SCMA, each user has single antenna and the
BS is equipped with Z antennas, as shown in Figure 1. Let
j th user information symbol and codebook are denoted as d

j



and  j , j = 1, 2,… , J , respectively. Symbol d
j


can take one

value from the M possible values at a time, i.e. d
j


∈  =

{d
j

 ,1,… , d
j

 ,M
} with || = M . Since in SCMA, each symbol

is mapped to K -dimensional complex codeword [4, 5]. There-
fore, a codebook of each user has M complex valued columns
and is denoted as  j ∈ ℂK×M . Furthermore, each column of
 j has only N (N < K ) non-zero elements out of K . There-
fore, codebooks { j }s are sparse in SCMA system. The chan-
nel impulse response (CIR) between j th users and zth antenna
at BS is denoted as h j,z ∈ ℂK , z = 1, 2,… , Z . Received signal
yz = (yz1,… , yzK ) ∈ ℂK at the zth antennas can be expressed
as

yz =

J∑
j=1

√
Pj diag

(
h j,z

)
x j , (1)

where Pj and x j ∈  j represent the transmit power and code-
word of j th user, respectively. The j th user symbol detection
using maximum a posteriori (MAP) probability is written as

x̂ j = arg max
xj∈ j

∑
xl ∈l ∀l≠ j

p(xl |{y1, y2,… , yZ }), (2)

where p(xl |{y1, y2,… , yZ }) denotes the a posteriori probabil-
ity of the l th user given all the antennas’ received signal
{y1, y2,… , yZ }. Computational complexity of the MAP-based
detection in (2) is high and it increases exponentially as number
of users and antennas increase in the system [4, 5]. Therefore,
we propose a DNN-based receiver for M-SCMA system below.

2.1 DNN-based detection

In general, MPA-based detection is used for data symbol detec-
tion in SCMA. MPA-based detection requires exact CIR of each
user at the BS. However, the exact CIR of users is not available
in practice or complex to estimate in NOMA uplink systems.
Therefore, we proposed a DL-based symbols detection in the
uplink M-SCMA system. DL-based symbol detection does not
require the explicit channel information [25–29], and it learns
the joint effect of CIR and signal detection.

A neural network (NN) maps the received signal to the data
symbols and expressed as [30]

f (𝚯, yt ) : yt → ̂ = {d 1
 ,t

, d 2
 ,t

,… , d
J

 ,t
}, (3)
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FIGURE 1 System model of the proposed uplink M-SCMA

FIGURE 2 DNN with L hidden layers and each layer has l , l =

1, 2,… , L neurons

where yt is the received signal at BS in t th time frame, and
d

j

 ,t
is the j th user symbol in t th time frame. 𝚯 is a DNN

parameter, which needs to learn during the offline training of
DNN. Therefore, DNN function f (𝚯, yt ) should be learned
from the data set so that error probability of symbol detection is
minimized.

2.1.1 DNN offline training

DNN consists of input, output, and multiple hidden layers,
where each layer has multiple neurons [28–30], as shown in
Figure 2. Each neuron maps weighted sum of inputs form
the previous layer to the output using non-linear activation
function. The mostly used non-linear activation functions can
be Relu, sigmoid, hyperbolic tangent etc., and are defined
as

frelu(q) = max{0, q} fsig(q) =
1

1 + exp (−q)
,

and ftanh(q) =
exp (q) − exp (−q)
exp (q) + exp (−q)

.

(4)

The layers in the DNN are cascaded to generate the final output
as shown in Figure 2. Hence, decoder output is expressed as

̂ = yL = f (𝚯, y1) = f L ( f L−1(… f 1(W1y1 + b1))), (5)

where L is the total number of layers in the DNN. The
y1 is the input vector, and Wl and bl are weight and bias
vector at the l th layer, l = 1, 2,… , L. The parameter 𝚯 =
{WL,… , W1, bL,… , b1} consist of weight and bias variance.
Furthermore, DNN parameter 𝚯 is optimized by minimizing
the 2 loss function and it is expressed as

2 =
1
1

∑
k

||̂(k) −(k)||2, (6)

where (k) and ̂(k) are the transmit (during training) and esti-
mated data symbols, respectively. Therefore, 𝚯opt = min𝚯{2}.

