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ABSTRACT
An integrating factor f̃ (x) is presented involving the terms in y′′ (x)
and q (x) y (x) of the general homogenous second-order linear ordi-
nary differential equation. The new integrating factors obey second-
order differential equations, rather than being given by quadrature.
The new factors provides old and new integrals for special functions
which obey such differential equations. The functions considered
here are cylinder functions, parabolic cylinder functions and Whit-
taker functions. All the integrals given have been checked using
Mathematica.
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1. Introduction

In a recent paper [1], two integrating factors were considered for the general second-order
homogeneous linear differential equation

y′′ (x) + p (x) y′ (x) + q (x) y (x) = 0. (1.1)

Multiplication of Equation (1.1) by either of these integrating factors reduces two con-
secutive terms of the equation to a derivative, allowing an integral to be derived from
the remaining term, and this integral can be generalized. The two leftmost terms of
Equation (1.1) have an integrating factor which obeys the differential equation

f ′ (x) = p (x) f (x) (1.2)

so that

f (x) = exp
(∫

p (x) dx
)

(1.3)

and hence

f (x) q (x) y (x) = − [f (x) y′ (x)
]′ . (1.4)

The integrating factor f (x) is identical to the Lagrangian factor introduced for
Equation (1.1) in [1,3]. Multiplying both sides of Equation (1.4) by m(f (x)y′(x))m−1 for
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2 J. T. CONWAY

m ∈ C andm �= 0 gives the generalized integral∫
q (x) f m (x) y′m−1 (x) y (x) dx = − f m (x) y′m (x)

m
. (1.5)

For p(x) �= 0, a second integrating factor [1] can be obtained for the last two terms in
Equation (1.1). Expressing this equation in the form

y′′ (x) + p (x)
[
y′ (x) + q (x)

p (x)
y (x)

]
= 0 (1.6)

then the integrating factor [1]

f̂ (x) = exp
(∫

q (x)
p (x)

dx
)
, (1.7)

which obeys the differential equation

f̂ ′ (x) = q (x)
p (x)

f̂ (x) (1.8)

reduces Equation (1.6) to

f̂ (x) y′′ (x)
p (x)

= −
[
f̂ (x) y (x)

]′
. (1.9)

Multiplying Equation (1.9) by m(f̂ (x)y(x))m−1 and integrating gives the generalized inte-
gral ∫

1
p (x)

f̂ m (x) ym−1 (x) y′′ (x) dx = − f̂ m (x) ym (x)
m

, (1.10)

which was considered in detail in [1].

1.1. A third integrating factor

This paper considers the case of a third integrating factor f̃ (x) derived for the leftmost and
rightmost terms in Equation (1.1). This factor is somewhat different from the other two,
and is obtained from the elementary differential identity

f̃ (x) y′′ (x) − f̃ ′′ (x) y (x) =
(
f̃ (x) y′ (x) − f̃ ′ (x) y (x)

)′
. (1.11)

Multiplying Equation (1.1) by a function f̃ (x), initially considered arbitrary, gives

f̃ (x) y′′ (x) + f̃ (x) p (x) y′ (x) + f̃ (x) q (x) y (x) = 0, (1.12)

and for the leftmost and rightmost terms in Equation (1.12) to reduce to a single derivative
through Equation (1.11), then f̃ (x) must be chosen to obey the differential equation

f̃ ′′ (x) + q (x) f̃ (x) = 0. (1.13)

Unlike Equations (1.2) and (1.8), Equation (1.13) is second-order and hence the inte-
grating factor f̃ (x) has two independent solutions. Substituting Equation (1.13) into
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Equation (1.12) gives

f̃ (x) p (x) y′ (x) =
(
f̃ ′ (x) y (x) − f̃ (x) y′ (x)

)′
(1.14)

and hence gives the integral∫
f̃ (x) p (x) y′ (x) dx = f̃ ′ (x) y (x) − f̃ (x) y′ (x) . (1.15)

Multiplying Equation (1.14) by m(f̃ ′(x)y(x) − f̃ (x)y′(x))m−1 for m ∈ C and m �= 0 then
gives the generalized integral

∫
f̃ (x) p (x) y′ (x)

(
f̃ ′ (x) y (x) − f̃ (x) y′ (x)

)m−1
dx =

(
f̃ ′ (x) y (x) − f̃ (x) y′ (x)

)m
m

.

