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Reinforcement learning has shown to be profoundly successful at learning optimal policies
for simulated environments using distributed training with extensive compute capacity.
Model-free reinforcement learning uses the notion of trial and error, where the error is a
vital part of learning the agent to behave optimally. In mission-critical, real-world environ-
ments, there is little tolerance for failure and can cause damaging effects on humans and
equipment. In these environments, current state-of-the-art reinforcement learning
approaches are not sufficient to learn optimal control policies safely.
On the other hand, model-based reinforcement learning tries to encode environment

transition dynamics into a predictive model. The transition dynamics describes the map-
ping from one state to another, conditioned on an action. If this model is accurate enough,
the predictive model is sufficient to train agents for optimal behavior in real environments.
This paper presents the Dreaming Variational Autoencoder (DVAE) for safely learning good

policies with a significantly lower risk of catastrophes occurring during training. The algo-
rithm combines variational autoencoders, risk-directed exploration, and curiosity to train
deep-q networks inside ”dream” states. We introduce a novel environment, ASRS-Lab,
for research in the safe learning of autonomous vehicles in grid-based warehousing. The
work shows that the proposed algorithm has better sample efficiency with similar perfor-
mance to novel model-free deep reinforcement learning algorithms while maintaining
safety during training.
� 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Reinforcement learning has recently demonstrated a high potential to learn efficient strategies in environments where
there are noisy or incomplete data [16]. We find these achievements in many domains, such as robotics [40], wireless net-
working [39], and game-playing [33,37]. The common denominator between these domains is that they can be computer-
simulated with significant resemblance to real-world environments. For this reason, reinforcement learning algorithms train
at accelerated rates without compromising the safety of real-world systems [17].

The goal of reinforcement learning algorithms is to learn a policy (or behavior) that stimulates optimal actions based on
sensory input and feedback from an environment. A policy is a parameterized model that is constructed in (exact) tabular
form or using an (approximation) neural network with algorithms such as gradient descent [36]. The algorithm performs
an iterative process of (sampling) exploration, exploitation, and (learning) policy updates that move the policy toward
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the desired behavior. Exploration is commonly performed using a separate policy, such as a (random sampling) Gaussian
distribution. It is crucial that the algorithm balance exploration and exploitation with schemes such as �-greedy so that
the policy updated towards a generalization of the whole environment.

The problems of guaranteed safety during reinforcement learning are many. (1) It requires a tremendous amount of sam-
pling to learn a good policy. (2) Stable and safe policies are challenging to achieve in non-deterministic and even determin-
istic, for fast-changing environments. (3) Conventional model-free exploration methods are not safe in mission-critical
environments. (4) Reinforcement learning methods depend on negative feedback to avoid catastrophic states and hence,
should be avoided for mission-critical systems. Most reinforcement learning techniques are not designed for safe learning,
and therefore, few solutions exist for mission-critical real-world environments [18].

Automated Storage and Retrieval Systems (ASRS) are a modern method of performing warehouse logistics where the
system is partially or fully automated [22]. In industry, including ASRS, it is common to rely on complex expert systems
to perform tasks such as control, storage, retrieval, and scheduling. If-else statements and traditional pathfinding algorithms
drive these tasks. The benefit of expert systems is that it is trivial to model operative safety bounds that limit the system
from entering catastrophic states. The downside is that expert systems do not automatically adapt to changes and require
extensive testing if the environment is modified. While it may be possible and perhaps trivial to construct safe routines with
an expert system, it is inconceivable to expect optimal behavior due to the complexity of most real-world environments [29].
Reinforcement learning is perhaps the most promising approach to solve these problems because it can generalize well
across many domains [33], and is designed to work in noisy environments with partial state-space visibility [32].

We propose The Dreaming Variational Autoencoder (DVAE), an algorithm for safer learning in real-world environments.
DVAE is an improved version of previous work in Ref. [4] that emphasize on more reliable learning in mission-critical envi-
ronments. The algorithm tries to address the problems (1, 2, 3, 4) that concern safe and sample efficient reinforcement learn-
ing. The algorithm does not require direct access to the real-world environment or prior knowledge to learn a stable policy. It
is, however, possible to inject prior knowledge of catastrophic states to strengthen safer learning.

The key contributions of this paper are summarized as follows:

� DVAE, a predictive model for n-state predictions,
� safety constraints using a constrained MDP scheme,
� safe exploration through risk-directed exploration and curiosity,
� ASRS-Lab for industry near testing of the proposed approach,
� and analysis of empirical results.

The organization of the paper follows. Section 2 outlines progress in the field, including automated storage and retrieval
systems, model-based reinforcement learning, and safe reinforcement learning. Section 3 presents the theoretical back-
ground of the proposed algorithm. Section 4 details the DVAE algorithm thoroughly and discuss the convergence guarantee
for the algorithm. Section 5 introduces The ASRS-Lab, an industry-near learning environment that simulates real-world ASRS
systems. The results are presented in Section 6 and show that the algorithm act safer than model-free reinforcement learn-
ing. The paper is finally summarized in Section 7 and proposes future work in safe reinforcement learning.
2. Related work

Recently, advancements in reinforcement learning have more frequent and included substantial performance improve-
ments in numerous domains [6]. Many aspects play a role, but notwithstanding increased publicity, which attracts new insti-
tutions to work with reinforcement learning. This section presents work that relates to reinforcement learning in industry-
near environments and research that attempts to address safety in these domains.