Furthermore, a priori domain knowledge (if available) can
prescribe the choice of a specific hypothesis class for use in the
training process, which results in an efficient and effective DNN
training in the system. Let training set  consists of 1 frames
with training points (yn1

,n1
), n1 = 1,… ,1, where yn1

and
n1

the received signal and corresponding output data symbols
(of all users) in the n1th frame. In the DL-based decoder, aim to
derive a predictor 𝜁(y) from the training data set  that general-
ize the input-output mapping to the inputs y that is not present
in  . Therefore, DL-based decoder predict output  from the
posterior distribution

 (|y) =
 (y,)
 (y)

(7)

by minimizing the loss function 2. In (7), P (y,) and  (y)
denote the joint and marginal distribution, respectively. The
optimal predictor 𝜁(y) for any received signal y is expressed as

𝜁(y) = arg min


E∼ (|y)
[
2|y]. (8)
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FIGURE 3 Calculation of channel LLR in MMPA-based detection

Therefore, an optimal predictor 𝜁(y) is obtained by minimizing
the average loss 2 for output value , where the average is
evaluated with respect to the posterior distribution  (|y) [28].

2.2 MPA-based detection

In this subsection, we propose MPA (MMPA)-based detec-
tion for the M-SCMA system. The factor graph of M-SCMA
system is modified to use MPA for symbol detection and is
described below.

2.2.1 MMPA-based detection

We propose MMPA-based detection for the M-SCMA. Con-
sider the uplink system model shown in Figure 1 where there are
J users with single antenna each and one BS with Z antennas.
The signal yz = [yz1, yz2,… yzK ]T received by the zth antenna at
the BS is given by

yz =

J∑
j=1

√
Pj diag

(
h j,z

)
x j + wz , (9)

where wz is the additive white Gaussian noise (AWGN) at the
zth antenna and is distributed as wz ∼  (0, N0IK ).

The message passing procedure in MMPA can be carried out
either in probability domain log-likelihood ratio (LLR) domain.
However, LLR-domain implementation is preferable in hard-
ware due to numerical stability. Suppose the channel LLR com-

puted from yzk is denoted by L
zk

ch . The effective channel LLR
Lk

ch received by the kth resource node is given by

Lk
ch =

Z∑
z=1

L
zk

ch . (10)

The procedure of MMPA is illustrated in Figure 3. Here,
the factor graph remains the same as in the single-input single-
output (SISO) case The input channel LLR to a resource node
combines the channel LLRs from all the antennas in an equal-

FIGURE 4 Extended factor graph for 6 × 4 M-SCMA system with Z = 2

gain-combining fashion. Then the normal steps for MPA are
carried out to extract the multiple users’ data.

2.2.2 EMPA-based detection

Simple receive beamforming based M-SCMA system does not
utilize the all antennas’ signal effectively to improve perfor-
mance since conventional J × K SCMA detection is used at the
BS. In this subsection, we propose an EMPA to get both beam-
forming and detection gain in M-SCMA system. The received
signal by concatenating all the antennas’s signal in a vector form
is written as

yE = [yT
1 , yT

2 ,… , yT
Z ]T ∈ ℂZK×1 (11)

and j th user channel matrix is given as

HE, j =

⎡⎢⎢⎢⎢⎢⎣

diag
(
h j,1

)
0 ⋅ 0

0 diag
(
h j,2

)
0 0

⋮ ⋮ ⋱ ⋅

⋅ ⋅ 0 diag
(
h j,Z

)

⎤⎥⎥⎥⎥⎥⎦
(12)

of size ZK × ZK . Therefore, the received signal is expressed as

yE =

J∑
j=1

√
Pj HE, j xE, j + wE, (13)

where xE, j = [xT
j , xT

j ,… , xT
j ] ∈ C ZK×1 and wE =

[wT ,… , wT ] ∈ C ZK×1.
The modified factor graph by combining all antennas’ signal

in EMPA is expressed in Figure 4 for Z = 2. Observe that the
extended factor graph contains six user nodes as each user is
having only one antenna. The number of resource nodes in the
extended factor graph is equal to 2 × 4 = 8 as there are Z = 2
antennas in the BS. Observe that the degree of the resource
node is the same as d f = 3. However, the degree of a user node
increases from 2 to 4. This implies that a user gets higher num-
ber of opinions regarding its value. This results in the increase in
the detection diversity. Due to this, the EMPA can yield impres-
sive performance.

