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Despite the ever-growing interest in trend following and a series of publications in academic jour-
nals, there is a dearth of theoretical results on the properties of trend-following rules. Our paper
fills this gap by comparing and contrasting the two most popular trend-following rules, the momen-
tum (MOM) and moving average (MA) rules, from a theoretical perspective. We provide theoretical
results on the similarity between different trend-following rules and the forecast accuracy of trading
rules. Our results show that the similarity between the MOM and MA rules is high and increases with
the strength of the trend. However, compared to the MOM rule, the MA rules exhibit more robust
forecast accuracy for the future direction of price trends. In this paper, we also develop a hypothesis
about uncertain market dynamics. We show that this hypothesis, coupled with our analytical results,
has far-reaching practical implications and can explain a number of empirical observations. Among
other things, our hypothesis explains why the empirical performance of the MA rules is better than
that of the MOM rule. We broaden the appeal and practical importance of our theoretical results by
offering various illustrations and real-world examples.

Keywords: Technical analysis; Trend following; Momentum; Moving average; Return predictability

JEL Classification: G11, G17

1. Introduction

One of the fundamental principles of technical analysis is
that prices move in trends. Analysts firmly believe that these
trends can be identified in a timely manner to generate profits
and limit losses. Trend following is an active trading strategy
that implements this idea in practice. The two most popular
types of trend-following rules are the momentum (MOM) rule
and the moving average (MA) rules. In the MOM rule, a buy
signal is generated when the current price is above its value
n periods ago. In an MA rule, on the other hand, a buy signal
is generated when the current price is higher than a particular
moving average of prices over the past n periods. The most
popular MA strategy is based on the simple MA (SMA rule);
other popular types of moving averages are linear MA (LMA
rule) and exponential MA (EMA rule).

The past two decades have been marked by a constantly
growing interest in trend following among investment pro-
fessionals and academics alike. Numerous papers published

*Corresponding author. Email: valeri.zakamouline@uia.no

in academic journals find that trend-following strategies out-
perform their buy-and-hold counterparts.† However, despite
the enormous current interest in trend following and a series
of publications in academic journals, there is still a dearth
of theoretical results on the properties of trend-following
rules. A few exceptions are the studies by Acar (1998),
Lequeux (2005), Zhu and Zhou (2009), and Hong and
Satchell (2015). In addition, very little research has been con-
ducted on contrasting the MOM and MA rules. To the best
of our knowledge, only one study to date has systematically
compared the properties and profitability of the MOM and
SMA rules. Specifically, the empirical study by Marshall et
al. (2017) finds that the similarity between the MOM and
SMA rules is very high. However, the SMA rule is found to
be more profitable than the MOM rule. A similar result on the
comparative performance of the MOM and SMA rules can be
found in Neely et al. (2014).

† See, among others, Brock et al. (1992), Faber (2007), Gwilym
et al. (2010), Kilgallen (2012), Moskowitz et al. (2012), Clare
et al. (2013), Neely et al. (2014), Marshall et al. (2017), and
Faber (2017).
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Given the ever-increasing popularity of trend-following
strategies, the goal of this paper is to compare and con-
trast the MOM and MA rules (SMA, LMA, and EMA) from
a theoretical perspective. Our theoretical approach is based
on the return-based formulation of trend-following rules and
the assumption that the returns follow an autoregressive
model. The first contribution of this paper is to provide a
number of theoretical results on the similarity between two
trend-following indicators† and, using numerical illustrations,
demonstrate the similarity between various rules. We show
that the similarity between the MOM and MA rules is indeed
high even under a random walk; the similarity increases when
the price trend becomes stronger. We also find that, compared
to the MOM rule, the MA rules generate trading signals that
are more robust to the change in the number of past prices
used to compute the trading indicator.

The second contribution of this paper is to provide theoret-
ical results on the forecasting properties of trend-following
rules. Specifically, we derive an analytical formula for the
similarity between a trend-following indicator and a future
return. By means of this formula, we determine the param-
eters of the indicator that have the greatest similarity with
the future return. We demonstrate that the forecast accuracy
of any trading indicator increases as the strength of the trend
increases. Using numerical illustrations, we examine the sim-
ilarity between the trading indicators of the MOM and MA
rules and future returns. We find that the trading indicators of
the MA rules deliver a more robust similarity with a future
return than the trading indicator of the MOM rule. In other
words, compared to the MOM rule, the MA rules have a bet-
ter ability to sustain good forecast accuracy with respect to
the change in the order of the autoregressive process and the
number of past prices used to compute a trading indicator.

The third and final contribution of this paper is to suggest
and develop a hypothesis about uncertain market dynamics.
In particular, we conjecture that the market returns follow an
autoregressive process, the parameters of which change ran-
domly over time. This conjecture is motivated by the recent
literature on stock return predictability and the results of our
empirical study. We show that our conjecture, coupled with
our analytical results on the similarity between two trading
indicators and the similarity between a trading indicator and
future return, has far-reaching practical implications and is
able to explain a number of empirical observations.

First, our conjecture clarifies the reasons why traders dis-
agree on the optimal size of the averaging window in a trading
rule. Second, our conjecture explains the practical difficulty
in establishing the presence of market trends. Our theoreti-
cal results on the similarity between two trading indicators
call for a novel methodology to demonstrate the presence
of trends and estimate trend strength under uncertain mar-
ket dynamics. Third, we construct a theoretical model that
presents a feasible explanation for why the performance of
an MA rule is better than the performance of the MOM
rule. In this model, the order of the autoregressive process
for returns changes randomly over time. Because the MA

† The technical indicator of a trading rule is a mathematical func-
tion that formalizes how past prices are used to forecast the future
direction of the price trend.

rules have a more robust similarity with the future return
than the MOM rule, our model implies that on average, the
trading indicators of the MA rules better forecast the future
return than the trading indicator of the MOM rule. Fourth,
the validity of our theoretical predictions on the relative
performance robustness of trading rules under uncertain mar-
ket dynamics is empirically confirmed by a novel empirical
study.

The remainder of the paper is organized as follows.
Section 2 presents the price- and return-based formulation
of the MOM and MA rules. Section 3 describes the empir-
ical data and the justification for the choice of popular lag
lengths. Section 4 motivates the choice of the autoregressive
process for returns to model the price trends. The simi-
larity between two trend-following indicators is studied in
Section 5. Section 6 examines the similarity between a trend-
following indicator and the future return. The model with
uncertain market dynamics is motivated and developed in
Section 7. Finally, Section 8 concludes the paper.

2. Trend-following rules

2.1. Trend-following rules based on past prices

We denote by {P1, P2, . . . , Pt} a series of observations of the
closing prices of a financial asset over some time interval.
Time t denotes the current time when the last closing price Pt

is observed. The trend-following technical trading rules con-
sidered in this paper use these prices to predict the direction
of the price trend over the subsequent period until time t + 1.

In this paper, we consider the momentum (MOM) and the
moving average (MA) technical trading rules. In the MOM
rule, the last closing price Pt is compared with the closing
price n periods ago Pt−n+1. A buy signal is generated when
the last closing price is greater than the closing price n periods
ago. Otherwise, a sell signal is generated.

The MA trading rule is the oldest and one of the most pop-
ular trading rules among practitioners.‡ The generation of the
trading signal in the MA rule starts with the computation of
the average closing price over a window of size n

MAt(n) = w0Pt + w1Pt−1 + w2Pt−2 + · · · + wn−1Pt−n+1

w0 + w1 + w2 + · · · + wn−1

=
∑n−1

i=0 wiPt−i∑n−1
i=0 wi

, (1)

where wi is the weight of price Pt−i in the computation of the
moving average.

There are three basic types of moving averages: sim-
ple moving average (SMA), linear moving average (LMA),
and exponential moving average (EMA). The weights of
the prices in these moving averages are given by wi = 1 in
SMAt(n), wi = n − i in LMAt(n), and wi = λi in EMAt(n),
where 0 ≤ λ ≤ 1 is some decay constant. Traditionally,

‡ Gartley (1935) is regarded as the pioneering book where the author
laid the foundations for technical trading based on moving averages
of prices.
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traders use EMA with an infinite size of the averaging win-
dow.† To unify the usage of all types of moving averages,
traders also use the size of the averaging window as the key
parameter in the (infinite) EMA. That is, instead of using the
notation EMAt(∞), traders normally use EMAt(n). The idea
is that EMA with a ‘window size’ of n should have the same
average lag time as SMA with the same window size. This
condition gives the following solution to the decay constant in
EMA: λ = (n − 1)/(n + 1) (see Zakamulin 2017, Chapter 3).

In the MA rule, the last closing price Pt is compared with
the value of the moving average MAt(n). A buy signal is
generated when the last closing price is above the moving
average. Otherwise, if the last closing price is below the
moving average, a sell signal is generated.

Formally, in each rule, the technical indicator It(n) is
computed as follows:

It(n) =
{

Pt − Pt−n+1 in the MOM rule,

Pt − MAt(n) in the MA rule.

It is worth emphasizing that the technical indicator is com-
puted at the current time t and translated into a trading signal
for the subsequent period until time t + 1. If, for example,
It(n) > 0, then the trading signal is buy. This means that a
trader buys the financial asset at the time-t closing price and
holds it over the subsequent period until time t + 1. If the
trader owns this asset at time t, he or she retains it in the sub-
sequent period. If, on the other hand, It(n) ≤ 0, the trading
signal for the subsequent period until time t + 1 is sell.

2.2. Equivalent formulation of rules using past returns

Zakamulin (2017), Chapter 5, demonstrates that the computa-
tion of the trading indicator in both the MOM and MA rules
can alternatively be written as the computation of the moving
average of price changes:

It(n) =
n−2∑
i=0

θi�Pt−i, (2)

where �Pt−i = Pt−i − Pt−i−1 denotes the price change over
the period from time t − i − 1 until time t − i and θi is the
weight of the price change �Pt−i in the computation of the
moving average of price changes. In the MOM rule, θi = 1.
In the MA rule, the weight of a price change is given by

θi =
∑n−1

j=i+1 wj∑n−1
j=0 wj

.

The alternative representation of the computation of the
trading indicator given by (2) indicates that the compu-
tation of the technical indicator can be closely approx-
imated using the returns instead of price changes (see

† In this case, the EMA can be computed using the following recur-
sive form that greatly facilitates and accelerates the computation:
EMAt(n) = (1 − λ)Pt + λEMAt−1(n).

also Acar 1998, Lequeux 2005, Beekhuizen and Haller-
bach 2017, Zakamulin 2017):

It(n) =
n−2∑
i=0

θiXt−i, (3)

where Xt−i = (Pt−i − Pt−i−1)/Pt−i−1 is the capital gain return
on the financial asset over the period from time t − i − 1 until
time t − i.

There are numerous advantages of using the equivalent for-
mulation of the computation of the technical trading indicator
that uses returns instead of prices. First, the return-based for-
mulation of trend-following rules represents a unified frame-
work where the trading indicators for various rules, even the
rules based on using multiple moving averages, are expressed
as single moving averages of past returns. In addition, the
equivalent formulation in terms of returns allows us to model
the return process using the ARMA(p, q) family of models
and investigate the different statistical properties of various
trading indicators.