(1.16)

Equation (1.15) is not the only manner in which an integrating factor of this type can be
used. Some special functions have baseline differential equations of the form

y′′ (x) + q (x) y (x) = 0, (1.17)

where p(x) in Equation (1.1) is zero and q(x) often can be split into two separate factors or
groups of factors, so that

y′′ (x) + (
q1 (x) + q2 (x)

)
y (x) = 0. (1.18)

The p(x) factor for any differential equation of the form (1.1) can be transformed away
[2,3] to give an Equation such as (1.17). We can define an integrating factor f̃1(x) which
obeys the equation

f̃ ′′1 (x) + q1 (x) f̃1 (x) = 0, (1.19)

which can be considered a fragment, or fragmentary equation, of Equation (1.18) in the
sense discussed in [2,3]. Multiplying Equation (1.18) by f̃1(x) gives

f̃1 (x) q2 (x) y (x) =
(
f̃ ′1 (x) y (x) − f̃1 (x) y′ (x)

)′
(1.20)

and integrating both sides of this equation gives∫
f̃1 (x) q2 (x) y (x) dx = f̃ ′1 (x) y (x) − f̃1 (x) y′ (x) . (1.21)

In a similar manner as for Equation (1.15), multiplying both sides of Equation (1.20) by
m(f̃ ′(x)y(x) − f̃ (x)y′(x))m−1 form ∈ C andm �= 0 and integrating, gives the integral∫

f̃1 (x) q2 (x) y (x)
(
f̃ ′1 (x) y (x) − f̃1 (x) y′ (x)

)m−1
dx

= 1
m

(
f̃ ′1 (x) y (x) − f̃1 (x) y′ (x)

)m
. (1.22)

Results for cylinder functions, parabolic cylinder functions and Whittaker functions are
given in Sections 2–4, respectively. All integrals presented have been validated using
Mathematica [4].
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2. Cylinder functions

The baseline differential equation for the general cylinder function Zn(x) ≡ C1Jn(x) +
C2Yn(x) is the Bessel Equation

y′′ (x) + 1
x
y′ (x) +

(
1 − n2

x2

)
y (x) = 0. (2.1)

This equation can be readily transformed into the equation

y′′ (x) + 1 ∓ 2n
x

y′ (x) + y (x) = 0, (2.2)

which has the solution y(x) = x±nZn(x) and for which the derivative y′(x) =
±x±nZn∓1(x) is simple, or into the equation

y′′ (x) +
(
1 − n2 − 1

4
x2

)
y (x) = 0, (2.3)

which has p(x) = 0 and the general solution y(x) = √
xZn(x).

For Equation (2.2), the integrating factor given by Equation (1.13) can be taken to be
f̃ (x) = sin(x + φ) where φ is an arbitrary phase factor and the principal special cases are
f̃ (x) = sin(x) and f̃ (x) = cos(x). Substituting this solution for f̃ (x) into Equation (1.14),
and shifting n as appropriate to give Zn(x) on the left-hand side of the equation, gives the
integral∫

x±n sin (x + φ)Zn (x) dx = x1±n

2n ± 1
(± sin (x + φ)Zn (x) − cos (x + φ)Zn±1 (x))

(2.4)

which is well known [5]. The generalization of this integral through Equation (1.16) gives∫
xm(1±n)−1 sin (x + φ)Zn (x) ((± sin (x + φ)Zn (x) − cos (x + φ)Zn±1 (x)))m−1 dx