In EMPA, we offer two contributions which reduce the over-
all complexity of the detection process. First, the calculation of
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the messages from the factor nodes are simplified by consider-
ing the min-sum approximation. The decoding is represented
in the LLR domain. A message is proportional to the nega-
tive logarithm of the likelihood. The min-sum approximation
is similar to the one considered in the context of the decod-
ing for non-binary low-density parity-check (LDPC) codes [31]

Suppose {V ji}
j=d f

j=1 denote the messages coming to the ith fac-
tor node from the d f neighbouring user nodes. The message Ui j

from the ith factor node to the j th user node is updated as per
the min-sum approximation:

Ui→ j (x jm ) = min

⎛⎜⎜⎜⎜⎝
Lch j

+

d f∑
j ′=1
j ′≠ j

V j ′i

⎞⎟⎟⎟⎟⎠
, (14)

where the minimum value is obtained among all combinations
of the symbols for all the neighbouring user nodes except for
the j th one. In (14), the symbol for the j th user node is fixed at
x jm .

The second contribution in EMPA is the damped update
of the messages. The message U

(l )
i→ j (x jm ) at the l th iteration is

updated as per the following equation:

U
(l )

i→ j (x jm ) = 𝛼U
(l )

i→ j (x jm ) + (1 − 𝛼)U
(l−1)

i→ j (x jm ), (15)

where 𝛼 ∈ (0, 1) is the damping factor. The damped update in
(15) is carried out for every message in the EMPA. The damping
ensures that the EMPA does not diverge and converges to a
correct solution.

3 DETECTION COMPLEXITY

EMPA operates over the extended factor graph. Observe
from Figure 4 that the degree d f of the resource node is the
same as that for the MMPA. The complexity depends on the
number of bits per symbol, i.e. M and overlapping users at each
resource node, i.e. d f , and is expressed as O(M d f +  ), where

 depends on the M, K , and d f . However, factor M d f domi-
nates the complexity. Therefore, for I iterations, the complexity
is expressed as I × O(M d f ). The min-sum approximation is
considered in EMPA. It offers a nice advantage that the signal-
to-noise ratio (SNR) estimation is no longer required Moreover,
observe from (14) that we need to find only the minimum
value among M d f terms instead of summing all these terms.
This approximation reduces the implementation overhead
significantly.

DNN is trained offline using a training data set, hence
it does not include the training complexity while it uses for
online data symbols detection. Considering a well-trained
fully connected DNN model, for each data transmis-
sion/reception, the online training complexity depends on
the number of vector-matrix multiplication. DNN’s complexity
is L1N + L1L2 + L2L3 vector-matrix multiplication, where

Li denote the active parameters in all neurons in each hidden
layer and N be the number of DNN inputs. Furthermore,
modulation order and d f have almost zero effect on the detec-
tion time in DNN-based decoder. Therefore, DNN-based
decoder has lower complexity as compared to the MPA-based
decoder.

4 SIMULATION RESULTS AND
DISCUSSION

In this section, we present the performance of the proposed M-
SCMA system using the MMPA, EMPA, and DL-based detec-
tion algorithms. The uncoded transmission over Rayleigh fading
channels are used. The average SER and sum rate performance
metrics are considered for analysis.

4.1 System parameters

The M-SCMA system, with K = 4 orthogonal resources
and J = 6, 8, 12 users, is considered. These parameters result
in overloading factors of 𝜆 = K∕J = 1.5, 2, 3. Number of
antennas Z at the BS are considered in the range of 1–100.
The codebooks of users are generated using the methods
in [16, 32, 33]. Furthermore, we also assume each user’s
codebook is normalized to unity and uses two bits per sym-
bol for transmission, i.e. || = M = 4. DNN at the BS
is trained offline generating stochastic data, while online
detection is used for considering the independent data set
in the M-SCMA system. All the users have same transmit-
ted power and one unit power per user is used in numerical
results.