Note the following property of the technical indicator given
by either (2) or (3): the multiplication of a technical indicator
by any positive real number produces an equivalent techni-
cal indicator. This is because the trading signal is generated
depending on the sign of the technical indicator. The formal
presentation of this property is as follows:

sgn (c × It(n)) = sgn (It(n)) , (4)

where c is any positive real number and sgn(·) is the mathe-
matical sign function. Property (4) can be conveniently used
to rescale the weights of past returns in the computation of the
value of a trading indicator. In particular, the trading indica-
tor defined by weights θi is equivalent to the trading indicator
with weights θ ′

i = c × θi since

c × It(n) =
n−1∑
i=0

c × θiXt−i =
n−1∑
i=0

θ ′
i Xt−i. (5)

Table 1 lists the trading rules used in our study and their
weighting functions for returns. Note that the names of the
MA trading rules reflect their weighting functions for prices.
However, the type of weighting function for returns differs
from that for prices. Specifically, the return-based MOMt(n)
rule uses the SMA weighting function for prices, whereas the
return-based SMAt(n) rule employs the LMA weighting func-
tion for prices. Only the EMAt(n) rule uses the same type of
weighting function for both prices and returns. Note that the
computation of trading rules based on prices requires n subse-
quent price observations. In contrast, the computation of the
equivalent trading rules based on returns requires n − 1 sub-
sequent return observations; see equation (3). For the sake
of simplicity in notation, in the rest of the paper, we denote
by n the number of return observations used in the compu-
tation of the trading signal. For example, we assume that the
SMAt(n) rule is computed using n subsequent return observa-
tions; in this case, the equivalent price-based trading indicator
is computed using n + 1 subsequent price observations.
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Figure 1. The shapes of the weighting functions for returns in the MOM rule and MA rules. In all rules, the size of the averaging window
equals n = 15. The weights are normalized such that the sum of weights equals unity. The return weights in the EMA rule are cut off at lag
15.

Table 1. Trading rules and their weighting functions for returns.

Trading rule Return weighting function

MOMt(n) θi = 1
SMAt(n) θi = n − i
LMAt(n) θi = 1

2 (n − i + 1)(n − i)
EMAt(n) θi = (1 − λ)λi, λ = (n − 1)/(n + 1)

Notes: For EMA, i ∈ [0, ∞]. For the other rules, i ∈ [0, n − 1].

For the sake of illustration, figure 1 plots the shapes of the
weighting functions for returns in the MOM, SMA, LMA,
and EMA rules. In all rules, the size of the averaging win-
dow equals n = 15. The weights are normalized such that the
sum of weights equals unity (that is,

∑
i θi = 1). Observe that

in all but the MOM rule, the weighting function overweights
the most recent returns.

3. Data and popular lag lengths

We broaden the appeal and practical importance of our the-
oretical results by offering a number of illustrations and
real-world examples. For this purpose, we calibrate our mod-
els to long-term historical data for the US stock market. The
data used in our study are the monthly capital gain and total
returns on the Standard and Poor’s Composite stock price
index, as well as the risk-free rate of return proxied by the

T-bill rate. Our sample period begins in January 1857 and
ends in December 2017. The data on the S&P Composite
index come from two sources. The returns for the period from
January 1857 to December 1925 are provided by William
Schwert.† The returns for the period from January 1926 to
December 2017 are computed from the monthly closing prices
of the S&P Composite index and corresponding dividend
data provided by Amit Goyal.‡ The T-bill rate for the period
from January 1920 to December 2017 is also provided by
Amit Goyal. Because there was no risk-free short-term debt
prior to the 1920s, we estimate it in the same manner as
in Welch and Goyal (2008) using the monthly data for the
Commercial Paper Rates for New York. These data are avail-
able for the period from January 1857 to December 1971
from the National Bureau of Economic Research (NBER)
Macrohistory database.§

The commonalities and differences between various trend-
following rules analyzed in this paper are illustrated using
the model parameters that encompass the actual character-
istics of the monthly US stock market data. In particular,
Section 7 of this paper documents, among other things, some
key properties of actual stock market trends. Similarly, in our
illustrations and real-world examples, we use averaging win-
dow sizes that encompass the most popular lag lengths in
trend-following rules. Undeniably, the most popular of the

† http://schwert.ssb.rochester.edu/data.htm
‡ http://www.hec.unil.ch/agoyal/
§ http://research.stlouisfed.org/fred2/series/M13002US35620M156
NNBR

http://schwert.ssb.rochester.edu/data.htm
http://www.hec.unil.ch/agoyal/
http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR
http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR
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MA rules is the SMA rule, where the most typical lag length
equals 10 months. A number of empirical studies demonstrate
that the performance of this rule is robust to the choice of
lag length. Specifically, the SMA rule delivers good perfor-
mance for lag lengths that span the range from 6 to 14 months
(see Faber 2007, Kilgallen 2012, Neely et al. 2014). In the
MOM rule, the most typical lag length is 12 months. However,
Jegadeesh and Titman (1993) and Moskowitz et al. (2012)
provide evidence that in equity markets, the momentum strat-
egy is profitable over lag lengths that span the range from 6
to 12 months. Motivated by this evidence and actual charac-
teristics of stock market trends, this paper uses lag lengths
that span periods from 1 to 24 months. The numerical char-
acteristics of trading rules with a window size of 10 months
often serve as a benchmark for comparison in our numerical
illustrations.

4. Return process

Weak-form market efficiency claims that past price move-
ments cannot be used to predict future price movements.
Effectively, this means that returns must follow a random
walk, which rules out the notion that technical analysis
has any value. In sharp contrast to this claim, there is a
vast literature that demonstrates strong evidence of the prof-
itability of trend-following rules (examples are Brock et
al. 1992, Jegadeesh and Titman 1993, Faber 2007, Zhu and
Zhou 2009, Gwilym et al. 2010, Kilgallen 2012, Moskowitz
et al. 2012, Neely et al. 2014, Pätäri and Vilska 2014, Han et
al. 2016, Faber 2017, Glabadanidis 2017).

For the trend-following strategies to be profitable, there
must be price trends in real markets. A trend can be defined
as price persistence, which is the tendency of a price to con-
tinue moving in its present direction. Price persistence means
that returns are positively autocorrelated. In particular, if price
continues moving upward (downward), a positive (negative)
return tends to be followed again by a positive (negative)
return. In a continuous-time setting, price persistence is typ-
ically modeled using the Ornstein-Uhlenbeck process for
returns (see Zhu and Zhou 2009, Han et al. 2016, Ayed
et al. 2017 among others). In discrete time, the price trend
is commonly modeled by an AR(1) process, which is the
discrete-time analogue of the continuous Ornstein-Uhlenbeck
process (examples are Acar 1998, Lequeux 2005, Hong and
Satchell 2015). In our paper, the return process incorporates
higher order autoregressive lags that are often needed to
capture the complex dynamics of real markets.

Specifically, we assume that the returns follow an autore-
gressive process of order p. This AR(p) model is defined
as:

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + εt

=
p∑

i=1

φiXt−i + εt, (6)

where p is the number of autoregressive terms, the coefficients
{φ1,φ2, . . . ,φp} are the parameters of the model, Xt−i is the

return observed at time t − i, and εt is the noise term, which
is an i.i.d. random process with zero mean and variance σ 2

ε .
That is, εt ∼ iid(0, σ 2

ε ). We assume that the autoregressive
coefficients φi satisfy the stationarity conditions. Note that we
do not consider the drift term in the equation for Xt. This is
because throughout this paper, we are interested in comput-
ing the correlation coefficients only, and the correlations are
invariant to the addition of a constant term. In other words, the
formulas for the correlation coefficients do not depend on the
value of the drift term in the equation for Xt. Note that when
p = 0, the returns follow a random walk without drift model
Xt = εt.

By multiplying equation (6) by Xt−k , taking expectations,
and then dividing the resulting expression by the variance
of Xt, we obtain the important recursive relationship for the
autocorrelation coefficients of the AR(p) process:

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p. (7)

where ρi denotes the autocorrelation between Xt and Xt−i.
Plugging k = 1, 2, . . . , p into equation (7) and using ρ0 = 1
and ρ−i = ρi, we obtain the set of Yule-Walker linear equa-
tions. Given numerical values for {φ1,φ2, . . . ,φp}, these lin-
ear equations can be solved to obtain numerical values for
{ρ1, ρ2, . . . , ρp}. Equation (7) can then be recursively used to
obtain numerical values for ρk for any k> p.

Since our goal is to model price trends, we need to choose
numerical values for {φ1,φ2, . . . ,φp} that guarantee positive
autocorrelation coefficients of the AR(p) process. The follow-
ing proposition, the proof of which is given in the Appendix,
determines the condition under which the autocorrelation
coefficients are positive.

Proposition 1 If all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are positive, then all autocorrelation coefficients ρk

are also positive.

The sum of the autoregressive coefficients, α = ∑p
i=1 φi,

can be used as a measure of persistence. This measure was
proposed by Andrews and Chen (1994) and subsequently
by Marques (2005). Specifically, Marques (2005) begins by
observing that every autoregressive process AR(p) is, in fact,
a mean-reverting process. The speed of mean reversion is
inversely proportional to α. In particular, the larger the numer-
ical value of α is, the slower the reversion to the long-run
mean and, hence, the stronger the price trend. Consequently,
the sum of the autoregressive coefficients can be used to
measure persistence.

Note that if all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are nonnegative, then increasing the numerical value
of some φi or increasing the order p increases the persistence
of the AR(p) process. Consequently, the choices for p and φi

influence the persistence and, hence, the duration of the price
trend. Ceteris paribus, increasing either the number of autore-
gressive terms or the values of the autoregressive coefficients
makes the price trend stronger and long lasting. The follow-
ing proposition, the proof of which is given in the Appendix,
formalizes this idea.

Proposition 2 If all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are nonnegative, then all autocorrelation coefficients
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ρk increase as α, the measure of persistence of the AR(p)
process, increases.

5. Similarity between trend-following indicators

5.1. Theoretical results

The goal of this section is to measure the similarity between
two generally different trading indicators It(n) and Jt(m). The
trading indicator Jt(m) is computed in a manner similar to that
of It(n). Formally, the computation of trading indicators It(n)
and Jt(m) is given by

It(n) =
n−1∑
i=0

θI,iXt−i Jt(m) =
m−1∑
i=0

θJ ,iXt−i.

The difference between these two trading indicators consists
of using different numbers of past returns (generally n �= m)
and/or different weighting functions for returns. In vector
notation, the weighting functions in each trading indicator are
given by

θ ′
I,n = [θI,0, θI,1, . . . , θI,n−1], θ ′

J ,m = [θJ ,0, θJ ,1, . . . , θJ ,m−1],

where a′ denotes the transpose of vector a.
Since the trading indicator given by (3) is a linear function

of past random returns and the trading signal is invariant to
the scaling of past returns (see equation (4)), as a measure of
similarity between two trading indicators, it is natural to use
the correlation coefficient. Consequently, we are interested in
computing the following linear correlation coefficient (a.k.a.
Pearson correlation coefficient) Cor(It(n), Jt(m)). This corre-
lation coefficient is scale and location invariant. For example,
the correlation coefficient is the same for all equivalent trad-
ing indicators. Specifically, for an equivalent trading indicator
c × It(n), which is obtained by scaling by c>0 the weights
θ I,n of indicator It(n), the following property is satisfied:

Cor(c × It(n), Jt(m)) = Cor(It(n), Jt(m)).

Similarly, this correlation coefficient does not depend on the
value of the drift term in the equation for the return process,
as the drift value only changes the location of It(n) and Jt(m).