2.1. Reinforcement learning

Reinforcement learning is applied previously in industry-near environments, and perhaps themostwidespread application
is autonomous vehicles. The proposedmethod in this paper uses an auxiliary policy to label data for supervised training.With
only 12 h of labeled data, Ref. [10] illustrates learning performant policies using a direct perception approach with convolu-
tional neural networks. This approach ismuch like a variational autoencoder that simplifies the perception of theworld signif-
icantly. This simplification of the input significantly speeds up inference, which enables the system to issue control commands
more frequently. There are many other significant contributions to autonomous vehicle control, such as [30]. An in-depth sur-
vey on the topic of autonomous vehicle control that directly relates to ASRS environments are discussed thoroughly in [38].

2.2. Model-based RL

In model-based reinforcement learning, the goal is to learn state-transitions based on observations from the environment,
the predictive model. If the predictive model is stable, with low variance and improves monotonically during training, it is, to
some degree, possible to learn model-free agents to act optimally in environments that have never been observed directly.
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Perhaps the most sophisticated algorithm for model-based reinforcement learning is the Model-based policy optimiza-
tion (MBPO) algorithm, proposed by Janner et al. [27] The authors empirically show that MBPO performs significantly better
in continuous control tasks compared to previous methods. MBPO proves to be monotonically improving, given that the fol-
lowing bounds hold:
1 Mix
g p½ �P ĝ p½ � � C
where g p½ � denotes the returns in the real environment under a policy whereas ĝ p½ � denotes the returns in the predicted
model under policy p. Furthermore, the authors show that as long as they can improve the C, the performance will increase
monotonically [27].

DARLA is an architecture for modeling the environment using b-VAE. The trained model was used to learn the optimal
policy of the environment using algorithms such as DQN, A3C, and Episodic Control. DARLA is, to the best of our knowledge,
the first algorithm to introduce learning without access to the ground-truth environment during training [26].

Chua et al. proposed Probabilistic Ensembles with Trajectory Sampling (PETS). The algorithm uses an ensemble of bootstrap
neural networks to learn a dynamics model of the environment over future states. The algorithm then uses this model to
predict the best action for future states. The authors show that the algorithm significantly lowers sampling requirements
for the half-cheetah environment compared to SAC and PPO. [12].

Deep Planning Network (PlaNet) is a model-based agent that interprets the pixels of a state to learn a predictive model of
an environment. The environment dynamics stores into a latent-space, where the agent sample actions based on the learned
representation. The proposed algorithm showed significantly better sample efficiency compared to model-free algorithms
such as A3C [23].

The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for predicting the probable future state
p ŝtþ1jst ; atð Þ. The authors showed that the algorithm successfully predicted the next state in non-continuous environments
and could, with some error, predict future states in continuous state-space environments such as the Deep Line Wars envi-
ronment. In the experiments, the authors used DQN, PPO, and TRPO using an artificial buffer to feed states to the algorithms.
In all cases, the DVAE algorithm was able to create buffers that were accurate enough to learn a near-optimal policy. [4].

In Recurrent World Models Facilitate Policy Evolution, a novel architecture for training RL algorithms using variational
autoencoders. This paper showed that agents could successfully learn the environment dynamics and use this as an explo-
ration technique requiring no interaction with the target domain. The architecture is mainly three components; vision, con-
troller, and model, the vision model is a variational autoencoder that outputs a latent-space variable of an observation. The
latent-space variable is processed in the model and feeds into the controller for action decisions. Their algorithms show
state-of-the-art performance in self-supervised generative modeling for reinforcement learning agents [21].

Neural Differential Information Gain Optimization (NDIGO) algorithm by Azar et al. is a self-supervised exploration model
that learns a world model representation from noisy data. The primary features of NDIGO are its robustness to noise due to
their method to cancel out negative loss and to give positive learning more value. In their maze environment, the authors
show that the model successfully converges towards an optimal world model even when introducing noise. The author
claims that the algorithm outperforms the state-of-the-art, such as Recurrent World Models [7].

Gregor et al. proposed a scheme to train expressive generative models to learn belief-states of complex 3D environments
with little prior knowledge. Their method effectively predicted multiple steps into the future (overshooting) and significantly
improved sample efficiency. In the experiments, the authors illustrated model-free policy training in several environments,
including DeepMind Lab. However, the authors found it difficult to use their predictive model in model-free agents directly
[20].

For further details on model-based RL, we refer the reader to Ref. [5].

2.3. Safe reinforcement learning

A majority of established systems in the industry have an expert system that already acts as the controller for the envi-
ronment. In real-world environments, the need for safe and stable learning is critical so that existing routines are not
interrupted.

Similar to the proposed algorithm, [9] assumes a predictive model that learns the dynamics of the environment. The
authors propose that the policy should be limited to a safe-zone, called the Region Of Attraction (ROA). Everything within
the bounds of the ROA is ”safe states” that the policy can visit, and during training, the ROA gradually expands by carefully
exploring unknown states. The algorithm shrinks the ROA to ensure stability if the feedback indicates movement towards
catastrophic states.

The proposed algorithm encodes the observations as latent embeddings using a variational autoencoder (VAE) similar to
the View model in [21]. In the world model approach, the authors define three components. The (VAE) view encodes obser-
vations to a compact latent embedding. The model (MDM-RNN)1 is the predictive model used to learn the (predictive model)
world model. Finally, the (C) controller is a general framework that enables model-free algorithms to interact with the world
model.
ture Density Network combined with a Recurrent Neural Networks.
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3. Background

The optimization problem is modeled as Markov Decision Processes (MDP). The MDP consists of the tuple S;A;R; P; cð Þ
where S is the set of possible states, A is the set of possible actions, R : S� A� S! R is the reward function,
P : S� A� S! 0;1½ � is the transition probability function (where P s0 j s; að Þ denotes the probability of transitioning to next
state s0 given that the agent takes action a in state s), and c 2 0;1½ � is the discount factor for future rewards.

