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Data-Driven Spectrum Cartography

via Deep Completion Autoencoders
Yves Teganya and Daniel Romero

Abstract —Spectrum maps, which provide RF spectrum metrics such as

power spectral density for every location in a geographic area, find numerous

applications in wireless communications such as interference control, spec-

trum management, resource allocation, and network planning to name a few.

Spectrum cartography techniques construct these maps from a collection of

measurements collected by spatially distributed sensors. Due to the nature

of the propagation of electromagnetic waves, spectrum maps are complicated

functions of the spatial coordinates. For this reason, model-free approaches

have been preferred. However, all existing schemes rely on some interpolation

algorithm unable to learn from data. This paper proposes a novel approach to

spectrum cartography where propagation phenomena are learned from data.

The resulting algorithms can therefore construct a spectrum map from a sig-

nificantly smaller number of measurements than existing schemes since the

spatial structure of shadowing and other phenomena is previously learned

from maps in other environments. Besides the aforementioned new paradigm,

this is also the first work to perform spectrum cartography with deep neu-

ral networks. To exploit the manifold structure of spectrum maps, a deep

network architecture is proposed based on completion autoencoders.

Keywords— Spectrum cartography, deep learning, cognitive radio, completion autoen-

coders.

C.1 Introduction

Spectrum cartography constructs maps of RF channel metrics such as received signal

power, interference power, power spectral density (PSD), electromagnetic absorption, or

channel gain; see e.g. [1–3]. Besides applications like source localization [2] or radio tomog-

raphy [4,5], spectral maps find a myriad of applications in wireless communications such

as network planning, interference coordination, power control, spectrum management,

resource allocation, handoff procedure design, dynamic spectrum access, and cognitive

ratio [6–8]. Spectrum maps are constructed from measurements acquired by spectrum

sensors or mobile devices.

Most approaches are based on some interpolation algorithm. For example, power

maps have been constructed through kriging [1,9], dictionary learning [10,11], compressive

sensing [3], Bayesian models [12], matrix completion [13], and kernel methods [14, 15].

PSD maps have also been constructed by exploiting the sparsity of power across space

and frequency [2] as well as by applying thin-plate spline regression [16] and kernel-

based learning [8, 17]. Metrics other than power and PSD have also been mapped in

the literature. For example, [5, 18, 19] are capable of constructing channel gain maps.
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Unfortunately, none of the existing approaches can learn from data. This means that they

fail to learn the characteristics of the propagation phenomena and, therefore, a substantial

performance improvement is expected if such knowledge can be incorporated.

To address this limitation, the first contribution of this paper is a data-driven paradigm

for spectrum cartography. Specifically, it proposes learning the spatial features of the rel-

evant propagation phenomena such as shadowing, reflection, and diffraction using a data

set of past measurements. Intuitively, leveraging these learned features can significantly

reduce the number of measurements required to attain a target performance. This aspect

is critical since all measurements need to be collected in a sufficiently short time since

the mapped metric is subject to temporal variations in real-world scenarios. The second

contribution comprises a spectrum cartography algorithm to construct PSD maps relying

on a deep neural network. Although several approaches for applying this class of networks

are discussed, the most natural one relies on a spatial discretization of the area of inter-

est. The resulting tensor completion task is addressed by means of a completion network

architecture with an encoder-decoder structure that capitalizes on the observation that

spectrum maps lie close to a low-dimensional manifold embedded in a high-dimensional

space. Our experiments reveal that the performance of such algorithm beats the state-of-

the-art alternatives. Finally, all code, trained networks, and the data set constructed for

this work will be posted at the authors’ web sites.

The novelty of this paper is twofold. First, this is the first work to propose a data-

driven spectrum cartography approach. Second, this is the first work to propose a deep

learning algorithm for spectrum cartography.

The rest of this paper is organized as follows. Sec. C.2 describes the problem of PSD

cartography. Sec. C.3 presents the aforementioned data-driven spectrum cartography

paradigm and proposes a deep neural network architecture based on completion autoen-

coders. Simulations and conclusions are respectively provided in Secs. C.4 and C.5. Un-

fortunately, due to space requirements, we had to omit many insightful explanations and

a large number of experiments that further support the proposed approach.