Proposition 3 When the returns follow the AR(p) process,
the correlation coefficient between two trading indicators
It(n) and Jt(m) is given by

Cor(It(n), Jt(m)) = θ ′
I,nPn,mθ J ,m√

θ ′
I,nPn,nθ I,n

√
θ ′

J ,mPm,mθ J ,m

, (8)

where Pn,m is the n × m matrix given by

Pn,m =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρm−1

ρ1 1 ρ1 . . . ρm−2

ρ2 ρ1 1 . . . ρm−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 . . . ρ|m−n|

⎤
⎥⎥⎥⎥⎥⎦ , (9)

where ρi is the autocorrelation of order i of the AR(p) process
for returns.

The proof is given in the Appendix.

Remark 1 When the returns follow the AR(1) process, the
autocorrelation of order i is given by ρi = φi

1. In this case,
matrix Pn,m becomes

Pn,m =

⎡
⎢⎢⎢⎢⎢⎣

1 φ1 φ2
1 . . . φm−1

1
φ1 1 φ1 . . . φm−2

1
φ2

1 φ1 1 . . . φm−3
1

...
...

...
. . .

...
φn−1

1 φn−2
1 φn−3

1 . . . φ
|m−n|
1

⎤
⎥⎥⎥⎥⎥⎦ . (10)

Remark 2 When the returns follow a random walk,
equation (8) for the correlation coefficient reduces to (by
setting ρi = 0 for all i ≥ 1)

Cor(It(n), Jt(m)) = θ ′
I,kθ J ,k

‖θ I,n‖ ‖θ J ,m‖ , (11)

where ‖a‖ = √
a′ · a and k = min(n, m). For example, θ I,k is

a vector that consists of the first k elements of vector θ I,n.

Remark 3 Note that the correlation coefficient Cor(It(n),
Jt(m)) does not depend on the amount of noise in the return
process. In particular, Cor(It(n), Jt(m)) depends neither on σ 2

ε

nor on σ 2
x , where the latter is the variance of Xt.

Remark 4 Regardless of the order p of the AR(p) process for
returns

Cor(It(n), It(n)) = 1.

This is because It(n) is a random variable, and any random
variable is perfectly positively correlated with itself.

Proposition 4 Given that all elements of θ I,n and θ J ,m

are positive, if all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are nonnegative, then the correlation coefficient
Cor(It(n), Jt(m)) is positive.

The proof is given in the Appendix.

Remark 5 If the conditions of Proposition 4 are satisfied,
then the obvious conclusion is that

0 < Cor(It(n), Jt(m)) ≤ 1.

That is, the trading indicators of all rules are positively cor-
related. It is worth emphasizing that the correlation between
trading indicators is positive even if the returns follow a ran-
dom walk. That is, trading indicators are positively correlated
even in the absence of return predictability.

Proposition 5 If all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are nonnegative and Cor(It(n), Jt(m)) < 1, then
the correlation coefficient Cor(It(n), Jt(m)) increases with
increasing persistence of the AR(p) process.

The proof is given in the Appendix.

Remark 6 Note that Proposition 5 states that the similarity
between the rules increases when the price trend strength-
ens. In other words, the stronger the price trend is, the
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Figure 2. Similarity between It(10) and It(m) when returns follow a random walk.

greater the similarity between trading indicators of various
trend-following rules.

5.2. Numerical illustrations

The goal of this section is to illustrate the similarity between
two trading indicators. First, we study the similarity between
two trading indicators that belong to the same rule. These
indicators employ the same weighting function for returns
but are computed using different sizes of the averaging win-
dow. In other words, we study the correlation coefficient
Cor(It(n), It(m)).

We begin with the case in which the returns follow
a random walk. Figure 2 plots the correlation coeffi-
cient Cor(It(n), It(m)) for the MOM and all MA rules†
when n = 10 and m ∈ [2, 25]. The correlation plots in this
figure suggest the following observations. The first observa-
tion is that, in accordance with Remark 4, the correlation
Cor(It(n), It(m)) = 1 for all rules when n = m. The second
observation is that when the size of the averaging win-
dow m diverges from n in any direction, the correlation
Cor(It(n), It(m)) decreases. This correlation decreases much
faster for the MOM rule than for any MA rule. Consequently,
for two different sizes of the averaging window, the trading
indicators of the MA rules are more similar than those of the

† Note that the trading indicator in the EMA rule is computed using
an infinite size of the averaging window. Consequently, for the EMA
rule the n × m matrix P is, in fact, the matrix of dimensions ∞ × ∞.
In this case, the exact numerical computation of the correlation coef-
ficient is not feasible. To address this problem, in our numerical
illustrations, the computation of a correlation coefficient is conducted
using the k × k matrix P, where the value of k is chosen such that
θk/θ0 = 0.01. Recall that the θi coefficients in the EMA rule expo-
nentially decrease as i increases. With our choice of k, the value of
θk amounts to 1% of the value of θ0.

MOM rule. In other words, the trading indicator of the MA
rules exhibits robustness to the change in the size of the aver-
aging window. In particular, as opposed to the MOM rule,
changing the size of the averaging window in an MA rule has
little influence on the generation of a trading signal. Among
the MA rules, the EMA rule exhibits the greatest robustness.
In our illustration, even under a random walk, the correlation
between trading indicators of two EMA rules exceeds 80%.

Why is the trading indicator of an MA rule more robust to
a change in the size of the averaging window than the trading
indicator of the MOM rule? This is because an MA rule under-
weights (overweights) the most distant (recent) returns. The
consequence of reducing the effect of the most distant returns
in the computation of a trading indicator can be illustrated as
follows. Under the assumption that m> n, the computation of
trading indicator It(m) can be rewritten as

It(m) =
m−1∑
i=0

θm
i Xt−i =

n−1∑
i=0

θm
i Xt−i +

m−1∑
i=n

θm
i Xt−i,

where the notation θm
i denotes the return weights when the

size of the averaging window equals m. Note that for any MA
rule, θn

i �= θm
i . Only for the MOM rule does θn

i = θm
i = 1.

In our notation, the correlation coefficient is given by

Cor(It(n), It(m))

= Cor

(
n−1∑
i=0

θn
i Xt−i,

n−1∑
i=0

θm
i Xt−i +

m−1∑
i=n

θm
i Xt−i

)
.

With this representation, it becomes apparent that the dis-
similarity between It(n) and It(m) comes from the term∑m−1

i=n θ
m
i Xt−i, which is independent of It(n) under a random

walk. This representation also suggests that the dissimilar-
ity between It(n) and It(m) can be reduced by decreasing the
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Figure 3. Similarity between It(10) and It(m) when returns follow the AR(p) process where p ∈ {0, 1, 2, 3}. Note that AR(0) is a random
walk (RW) process. Regardless of the number of autoregressive terms p, φi = 0.3 for all i ≤ p.

Figure 4. Similarity between It(10) and Jt(m) when returns follow a random walk.

weights θm
i for i ≥ n. In other words, the similarity between

It(n) and It(m) can be increased by reducing (increasing) the
weights of the most distant (recent) returns. This is precisely
what is done in all MA rules.

From Proposition 5, we know that the similarity between
the rules increases when the return process becomes more
persistent. To illustrate this property, we compute the corre-
lation coefficient Cor(It(n), It(m)) for orders p ∈ {0, 1, 2, 3}
in the AR(p) process for returns. For simplicity, we assume
that, regardless of the number of autoregressive terms p, all φi

coefficients are alike and equal 0.3. For two selected rules,
MOM and EMA, figure 3 plots the correlation coefficient
Cor(It(n), It(m)) for different orders of the AR(p) process. As
before, we fix n = 10 and vary m ∈ [2, 25]. As expected, the
correlation plots in figure 3 show that the similarity between
the same trading indicator computed using different sizes of
the averaging window increases when the order of the AR(p)
process increases.

When the persistence of the return process increases, the
similarity between two MOM rules increases more rapidly
than the similarity between two EMA rules. However, our
experiments suggest that, regardless of the degree of persis-
tence of the return process, the similarity between two MA
rules is always higher than the similarity between two MOM
rules with corresponding sizes of the averaging window.

Now, we turn to studying the similarity between two dif-
ferent trading indicators. That is, we study the correlation
coefficient Cor(It(n), Jt(m)). We begin with the case in which
the returns follow a random walk. Figure 4 plots the cor-
relation coefficients between the trading indicators of two
different rules when n = 10 and m ∈ [2, 25]. In particular,
it plots Cor(It(10), Jt(m)) when I is either the MOM or
SMA rule and J is a rule that is different from I. The
correlation plots in this figure suggest the following obser-
vations. First, as m increases, the correlation between two
trading indicators first increases, attains a maximum, and then
decreases. Even under a random walk, the maximum corre-
lation between two trading indicators is high and exceeds
90%. The maximum is attained at m �= n. Second, the sim-
ilarity between two different MA rules is generally greater
than the similarity between the MOM and an MA rule.
The maximum correlation between two different MA rules
is higher than the maximum correlation between the MOM
and an MA rule. This observation is not surprising given
that, qualitatively, the weighting functions of the MA rules
share many similarities (see figure 1). In contrast, the weight-
ing function of an MA rule is clearly different from that
of the MOM rule. As a result of the considerable similari-
ties between the weighting functions of two MA rules, the
maximum correlation coefficient between trading indicators
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Figure 5. Similarity between It(10) and Jt(m) when returns follow the AR(p) process where p ∈ {0, 1, 2, 3}. Note that AR(0) is a random
walk (RW) process. Regardless of the number of autoregressive terms p, φi = 0.3 for all i ≤ p.

of two MA rules approaches 100% even under a random
walk.

Finally, in this section, we illustrate the similarity between
two different trading indicators when the persistence of the
AR(p) process increases. As before, we vary p ∈ {0, 1, 2, 3}
and assume that, regardless of the number of autoregres-
sive terms p, all φi coefficients are alike and equal 0.3.
Figure 5 plots the correlation coefficients between differ-
ent trading rules. In particular, the left panel in this figure
plots Cor(MOMt(10), SMAt(m)), whereas the right panel
plots Cor(SMAt(10), EMAt(m)). In accordance with Proposi-
tion 5, the similarity between two different trading indicators
increases when the order of the AR(p) process increases.

6. Similarity between trading indicator and future return

6.1. Theoretical results

The goal of this section is to measure the similarity between
the value of a trading indicator It(n) and the next period return
Xt+1. Recall that the technical indicator is computed at time t
and translated into a trading signal for the subsequent period
until time t + 1. In essence, a trading indicator is nothing else
than a linear forecasting equation that is used to predict the
next period return. The forecast accuracy of such a predictor
is commonly measured by the mean squared error between the
forecast value and the next period return. However, since the
trading signal is invariant to the scaling of past returns (see
equation (4)), we measure the similarity between the trading
indicator and the future return by the correlation coefficient
Cor(Xt+1, It(n)).

Proposition 6 When the returns follow the AR(p) process,
the correlation coefficient between the trading indicators It(n)
and the next period return Xt+1 is given by

Cor(Xt+1, It(n)) = θ ′
nPn,p φp√
θ ′

nPn,nθn

, (12)

where φ′
p = [φ1,φ2, . . . ,φp] is the vector of autoregressive

coefficients of Xt, θ ′
n = [θ0, θ1, . . . , θn−1] is the vector that

contains the elements of the weighting function of It(n), and
matrix Pn,p is given by (9).

The proof is given in the Appendix.