A policy (p) is a parameterized model that maps together (input) observations and (output) actions to form behavior. The
goalof the reinforcement learning agent is to select actions in a way that maximizes future rewards.
2 The
Gt ¼
XT
t0¼t

ct0�trt0 ð1Þ
Eq. 1 denotes the discounted cumulative future rewards, often referred to as the discounted return in literature [36]. We
assume that if the policy adjusts its parameters to find actions towards maximizing the return, the policy will ultimately
converge optimally.
p� ¼ argmax
p

Vp sð Þ 8s 2 S ð2Þ
Eq. (2) denotes the optimal policy and is a policy that yields the highest attainable state-value Vp sð Þ for all states while
under the control of the policy p. The state-value function is denoted
Vp sð Þ ¼ Ep GtjSt ¼ s½ � ¼ Ep Rtþ1 þ cVp Stþ1ð ÞjSt ¼ s½ �; ð3Þ

and quantifies how good it is for an agent to be in a particular state. Furthermore, the state-action function indicates how
good it is for the agent to take any possible action being in state s, where
V� sð Þ ¼max
a2A

Q � s; að Þ 8s 2 S ð4Þ
describes the relationship between the state-value and state-action function [33]. As long as the agent selects actions that
maximize the Q-values, the state-value is also optimal [36]. Therefore,
p� ¼ argmax
a2A

Q � sð Þ 8s 2 S ð5Þ
the optimal policy is found when the agent always makes actions that maximize the Q-value.
Traditional RL learns the optimal policy according to an optimization criterion. This optimization criterion varies with

different algorithms but is commonly implemented to minimize time or to maximize reward. The return maximization cri-
terion is frequently used in Q-Learning, where
Qp st; atð Þ  Qp st ; atð Þ þ a rtþ1 þ cmax
a2A

Qp stþ1; að Þ � Qp st ; atð Þ
� �

ð6Þ
backpropagates the Q-estimate of the following state to the former state.2

It becomes evident that there is no safety guarantee in the traditional view of reinforcement learning [9]. The primary
focus is for the agent to find the policy that maximizes some feedback signal, and through dynamic programming, monte-
carlo methods, or temporal-difference, find a way to learn by trial and error. For mission-critical environments, reinforce-
ment learning is insufficient, and therefore, we seek a method to learn good policies while reducing the number of catas-
trophic states.

Fig. 1 illustrates a stochastic MDP in the view of a traditional RL agent (left) and an agent that is safety-aware (right). The
MDP considers state-space S ¼ s0 . . . s9f g and an action-space A ¼ a0 . . . a2f g controlled with the probabilistic policy p a j sð Þ,
with the probability of transitioning to the next state P s0 j s; að Þ (stochastic transition). The traditional model-free RL agent
must explore to learn a policy that would keep a distance from catastrophic states. This means that the agent would even-
tually take action a0 in state s0 and enter state s1, which leads to a catastrophic outcome. The motivation for a safer learning
system becomes evident, and the idea is to find a method to define good (green) and bad (red) state-space regions before the
agent starts exploration.

3.1. Safe policy selection

Risk is a function that indicates the danger of making an action under the policy p a j sð Þ [25]. It is founded on the uncer-
tainty associated with future events and is inevitable since the consequences of actions are unknown when an action is
made. There are numerous definitions of the term risk, namely Risk-Sensitive Criterion, Worst Case Criterion, and Constrained
Criterion [31]. A policy that disregards risk evaluation is risk-neutral, and the learning objective is to maximize the expecta-
tion of the return,
equation illustrates the Q-Learning algorithm without any extensions and without deep learning considerations.



Fig. 1. Illustration of an MDP where actions are made according to a policy p. The colors are in the view of the policy where green is safety, red is danger,
gray is non-terminal states, and orange is actions in a stochastic environment. On the left, the policy follows traditional RL optimization where trial and
error occurs in order to map recognize bad states. On the right, the policy has some notion of danger (red area) for actions leading to states with negative
feedback. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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max
p2P

Ep Gð Þ ¼max
p2P

Ep
XT
t0¼t

ct0�trt0
 !

ð7Þ
where it becomes apparent that Eq. (7) is the same objective as Eq. (1). This gives motivation for modification of the objective
function so that the policy is risk-aware when maximizing the return.

The Constrained Criterion is an appealing approach as it extends the standard MDP framework described as the tuple
S;A;R; P; c;Cð Þ, where C is a set of constraints applied to the policy. The goal of the constraint set is to, with high probability,
eliminate policies such as the unsafe example in Fig. 1, similar to the work in Ref. [9]. The general form of the constrained
criterion is defined,
max
p2P

Ep Gð Þ subjectto ci 2 C; ci ¼ hiRai
� � ð8Þ
where ci is the ith constraint in the set C that must be satisfied by the policy p. Additionally, hi is a function related to the
return G that is an upper or lower bound to the threshold value ai. Consider all constraints satisfied, then the policy-
space is reduced to a subset C#P, and the policy exists only within this subset p 2 C. The idea is that the constraints lead
to a significantly smaller policy-space, where it is more likely that a safe solution is found, seen in Fig. 2. Given that the algo-
rithm selects policies only from the safe subset C, the objective function can be written as
max
p2C

Ep Gð Þ ð9Þ
which is the standard notion of expected return from Eq. (1), but with respect to the subset of safe policies C.
Constraint Selection is a delicate user-defined process, which largely depends on a specific problem [19]. It is possible to

form constraints from any metric originating from the MDP. Our approach attempts to use a general approach for safe policy
updates across various domains. In the proposed algorithm, only a single constraint is formed using the error (uncertainty) of
a predictive model [21]. The a parameter acts as a threshold for how much risk we allow when evaluating a policy. Higher
the value, the constraint is more restrictive, and for lower values, more permissive [11].