4.2 DNN parameters

This paper considered input, output, and three hidden lay-
ers in the DNN for data symbol detection. The 1 = 380,
2 = 10, and 3 = 10 neurons are considered at the first,
second, and third hidden layers, respectively. The Sigmoid
non-linear activation functions is used on hidden layers in
DNN with the linear function on the output layer. The 1000
epochs and learning rate 𝛼 = 0.01 are used with the steepest
descent algorithm optimization [22] method in the DNN
training. The DL decoder is trained by considering randomly
generated data symbols over flat Rayleigh fading wireless
channel by considering as a black-box. Furthermore, the
received signal corresponding the 1 = 10, 000 transmitted
data symbols are used in DNN training at SNR=20 dB2 since
it leads to the optimal SER performance over the entire SNR
range.

2 After training the DNN at different SNR and hidden layers, we get the best M-SCMA
performance for considered parameters.
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FIGURE 5 SER performance of the proposed 6 × 4 M-SCMA system in
Rayleigh channel using the proposed MMPA

FIGURE 6 SER performance of the proposed 6 × 4 M-SCMA system in
Rayleigh channel using the proposed MMPA and EMPA

4.3 Simulations results

The average SER of 6 × 4 M-SCMA system is shown in Fig-
ure 5 for different number of antennas at the BS. As the num-
ber of antennas Z increases at BS, array gain of the proposed M-
SCMA system also increases, as observed in Figure 5. Therefore,
M-SCMA can achieve higher energy and spectral efficiency due
to multiple antennas at BS and non-orthogonal SCMA, respec-
tively.

Average SER performance of M-SCMA using the proposed
MMPA and EMAP is shown in Figure 6. The MMPA has
only SNR gain since it uses only beamforming at the BS as
observed in Figure 6. The EMPA has both SNR and decoding
gain as shown in Figure 6 due to the large factor graph is used
in detection. Furthermore, decoding gain is more prominent
for large number of receiver antennas over SNR gain in Fig-
ure 6. However, EMPA has higher complexity (marginally)

FIGURE 7 Impact of imperfect CIR on MMPA and EMPA detection

as compared to the MMPA. Furthermore, conventional MPA
[18] has improved performance as compared the proposed
MMPA and EMPA, as observed in Figure 6 with increased
complexity.

4.3.1 Impact of imperfect CIR

The proposed MMPA and EMPA-based symbol detection
require perfect channel state information of each user. The
received signal is the superposition of each users’ data sym-
bol and their channel information in the M-SCMA system.
Therefore, accurate CIR estimation at the BS is either com-
plex or impossible due to non-orthogonal pilots. Thus, MMPA
and EMPA detection is analysed for ICI scenario in Figure 7.
The actual CIR h j,z and estimated CIR h̄ j,z are related for zth
received antenna and j th user as

h j,z = h̄ j,z + e ∈ ℂK , j = 1,… , J, z = 1,… , Z, (16)

where e is the estimation error between actual CIR h j,z and esti-
mated CIR h̄ j,z . Error e can be modelled as a complex Gaus-
sian random vector with zero mean and the covariance matrix
𝜎2

e IK , where IK is the K × K identity matrix. Furthermore,
𝜎2

e linearly decreases with increasing SNR [26]. In Figure 7,
𝜎e = 0.3∕SNR is used by considering the CIR norm is unity.
Impact of ICI increases as the number of antennas increases at
the BS, as observed in Figure 7 for both MMPA and EMPA
detection. We observe that SER performance degrades around
7dB at SER = 10−4 for both MMPA (Z = 10) and EMPA
(Z = 5) in ICI scenario (denoted as ‘I’) as compared to the
perfect CIR (denoted as ‘P’), as observed in Figure 7. Hence,
a large number of antennas at BS only benefit M-SCMA system
in a perfect CIR scenario for both MMPA and EMPA-based
detection.
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FIGURE 8 DNN and MMPA-based symbol detection in the M-SCMA
system

FIGURE 9 Average SER performance with channel statistics mismatches
between offline training and online testing with Z = 5

4.3.2 DNN detection

Furthermore, the proposed M-SCMA’s SER performance using
DNN detector is shown in Figure 8. DNN has close per-
formance to the MMPA-based detection (with perfect CIR),
as observed Figure 8. However, DNN outperforms than the
MMPA in ICI scenarios.