Remark 7 Note that the Yule-Walker equations can be
expressed in matrix form as (see, for example, Box et al. 2016,
p. 57)

Pn,p φp = ρn, (13)

where ρ ′
n = [ρ1, ρ2, . . . , ρn] is the vector that contains the first

n autocorrelations of the AR(p) process for returns. Thus, an
alternative expression for the correlation between the trading
indicator and the next period return is given by

Cor(Xt+1, It(n)) = θ ′
nρn√

θ ′
nPn,nθn

. (14)

Remark 8 It is worth observing that if the returns follow a
random walk (in this case, φp = 0 and ρn = 0), the correla-
tion Cor(Xt+1, It(n)) = 0. That is, when the returns follow a
random walk, no trading indicator can predict the next period
return. Conversely, a trading indicator is able to predict the
future return only if there is some persistence in the return
process.

Proposition 7 If all coefficients {φ1,φ2, . . . ,φp} of the AR(p)
process are nonnegative, then the correlation coefficient
Cor(Xt+1, It(n)) increases with increasing persistence of the
AR(p) process.

The proof is given in the Appendix.

Remark 9 Proposition 7 implies that the stronger the trend
is, the better the forecast accuracy of any trend-following
indicator.

The natural question to ask is how to choose the weights
θi in a trading rule to maximize the correlation between the
trading indicator and future returns. The following proposition
derives the weights of the optimal trading rule.
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Proposition 8 The trading rule that maximizes Cor(Xt+1,
It(n)) is given by

It(p) =
p−1∑
i=0

(c × φi+1)Xt−i, (15)

where c is any positive real number.

The proof is given in the Appendix.

Remark 10 The result derived in Proposition 8 is not sur-
prising and can be obtained via the following shortcut. In
particular, in the time-series literature, it is known that the
‘best linear predictor’ of the AR(p) process has the same coef-
ficients as the autoregressive coefficients in the AR(p) process
(see, for example, Box et al. 2016, p. 131). Consequently,
the trading indicator that provides the best forecast accuracy
has weights θi = φi+1 for i ∈ [0, p − 1] and θi = 0 for i ≥ p.
This ‘best linear predictor’ has the least mean squared error
between the forecast value and the future return. It is easy to
deduce that the ‘best linear predictor’ also has the highest cor-
relation with the future value of the AR(p) process. However,
since our goal is to maximize the correlation coefficient and
it is scale invariant, we can rescale the weights of the ‘best
linear predictor’ without changing the correlation.

Remark 11 The maximum possible correlation between the
trading indicator and the next period return is given by

max
θn

Cor(Xt+1, It(n)) =
√

φ′
pρp. (16)

This result can be easily obtained by inserting c × φp instead
of θn into equation (14) and using the result stated by
equation (13).

For example, if the returns follow the AR(1) process
with φ1 > 0, the trading rule that maximizes the correlation
between the trading indicator and future returns is given by
It(1) = (c × φ1)Xt. A convenient choice in this case is to use
c = 1/φ1. This choice results in It(1) = MOMt(1). That is, if
the returns follow the AR(1) process, the best trading indica-
tor is given by MOMt(1).† With this choice, the correlation
between the trading indicator and future returns amounts to
Cor(Xt+1, MOMt(1)) = φ1. As another example, suppose that
the returns follow the AR(2) process with φ2 = φ1. It can
be easily deduced that in this case, the best trading indica-
tor is given by MOMt(2). Since according to Proposition 7
the similarity between the trading indicator and future returns
increases when the persistence increases, in our example,
Cor(Xt+1, MOMt(2)) > φ1.

Remark 12 Note that the trading indicator is optimal if its
weights θi represent rescaled versions of the autoregressive
coefficients φi of the AR(p) process. Consequently, the MOM
rule is optimal when all autoregressive coefficients are equal.
The SMA (EMA) rule is optimal when the autoregressive
coefficients are linearly (exponentially) decreasing.

However, what if none of the available trading rules is opti-
mal given some particular AR(p) process for returns? In this

† Note that both SMAt(1) and LMAt(1) are equivalent to MOMt(1),
whereas the EMAt(1) indicator is not defined.

case, one can find the size of the averaging window n∗ in
a trading indicator that maximizes the correlation with the
future return. That is, one can solve the following problem:

Cor(Xt+1, It(n
∗)) = max

n
Cor(Xt+1, It(n)). (17)

It is very difficult, if ever possible, to analytically find the
size of the averaging window n∗ in a trading rule that maxi-
mizes the correlation. However, it is trivial to find n∗ by using
numerical methods. By performing this task for every trading
rule, one can select the rule that has the highest correlation
with the future return.

6.2. Numerical illustrations

The goal of this subsection is to illustrate the similarity
between the trading indicator and the next period return. First,
we assume that Xt follows the AR(1) process with φ1 = 0.5.
Figure 6 plots the correlation Cor(Xt+1, It(n)) for different
trading rules; the size of the averaging window n is varied
from 1 to 10. Note that the optimal trading indicator in this
case is It(1) = Xt, which provides the highest possible cor-
relation, which amounts to φ1, with the future return. This
trading indicator can be realized by any trading rule except the
EMA rule because the trading indicator in the EMA rule is not
defined for n = 1 (in this case, λ = 0). The main conclusion
that can be drawn from figure 6 is that as n increases, the cor-
relation Cor(Xt+1, It(n)) decreases for all rules. However, the
correlation between Cor(Xt+1, It(n)) decreases substantially
faster for the MOM rule than for any MA rule. This result is
not surprising given that all MA rules overweight the most
recent returns. The LMA rule provides the correlation that
is the most robust to the change in the size of the averaging
window.

Second, we assume that Xt follows the AR(5) pro-
cess. We consider two cases. In the first case, the coef-
ficients of the autoregressive process are all alike φ′

5 =
[0.15, 0.15, 0.15, 0.15, 0.15]. In the second case, the coeffi-
cients decrease linearly φ′

5 = [0.25, 0.20, 0.15, 0.10, 0.05]. We
know that in the first case, the best trading rule is MOM(5),
whereas in the second case, the best trading rule is SMA(5).
These rules provide the highest correlation between the trad-
ing indicator and the next period return in each case. However,
what about the correlation coefficient for the other rules and
other sizes of the averaging window?

Figure 7, Panel A, plots the correlation Cor(Xt+1, It(n))
against n when returns follow the AR(5) process where all
autoregressive coefficients are alike; the table in Panel C
reports the maximum possible correlation Cor(Xt+1, It(n∗))
for each rule. Our first observation is that for all rules, as n
increases, the correlation first increases, attains its maximum,
and then decreases. Our second observation is that when n ≤
5, the MOM rule provides the correlation Cor(Xt+1, It(n)),
which is larger than that for any MA rule. However, as the
size of the averaging window increases beyond 5, the corre-
lation between MOMt(n) and Xt+1 decreases rather quickly;
for n> 6, the correlation between any MA rule and the future
return is higher than that between the MOM rule and the
future return. Even though the correlation between any rule
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Figure 6. The correlation Cor(Xt+1, It(n)) when Xt follows the AR(1) process with φ1 = 0.5.

Figure 7. Correlation between It(n) and Xt+1 when returns follow the AR(5) process. The graph in Panel A plots Cor(Xt+1, It(n)),
whereas the table in Panel C reports Cor(Xt+1, It(n∗)) when all autocorrelation coefficients are alike. Specifically, when
φ′

5 = [0.15, 0.15, 0.15, 0.15, 0.15]. The graph in Panel B plots Cor(Xt+1, It(n)), whereas the table in Panel C reports Cor(Xt+1, It(n∗)) when
the autocorrelation coefficients are linearly decreasing, in particular, when φ′

5 = [0.25, 0.20, 0.15, 0.10, 0.05].

and the future return eventually decreases as the size of the
averaging window increases, the MA rules provide substan-
tially higher correlation than that provided by the MOM
rule.

Our third observation is related to the correlation
Cor(Xt+1, It(n∗)) reported in the table in Panel C. Even though

an MA rule is not optimal when all autoregressive coeffi-
cients are alike, one can always find the n∗ that provides the
correlation (between the trading indicator and future return)
that is only marginally less than the correlation provided by
the MOM(5) rule. For example, the correlation between the
MOM(5) and the future return amounts to 0.530. Instead of
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the MOM(5) rule, one can use the SMA(7) rule that provides a
correlation of 0.523, which is only approximately 1% smaller
than the maximum possible correlation. The LMA(10) rule
and the EMA(7) are also almost as good as the MOM(5) rule.

Figure 7, Panel B, plots the correlation Cor(Xt+1, It(n))
when returns follow the AR(5) process where the autoregres-
sive coefficients are linearly decreasing; the table in Panel
D reports Cor(Xt+1, It(n∗)). The results for the first and sec-
ond cases share numerous similarities but differ in choice
of the best trading indicator. As in the first case, for all
rules, as n increases, the correlation first increases, attains
its maximum, and then decreases. In the same manner as
in the first case, after attaining its maximum, the correla-
tion decreases faster for the MOM rule. Again, the maximum
possible correlations between a trading indicator and future
return differ only marginally among the various rules. Specif-
ically, the maximum possible correlation is provided by the
SMA(5) rule and equals 0.577. Replacing the SMA(5) rule
with the MOM(4) rule reduces the correlation to only 0.569;
the reduction amounts to approximately 1%.

The main conclusions that can be drawn from figure 7 are
as follows. In any trading indicator It(n), one can find the size
of the averaging window n∗ that maximizes the correlation
between the indicator and future returns. Our numerical illus-
trations suggest that this correlation is only marginally smaller
than the highest possible correlation. The trading rules differ
mainly in the robustness of the correlation to the change in
the size of the averaging window. As the size of the aver-
aging window n in a trading rule diverges from n∗ in any
direction, the correlation decreases. The decrease is gener-
ally larger for the MOM rule than for any MA rule. When the
size of the averaging window n is substantially smaller than
the order p of the AR(p) process for returns, n � p, the trad-
ing indicator of the MOM rule might have a small advantage
over the MA rules in terms of a higher correlation with the
future return. However, the trading indicators of all MA rules
provide a significantly higher similarity (compared to that of
the MOM rule) with the future return when n  p. The latter
result appears naturally as a consequence of overweighting the
most recent returns in the computations of trading indicators
of the MA rules.

7. Trend following under uncertain market dynamics

When the parameters of the AR(p) process for returns are
known, the trader can always find the optimal size of the
averaging window n∗ in any trend-following rule that maxi-
mizes the correlation between the trading indicator and future
returns. The results reported in the previous section sug-
gest that all trend-following rules are nearly equally good
and provide correlation (between the trading indicator and
future returns) that is close to the maximum possible cor-
relation. Given this fact, the empirical performance of all
trend-following rules should be nearly identical. However,
many empirical studies find that the SMA rule performs
better than the MOM rule (see, among others, Neely et
al. 2014, Zakamulin 2014, He and Li 2015, Marshall et
al. 2017). The goal of this section is to suggest and develop a

well-motivated hypothesis about uncertain market dynamics.
We show that our hypothesis, coupled with our analyti-
cal results on the similarity between two trading indicators
and the similarity between a trading indicator and future
returns, has far-reaching practical implications and is able
to explain a number of empirical observations. Among other
things, our hypothesis explains why the performance of the
MA rule is better, on average, than the performance of the
MOM rule.

7.1. Motivation

Stock return predictability is a very intriguing but very con-
troversial topic in the finance literature. The typical linear
predictive regression that is used by researchers to predict the
next period return is given by

Xt+1 = β0 + β1Zt + εt, (18)

where β0 and β1 are regression coefficients, Zt is a
predictor variable observed at time t, and εt is a dis-
turbance term. The standard predictor variables that are
used in linear regression (18) are the past stock return,
the stock dividend yield, the earnings yield, the default
spread,† the term premium,‡ the T-bill rate, and the
inflation rate (see, among others, Fama 1981, Keim
and Stambaugh 1986, Campbell 1987, Campbell and
Shiller 1988, Fama and French 1989, Fama 1990, Jegadeesh
1991).