Notation: |A| denotes the cardinality of set A. [A]i,j is the (i, j)-th entry of matrix

A, whereas [B]i,j,k is the (i, j, k)-th entry of tensor B. Finally, A> is the transpose of

matrix A.
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C.2 Model and Problem Formulation

Consider L sources located in a geographical region of interest X ⊂ R2 and operating on

a certain frequency band. Let Υl(f) denote the transmit PSD of the l-th source and let

Hl(x, f) represent the frequency response of the channel between the l-th source and a

sensor with an isotropic antenna located at x ∈ X . For simplicity, assume that small-scale

fading has been averaged out; see also Remark 5. Both Υl(f) and Hl(x, f) are assumed

to remain constant over time, a realistic assumption provided that the measurements

described below are collected in an interval of shorter length than the channel coherence

time and time scale of changes in Υl(f).

If the L signals are uncorrelated, the PSD at x ∈ X is

Ψ(x, f) =
∑L

l=1 Υl(f)|Hl(x, f)|2 + υ(x, f)

with υ(x, f) the noise PSD of a generic sensor at location x, which models thermal noise,

background radiation noise, and interference from remote sources. A certain number of

devices, such as mobile users in a cellular communication network or spectrum sensors,

collect PSD measurements {Ψ̃(xn, f)}Nn=1 at N locations {xn}Nn=1 ⊂ X and finite set of

frequencies f ∈ F ; see also Remark 6. These measurements can be obtained using e.g.

periodograms or spectral analysis methods such as the Bartlett or Welch method [20].

These measurements are sent to a fusion center, which may be e.g. a base station, a

mobile user, or a cloud server, depending on the application. Given {(xn, Ψ̃(xn, f)), n =

1, . . . , N, f ∈ F}, the fusion center must obtain an estimate Ψ̂(x, f) of Ψ(x, f) at every lo-

cation x ∈ X and frequency f ∈ F . In spectrum cartography, function Ψ(x, f) is typically

referred to as the true map, whereas Ψ̂(x, f) is the estimated map or map estimate. The

algorithm or rule that provides a map estimate, which in this paper is a neural network,

is termed map estimator. The challenge is to exploit the spatial structure of propagation

phenomena so that the estimation error, quantified e.g. as
∑

f

∫
X |Ψ(x, f)− Ψ̂(x, f)|2dx,

is minimized for a certain N or, alternatively, the minimum N required to guarantee a

target estimation error is minimized.

To the best of our knowledge, all existing approaches to spectrum cartography are

based on interpolation algorithms that do not learn from data. In contrast, the next

section develops a novel data-driven methodology that learns the aforementioned structure

from a data set.

Remark 3 Sensors must determine their locations {xn}n with an error sufficiently small

relative to the scale of spatial variability of Ψ(x, f) across X . Thus, estimating small-scale

fading is more challenging than estimating shadowing since the coherence distance of the

former is comparable to the wavelength and typical communication bands of interest have

wavelengths in the order of centimeters.

Remark 4 The number of measurement locations may be significantly larger than the

number of sensors if the sensors move. Measurements collected at different locations may

be useful to estimate a spectrum map so long as the difference between measurement in-

stants is small relative to the time scale of the variations of the PSD map. The latter



C.3. PROPOSED DATA-DRIVEN CARTOGRAPHY 94

Figure C.1: Model setup and area discretization.

is highly dependent on the specific application. For example, one expects significant vari-

ations in DVB-T bands to occur in the scale of several months, whereas PSD maps in

LTE bands may change in the scale of milliseconds due to power control, mobility, and

interference.

C.3 Proposed Data-Driven Cartography

This section introduces a data-driven paradigm for spectrum cartography and develops a

deep learning algorithm that abides by this principle. To this end, Sec. C.3.1 starts by

reformulating the problem at hand as a tensor-completion task amenable to application

of deep neural networks. Subsequently, Sec. C.3.2 addresses unique aspects of tensor/-

matrix completion via deep learning. Finally, Secs. C.3.3 and C.3.4 respectively describe

how a deep neural network can be trained to learn the spatial structure of propagation

phenomena and how this task can be addressed via the notion of completion autoencoders.

C.3.1 Spectrum Cartography as a Tensor Completion Task

Observe that the value of N depends on the number and movement of the sensors relative

to the time-scale of temporal changes in Ψ(x, f); cf. Sec. C.2. In principle, one could

think of using a separate map estimator for each possible value of N . Each estimator could

be relatively simple since it would always take the same number of inputs. However, such

an approach would be highly inefficient in terms of memory, computation, and prone

to erratic behavior since each estimator is trained with a different data set. Thus, it is

more practical to rely on a single estimator that can accommodate arbitrary values of

N . A customary approach in deep learning for coping with inputs of variable lengths is

through recurrent neural networks [21], [22, Ch. 10]. Unfortunately, besides the difficulties

of training these networks, it is unclear how such an approach could effectively exploit

spatial information. For this reason, the selected approach in this work is to reformulate

the cartography problem as a tensor completion task amenable to a solution based on a

feedforward architecture [22, Ch. 6].