= xm(1±n) (± sin (x + φ)Zn (x) − cos (x + φ)Zn±1 (x))m

m (2n ± 1)
. (2.5)

Three useful fragments of Equation (2.3) which and their respective solutions for the
integrating factor f̃ (x) are

y′′ (x) + y (x) = 0, (2.6)

f̃ (x) = sin (x + φ) , (2.7)

y′′ − n2 − 1
4

x2
y = 0, (2.8)

f̃ (x) = x1/2±n, (2.9)

y′′ + 1
4x2

y = 0, (2.10)

f̃ (x) = √
x or f̃ (x) = √

x ln (x) . (2.11)
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Substituting Equation (2.7) into Equation (1.21) gives the integral
∫

sin (x + φ)Zn (x)
x3/2

dx

= 4
1 − 4n2

(
cos (x + φ)

√
xZn (x) + sin (x + φ)

(
√
xZn+1 (x) −

(
n + 1

2
)
Zn (x)√
x

))
,

(2.12)

which is given in [5]. The generalized form of Equation (2.12) given by Equation (1.22) is
∫

xm/2−2 sin (x + φ)Zn (x)

×
(
cos (x)Zn (x + φ) + sin (x + φ)

(
Zn+1 (x) −

(
n + 1

2
)
Zn (x)

x

))m−1

dx

= 4xm/2

m
(
1 − 4n2

)
(
cos (x + φ)Zn (x) + sin (x + φ)

(
Zn+1 (x) −

(
n + 1

2
)
Zn (x)

x

))m

.

(2.13)

Substituting Equation (2.9) into Equation (1.21) gives initially the integrals
∫

x1±nZn (x) dx = ±nx±nZn (x) − x1±nZ′
n (x) (2.14)

which are reduced by the cylinder function recurrences

Z′
n (x) = ±n

x
Zn (x) ∓ Zn±1 (x) (2.15)

to give the elementary integrals [5]
∫

x1±nZn (x) dx = ±x1±nZn±1 (x) . (2.16)

For this case, Equation (1.22) gives initially

∫
xm(1±n)Zn (x)Zm−1

n±1 (x) dx = ±xm(1±n)Zm
n±1 (x)

m
(2.17)

and shifting the index n in Equation (2.17) such that n → n ± 1 gives the integral in the
form ∫

x±mnZm−1
n (x)Zn∓1 (x) dx = ±x±mnZm

n (x)
m

(2.18)

which was given in [6]. Rather surprisingly, given that (2.16) is well known, Mathematica
[4] cannot obtain Equations (2.18) directly.
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Substituting Equations (2.11) into Equation (1.21) gives the two integrals∫
x2 − n2

x
Zn (x) dx = xZn+1 (x) − nZn (x) , (2.19)

∫
x2 − n2

x
ln (x)Zn (x) dx = x ln (x)Zn+1 (x) + (1 − n ln (x))Zn (x) (2.20)

and these can be generalized through Equation (1.22) to give, respectively,∫
xm−2 (x2 − n2

)
Zn (x)

(
Zn+1 (x) − n

x
Zn (x)

)m−1
dx = xm

m

(
Zn+1 (x) − n

x
Zn (x)

)m
,

(2.21)∫
xm−2 (x2 − n2

)
ln (x)Zn (x)

(
ln (x)Zn+1 (x) + 1 − n ln (x)

x
Zn (x)

)m−1
dx

= xm

m

(
ln (x)Zn+1 (x) + 1 − n ln (x)

x
Zn (x)

)m
. (2.22)

3. Parabolic cylinder functions

The parabolic cylinder functions y(x) = Dn(x) obey the baseline differential equation

y′′ (x) +
(
n + 1

2
− x2

4

)
y (x) = 0 (3.1)

and have the recurrence relations [7]