The evidence of return predictability was established using
in-sample tests. However, as convincingly demonstrated by
Welch and Goyal (2008), the evidence of out-of-sample pre-
dictability is very weak and almost nonexistent. The problem
seems to lie in the instability of the regression coefficients
in equation (18). In particular, the assumption of constant
regression coefficients in linear return regression (18) has
been challenged in numerous studies such as Paye and
Timmermann (2006), Rapach and Wohar (2006), Chen and
Hong (2012), Dangl and Halling (2012), and Johannes et
al. (2014). All these studies find strong statistical evidence
that this assumption is empirically rejected for US stock
returns using standard predictor variables.

Motivated by the evidence of time-variation in the regres-
sion coefficients of predictive equation (18), we conjecture
that the empirical returns follow the AR(p) process where both
the order of the process p and the autoregressive coefficients
φi vary over time. Consequently, since in the optimal trading
indicator, the size of the averaging window equals the order of
the autoregressive process, n = p, and the past return weights
equal the rescaled autoregressive coefficients, θi = c × φi+1,
under our conjecture, the parameters of the optimal trading
indicator also vary over time.

Our conjecture is able to explain the major controversy
among traders regarding the optimal size of the averaging
window in a trading rule. For instance, for the most popu-
lar SMA rule, the recommended size varies from 10 to 200

† The default spread is the difference between the yields on BAA-
and AAA-rated corporate bonds
‡ The term premium is the difference between the yields on long-
term bonds and the short-term rate.
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days (see Brock et al. 1992, Sullivan et al. 1999, Okunev and
White 2003, Kirkpatrick and Dahlquist 2010). Apparently,
there are substantial variations in the recommended size of
the averaging window in a trading rule. The natural question
to ask is what is the reason for this controversy? Our expla-
nation is as follows. Typically, traders conduct backtests of a
trading rule to find the optimal size of the averaging window.
In such a backtest, traders use historical returns in the recent
past; often, a historical sample of past returns covers a period
from 5 to 10 years. If our conjecture is true and the backtests
are conducted at different times, then traders obtain different
estimates for the optimal size of the averaging window since
the order of the autoregressive process for returns varies over
time.

Our conjecture can be supported by the following simple
empirical study. The goal of this study is to find the optimal
size of the averaging window n∗ in the MOM and SMA rules
over a rolling period of N months and demonstrate that n∗

varies over time. The optimal size of the averaging window
in each rule is found using the backtesting methodology. The
methodology is illustrated by means of using the MOM (n)
rule. Specifically, given the size of the averaging window n
in the MOM (n) rule, we simulate the excess returns† to the
long-only trend-following strategy over a given historical sub-
sample (rn

t , rn
t+1, . . . , rn

t+N ) that starts at time t. The optimal
size of the averaging window n∗

t is found by maximizing the
risk-adjusted performance of the MOM (n) strategy. Formally,

n∗
t = arg max

n∈[nmin,nmax]
SR(rn

t , rn
t+1, . . . , rn

t+N ),

where [t, t + N] is the selected historical subsample, nmin and
nmax are the minimum and maximum values of n, respectively,
and SR(·) denotes the Sharpe ratio.

We set the value of nmin = 1; this is the minimum pos-
sible size of the averaging window in both rules. To select
the appropriate value for nmax, we studied the most popular
recommendations of technical traders for the choice of the
size of the averaging window. In practice, the recommended
value for n virtually never exceeds 12 months. To be con-
servative, in our study, we set nmax = 24. We also need to
select a suitable period length N that should include at least
one full market cycle.‡ Our choice is N = 120 months (10
years), which is motivated by the results reported by Pagan
and Sossounov (2003), Lunde and Timmermann (2004), and
Gonzalez et al. (2005). In particular, these authors studied the
durations of bull and bear markets using virtually the same
dataset as ours. Their results suggest that the mean duration
of a bear (bull) market is approximately 15 (27) months, and
the maximum duration is 44 (74) months. Therefore, there is
guarantee that a historical period of 120 months includes at
least one full market cycle.

Figure 8 plots the optimal window size n∗
t in the MOM (n)

and SMA(n) rules over a rolling period of 10 years against

† That is, the returns in excess of the risk-free rate of return. Note
further that in our empirical study, the trading indicator is com-
puted using capital gain returns. This is because traders traditionally
compute the trading indicator using prices not adjusted for dividends.
‡ To conduct a backtest, we need both bull and bear markets in a
selected historical period in order a trend-following rule generates
both buy and sell signals.

the start of the rolling period. The first reported value for the
optimal window size is for the 10-year period from January
1860 to December 1869, the second value is for the 10-year
period from February 1860 to January 1870, and so forth. Our
results clearly demonstrate that in any rule, there is no single
optimal size of the averaging window. In contrast, the results
indicate that there are substantial time-variations in the size of
the optimal averaging window. Specifically, we find that for
the MOM (n) rule, the optimal window size varies from 1 to
24 months with a mean (median) value of 7.9 (6) months. For
the SMA(n) rule, the optimal size varies from 1 to 23 months
with a mean (median) value of 9.8 (10) months.§ Finally, it
is worth noting that qualitatively similar results can also be
obtained for the LMA and EMA rules.

7.2. Measuring the empirical trend strength

Are there trends in the S&P Composite index? If there are,
what is the strength of these trends? We remind the reader that
our measure of trend strength is α, which is the sum of the
autoregressive coefficients of the AR(p) process for returns.
The most straightforward approach to measuring the empiri-
cal strength of trends is based on estimating the autoregressive
coefficients using the following OLS regression model and
finding the sum of the autoregressive coefficients:

Xt = a +
p∑

i=1

φiXt−i + εt.

Table 2 reports the results of the estimation of the empirical
trend strength of the S&P Composite index using the sum of
the autoregressive coefficients. Specifically, using the data for
the total sample and the first and second halves of the sam-
ple, the table reports the estimated autoregressive coefficients
and the sum of the coefficients. The number of lags p = 12
is chosen to capture the short-term momentum in the S&P
Composite index. In sum, the empirical results suggest the
presence of relatively weak stock market trends (α = 0.26) in
the first half of the sample and the absence of stock market
trends (α = 0.08) in the second half of the sample over the
period from 1938 to 2017. This result is very surprising given
that numerous empirical studies report that trend-following
rules have also been profitable in the post-1938 period.

Why do trend-following strategies deliver superior perfor-
mance in the absence of trends? In this section, we show that
this puzzle can be resolved if the market returns follow the
AR(p) process, where both the order of the process p and
the autoregressive coefficients φi vary over time. In this case,
when the parameters of the AR(p) process for returns change
irregularly over time, the OLS regression model is not able to
estimate trend strength.

How can we demonstrate the presence of trends and esti-
mate trend strength with unstable parameters of the AR(p)
process for returns? Our theoretical results on the similar-
ity between two trend-following indicators suggest a novel

§ These results advocate that the most popular SMA(10) rule is not
the rule that is optimal at any given time. Rather, it is the rule that is
optimal on average, over all possible realizations of the stock market
dynamics.
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Figure 8. The optimal size of the averaging window in the MOM (n) and SMA(n) rules over a rolling period of 10 years. The first reported
value for the optimal window size is for the 10-year period from January 1860 to December 1869, the second value is for the 10-year period
from February 1860 to January 1870, and so forth.

Table 2. Estimation of trend strength using the sum of the autoregressive coefficients.

1858–2017 1858–1937 1938–2017

Parameter Estimate P-value Estimate P-value Estimate P-value

φ1 0.078 0.086 0.143 0.018 0.003 0.952
φ2 − 0.003 0.938 − 0.017 0.764 − 0.008 0.799
φ3 − 0.075 0.084 − 0.129 0.020 0.029 0.403
φ4 0.032 0.291 0.050 0.241 0.032 0.378
φ5 0.084 0.001 0.095 0.006 0.075 0.022
φ6 − 0.063 0.089 − 0.086 0.113 − 0.069 0.086
φ7 0.027 0.390 0.068 0.141 − 0.001 0.973
φ8 0.056 0.116 0.115 0.008 − 0.031 0.387
φ9 0.016 0.706 0.019 0.710 − 0.017 0.673
φ10 0.015 0.628 0.057 0.164 − 0.014 0.698
φ11 0.009 0.787 − 0.012 0.809 0.034 0.350
φ12 − 0.017 0.556 − 0.044 0.279 0.044 0.151
α 0.159 0.261 0.077

Notes: φi denotes the lag i autocorrelation coefficient. α denotes trend strength. The standard errors are computed using the Newey-West
heteroskedasticity and autocorrelation-consistent estimator with 12 lags. Bold text highlights the values that are statistically significant at the
5% level.

methodology to address these two issues. The idea is based
on measuring the correlation coefficient between two trading
indicators. If the returns follow a random walk, the corre-
lation coefficient is given by equation (11). Proposition 5
establishes that the correlation coefficient between trading
indicators increases when trend strength, α, increases. The
parameters of the AR(p) process may change over time, but
provided that α > 0, the correlation between the trading indi-
cators must be higher than the correlation under the random
walk. Consequently, the novel methodology to confirm the
presence of trends is based on estimating the correlation
coefficient Cor(It(n), It(m)) and testing whether it is statisti-
cally significantly higher than the correlation coefficient under
the random walk. The novel methodology to estimate trend
strength is based on calculating the implied trend strength
using the estimated correlation coefficient Cor(It(n), It(m)).

From the numerical illustrations presented in Section 5, we
know that when m diverges from n in any direction, the cor-
relation between two MOM rules, Cor(MOM (n), MOM (m)),
decreases much faster than the correlation between two MA
rules. Therefore, to demonstrate the presence of trends and

estimate the empirical trend strength, it is advantageous to use
trading indicators of MOM rules.

The formal description of the novel methodology to demon-
strate the presence of trends is as follows. First, we esti-
mate the empirical correlation coefficient between two MOM
rules CorEMP(MOM (n), MOM (m)). Then, we test whether
the empirical correlation coefficient is statistically signifi-
cantly higher than the correlation coefficient under the ran-
dom walk CorRW (MOM (n), MOM (m)). For this purpose, we
formulate and conduct a test of the following null hypothesis:

H0 : CorEMP(MOM (n), MOM (m))

≤ CorRW (MOM (n), MOM (m)).

It is worth noting that under the null hypothesis, the returns
follow a random walk, and the empirically estimated correla-
tion coefficient is not greater than the true correlation under
the random walk. Since under the null condition, there is no
dependence in the return series, to conduct the test of the
null hypothesis, we employ the randomization method. The
randomization method was introduced by Fisher (1935) and
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Table 3. Detection of the presence of trends and estimation of trend strength using the empirical correlation between the trading indicators
of the MOM (n) and MOM (m) rules.