To this end, one must discretize X , a trick already applied in radio tomographic

imaging [23, 24] and spectrum cartography [13]. To introduce the appropriate notation,
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it will be briefly outlined next. Define an Ny × Nx rectangular grid over X , as depicted

in Fig. C.1. This grid comprises points ξi,j evenly spaced by ∆x and ∆y along the x-

and y-axes respectively, that is, the (i, j)-th grid point is given by ξi,j := [i∆x, j∆y]
>,

with i = 1, . . . , Ny, j = 1, . . . , Nx. For future usage, define Ai,j ⊂ {1, . . . , N} as the set

containing the indices of the measurement locations assigned to the (i, j)-th grid point by

the criterion of minimum distance, i.e., n ∈ Ai,j iff ||ξi,j − xn|| ≤ ||ξi′,j′ − xn||∀i′, j′ with

i′ 6= i and j′ 6= j.

This grid induces a discretization of Ψ(x, f) along the x variable. One can therefore

collect the true PSD values at the grid points in matrix Ψ(f) ∈ RNy×Nx , f ∈ F , whose

(i, j)-th entry is given by [Ψ(f)]i,j = Ψ(ξi,j, f). By letting F = {f1, . . . , fNf}, it is

also possible to stack these matrices along the third dimension to form the tensor Ψ ∈
RNy×Nx×Nf , where [Ψ]i,j,nf = Ψ(ξi,j, fnf ), nf = 1, . . . , Nf . For short, the term true map

will either refer to Ψ(x, f) or Ψ.

Similarly, one can collect the measurements in a tensor of the same dimensions. In-

formally, if the grid is sufficiently fine (∆x and ∆y are sufficiently small), it holds that

xn ≈ ξi,j ∀n ∈ Ai,j and, correspondingly, Ψ(xn, f) ≈ Ψ(ξi,j, f) ∀n ∈ Ai,j. It follows that,

Ψ(ξi,j, f) ≈ 1

|Ai,j|
∑
n∈Ai,j

Ψ(xn, f)

whenever |Ai,j| ≥ 1. Therefore, it makes sense to aggregate all the measurements assigned

to ξi,j as1

Ψ̃(ξi,j, f):=
1

|Ai,j|
∑
n∈Ai,j

Ψ̃(xn, f).

Conversely, when |Ai,j| = 0, there are no measurements associated with ξi,j, in which

case one says that there is a miss at ξi,j. Upon letting Ω ⊂ {1, . . . , Ny} × {1, . . . , Nx} be

such that (i, j) ∈ Ω iff |Ai,j| > 0, all (possibly aggregated) measurements Ψ̃(ξi,j, f) can

be collected in Ψ̃(f) ∈ RNy×Nx , defined as

[Ψ̃(f)]i,j =

{
Ψ̃(ξi,j, f) if (i, j) ∈ Ω

0 otherwise.

Note that misses have been filled with zeroes, but other values can be used.

When (i, j) ∈ Ω, the values of [Ψ̃(f)]i,j and [Ψ(f)]i,j differ due to the error introduced

by the spatial discretization as well as due to the measurement error incurred when

measuring Ψ(xn, f), n ∈ Ai,j. The latter is caused mainly by the finite time devoted by

sensors to take measurements.

As before, the matrices Ψ̃(f), f = 1, . . . , Nf can be stacked along the 3rd dimension

to form Ψ̃ ∈ RNy×Nx×Nf , where [Ψ̃]i,j,nf = [Ψ̃(fnf )]i,j. For short, this tensor will be

referred to as the sampled map.

The cartography problem stated in Sec. C.2 can now be reformulated as, given Ω and

Ψ̃, estimate Ψ.

1For simplicity, the notation implicitly assumes that xn 6= ξi,j ∀n, i, j, but this is not a requirement.
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C.3.2 Feedforward Completion Networks

The previous section reformulated the spectrum cartography problem as a tensor comple-

tion task. Since conventional neural networks cannot directly accommodate input misses

and set-valued inputs like Ω, this section explores the possibilities and motivates the

adopted approach.