D′
n (x) + x

2
Dn (x) = nDn−1 (x) , (3.2)

D′
n (x) − x

2
Dn (x) = −Dn+1 (x) . (3.3)

These recurrences can be integrated to give, respectively,(
ex

2/4Dn (x)
)′ = nex

2/4Dn−1 (x) , (3.4)(
e−x2/4Dn (x)

)′ = −e−x2/4Dn+1 (x) . (3.5)

Defining y1(x) = ex2/4Dn(x) and y2(x) = e−x2/4Dn(x) and transforming Equation (3.1) to
give the differential equations obeyed by y1(x) and y2(x) results in the equations

y′′
1 (x) − xy′

1 (x) + ny1 (x) = 0, (3.6)

y′′
2 (x) + xy′

2 (x) + (n + 1) y2 (x) = 0. (3.7)

Equation (3.7) is given in [7]. Equation (3.6) is similar in form to the equation obeyed by
the Hermite function Hn(x), which is [7]

y′′ (x) − 2xy′ (x) + 2ny (x) = 0 (3.8)
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andHn(x/
√
2) is a solution of Equation (3.6). The two functions are directly related by [7]

Dn (x) = 2−n/2e−x2/4Hn

(
x√
2

)
(3.9)

so the results obtained here for Dn(x) can be transformed into results for Hn(x).
The integrating factor for Equation (3.6) is

f̃ (x) = sin
(√

nx + φ
)
, (3.10)

where φ is an arbitrary phase factor, with f̃ (x) = sin(
√
nx) and f̃ (x) = cos(

√
nx) being the

main cases of interest. This factor gives through Equation (1.15), the integral∫
xex

2/4 sin
(√

n + 1x + φ
)
Dn (x) dx

= ex
2/4

(
sin
(√

n + 1x + φ
)
Dn (x) − cos

(√
n + 1x + φ

)
√
n + 1

Dn+1 (x)

)
(3.11)

which can be generalized form �= 0 through Equation (1.16) to give∫
xemx2/4 sin

(√
n + 1x + φ

)
Dn (x)

×
(
sin
(√

n + 1x + φ
)
Dn (x) − cos

(√
n + 1x + φ

)
√
n + 1

Dn+1 (x)

)m−1

dx

= emx2/4

m

(
sin
(√

n + 1x + φ
)
Dn (x) − cos

(√
nx + φ

)
√
n + 1

Dn+1 (x)

)m

. (3.12)

The integrating factor for Equation (3.7) is

f̃ (x) = sin
(√

n + 1x + φ
)

(3.13)

and through Equation (1.17) this gives the integral∫
xe−

x2
4 sin

(√
nx + φ

)
Dn (x) dx

= −e−
x2
4
(
sin
(√

nx + φ
)
Dn (x) + √

n cos
(√

nx + φ
)
Dn−1 (x)

)
(3.14)

which can be generalized through Equation (1.18) form �= 1 to give∫
xe−

mx2
4 sin

(√
nx + φ

)
Dn (x)

× (
sin
(√

nx + φ
)
Dn (x) + √

n cos
(√

nx + φ
)
Dn−1 (x)

)m−1 dx

= −e−mx2/4

m
(
sin
(√

nx + φ
)
Dn (x) + √

n cos
(√

nx + φ
)
Dn−1 (x)

)m . (3.15)
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Useful fragments of Equation (3.1) and their respective integrating factors f̃ (x) are

y′′ (x) +
(
n + 1

2

)
y (x) = 0, (3.16)

f̃ (x) = sin

(√
n + 1

2
x + φ

)
, (3.17)

y′′ − x2

4
y = 0, (3.18)

f̃ (x) = √
xK̂ 1

4

(
x2

4

)
, (3.19)

where K̂1/4(x2/4) ≡ C1K1/4(x2/4) + C2I1/4(x2/4) is a modified cylinder function.