1858–2017 1858–1937 1938–2017

Parameter Estimate P-value Estimate P-value Estimate P-value

Panel A: Results for n = 9 and m = 4.
CorRW 0.667 0.667 0.667
CorEMP 0.717 0.003 0.726 0.003 0.725 0.016
Implied α 0.438 0.480 0.477

Panel B: Results for n = 10 and m = 4.
CorRW 0.632 0.632 0.632
CorEMP 0.680 0.003 0.676 0.010 0.679 0.036
Implied α 0.458 0.436 0.449

Panel C: Results for n = 10 and m = 5.
CorRW 0.707 0.707 0.707
CorEMP 0.767 0.000 0.771 0.001 0.765 0.017
Implied α 0.511 0.529 0.514

Notes: CorRW denotes the theoretical correlation between the trading indicators under the random walk. CorEMP denotes the empirical
estimate of the correlation between the trading indicators. Implied α denotes the implied trend strength. Bold text highlights the values that
are statistically significant at the 5% level.

provides a very general and robust approach for computing
the probability of obtaining some specific value for an esti-
mator under the null hypothesis of no dependence. We refer
interested readers to Noreen (1989) and Manly (1997) for
extensive discussions of the randomization tests. In summary,
randomization consists of reshuffling the data to destroy any
dependence and then recalculating the test statistics for each
reshuffling to estimate its distribution under the null hypothe-
sis of no dependence. The great advantage of the randomiza-
tion method is that it is very simple, and no assumptions are
made about the actual distribution of stock returns.

To be more specific, the estimation of the p-value of the test
is conducted as follows. To learn the sampling distribution
for CorRW (MOM (n), MOM (m)), we randomize the original
return series. This is repeated 1,000 times, each time obtaining
a new estimate for CorRW (MOM (n), MOM (m))∗.† Finally, to
estimate the significance level, we count how many times the
estimated value for CorRW (MOM (n), MOM (m))∗ after ran-
domization falls above the value of the actual estimate for
CorEMP(MOM (n), MOM (m)). In other words, under the null
hypothesis, we compute the probability of obtaining a more
extreme value for the correlation coefficient than the actual
estimate.

Once we establish the presence of trends, we can com-
pute the implied trend strength. The notion of ‘implied trend
strength’ is motivated by the notion of implied volatility in
option prices. In our context, the implied trend strength is the
sum of the autoregressive coefficients, which, when input in
formula (8) for the correlation coefficient between the trading
indicators, will return the empirically estimated value of the
correlation coefficient. Specifically, when the returns follow
a specific AR(p) process, the correlation coefficient between
two trading indicators is given by equation (8). The idea is
to note that the correlation coefficient is the function of the
return weights and the autoregressive coefficients

Cor(It(n), It(m)) = f (θ I,n, θ I,m,φ1, . . . ,φp). (19)

† The asterisk is used to indicate that each of these estimates is
calculated on a randomized sample.

For simplicity, we assume that φi = 0 for i> 1. In this sim-
plified case, the implied trend strength α = φ1. It is generally
not possible to invert formula (19) such that the implied α
is expressed as a function of Cor(It(n), It(m)), θ I,n, and θ I,m.
However, the implied trend strength can easily be computed
using, for example, an iterative search procedure.

Table 3 reports the estimated correlations CorEMP(MOM
(n), MOM (m)) and the results of testing the null hypothesis
for various choices of n and m using the full sample of data
and the data for the first and second halves of the sample. All
correlations are estimated using the robust correlation estima-
tion method suggested by Rousseeuw and Driessen (1999).
In sum, the results reported in this table argue that, regard-
less of the choice of the sample period and the values
of n and m, the empirical correlation between the trading
indicators CorEMP(MOM (n), MOM (m)) is statistically signif-
icantly higher than the correlation under the random walk
CorRW (MOM (n), MOM (m)).

The results in table 3 on estimates of the implied trend
strength based on using the estimated correlation between
two trading indicators differ remarkably from the results in
table 2 on the estimates of trend strength based on using the
sum of the estimated autocorrelation coefficients. In particu-
lar, the results in table 2 suggest the presence of weak trends
in the first half of the sample and the absence of trends in the
second half of the sample. In contrast, the results in table 3
reveal the presence of substantial market trends of approxi-
mately the same strength in both halves of the sample. These
trends are equivalent to the case in which the market returns
follow an AR(1) process with an autoregressive coefficient
of approximately 0.45-0.50. Therefore, given this result, it
is not surprising that the trend-following strategies delivered
superior performance in both halves of the sample.

In closing this section, we would like to note that the
value of the implied alpha depends not only on the differ-
ence between CorEMP and CorRW but also on the order of the
autoregressive process AR(p). Generally, the larger the value
of p is, the smaller the value of the implied alpha. Therefore,
the values of the implied alphas reported in table 3 must be
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treated with caution. However, regardless of the choice of the
autoregressive order p, the estimated implied alphas for the
first and second halves of the sample are of approximately the
same value. Therefore, strictly speaking, our empirical study
demonstrates the presence of trends in the S&P Composite
index and establishes that the empirical trend strength was
about the same in both halves of the sample. However, there is
some ambiguity regarding the exact measurement of the trend
strength.

7.3. Predicting the future return under uncertain order of
AR process

This section presents a feasible model where the MA rules
are better, on average, than the MOM rule. As before, in our
model, the returns follow an AR(p) process. However, we
assume in addition that the number of autoregressive terms
p in the AR(p) process is a random variable. Specifically,
the number of autoregressive terms p changes randomly over
time, and the trader has no ability to learn the current value
of p.† We further suppose that for any p, the values of all φi

coefficients in the AR(p) model are alike. That is, φi = φ for
all i ∈ [1, p].

It is worth noting that if the trader knows the value of p,
the optimal trading rule is MOM (p). This is because in our
model, the trading indicator of the MOM (p) rule provides the
highest possible correlation with the future return. The situa-
tion changes when the return process has an uncertain order
of autoregression. That is, when the number of autoregressive
terms in the AR(p) process changes randomly.

To make our model tractable, we assume that p is uni-
formly distributed on [1, 20]. The choices of the minimum
and maximum values for p are motivated by the empir-
ical study presented in Section 7.1. The value of φ in
our model is chosen such that for all p ∈ [1, 20], the cor-
relation Cor(Xt+1, MOMt(p)) is constant‡ and equals 0.2.§
Note that given some p, the correlation between the trad-
ing indicator of the MOM (p) rule and future returns is the
highest possible correlation between the trading indicator
of a trend-following rule and the future return when φi =
φ for all i ∈ [1, p]. Formally, Cor(Xt+1, It(n)) ≤ Cor(Xt+1,
MOMt(p)) = 0.2.

We further assume that the trader knows the probability
distribution of p and chooses the size of the averaging win-
dow n that maximizes the average correlation over all p. This
assumption is quite realistic in situations where the trader uses
a very long-term historical sample to backtest a trading rule.
Specifically, if the probability distribution of p is stationary

† When the number of autoregressive terms is deterministic, the
number p can be estimated using past data on returns. In our model,
since p changes randomly, past data cannot reveal the current number
of autoregressive terms in the model for returns.
‡ Our method of choosing the value of φ = φ(p) guarantees that for
all p, the AR(p) process satisfies the stationarity conditions.
§ This choice is partially motivated by our econometric study on
the empirical trend strength presented in Section 7.2. Specifically,
if α = φ1 = 0.5, then the correlation between the future return and
the trading indicator of the MOM (10) rule approximately equals
0.2. The selected value of n = 10 lies in the middle of the range
of possible values of p.

Table 4. The maximum average correlation Cor(Xt+1(p), It(n)),
as well as the optimal size of the averaging window n∗ that
maximizes the average correlation, when Xt+1 follows the AR(p)

process where p is uniformly distributed on [1, 20].

Trading rule MOM SMA LMA EMA

Maximum average
correlation

0.166 0.175 0.176 0.176

n that maximizes the
average correlation

10 15 21 15

over time and the historical sample is very long, then the out-
come of such a backtest is the averaging window size, which
is optimal on average, over all possible realizations of p. If
the investor uses the trading indicator with window size n, the
average correlation of this indicator with the future return is
given by

Cor(Xt+1(p), It(n))

= 1

pmax − pmin + 1

pmax∑
p=pmin

Cor(Xt+1(p), It(n)),

where the notation Xt+1(p) emphasizes that Xt+1 follows a
particular AR(p) process and Cor(·) denotes the average cor-
relation between Xt+1(p) and It(n). In our model, the trader
solves the following problem:

n∗ = arg max
n

Cor(Xt+1(p), It(n)),

where n∗ denotes the optimal size of the averaging window
that maximizes the average correlation.

For the MOM and all MA rules, figure 9 plots the average
correlation Cor(Xt+1(p), It(n)) against the window size n. For
each rule, table 4 reports the maximum average correlation
between the trading indicator and future return, as well as the
optimal size of the averaging window n∗ at which the corre-
lation attains its maximum. The results reported in figure 9
and table 4 clearly demonstrate that the MOM rule is inferior
to any MA rule under uncertain market dynamics when the
returns follow the AR(p) process where the number of autore-
gressive terms changes randomly. The trader is better off by
using an MA rule instead of the MOM rule.

Specifically, if the trader chooses the MOM rule, the trading
indicator that maximizes the average correlation is MOM(10).
In this case, the average correlation between the trading indi-
cator of the MOM (10) rule and future returns amounts to
0.166. However, replacing the MOM(10) rule with either the
LMA(21) or EMA(15) rule increases the average correlation
to 0.176. In addition, figure 9 also indicates that the trad-
ing indicator of the EMA rule virtually always provides a
higher average correlation with the next period return than
that of the MOM rule. Generally, in our model, the trad-
ing indicator of all MA rules provides a higher maximum
average correlation with the future return than that of the
MOM rule. For a small value of n, the average correlation
of the MOM rule is higher than that of the SMA and LMA
rules. The situation changes dramatically when n becomes
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Figure 9. The average correlation Cor(Xt+1(p), It(n)) when Xt+1 follows the AR(p) process where p is uniformly distributed on [1, 20].

large. Specifically, in this case, the average correlation of the
SMA and LMA rules is substantially higher than that of the
MOM rule.

Why does the trading indicator of an MA rule provide a
higher average correlation with the future return and thus pre-
dict the future return better than the trading indicator of the
MOM rule under uncertain market dynamics? At first glance,
this result is surprising given the fact that the AR(p) pro-
cess (where φi = φ) seems to favor using the MOM rule. The
explanation for this result is based on the properties of the cor-
relation Cor(Xt+1, It(n)) established in Section 6. Specifically,
the numerical illustrations presented in Section 6 persuasively
demonstrate that, compared to the MOM rule, the correlation
between the trading indicator of an MA rule and future returns
is more robust to the change in the size of the averaging
window n.

In concluding this section, we must mention the fol-
lowing. First, the advantage of an MA rule over the
MOM rule under uncertain market dynamics increases if
we assume that the values of the autoregressive terms in
the AR(p) process linearly decrease. Second, the numeri-
cal results on the average correlations, reported in figure 9
and table 4, are obtained under the specific choices for
the correlation Cor(Xt+1, MOMt(p)) and the range values
for p. The average correlations between the trading indi-
cator and the future return change when we change the
correlation Cor(Xt+1, MOMt(p)) and the range values for p.
However, regardless of the value of the correlation coeffi-
cient† Cor(Xt+1, MOMt(p)) in situations where the difference
between pmin and pmax is noticeable, the main message of this
section remains intact: the MOM rule is inferior to any MA
rule under uncertain market dynamics.

† We only need to require Cor(Xt+1, MOMt(p)) > 0.

7.4. Empirical study of robustness of trading rules

The contemporary approach to selecting the best trading rule
is based on the backtesting methodology. In the context of
our study, backtesting consists of using a sample of historical
data, simulating the returns to various MOM (n) and MA(n)
rules, and selecting the rule with the best observed perfor-
mance in the past. Specifically, by varying the window size n,
the trader simulates the returns to a set of distinct MOM and
MA trading rules and evaluates the historical performance of
each rule. Finally, the best performing trading rule is selected.
It is worth emphasizing that the best performing rule is spec-
ified not only by the weighting function for returns but also
by the specific size n of the averaging window. This spe-
cific window size is usually regarded as the optimal window
size. The standard assumption is that the best trading rule in a
backtest will continue to deliver superior performance in the
future.