But before that, a quick refresh on deep learning is in order. A feedforward deep

neural network is a function pw that can be expressed as the composition pw(Φ) =

p
(L)
wL(p

(L−1)
wL−1 (. . . p

(1)
w1(Φ))) of layer functions p

(l)
wl , where Φ is the input. Although there is

no commonly agreed definition of layer function, it is typically formed by concatenating

simple scalar-valued functions termed neurons that implement a linear function followed

by a simple non-linear function known as activation [22]. The term neuron stems from

the resemblance between these functions and certain simple functional models for natural

neurons. Similarly, there is no consensus on which values of L qualify for pw to be

considered a deep neural network. With vector wl containing the parameters of the l-th

layer, the parameters of the entire network can be collected in w:=[w>1 , . . . ,w
>
L ]> ∈ RNw .

These parameters are learned using a training set in a process termed training.

The rest of this section as well as Sec. C.3.3 carefully delineate how a deep neural net-

work can be trained to perform data-driven spectrum cartography. Occasional references

to works in areas such as collaborative filtering and image inpainting will provide insight

and motivate the design decisions. On the other hand, Sec. C.3.4 will address the design

of pw.

Although the training set construction is detailed in Sec. C.3.3, suppose by now that

a set of T training examples {(Ψ̃t,Ωt)}Tt=1 is given. Here, {Ψ̃t}t is a collection of sampled

maps acquired in different environments and Ωt the corresponding sampling set.

The desired estimator should obtain Ψ as a function of Ψ̃ and Ω. But regular neural

networks cannot directly accommodate set-valued inputs and missing entries. For this

reason, [25] proposes filling the missing entries in Ψ̃ by solving

minimize
{χt}t,w

1

T

T∑
t=1

‖PΩt (χt − pw(χt))‖2
F , (C.1)

[χt]i,j,nf = [Ψ̃t]i,j,nf ∀nf ,∀(i, j) ∈ Ωt,

where ||A||2F :=
∑

i,j,nf
[A]2i,j,nf is the Frobenius norm of tensor A and PΩ(A) is defined as

[PΩ(A)]i,j,nf = [A]i,j,nf if (i, j) ∈ Ω and [PΩ(A)]i,j,nf = 0 otherwise. The map estimate

produced by this method is directly the minimizer χt of (C.1). Observe that if there

exists a value of w for which pw becomes the identity map, i.e. χ = pw(χ), ∀χ, then the

optimum of (C.1) is attained regardless of the value of the entries [χt]i,j,nf , (i, j) /∈ Ωt,

which would render this estimator useless. Thus, some form of capacity/complexity control

is necessary [26]. For instance, one can (i) impose constraints on w, (ii) add a regular-

ization term to the objective function, or (iii) limit capacity through the design of the

network architecture. Approach (iii) will be discussed further in Sec. C.3.4. To simplify

the exposition, expressions in this paper will not display constraints or regularizers, but

it is understood that the user may include them if necessary.
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After w = ŵ has been obtained by applying (C.1) with sufficiently large T , one can

complete further tensors Ψ̃t by setting w in (C.1) to this learned vector ŵ and optimize

only with respect to {χt}t, which is computationally simpler.

The number of optimization variables in (C.1) is Nw + NxNyNfT , where Nw is the

length of w. This number is prohibitive for high T , as required for training deep neural

networks. Besides, even with the aforementioned simplified approach that only optimizes

with respect to {χt}t, a large number of forward and backward backpropagation passes [22,

Ch. 6] are required to estimate each map. Thus, this approach is not suitable for real-time

implementation, as required in spectrum cartography applications.

To alleviate this limitation, a simple alternative would be to just feed Ψ̃ to the neural

network and train by solving

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̃t)

)∥∥∥2

F
. (C.2)

Although the missing entries were filled with zeros in Sec. C.3.1, one can alternatively

use other real numbers. After (C.2) is solved, Ψ̃ can be completed just by evaluating

pw(Ψ̃), which requires a single forward pass. Besides, solving (C.2) involves just Nw

optimization variables. However, because the completion step pw(Ψ̃) does not involve Ω,

poor performance is expected since the network cannot distinguish missing entries from

measurements close to the filling value.

In the application at hand, one could circumvent this limitation by expressing the

entries of Ψ̃ in natural power units (e.g. Watt) and filling the misses with a negative

number such as -1. Unfortunately, the usage of finite-precision arithmetic would introduce

large errors in the map estimates and is problematic in our experience. For this reason,

expressing Ψ̃ in logarithmic units such as dBm is preferable. However, the problem of

distinguishing missing entries persists since logarithmic units are not confined to be non-

negative.