y′′ +
(
1
2

− x2

4

)
y = 0, (3.20)

f̃ (x) = e−
x2
4 ; f̃ (x) = e−

1
4 x

2
erf
(

ix√
2

)
, (3.21)

y′′ +
(

−1
2

− x2

4

)
y = 0, (3.22)

f̃ (x) = ex
2/4; f̃ (x) = e1/4x

2
erf
(

x√
2

)
. (3.23)

Substituting Equation (3.17) into Equation (1.21) gives the integral∫
sin

(√
n + 1

2
x + φ

)
x2Dn (x) dx

= 4

(
sin

(√
n + 1

2
x + φ

)
D′
n (x) −

√
n + 1

2
cos

(√
n + 1

2
x + φ

)
Dn (x)

)
, (3.24)

which is generalized by Equation (1.22) as∫
sin

(√
n + 1

2
x + φ

)
x2Dn (x)

×
(
sin

(√
n + 1

2
x + φ

)
D′
n (x) −

√
n + 1

2
cos

(√
n + 1

2
x + φ

)
Dn (x)

)m−1

dx

= 4
m

(
sin

(√
n + 1

2
x + φ

)
D′
n (x) −

√
n + 1

2
cos

(√
n + 1

2
x + φ

)
Dn (x)

)m

.

(3.25)

Substituting Equation (3.19) into Equation (1.21) and using the identity(√
xK̂ 1

4

(
x2

4

))′
= −1

2
x3/2K̂ 3

4

(
x2

4

)
(3.26)
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gives the integral∫ √
xK̂ 1

4

(
x2

4

)
Dn (x) dx

= − 2
2n + 1

√
x
(
x
2
K̂ 3

4

(
x2

4

)
Dn (x) + K̂ 1

4

(
x2

4

)
D′
n (x)

)
, (3.27)

which is generalized by Equation (1.22) to give∫
xm/2K̂ 1

4

(
x2

4

)
Dn (x)

×
(
x
2
K̂ 3

4

(
x2

4

)
Dn (x) + K̂ 1

4

(
x2

4

)
D′
n (x)

)m−1

dx

= − 2xm/2

m (2n + 1)

(
x
2
K̂ 3

4

(
x2

4

)
Dn (x) + K̂ 1

4

(
x2

4

)
D′
n (x)

)m

. (3.28)

Substituting f̃ (x)= e−x2/4 from (3.21) in Equation (1.21) and reducing usingEquation (3.2)
gives ∫

e−x2/4Dn (x) dx = −e−x2/4Dn−1 (x) , (3.29)

which can be obtained directly from Equation (3.5). Similarly, substituting f̃ (x) = ex2/4
from (3.23) in Equation (1.21) and reducing using Equation (3.3) gives∫

ex
2/4Dn (x) dx = ex2/4

n + 1
Dn+1 (x) . (3.30)

Substituting f̃ (x) = e−x2/4erf(ix/
√
2) from (3.21) into Equation (1.21) gives∫

e−x2/4erf
(

ix√
2

)
Dn (x) dx =

√
2
π

iex2/4

n
Dn (x) − Dn−1 (x) e−

1
4 x

2
erf
(

ix√
2

)
. (3.31)

Similarly, substituting f̃ (x) = ex2/4erf(x/
√
2) from (3.21) into Equation (1.21) gives∫

ex
2/4erf

(
x√
2

)
Dn (x) dx = 1

n + 1

(
Dn+1 (x) ex

2/4erf
(

x√
2

)
+
√

2
π
e−

x2
4 Dn (x)

)
.