Robustness test against channel statistics mismatches: We consider
the robustness of the DNN detection by considering the CIR
variation from offline training to online testing, as illustrated in
Figure 9. We consider random variation in CIR at each receiver
antenna, where 𝜎2

var denotes the percentage of the change of
channel statistics from offline training to online testing, and

FIGURE 10 Impact of overloading factor 𝜆 and number of antennas Z in
M-SCMA system

FIGURE 11 Sum rate versus number of antennas performance in M-
SCMA

0% means no mismatch. We observe from Figure 9 that CIR
variation does not degrade BER performance significantly.

Furthermore, in Figure 10, we highlight the importance of
number of antennas at the BS to achieve a higher overloading
factor (𝜆) in M-SCMA system with MMPA detection. Array gain
of M-SCMA allows to enhance the spectral efficiency of a wire-
less system with fixed SER, as observed in Figure 10. Therefore,
massive antennas at the BS can significantly reduce the SER in
an M-SCMA system.

4.3.3 When does M-SCMA have better sum
rate than OMA?

The sum rate RM-SCMA of multiplexed users in the M-SCMA
system is analysed and is shown in Figure 11. The RM-SCMA is
expressed as
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RM−SCMA

=

J∑
j=1

⎡⎢⎢⎣log2

⎛⎜⎜⎝1 +

∑Z

z=1 Pj ||diag
(
h j,z

)
x j ||2∑Z

z=1

∑
i=Ω,i≠ j

Pi ||diag
(
hi,z

)
xi ||2 + N0

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

(17)

where Ω is the set of overlapping users with j th user on the
kth resource. For example, second and third users share the
same resource node 1 with user one (in Figure 3). Therefore,
Ω = {2, 3} in (17) for the first resource node. The sum rate of
the proposed M-SCMA system is shown in Figure 11. At high
SNR (SNR=10 dB), OMA system sum rate increases exponen-
tially as shown in Figure 11 (left) and crosses the M-SCMA’s
sum rate. Since M-SCMA system is interference limited.3 How-
ever, M-SCMA can have a higher sum rate for a lower number of
antennas than the OMA as observed in Figure 11 (left). Further-
more, M-SCMA’s sum rate can also be enhanced by increasing
the overloading factor in the system as shown in Figure 11 (left).
Since large Z allows the user separation at the BS. Therefore,
one should decide the overloading factor and number of anten-
nas in M-SCMA to get a better sum rate than the OMA. Further-
more, at low SNR (SNR = −10 dB), M-SCMA has better sum
rate than the OMA for all ranges of antennas, as observed in
Figure 11 (right). Hence, in M-SCMA-based system, SNR level,
number of antennas (Z ), and overloading factor 𝜆 are essential
parameters to decide the system sum rate, unlike the conven-
tional OMA-based system.

5 CONCLUSIONS

This paper proposed the uplink SCMA system with massive
antennas at BS, and it is referred to as M-SCMA system. Fur-
thermore, EMPA, MMMP, and DNN-based detection is pro-
posed for M-SCMA system. Results show that array gain due to
massive antennas can be used to improve the spectral and trans-
mit power efficiency of the M-SCMA system. It is also shown
that EMPA has better performance than MMPA due to detec-
tion gain with marginal increment in complexity. Performance
and complexity of MMPA (with and without perfect chan-
nel information) and DNN is compared for the proposed M-
SCMA. Results show that DNN-based detection is preferable
over MMPA to avoid explicit channel estimation and reduces
the detection complexity in the proposed M-SCMA system. The
trade-off between SCMA and OMA in massive antenna system
is investigated by analysing the sum rate for different values of
overloading factor.
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3 In (17), the sum rate of M-SCMA system is limited by the interference and noise lev-
els. At high and low SNR, the sum rate is limited by mainly interference and noise level,
respectively, as observed in (17).
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