3.2. Safe exploration

Policies with a constrained criterion do not guarantee safety in the short term because it is challenging to choose param-
eters within the subset of safe policies C initially. Therefore, we also consider safer exploration as a means to guide the
agent towards making safe actions in the short term.

Risk-directed Exploration uses a notion risk to determine in which direction the agent should explore. We refer the
reader to [13] for an in-depth definition. There are several ways to define risk, such as keeping below a variance threshold,
but our approach uses normalized expected return with weighted sum entropy [13].

The risk of taking action in a particular state is given by



Fig. 2. The policy-space (blue) P and the subset of policies (red) C#P, where each policy p 2 C must satisfy the constraints ci 2 C. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Risk s; að Þ ¼ R s; að Þ ¼ wH s; að Þ � 1�wð Þ E G½ �
max
a2A
jE G½ �j ; ð10Þ
where H is the policy entropy, and the second term describes how good the action is for the particular state. The weight
w 2 0 . . .1½ � determines the balance between entropy and return, where higher values of w indicate more risk due to less
deterministic behavior. The utility function is then updated as follows
Utilityrisk s; að Þ ¼ Uri s; að Þ ¼ aR s; að Þ þ 1� að Þp a j sð Þ: ð11Þ

where a 2 0 . . .1½ � controls the risk-awareness of the agent. At a ¼ 0, the agent does not perform risk-directed exploration
but considers safety more as a! 1. The risk function R s; að Þ outputs a vector describing the risk of each action in the action
space. The risk vector adds to the probabilities and state-action values for the current state (p a j sð Þ). The updated utility
function Uri s; að Þ ensures that sampling is performed in favor of safe and conservative (less exploratory) actions, depending
on the weight parameter w, and risk aversion parameter a [13].

3.3. Safe predictive model

In model-based reinforcement learning, the goal is to efficiently learn a predictive model that accurately learns the envi-
ronment dynamics to predict future states given the current state and action [23]. During the learning of a predictive model,
explorative agents are frequently used. However, in a real-world environment where catastrophic states exist, it is little
room for errors. However, these environments are often eligible for the deployment of expert systems. Therefore, it is pos-
sible to collect observations, with a sub-optimal agent for a user-specified amount of time. The collected observations sig-
nificantly increase the accuracy of the predictive model, enabling the use of the concept of curiosity [34] to create constraints
to increase safety. Curiosity-driven exploration is composed of two rewards, extrinsic (the environment) and intrinsic (cu-
riosity) reward, where the agent is encouraged to enter unexplored states. For this work, we negate this effect and encourage
the agent to stay in states where the predictive model has low uncertainty. For each evaluation using the predictive model,
we can calculate the error, which is the difference between the predicted state and the actual state (the state observed by the
agent). For predicted states with high error, the model knows little about the consequences of doing the action, indicating
that the action will lead to a catastrophic state. Curiosity is the mean squared error of the predicted future state featurescM ^stþ1jst ; atð Þ and the ground truth future state M stþ1jst ; at ; Pð Þ where
Cu M;cM� �
¼ 1

2
jj cM ^stþ1jst ; atð Þ �M stþ1jst; at; Pð Þ j j22 ð12Þ
defines the curiosity vector. In curiosity-driven exploration, the goal is to pursue states that maximize curiosity, but, we aim
to minimize Cu for actions with high uncertainty for safe exploration. In our approach, the weighted curiosity vector adds to
the action probability distribution such that
U s; að Þ ¼ UriþCu s; að Þ ¼ Uri þ aCu ð13Þ

where a is the risk-aversion parameter previously defined in Eq. (11).

The updated utility is then compatible with Q-Learning updates using neural network function approximator with weight
h ad the Q-Network. The network is trained by sequentially minimizing the loss function Li hið Þ where i denotes the iteration,
such that,
Li hið Þ ¼ Es;a�p �ð Þ yi � Q s; a; hið Þð Þ2
h i

; ð14Þ
where yi ¼ Es0�E U þ cmaxa0Q s0; a0; hi�1ð Þjs; a½ � is the target for iteration i and p s; að Þ is the behavior distribution [33]. Finally, the
standard differentiated loss, w.r.t to the weights h denoted,
rhi Li hið Þ ¼ Es;a�p �ð Þ;s0�E U þ cmax
a0

Q s0; a0; hi�1ð Þ � Q s; a; hið Þ
� 	

rhi Q s; a; hið Þ
� �

; ð15Þ
where U is the modified reward from Eq. (13).
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4. Safe dreaming

This paper aims to increase the safety of agents that act in environments with catastrophic state outcomes. The Dreaming
Variational Autoencoder (DVAE) is a model-based reinforcement learning approach for safe and efficient learning. A predictive
model learns the dynamics of the environment and acts as a safety precaution as the agent learn fully offline from the real
environment. Additionally, the algorithm models the problem as a constrained MDP with a combination of risk-directed
exploration and negated curiosity. The algorithm performs learning three steps, predictive model learning, RL training, and
transition to the real environment, and describes as follows.

A predictive model learns the transition dynamics of the real environment. To learn these transitions, the model gathers
experience through observation of an expert system. An expert system quite regularly in use already; hence, minimal effort
is required to train the predictive model. The expert system already makes safe decisions because of hand-crafted features,
but it often operates at a sub-optimal performance. Therefore, a reinforcement learning algorithm is well-suited for decision-
making in industry-near environments, as it can improve performance and safety with a predictive model’s learning
guidance.

Training model-free RL algorithms using the learned predictive model is safe and efficient in terms of sampling effi-
ciency. Deep Q-Learning from Ref. [33] is well suited because it converges with off-policy data. A combination of the DVAE
algorithm and model-free reinforcement learning ensures that learning is performed safely without the risk of entering
catastrophic states or cause damage to the real-world environment.