(3.32)

4. Whittaker functions

TheWhittaker functionsMλ,μ(x) andWλ,μ(x) are independent solutions of the differential
equation

y′′ (x) +
(

−1
4

+ λ

x
+

1
4 − μ2

x2

)
y (x) = 0 (4.1)

and the general solution of this equation can be taken as Ŵλ,μ(x) ≡ C1Mλ,μ(x) +
C2Wλ,μ(x). Six recurrence relations for each of the functions Mλ,μ(x) and Wλ,μ(x) are
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given in [8,9], and these can be expressed in two groups of the form

(
e±x/2x±μ−1/2

{
Mλ,μ (x)
Wλ,μ (x)

})′

= C (λ,μ) e±x/2x±μ−1
{
Mλ∓1/2,μ∓1/2 (x)
Wλ∓1/2,μ∓1/2 (x)

}
, (4.2)

(
e±x/2x∓λ

{
Mλ,μ (x)
Wλ,μ (x)

})′

= C (λ,μ) e±x/2x∓λ−1
{
Mλ±1,μ (x)
Wλ±1,μ (x)

}
. (4.3)

In these relations, the function C(λ,μ) is independent of x and varies with the partic-
ular recurrence. In Equation (4.2), the ± sign associated with μ is independent from
the ± sign associated with the exponential, giving four recurrences per function, and in
Equation (4.3) the ± signs are dependent, giving two recurrences per function, for a total
of twelve recurrences.

Defining

y1 (x) ≡ e±x/2x±μ−1/2Ŵλ,μ (x) = a1 (x) y (x) , (4.4)

y2 (x) ≡ e±x/2x±λŴλ,μ (x) = a2 (x) y (x) , (4.5)

then Equation (4.1) can be transformed by the relation

y′′
i (x) − 2a′

i (x)
ai (x)

y′
i (x) +

(
2
(
a′
i (x)
ai (x)

)2
− a′′

i (x)
ai (x)

− 1
4

+ λ

x
+

1
4 − μ2

x2

)
yi (x) = 0 (4.6)

and this gives the equations satisfied by y1(x) as

y′′
1 (x) +

(
1 ∓ 2μ

x
− 1

)
y′
1 (x) + λ ± μ − 1

2
x

y1 (x) = 0 (4.7)

for the positive sign of the exponential in Equation (4.4) and

y′′
1 (x) +

(
1 ∓ 2μ

x
+ 1

)
y′
1 (x) + λ ∓ μ + 1

2
x

y1 (x) = 0 (4.8)

for the negative sign of the exponential. The equations obeyed by y2(x) are

y′′
2 (x) ∓

(
2λ
x

− 1
)
y′
2 (x) +

(
λ ± 1

2
)2 − μ2

x2
y2 (x) = 0, (4.9)

where the± sign corresponds to the± sign in Equation (4.5). Equations (4.7)–(4.9) all have
simple forms for q(x) and from Equations (4.2) and (4.3) the derivatives of y1(x) and y2(x)
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are of simple form. The integrating factors f̃ (x) and their derivatives for Equations (4.7)
and (4.8) are, respectively,

f̃ (x) = √
xZ1

(
2
√

λ ± μ − 1
2
√
x

)
; f̃ ′ (x) =

√
λ ± μ − 1

2
Z0

(
2
√

λ ± μ − 1
2
√
x

)
,

(4.10)

f̃ (x) = √
xZ1

(
2
√

λ ∓ μ + 1
2
√
x

)
; f̃ ′ (x) =

√
λ ∓ μ + 1

2
Z0

(
2
√

λ ∓ μ + 1
2
√
x

)

(4.11)

and the integration factors for Equation (4.9) are the solutions of the equation

f̃ ′′ (x) +
((

λ ± 1
2
)2 − μ2

x2

)
f̃ (x) = 0, (4.12)

which gives

f̃ (x) = x1/2−
√

μ2−λ(λ±1); f̃ ′ (x) =
(
1
2

−
√

μ2 − λ (λ ± 1)
)
x−1/2−

√
μ2−λ(λ±1).