The results of our empirical study conducted in Section 7.1
suggest that, regardless of the choice of a trading rule, there is
no window size that is optimal at any given time. In contrast,
there are substantial time-variations in the optimal size of the
averaging window for each trading rule. The recognition of
this fact raises several issues that can potentially undermine
the results of a backtest. First, if the historical sample covers
a long-term period, then the optimal window size found in a
backtest must be interpreted as the window size that is optimal
on average. If the historical sample covers a short-term period,
then the found optimal window size is specific to this con-
crete historical period and not to any other period. Second, the
optimal window size is subject to estimation errors. Third, we
can question on general grounds the implicit assumption in a
backtest that the window size that was optimal in the past will
also be optimal in the future. Overall, all these issues suggest
that there is absolutely no guarantee that the best trading rule



1002 V. Zakamulin and J. Giner

in a backtest will continue to deliver superior performance in
the near future.

The methodology of the empirical study in this section
is based on the premise that the trader explicitly acknowl-
edges the fact that the optimal window size in any trading
rule changes randomly over time. Therefore, a backtest might
be a poor guide to selecting the window size in a trading rule.
Alternatively, the averaging window size in a trading rule can
be chosen arbitrarily. In our study, the goal of the trader is
to select the trading rule that exhibits the most robust perfor-
mance with respect to the choice of the averaging window
size.

Effectively, the methodology of our empirical study in this
section resembles the stress testing methodology, where the
goal is to determine the stability and robustness of a given
system or entity. In addition, the goal of our study is to empir-
ically confirm the validity of our theoretical predictions on
the robustness of trading rules to changes in the averaging
window size. Our study complements the results reported in
numerous published papers that conduct back and forward
tests† of various trend-following rules and provides additional
valuable information on the performance robustness of these
rules.

We now turn to the formal presentation of the methodol-
ogy of our study. In accordance with our premise, the trader
accepts the fact that the optimal window size for the near
future is unknown, so the trader randomly chooses the aver-
aging window size. Specifically, in every trading rule, the
window size n is chosen in the range [nmin, nmax], where each
value has equal probability. The goal of the trader is to find
the trading rule that delivers the highest average performance
over all randomly chosen window sizes. For this purpose,
using a long-term historical sample of data, the trader sim-
ulates the returns to trading rule i with various window sizes,
evaluates the performance of each combination, and computes
the average Sharpe ratio:

SRi = 1

nmax − nmin + 1

nmax∑
n=nmin

SRi(n),

where SRi(n) denotes the Sharpe ratio of trading rule i with
window size n.

To conduct statistical inference, we test the null hypothesis
that two trading rules have equal average Sharpe ratios:

H0 : SRi = SRj,

where SRi and SRj are the average Sharpe ratios of trad-
ing rules i and j, respectively. To test the null hypothesis,
we conduct the Wilcoxon signed-rank test instead of the
paired Student’s t-test because the sample size for the Sharpe
ratio is small and the population cannot be assumed to be
normally distributed. The Wilcoxon signed-rank test is a non-
parametric test that is used to compare the locations of two
populations. The method employed is a sum of ranks compar-
ison. Therefore, the Wilcoxon test is robust to outliers in the
populations.

† Back (forward) tests are also known as in-sample (out-of-sample)
tests.

Table 5. Average Sharpe ratios of the MOM and MA trading
rules and the p-values of the test of equality of the average

Sharpe ratios of two different rules.

Trading rule

MOM SMA LMA EMA

Panel A: 1858–2017
Average Sharpe ratio 0.438 0.487 0.485 0.459
P-value MOM 0.021 0.021 0.256

SMA 0.637 0.025
LMA 0.013

Panel B: 1858–1937
Average Sharpe ratio 0.397 0.466 0.460 0.425
P-value MOM 0.013 0.036 0.499

SMA 0.410 0.029
LMA 0.027

Panel B: 1938–2017
Average Sharpe ratio 0.510 0.554 0.560 0.527
P-value MOM 0.036 0.025 0.197

SMA 0.904 0.068
LMA 0.001

Notes: P-values in bold text indicate a significant difference at
the 5% level.

For the sake of comparability with the results of previously
published studies, in this study, n denotes the number of price
(not return) observations. We assume that nmin = 2, which is
the lowest possible value for n, whereas nmax = 24. The lat-
ter choice is motivated by the empirical study presented in
Section 7.1 and our theoretical model in Section 7.3. Table 5
reports the average Sharpe ratios of the MOM and MA trading
rules as well as the p-values of the test of the equality of the
average Sharpe ratios of two different rules. To illustrate the
robustness of our findings, we report the results for the total
sample (1858–2017) as well as for the first (1858–1937) and
the second (1938–2017) halves of the sample.

Generally, the results reported in table 5 confirm the pre-
dictions made by our theoretical models. In particular, our
theoretical models predict that the forecast accuracy of the
MA rules is more robust to a change in the size of the aver-
aging window than that of the MOM rule. Therefore, under
uncertain market dynamics, the MA rules possess an advan-
tage over the MOM rule. There is, however, one notable
discrepancy between the empirical results and the predictions
made by our model considered in the preceding section. In
particular, whereas our theoretical model implies that there
should not be notable differences between the performances
of the MA rules, the results of our empirical study suggest
that the average performance of the EMA rule is statistically
significantly below those of the SMA and LMA rules, and we
cannot reject the hypothesis that it equals the average perfor-
mance of the MOM rule. In agreement with the predictions
of our theoretical models, the average performance of the
SMA and LMA rules is higher than that of the MOM rule,
and this advantage is highly statistically significant. In this
study, the economic advantage of the SMA and LMA rules
over the MOM rule can be roughly estimated as follows. The
standard deviation of the returns to a trend-following strat-
egy is fairly stable and amounts to approximately 11% in
annual terms (Zakamulin 2017). The average Sharpe ratio of
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Figure 10. The Sharpe ratios of the trading rules against the averaging window size over the total historical sample from 1858 to 2017.

the SMA and LMA rules is approximately 10% greater than
that of the MOM rule. Therefore, in our study, over the sec-
ond half of our sample, 1938–2017, the SMA and LMA rules
generated, on average, an annual return that is approximately
1% higher than that of the MOM rule.

Additional valuable insights about the performance robust-
ness of the trading rules to the choice of the window size are
provided in figure 10. This figure plots the Sharpe ratios of
the trading rules versus the averaging window size over the
total historical sample from 1858 to 2017. The curves in this
figure bear clear qualitative similarities (with some quanti-
tative differences) to the curves in figure 9 that come from
our simple theoretical model. The first similarity is that as the
window size n increases, the Sharpe ratio of a trading rule
first increases, attains a maximum, and then decreases. The
Sharpe ratio of the MOM rule attains a maximum at n = 11.
For the SMA, LMA, and EMA rules, the maximum is attained
at n = 12, n = 22, and n = 13, respectively. All these values
are close to the values predicted by our theoretical model in
the preceding section (see table 4). As mentioned above, the
main dissimilarity between the predictions of our theoretical
model and the empirical findings is the poor performance of
the EMA rule compared to those of the SMA and LMA rules.
Qualitatively, the relative empirical performance of the other
rules is completely in agreement with the predictions made by
our theoretical model. Specifically, when n is rather short, the
MOM rule outperforms both the SMA and LMA rules. When
n increases, the SMA rule outperforms the MOM and LMA
rules. A further increase in n makes the LMA (MOM) rule the
best (worst) performing rule.

In closing this section, it is worth emphasizing that the win-
dow size that is best for the MOM rule is not necessarily best
for an MA rule. Even though the performance of each rule is,
to a large extent, robust to the choice of the averaging win-
dow size, the MOM rule performs well when the window size

lies in the range n ∈ [5, 12]. The SMA is the best perform-
ing rule for n ∈ [9, 17]. The LMA rule delivers fairly stable
performance for n ∈ [12, 30].

8. Conclusions

Despite the ever-growing interest in trend following and a
series of publications in academic journals, there remains
a dearth of theoretical results on the properties of trend-
following rules. Our paper fills this gap by comparing and
contrasting the two most popular trend-following rules, MOM
and MA, from a theoretical perspective. Our theoretical
approach is based on the return-based formulation of trend-
following rules and the assumption that the returns follow an
autoregressive model.

We provide a number of theoretical results on the similarity
between two trend-following indicators and, using numerical
illustrations, demonstrate the similarity between various rules.
Our results show that the similarity between the rules is fairly
high even under a random walk. The similarity between the
rules increases with increasing trend strength. However, when
two trading indicators belong to the same rule, the similarity
between them decreases as the difference in the sizes of the
averaging window in each indicator increase. We find that the
similarity between two MA rules is more robust to change in
the sizes of the averaging window than the similarity between
two MOM rules.

We provide theoretical results on the forecasting properties
of trend-following rules and on the parameters of the optimal
trading indicator. We show that there must be a one-to-one
correspondence between the return weights in the optimal
trading indicator and the autoregressive coefficients in the
return process. Despite this fact, our results suggest that by
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correctly choosing the size of the averaging window, the fore-
cast accuracy of any trading indicator can be brought very
close to that provided by the optimal trading indicator. We
demonstrate that the forecast accuracies of trend-following
rules differ mainly in their robustness to the change in the
size of the averaging window and the order of the autoregres-
sive process for returns. We find that the trading indicators of
the MA rules deliver more robust forecast accuracy than the
trading indicator of the MOM rule.

Finally, in this paper, we suggest and develop a well-
motivated hypothesis that market returns follow an autore-
gressive process, the parameters of which change randomly
over time. We show that our hypothesis, coupled with our
analytical results on the similarity between two trading indica-
tors and the similarity between a trading indicator and future
returns, has far-reaching practical implications and is able to
explain a number of empirical observations. Among other
things, our hypothesis explains why traders disagree on the
optimal size of the averaging window in a trading rule and
the practical difficulties in establishing the presence of market
trends. Our theoretical results on the similarity between two
trading indicators call for a novel methodology to demonstrate
the presence of trends and estimate the strength of these trends
under uncertain market dynamics. Based on our hypothesis,
we construct a theoretical model that implies that on aver-
age, the trading indicators of the MA rules tend to forecast
the future return better than the trading indicator of the MOM
rule. The validity of our theoretical predictions on the relative
performance robustness of trading rules under uncertain mar-
ket dynamics is empirically confirmed by a novel empirical
study.

Overall, our paper presents an in-depth analysis of the
commonalities and differences between the MOM and MA
rules. We broaden the appeal and practical importance of
our theoretical results by offering a number of illustrations
and real-world examples. The results reported in this paper
can help traders better understand the properties of the most
popular trend-following rules.
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Appendices

Appendix 1. Proof of Proposition 1

Each AR(p) process can be represented as an infinite order Moving
Average process MA(∞)

Xt =
∞∑

i=0

ψiεt−i,

where {ψ0,ψ1,ψ2, . . .} are parameters or MA coefficients. Hence,
the autocorrelation coefficients of the AR(p) process can alternatively
be computed as

ρk =
∞∑

i=0

ψiψi+k . (A1)

That is, each ρk is an infinite sum of the products of two MA coef-
ficients. It is known (see, for example, Box et al. 2016, page 55)
that the MA coefficients of the AR(p) process satisfy the following
difference equation

ψj = φ1ψj−1 + φ2ψj−2 + · · ·φpψj−p j > 0 (A2)

with ψ0 = 1 and ψi = 0 for j< 0. From this difference equation, the
coefficients ψi can easily be computed recursively in terms of φi. In
particular,

ψ1 = φ1,

ψ2 = φ1ψ1 + φ2,

ψ3 = φ1ψ2 + φ2ψ1 + φ3,

(A3)

and so on. From the recursive computation it becomes apparent
that, when all coefficients {φ1,φ2, . . . ,φp} of the AR(p) process are
positive, then all ψi coefficients of the infinite MA process are pos-
itive and, consequently, all autocorrelation coefficients ρk are also
positive.