Training duration depends on the problem, and should, therefore, rely on some mechanic to determine the learning
stopping criteria. As the algorithm learns an optimal policy for the predictive model, it gradually transitions to make actions
in the real environment based on the rate it enters catastrophic states. At such a time, when the agent interacts directly with
the real environment, it is possible to enter catastrophic states. The algorithm adds a negated curiosity bonus to reduce the
exploration of state-space regions with high uncertainty. This way, the fully deployed algorithmwill behave cautiously when
the movement towards novel states appears, or if the environment is changed dynamically.

The training procedure illustrated in Fig. 3 works as follows. (1) The predictive model observes and learns the real envi-
ronment using a sensor model. The same sensor model is the interface that the expert system uses for making actions. (2)
The intelligent agent (i.e., a reinforcement learning agent) interact with the predictive model and improve its policy. (3)
When the intelligent agent is sufficiently trained, it can replace existing expert systems with comparable performance.
(4) If desirable, the intelligent agent can train further in the real-world environment.

The execution graph of DVAE is shown in Fig. 4 and works as follows. The policy p a j sð Þ predicts the best action a for the
observed state s. The first action is sent to the real environment to produce initial state st ¼ s0. The initial state st and initial
action at is processed by the predictive model M and outputs predicted future state ŝtþ1 and reward r̂tþ1. The reward is used
for policy updates during training and the state for further action prediction. The policy predicts a future state ŝtþ1 and is sent
to the predictive model, now to predict the two-step predicted state ŝtþ2. The procedure continues until the algorithm meets
the stopping criteria.

A detailed illustration of the DVAE-architecture is shown in Fig. 5, including the encoder, decoder, policy, and environ-
ment. Initially, the interaction is between the predictive model M and the policy p s j að Þ. The encoder takes a state st and
predicted action at as input and outputs the embedding zt . An embedding is a compression of the input and leads to faster
training and better performance. Considering that the replay-buffer RB holds millions of embedding, the memory footprint is
significantly reduced. The replay-buffer generates sequential batches of embeddings that are input to the t-encoder enct .

The s-encoder is responsible for transforming raw input data into a meaningful and compact feature embedding. DVAE
uses a variational autoencoder primarily for this task, but other methods are also applicable, such as generative adversarial
networks (GAN). It is possible to visualize the embedding zx 2 Z by manually altering its values depending on the environ-
Fig. 3. Isolation of the real environment. The general idea of DVAE is to isolate the agent training to reduce the risk of catastrophic behavior in the real
environment. The predictive model observes the sensors of the real environment and estimates its transition function. The intelligent agent uses the
predictive model to train in an offline setting, without the risk of making mistakes in the real world. After training, the algorithm is deployed to the real
environment, with significantly less chance of entering catastrophic states. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)



Fig. 4. Prediction of future states. For each timestep, the agent observes a state from the environment or the predictive model. The agent makes an action
that results in a transition to the next state with the corresponding reward.M denotes the predictive model where ŝ and r̂ is the predicted state and reward.

Fig. 5. Architecture overview of DVAE.The architecture of the proposed predictive model. The predictive model M takes action a and state s as input to the
encoder. The input to the encoder is transformed into the embedding zt and is stored in the replay-buffer RB. The t-encoder (temporal-encoder) retrieve
Zt #RB (size determined by hyper-parameter) to learn the transition dynamics ht w.r.t time. The ŝ� decoder and r̂ � decoder decode ht into a predicted
future state and reward, which feeds into the policy for decision making and training. The dotted lines illustrate the standard reinforcement learning
interaction between agent and environment [36], which the algorithm uses after training.
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ment and the input data. In Fig. 6, we illustrate this with a (green) agent in an empty grid-world. The embedding layer con-
sists of two neurons where the first and second neuron learns the vertical and horizontal location, respectively.

The t-encoder learns the time dependency between states, or in MDP terms, the transition function T : S� A! S. The t-
encoder model computes the future state embedding zptþ1 based on a batch of previous embeddings from the view



Fig. 6. Learned features of the encoder. The figure illustrates a two-parameter embedding of a grid-world environment where the learned embedding refers
to the player’s location. The idea is that the state information, an n�m grid, is compressed significantly and can be retrieved by decoding the embedding.
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Zpt ¼ zt�n . . . ztf gp. The p denotes the policy which DVAE operates under. In DVAE, long short-term memory (LSTM) performed
best when learning the future state embedding.

The control policy p s j að Þ is responsible for interaction with the environment and the predictive model (s-encoder and t-
encoder). The control is the primary model for making actions that are safe and progress the learning in the right direction. In
DVAE, we consider Deep Q-Networks (DQN) using a constrained optimization criterion and for exploration, risk-directed
exploration, and negated curiosity. The negated curiosity act as the constrained criterion for the MDP. The input to the
algorithm is a raw-state, commonly a high-dimensional data structure that is difficult to interpret spatial information.
The benefit of the DVAE architecture is that the t-model finds an embedding that can represent the state with the order
of magnitudes less complexity. The DVAE algorithm also enables initial training fully offline in a dream version of the real
environment.