(4.13)
The detailed recurrence relations forMλ,μ(x) are [8,9]

(
ex/2xμ−1/2Mλ,μ (x)

)′ = 2μex/2xμ−1Mλ−1/2,μ−1/2 (x) , (4.14)(
ex/2x−μ−1/2Mλ,μ (x)

)′ = 1/2 + μ − λ

1 + 2μ
ex/2x−μ−1Mλ−1/2,μ+1/2 (x) , (4.15)

(
e−x/2xμ−1/2Mλ,μ (x)

)′ = 2μe−x/2xμ−1Mλ+1/2,μ−1/2 (x) , (4.16)

(
e−x/2x−μ−1/2Mλ,μ (x)

)′ = −
1
2 + μ + λ

1 + 2μ
e−x/2x−μ−1Mλ+1/2,μ+1/2 (x) , (4.17)

(
e−x/2xλMλ,μ (x)

)′ =
(
1
2

+ μ + λ

)
e−x/2xλ−1Mλ+1,μ (x) , (4.18)

(
ex/2x−λMλ,μ (x)

)′ =
(
1
2

+ μ − λ

)
ex/2x−λ−1Mλ−1,μ (x) (4.19)

and the corresponding recurrences forWλ,μ(x) are

(
ex/2xμ−1/2Wλ,μ (x)

)′ =
(

λ + μ − 1
2

)
ex/2xμ−1Wλ−1/2,μ−1/2 (x) , (4.20)

(
ex/2x−μ−1/2Wλ,μ (x)

)′ =
(

λ − μ − 1
2

)
ex/2x−μ−1Wλ−1/2,μ+1/2 (x) , (4.21)

(
e−x/2xμ−1/2Wλ,μ (x)

)′ = −e−x/2xμ−1Wλ+1/2,μ−1/2 (x) , (4.22)
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(
e−x/2x−μ−1/2Wλ,μ (x)

)′ = −e−x/2x−μ−1Wλ+1/2,μ+1/2 (x) , (4.23)(
e−x/2xλWλ,μ (x)

)′ = −e−x/2xλ−1Wλ+1,μ (x) , (4.24)
(
ex/2x−λWλ,μ (x)

)′ =
(
1
2

+ μ − λ

)(
1
2

− μ − λ

)
ex/2x−λ−1Wλ−1,μ (x) . (4.25)

The integrals derived from these recurrences using Equation (1.15) are, respectively,

∫
(x + 2μ) ex/2xμ−1Z1

(
2
√

λ + μ + 1
2
√
x

)
Mλ,μ (x) dx

= ex/2xμ

⎛
⎝Z1

(
2
√

λ + μ + 1
2
√
x

)
Mλ,μ (x)

−
√

λ + μ + 1
2

2μ + 1
Z0

(
2
√

λ + μ + 1
2
√
x

)
Mλ+ 1

2 ,μ+ 1
2
(x)

⎞
⎠ , (4.26)

∫
(x − 2μ) ex/2x−μ−1Z1

(
2
√

λ − μ + 1
2
√
x

)
Mλ,μ (x) dx

= ex/2x−μ

⎛
⎝Z1

(
2
√

λ − μ + 1
2
√
x

)
Mλ,μ (x)

+ 2μ√
λ − μ + 1

2

Z0

(
2
√

λ − μ + 1
2
√
x

)
Mλ+1/2,μ−1/2 (x)

⎞
⎠ , (4.27)

∫
(x − 2μ) e−x/2xμ−1Z1

(
2
√

λ − μ − 1
2
√
x

)
Mλ,μ (x) dx

= e−x/2xμ

⎛
⎝
√

λ − μ − 1
2

2μ + 1
Z0

(
2
√

λ − μ − 1
2
√
x

)
Mλ−1/2,μ+1/2 (x)

− Z1

(
2
√

λ − μ − 1
2
√
x

)
Mλ,μ (x)

⎞
⎠ , (4.28)