Appendix 2. Proof of Proposition 2

We remind the reader that increasing the numerical value of some
φi or increasing the order p increases the persistence of the AR(p)
process. First, consider what happens with the autocorrelation coef-
ficients ρk when we increase the value of some φi. The recursive
computation of the ψ coefficients, given by (A3), suggests that
increasing the value of φi increases the values of all ψj coefficients
for j ≥ i. Since the autocorrelation coefficients are computed accord-
ing to equation (A1), increasing the value of φi increases the values
of all ρk . Second, consider the case where we increase the order of
the AR process from p to p + 1. That is, in this case we add a new
autoregressive term φp+1 to the existing AR(p) process. This case
is equivalent to the first case where in the original AR(p + 1) pro-
cess the value of φp+1 increases from zero to some positive number.
Consequently, under the conditions of this proposition, increasing
the persistence of the AR(p) process increases the values of all
autocorrelation coefficients ρk .

Appendix 3. Proof of Proposition 3

By definition,

Cor(It(n), Jt(m)) = Cov(It(n), Jt(m))

σIσJ
, (A4)

where Cov(It(n), Jt(m)) is the covariance between indicators It(n)
and Jt(m) and σI and σJ are the standard deviations of It(n) and
Jt(m) respectively.

Since by assumption Xt is a zero mean process, the variance of
indicator It(n) is given by

σ 2
I = E[It(n)It(n)] = E[(θI,0Xt + θI,1Xt−1 + · · · + θI,n−1Xt−n+1)

2],

where E[·] is the expectation operator. Denote by σ 2
x the variance

of Xt−i. Taking into account that E[Xt−iXt−j] = Cov(Xt−iXt−j) =
ρ|i−j|σ 2

x , where ρ|i−j| denotes the correlation between Xt−i and Xt−j,
the variance of indicator It(n) is computed as

σ 2
I =

n−1∑
i=0

n−1∑
j=0

θI,iθI,jCov(Xt−iXt−j) =
n−1∑
i=0

n−1∑
j=0

θI,iθI,jρ|i−j|σ 2
x .

In matrix notation, the variance of indicator It(n) is given by

σ 2
I = θ ′

I,nPn,nθ I,nσ
2
x , (A5)
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where matrix Pn,n is given by (9). Similarly, the variance of indicator
Jt(m) is given by

σ 2
J = θ ′

J ,mPm,mθJ ,mσ
2
x . (A6)

By similar reasoning, the covariance between indicators It(n) and
Jt(m)

Cov(It(n), Jt(m)) = E[It(n) Jt(m)]

= E[(θI,0Xt + · · · + θI,n−1Xt−n+1)(θJ ,0Xt + · · ·
+ θJ ,m−1Xt−m+1)].

This covariance is computed as

Cov(It(n), Jt(m)) =
n−1∑
i=0

m−1∑
j=0

θI,iθJ ,jCov(Xt−iXt−j)

=
n−1∑
i=0

m−1∑
j=0

θI,iθJ ,jρ|i−j|σ 2
x . (A7)

The covariance can be expressed in matrix notation as

Cov(It(n), Jt(m)) = θ ′
I,nPn,mθJ ,mσ

2
x . (A8)

Inserting the expressions for Cov(It(n), Jt(m)), σI , and σJ into
equation (A4) completes the proof.

Appendix 4. Proof of Proposition 4

The formula for the correlation coefficient Cor(It(n), Jt(m)) is given
by equation (A4). Since the standard deviations are positive, the sign
of the correlation coefficient depends on the sign of the covariance
Cov(It(n), Jt(m)).

The expression for the computation of the covariance is given by
equation (A7). In particular, the covariance is a double sum of the
product of θI,i, θJ ,j, ρ|i−j| and σ 2

x . In all trend following rules con-
sidered in our paper, the return weights are strictly positive. That is,
θI,i > 0 and θJ ,j > 0 for all i and j. The variance σ 2

x is also positive.
The contemporaneous correlation ρ0 = 1. Remains to investigate the
sign of the autocorrelation coefficients ρk for k> 0.

According to Proposition 1, all autocorrelation coefficients ρk are
positive when all coefficients {φ1,φ2, . . . ,φp} of the AR(p) process
are positive. When some or all φi coefficients are zero, then all auto-
correlation coefficients ρk are non-negative. This result follows from
the recursive equation (A2) for the computation of the coefficients of
the infinite MA process that are used to compute the autocorrelation
coefficients via equation (A1). Therefore, we can conclude that the
correlation coefficient Cor(It(n), Jt(m)) > 0.

Appendix 5. Proof of Proposition 5

First of all, we equate the number of elements in vectors θ I,n and
θJ ,m. We choose k = max(n, m). If n<m, vector θ I,n is augmented
by m − n zero elements. Similarly, if n>m, vector θJ ,m is augmented
by n − m zero elements. This augmentation does not change the
value of the correlation but makes vectors θ I,k and θ I,k be of the
same length k × 1. Similarly, all matrices P become k × k square
matrices. As a result, in the simplified notation the expression for the
correlation coefficients becomes

Cor(It(n), Jt(m)) = θ ′
I PθJ√

θ ′
I Pθ I

√
θ ′

J PθJ

= σIJ

σIσJ
.

Proposition 2 says that increasing the persistence of the AR(p)
process increases the values of all autocorrelation coefficients. Con-
sequently, increasing the persistence of the AR(p) process increases

all elements of matrix P. Therefore, our proof is based on the
investigation of the sign of the derivative

∂Cor(It(n), Jt(m))

∂P
.

A result from matrix calculus will prove helpful. Specifically, given
n × 1 vector x and n × n matrix A

∂x′Ax
∂A

= xx′. (A9)

The following partial derivatives are obtained using the result above

∂σI

∂P
= 1

2σI
θ Iθ

′
I ,

∂σJ

∂P
= 1

2σJ
θJθ ′

J ,
∂σIJ

∂P
= θ Iθ

′
J .

Differentiating the expression for the correlation using the quotient
rule yields

∂Cor(It(n), Jt(m))

∂P
= 2σ 2

I σ
2
J θ Iθ

′
J − σIJ (σ

2
J θ Iθ

′
I + σ 2

I θJθ ′
J )

2σ 3
I σ

3
J

.

The derivative is positive if

2σ 2
I σ

2
J θ Iθ

′
J > σIJσ

2
J θ Iθ

′
I + σIJσ

2
I θJθ ′

J .

Pre-multiplying both sides of the inequality by θ ′
J P and taking into

account that θ ′
J Pθ I = σIJ and θ ′

J PθJ = σ 2
J , yields (after simplifica-

tion)

σ 2
I θ ′

J > σIJθ ′
I .

Post-multiplying both sides of the inequality by PθJ yields (after
re-arrangement of the terms)

Cor(It(n), Jt(m))
2 < 1.

The last inequality is true since under the conditions of this propo-
sition Cor(It(n), Jt(m)) < 1. Thus, Cor(It(n), Jt(m)) increases with
increasing persistence of the AR(p) process for returns.

Appendix 6. Proof of Proposition 6

The correlation between the trading indicator It(n) and the next
period return Xt+1 is given by

Cor(Xt+1, It(n)) = Cov(Xt+1, It(n))

σxσI
, (A10)

where Cov(Xt+1, It(n)) is the covariance between the trading indi-
cator and the next period return and σx and σI are the standard
deviations of Xt and It(n) respectively.

The variance of the trading indicator is given by equation (A5).
The covariance between the indicator and the next period return is
given by

Cov(Xt+1, It(n))

= E[(φ1Xt + φ2Xt−1 + · · · + φpXt−p+1 + εt+1)(θ0Xt

+ θ1Xt−1 + · · · + θn−1Xt−n+1)].

This covariance is computed as

Cov(Xt+1, It(n)) =
p−1∑
i=0

n−1∑
j=0

φi+1θjCov(Xt−iXt−j)

=
p−1∑
i=0

n−1∑
j=0

φi+1θjρ|i−j|σ 2
x . (A11)

The covariance can be expressed in matrix notation as

Cov(Xt+1, It(n)) = θ ′
nPn,pφp σ

2
x , (A12)

where φ′
p = [φ1,φ2, . . . ,φp] is the vector of autoregressive coef-

ficients of Xt, θn is the vector that contains the elements of the
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weighting function of It(n), and matrix Pn,p is the matrix given
by (9).

Inserting the expressions for Cov(Xt+1, It(n)) and σI into
equation (A10) completes the proof.

Appendix 7. Proof of Proposition 7

The proof follows along the lines of the proof of Proposition 5. After
equating the number of elements in vectors θ and φ, we investigate
the sign of the following derivative

∂Cor(Xt+1, It(n))

∂P
=
∂

θ ′P φ√
θ ′Pθ

∂P
.

Differentiating the expression for the correlation using the quotient
rule yields

∂Cor(It(n), Jt(m))

∂P
= 2σ 2

I θφ′ − (θ ′Pφ)θθ ′

2σ 3
I

.

The derivative is positive if

2σ 2
I θφ′ > (θ ′Pφ)θθ ′.

Post-multiplying both sides of the inequality by Pθ and taking into
account that θ ′Pθ = σ 2

I and φ′Pθ = θ ′Pφ, we get

2σ 2
I θ > σ 2

I θ .

The last inequality is true since 2σ 2
I > σ 2

I . Thus, Cor(Xt+1, It(n))
increases with increasing persistence of the AR(p) process for
returns.

Appendix 8. Proof of Proposition 8

Our goal is to find the solution of the following maximization
problem

max
θn

Cor(Xt+1, It(n)) = θ ′
nPn,p φp√
θ ′

nPn,nθn
.

First of all, we equate the number of elements in vectors θn and φp.
We choose k = max(n, p). If n< p, vector θn is augmented by p − n
zero elements. Similarly, if n> p, vector φp is augmented by n − p
zero elements. This augmentation does not change the value of the
correlation but makes vectors θk and φk be of the same length. To
simplify notation, in the expressions below we omit the subscripts in
the vectors and matrices.

The first-order condition of optimality of θ is given by

∂Cor(Xt+1, It(n))

∂θ
= 0.

The expression for the correlation coefficient represents a ratio of
two functions. Therefore, we apply the quotient rule of differentia-
tion (F/G)′ = (F′G − G′F)/G2.

F′ = ∂θ ′P φ

∂θ
= P φ, G′ = ∂

√
θ ′Pθ

∂θ
= Pθ√

θ ′Pθ
.

As a result, the first-order condition of optimality is given by

P φ
(
θ ′Pθ

)− Pθ
(
θ ′Pφ

)
θ ′Pθ

√
θ ′Pθ

= 0.

The first order condition reduces to

P φ
(
θ ′Pθ

) = Pθ
(
θ ′Pφ

)
. (A13)

It is easy to note that if θ = φ, then both the vector equation P φ =
Pθ and the scalar equation θ ′P θ = θ ′Pφ are satisfied. Hence, when
θ = φ, condition (A13) is satisfied. Additionally, condition (A13) is
satisfied when θ = c × φ where c is any positive real number.
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