Algorithm 1. DVAE with Deep Q-Learning

1: Initialize policy ph st jatð Þ
2: Initialize predictive model Mw ŝ0; r̂0 j s; apð Þ
3: Initialize encoder enc ztjst ; atð Þ
4: Initialize replay-buffer RB Zt j zt . . . ztþnf gð Þ
5: Initialize t-encoder enct ht jZtð Þ,

ŝ-decoder decs ŝt jhtð Þ,
r̂-decoder decr r̂t jhtð Þ

Training of the predictive model
6: predictive model needs training; episode = 1, E do
7: Make decisions using predefined expert system policy
8: Store transition (st; at ; rt ; stþ1) in buffer D
9: Train predictive model Mw on data batch d#D using MLE loss

Training of the Deep Q-Network (or similar RL algorithm)
10: for episode = 1, E do
11: Sample initial state s0 from D
12: Predict action using policy p a j s; hð Þ
13: Predict future state using the predictive model Mw where,
14: Encode input state and action to embedding enc zt j st; atð Þ
15: Store zt in RB and form sequential subset of n-elements Zt #RB
16: Encode sequence of embeddings w.r.t time enct ht j Ztð Þ
17: Decode future state and reward encsþr ŝ0; r̂0 j htð Þ
18: Update policy ph with pairs of ŝt; at ; r̂t ; ŝtþ1ð Þph according to Eq. (15)
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The definition of the DVAE algorithm, seen in Algorithm 1, has the following procedure. (Line 1–5) The ph, predictive
model Mw with corresponding encoder enc zt jst ; atð Þ, replay-buffer RB Zt j zt . . . ztþnf gð Þ t-encoder enct ht jZtð Þ; ŝ-decoder
decs ŝt jhtð Þ where each component is a function approximator, is initialized with random weights.

(Line 6) starts the training procedure of the predictive model for E episodes. (Line 7–8) A expert system algorithm makes
decisions and is recorded into buffer D. This step is primarily for observation of the environment to learn the sensor model
transition dynamics.(Line 9) initiates training of the predictive model using mini-batch stochastic gradient descent with
MLE-loss.

(Line 10) initiates a for loop of E episodes to train the reinforcement learning algorithm using the learned predictive
model from the procedure at line numbers 6–9. Line 11–12 is similar to the standard reinforcement learning loop, but
instead of taking actions in the real environment, the decision is sent to the predictive model Mw. (Line 13) the predictive
model outputs the estimated future state from the agent decision with the following steps. (Line 14) encode current state
st and action at into the embedding zt . (Line 15) The embedding is stored in the replay buffer and is retrieved in batches of n-
elements to form Zt . (Line 16) encode the sequential batch of embeddings to capture transition dynamics between states,
yielding ht . (Line 17) The decŝþr̂ decoder outputs the predicted future state and the corresponding reward. Finally, using
the predicted values, the reinforcement learning policy is updated using Eq. (15) (Line 18), similar to Ref. [33]. The process
is repeated separately for the predictive model and the reinforcement learning algorithm until reaching an acceptable con-
vergence threshold.

4.1. Exploration and policy update constraints

There are significant improvements to the exploration and policy update for finding safe policies in DVAE. During sam-
pling, the policy uses a risk-directed exploration bonus [13]. The bonus is added to the probability distribution over actions
before sampling is performed, as described in Section 3. The policy updates are constrained to a set of criteria defined as
follows. During the learning of the predictive model, feedback is received from the real-world environment. All actions
are bound to some feedback even though only 1 of these are received depending on which action the agent performed. In
our model, we assume that all actions that were not chosen by the agent are considered unsafe. This way, the algorithm
gradually maps the unsafe policy space, as illustrated in Fig. 1. It is important to note that this mapping does not influence
the agent’s choices when learning the predictive model. When the agent revisits a state, the agent may select another action,
which will label the state safe. Depending on how much the expert system behavior is observed, the better understanding
the predictive model gets, as well as the state-risk mapping of the state-space.

4.2. Analysis of convergence guarantees

The Dreaming Variational Autoencoder combines several approaches that previous work has shown to have convergence
properties. The algorithm model the problem as an MDP, which is proven to have convergence properties in several works
[15]. The Markov property is especially interesting, and the proof is detailed well in Ref. [24]. The DVAEalgorithm use con-
strained MDP and is proved to have convergence properties for the discounted case used in Ref. [1].

Tabular Q-Learning is known to converge as time goes towards T, but deep learning variants, specifically neural network
estimated Deep Q-Networks, primarily have empirical success. There are efforts such as Ref. [14] that prove theoretical con-
vergence for simplified DQN, but no proof for the general case. In regards to using neural network estimators for the predic-
tive model, the proposed approach is based primarily on empirical observations. DVAE uses a similar approach to Refs.
[21,23] where the predictive model encoder constructs a variational bound on the data log-likelihood:
lnMd s1 : Tð Þ , ln
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where so denote unprocessed states. We refer the reader to Ref. [23] for the derivation. The curiosity bonus used in the pro-
posed algorithm is shown to work well empirically, but there is no proof of convergence to the best of our knowledge.
Through trial and error, the proposed algorithm converges empirically, but theoretical convergence remains future work.

5. The ASRS Lab

Safety during RL learning has been a less prevalent priority in recent years compared to improving the performance of
existing non-safe algorithms. We argue that this may be due to the high cost of physical systems to experiment on and that
RL research is primarily tested in games, which naturally encourages to maximize the agent performance by trial and error.
In this section, we propose the Automated Storage and Retrieval System Lab (ASRS-Lab), a flexible and industry-near envi-
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ronment for reinforcement learning research. The ASRS-Lab environment focuses on how RL algorithms can learn good poli-
cies with minimal negative feedback and enable auxiliary policies to create a predictive model that can be used for safe off-
line training of reinforcement learning algorithms.

5.1. Motivation

It is well known that the training of algorithms in real-world environments is complicated for several quintessential rea-
sons, which causes non-deterministic side-effects. First, in real-world environments, there is no option to accelerate the
sampling speed to increase training speed since the training speed depends on real-world time. Second, reinforcement
learning builds on trial and error, which is not applicable for many mission-critical systems as an error can have catastrophic
consequences. Third, in real-world environments, there are additional uncertainty factors that can alter the state-space.
Most RL algorithms can adapt sufficiently to slight changes, but with the risk of policy collapse for drastic changes. Fourth,
a system which in simulation is deterministic will because of the side-effects mentioned above, in a real-world environment
becomes stochastic. All of these factors cause challenges to guarantee safety during training in real-world environments.