∫
(x + 2μ) e−x/2x−μ−1Z1

(
2
√

λ + μ − 1
2
√
x

)
Mλ,μ (x) dx

= −e−x/2x−μ

⎛
⎝ 2μ√

λ + μ − 1
2

Z0

(
2
√

λ + μ − 1
2
√
x

)
Mλ−1/2,μ−1/2 (x)
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+ Z1

(
2
√

λ + μ − 1
2
√
x

)
Mλ,μ (x)

⎞
⎠ , (4.29)

∫
(x − 2λ + 2) xλ−5/2−

√
μ2−λ(λ−1)e−x/2Mλ,μ (x) dx

= xλ−3/2−
√

μ2−λ(λ−1)e−x/2

(
1
2 −

√
μ2 − λ (λ − 1)

μ + λ − 1
2

Mλ−1,μ (x) − Mλ,μ (x)

)
, (4.30)

∫
(2λ + 2 − x) x−λ−5/2−

√
μ2−λ(λ+1)ex/2Mλ,μ (x) dx

= x−λ−3/2−
√

μ2−λ(λ+1)ex/2
(

1
2 −

√
μ2 − λ (λ + 1)

μ − λ − 1
2

Mλ,μ (x) − Mλ−1 (x)

)
, (4.31)

∫
(x + 2μ) ex/2xμ−1Z1

(
2
√

λ + μ + 1
2
√
x

)
Wλ,μ (x) dx

= ex/2xμ

⎛
⎜⎜⎝Z1

(
2
√

λ + μ + 1
2
√
x

)
Wλ,μ (x)

−
Z0
(
2
√

λ + μ + 1
2
√
x
)

√
λ + μ + 1

2

Wλ+ 1
2 ,μ+ 1

2
(x)

⎞
⎟⎟⎠ , (4.32)

∫
(x − 2μ) ex/2x−μ−1Z1

(
2
√

λ − μ + 1
2
√
x

)
Wλ,μ (x) dx

= ex/2x−μ

⎛
⎜⎜⎝Z1

(
2
√

λ − μ + 1
2
√
x

)
Wλ,μ (x)

−
Z0
(
2
√

λ − μ + 1
2
√
x
)

√
λ − μ + 1

2

Wλ+1/2,μ−1/2 (x)

⎞
⎟⎟⎠ , (4.33)

∫
(2μ − x) e−x/2xμ−1Z1

(
2
√

λ − μ − 1
2
√
x

)
Wλ,μ (x) dx

= e−x/2xμ

(√
λ − μ − 1

2
Z0

(
2
√

λ − μ − 1
2
√
x

)
Wλ−1/2,μ+1/2 (x)
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+ Z1

(
2
√

λ − μ − 1
2
√
x

)
Wλ,μ (x)

)
, (4.34)

∫
(2μ + x) e−x/2x−μ−1Z1

(
2
√

λ + μ − 1
2
√
x

)
Wλ,μ (x) dx

= −e−x/2x−μ

(√
λ + μ − 1

2
Z0

(
2
√

λ + μ − 1
2
√
x

)
Wλ−1/2,μ−1/2 (x)

+ Z1

(
2
√

λ + μ − 1
2
√
x

)
Wλ,μ (x)

)
, (4.35)

∫
(2λ − 2 − x) e−x/2xλ−5/2−

√
μ2−λ(λ−1)Wλ,μ (x) dx

= e−x/2xλ−3/2−
√

μ2−λ(λ−1)
((

1
2

−
√

μ2 − λ (λ − 1)
)
Wλ−1,μ (x) + Wλ,μ (x)

)
,

(4.36)∫
x−λ−5/2−

√
μ2−λ(λ+1) (x − 2λ − 2) ex/2Wλ,μ (x) dx

= ex/2x−λ−3/2−
√

μ2−λ(λ+1)

(
1
2 −

√
μ2 − λ (λ + 1)

μ2 − (
λ + 1

2
)2 Wλ+1,μ (x) + Wλ,μ (x)

)
.

(4.37)

Integrals (4.26)–(4.37) above can be generalized using Equation (1.16).
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