5.2. Implementation

With safe reinforcement learning in mind, the ASRS-Lab is implemented with flexible options for state, action, and
reward-representations. There are many categories of ASRS systems in the real world, and to build an environment flexible
Fig. 7. Visual observation of the ASRS-Lab environment using cube-based ASRS configuration.



Fig. 8. The MSE loss between real and predicted state for ASRS-Lab is illustrated on the left. The x-axis describes the epoch number ranging from 1 to
1,000,000. The right figure shows the decoder output of the predictive model after 1,000,000 epochs of training.
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enough to accommodate all requirements for all systems was unfeasible. However, the ASRS-Lab could successfully recon-
struct shuttle-based, aisle-based, and grid-based warehouses. For this paper, we consider the grid-based architecture.

Fig. 7 illustrates the observable state-space from a two-dimensional point of view. In a simple cube-based ASRS system,
the environment consists of (B) passive and (C) active delivery-points, (D) pickup-points, and (F) taxis.The goal of the envi-
ronment is to find a positive terminal state using minimal time with a limited set of actions. One episode of the environment
is defined as follows. The (taxi) agent starts at an arbitrary position on the plane. At the same time, the agent receives a re-
trieve order from the ASRS scheduling system. This order describes a target location for goods to be retrieved. The agent must
now reach the target location in minimal time using its controls. Considering that there are many other agents on the plane,
the control task is challenging to learn because each action has a significant risk of collision with other agents, as well as the
outer bounds of the grid system. When an agent enters a target position, it is rewarded and is assigned a delivery task from
the scheduling system. The agent must now move to the designated location described by the delivery task. When the agent
reaches its destination, a large reward is given.

A taxi can move using a discrete or a continuous controller. In the discrete mode, the agent can increase and decrease
thrust and move in either direction, including the diagonals. For the continuous mode, all of these actions are floating-point
numbers between (off) 0 and (on) 1, giving a significantly harder action-space to learn. The simulator also features a contin-
uous mode for the state-space, where actions are performed asynchronously to the game loop. The environment supports
custom modules for mechanisms such as the scheduling system, agent controllers, and fitness scoring.

5.3. Benefits

A notable benefit of the ASRS-Lab is that it can accurately model real-world warehouse environments at high speed. Com-
pared to real-world systems, the ASRS-Lab environment runs an order of magnitudes faster on a single high-end processing
unit. The performance is measured by comparing the number of actions a taxi performs in the real environment versus the
virtual environment. The environment can be distributed on many processing units to increase the performance further. In
our benchmarks, the simulator was able to collect 1 million samples per second during the training of deep learning models
using high-performance computing (HPC).

6. Results

In state-of-the-art model-free reinforcement learning algorithms, it is common to perform a (random) Gaussian-based
exploration method to map the return to states. These algorithms are excellent at finding an average point on the optimiza-
tion plane that generalizes well across multiple domains. The issue, however, is that there are no guarantees that the learned
policy avoids catastrophic states. In this section, we show that DVAE is capable of learning an accurate predictive model for
model-free algorithms and learn good policies while behaving safely during exploration. We apply the proposed constrained
criterion to the policy updates and use risk-directed exploration to enforce safer actions as described in Section 3. DVAE inte-



Fig. 9. Cumulative Prediction Error The y-axis shows the pixel error where each whole number represents a 2-dimensional error. For example, an error of
32 means that 32� 32 pixels have incorrect values. The x-axis is howmany predictions in the future is made without interaction with the real environment
(how many states in the future has the algorithm ‘‘dreamed”).

P.-A. Andersen et al. / Information Sciences 537 (2020) 467–484 479



Table 1
Exponential cumulative prediction error. Depending on the environment, the cumulative prediction error increase exponentially for all environments. The table
shows that the exponential growth is consistently less extreme for simple environments. The numbers in the header present the state n-th in the future.

Environment 10 25 50 75 100

ASRS-Lab-11x11 0.34 2.08 7.47 14.91 25.10
ASRS-Lab-21x21 0.36 1.91 7.53 16.62 28.75
ASRS-Lab-41x41 0.43 2.98 10.50 25.06 43.02
Acrobot-v1 0.42 2.04 9.15 19.56 34.86
BeamRider-ramNoFrameskip-v4 1.77 9.33 33.99 75.94 135.49
Breakout-ramNoFrameskip-v4 1.52 7.20 28.84 67.37 110.48
CartPole-v0 0.31 1.52 6.13 13.62 22.58
CartPole-v1 0.35 1.50 6.66 14.53 26.01
DeepLineWars 0.54 3.81 13.73 29.41 50.58
DeepRTS-1v1 2.72 16.29 65.98 143.02 255.99
DeepRTS-GoldCollect 0.69 4.55 19.75 46.17 78.00
MountainCar-v0 0.65 3.66 15.31 30.73 49.95
Qbert-ramNoFrameskip-v4 0.77 4.20 18.23 38.69 63.38
SpaceInvaders-ramNoFrameskip-v4 1.04 4.98 21.96 53.11 89.28
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grates well with Deep Q-Network (DQN) and compared against DQN (Rainbow) and Proximal Policy Optimization (PPO).
The algorithm tests across various environments, including popular Atari 2600 games [8], Deep RTS [2], Deep Line Wars [3],
and the industry-near environment, ASRS-Lab [5].

6.1. Predictive model

The prediction model’s objective is to learn about environment dynamics and features so that it can accurately mimic the
environment’s behavior. Fig. 8a illustrates the average loss for all tested environments. The predictive model trains using
specially crafted expert systemsthat perform well in each of the tested environments. The trend is for the loss to start high,
and quickly reduce to only minor weight adjustments during training. These minor weight adjustments play a significant
role in learning an accurate embedding, as illustrated by Fig. 8b.

A way to measure the accuracy of the predictive model is to investigate the cumulative prediction error. Fig. 9 illustrates
this cumulative prediction error for all tested environments. The experiments show that the prediction error tends towards
exponential growth when the predictive model makes predictions for longer time horizons. As seen in Table 1, the predictive
model has an error of 284 (the decoded state is 284� 284) for the Deep RTS environment at predictions done for 100 time-
steps in the future. This means that every pixel in the predicted state is incorrect, and hence, difficult to use for training
model-free algorithms.

It is sensible to limit the prediction horizon for environments that are too advanced or difficult to extract the dynamics
from. The downside of limiting the prediction horizon is that the algorithm is not able to train fully offline. However, the
algorithm reduces the volume of real training data needed to converge model-free approaches by magnitudes successfully.

The predictive model successfully learns several environments sufficiently, including ASRS-Lab-21x21, CartPole, and
Deep Line Wars. It is likely that tuning the a; w, and learning-rate would improve accuracy for other environments, but
parameters remain problem-specific and must be carefully tuned.

6.2. Agent failure rate

The failure rate is measured by counting the number of negative rewards the agent receives during an episode while
training. The environment has a negative reward for catastrophic states and positive on the contrary. Recall that the algo-
rithm should interpret the MDP with constraints and label catastrophic states accordingly, see Fig. 1.

Fig. 10 illustrates the failure-rate for DVAE with three hyper parameter configurations,
a ¼ 0:99; w ¼ 0:01; a ¼ 0:7; w ¼ 0:3; a ¼ 0:5; w ¼ 0:5. Recall that higher a and lower w values account for safe-aware
behavior. Safer configuration of DVAE clearly impacts the rate by which the algorithm makes mistakes.

The algorithm does not always learn good policies, such as in the DeepRTS environment. The reason is perhaps that the
reward function does not represent the goal, and further investigations discovered that this is the case for DeepRTS. For the
DeepRTSGold environment, DVAE outperformed PPO and DQN significantly.

DVAE increases safety significantly for the majority of the environments tested in this paper. The results from Fig. 10
shows a consistent decrease in failures when increasing the safety-awareness sensitivity using the a and w hyper-
parameter. The benefits of having high safety-awareness increase action safety, but at the cost of slower convergence or
local minima problems.

6.3. Agent performance

DVAE has comparable performance to DQN and PPO in terms of accumulating reward during training. Fig. 11 shows the
performance after the DVAE algorithm is pre-trained on the predictive model. We perform these tests on DeepLineWars,



Fig. 10. Agent failure rate. We evaluate the rate of which an agent fails during trials across various environments where the x-axis illustrates the episode
number, and the y-axis the rate in percentage. Each environment is averaged over 100 trials for 1000 episodes. We compare three safety configurations of
DVAE against DQN [33] and PPO.
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Fig. 11. Behavioral agent performance. DVAEshows good performance when accumulating reward (y-axis) during training for 1 million timesteps (x-axis).
The experiment was averaged across 100 runs and was limited to only a subset of the environments due to execution time.
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DeepRTSGold, Acrobot, CartPole, and ARS-Lab-41x41. The figure clearly shows that DVAE successfully trains the algorithm to
a sufficient level of behavior, and can improve further when training on the real environment.

DVAE is not always stable when training in complex environments, as seen in the DeepLineWars plot. Out of 100 trials,
the DVAE configuration using a ¼ 0:7 and a ¼ 0:5 diverged, and hence, was stopped before reaching 1 million timesteps.

The pretraining was done using a horizon of 40 frames for 2 million timesteps. In practice, this only results in 50000
timesteps in the real environment, resulting in magnitudes lower risk of failures.

However, sensitivity to hyperparameters is a significant issue that limits the algorithm from functioning well through-
out all tests, without extensive tuning.
7. Conclusion and future work

The Dreaming Variational Autoencoder increases safety during the training of reinforcement learning agents. Section 6
shows that,

1. Agents have significantly lower failure rates when pretraining using the predictive model,
2. has similar performance, in terms of accumulative reward, compared to state-of-the-art algorithms, including DQN and

PPO, and
3. can predict longer time-horizons with good training quality. However, the prediction error grows exponentially.

Although DVAEis less stable than model-free approaches and is the biggest challenge of using a dream model for safety–
critical tasks, the sample efficiency is significantly improved. As is common in many other models, the proposed algorithm
requires significant hyperparameter tuning to function well, and it could be difficult to find general parameters that work
across many environments. However, we found that a ¼ 0:99; w ¼ 0:01; a ¼ 0:7; w ¼ 0:3, and a ¼ 0:5; w ¼ 0:5 to perform
best during the experiments.

The most considerable achievement is that DVAEimproves sample efficiency significantly when using the predictive
model when pretraining the agent. The algorithm can predict future-state sequences of up to 100 frames with an accuracy
sufficient for pretraining. This reduces the need for interacting with the real environment and hence defeats the potential
risk of entering catastrophic states.

Continued research of this work is dedicated to better combine proximal policy optimization with the presented meth-
ods for safe reinforcement learning. In the DVAEt-model, we would like to investigate if temporal convolutional networks
[28] could further improve the performance of learning the predictive model. We hope to experiment with the recent vector
quantized variational autoencoder [35] for more accurate latent space (embedding) encoding. While this paper contributes
new findings in safe reinforcement learning, it is still room for improvement, in which we hope to contribute more in the
future.
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