A more practical approach is to complement the input of the network with a binary

mask that indicates which entries are observed, as proposed in the image inpainting

literature [27]. In this case, the binary mask MΩ ∈ {0, 1}Ny×Nx associated with the

sampling set Ω is given by [MΩ]i,j = 1 if (i, j) ∈ Ω and [MΩ]i,j = 0 otherwise.

To simplify notation, let Ψ̌ ∈ RNy×Nx×Nf+1 denote a tensor obtained by concatenating

Ψ̃ and MΩ along the third dimension. The neural network can therefore be trained as

minimize
w

1
T

∑T
t=1

∥∥∥PΩt

(
Ψ̃t − pw(Ψ̌t)

)∥∥∥2

F
(C.3)

and, afterwards, a tensor Ψ̃ can be completed just by evaluating pw(Ψ̌). Then, this

scheme is simple to train, inexpensive to test, and exploits information about the location

of the misses.

C.3.3 Learning in Real-World Scenarios

A key novelty in this paper is to obtain map estimators by learning from data. This

section describes how to construct a suitable training set in the application at hand.
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The first consideration pertains to ill-conditioning issues arising when the number of

frequencies Nf in F is large, as will typically be the case. Suppose that the first layer

of pw is fully connected and has NN neurons. Its total number of parameters becomes

(NyNxNf + 1)NN plus possibly additional parameters of the activation functions. Other

layers will experience the same issue to different extents. Since T must be comparable to

the number of unknowns to train the network effectively, the impact of a large Nf is to

drastically limit the number of layers or neurons that can be used.

Previous approaches in spectrum cartography experienced similar issues, which were

often addressed by the introduction of parametric models along the frequency domain;

see e.g. [8,16]. Although such an approach can be similarly adopted in the present work,

thereby reducing the number of channels at the neural network input from Nf + 1 to a

much smaller number, it will be argued next that directly separating the problem across

frequencies may be preferable when training a deep neural network. The idea is that

propagation phenomena at similar frequencies are expected to be similar. Building upon

this principle, pw can operate separately at each frequency f . This means that training

can be accomplished through

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥∥PΩt

(
Ψ̃t(f)− pw(Ψ̌t(f))

)∥∥∥2

F
, (C.4)

where Ψ̌t(f) ∈ RNy×Nx×2 is a tensor with first frontal slab given by Ψ̃t(f) and second

frontal slab given by MΩt .

Observe that the number of variables is now reduced by a factor of Nf whereas the

“effective” number of training examples has been multiplied by Nf ; cf. number of sum-

mands in (C.4). This is a drastic improvement especially when Nf takes values such as

512 or 1024, as customary in spectral analysis. Thus, such a frequency separation allows

an increase in the number of neurons per layer or (typically more useful [22, Ch. 5])

the total number of layers for a given T . Although such a network would not exploit

structure across the frequency domain, the fact that it would be better trained is likely

to counteract this limitation in many setups.

The next step is to construct the data set, for which three approaches are discussed

next:

C.3.3.1 Synthetic Training Data

Since collecting a large number of training maps may be slow or expensive, one can in-

stead generate maps using a mathematical model or simulator that captures the structure

of the propagation phenomena; see e.g. [28]. Fitting pw to data generated by that model

could, in principle, yield an estimator that effectively exploits the path loss and shad-

owing structure. The idea is therefore to generate T maps {Ψt(x, f)}Tt=1 together with

T sampling sets {Ωt}Tt=1. Afterwards, {Ψ̃t}Tt=1 and {Ψ̌t}Tt=1 can be formed as described

earlier. It is possible to add artificially generated noise to the synthetic measurements in

Ψ̌t to model the effect of measurement error. This would train the network to counteract

the impact of such error, along the lines of denoising autoencoders [22, Ch. 14]. The

advantage of this approach is that one has access to the ground truth, i.e., one can use
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the true maps Ψt as targets. Specifically, the neural network can be trained on the data

{(Ψ̌t,Ψt)}Tt=1 by solving

minimize
w

1

TNf

T∑
t=1

∑
f∈F

∥∥Ψt(f)− pw(Ψ̌t(f))
∥∥2

F
. (C.5)

If the model or simulator is sufficiently close to the reality, completing a real-world map

Ψ̌(f) as pw(Ψ̌(f)) should produce an accurate estimate.

C.3.3.2 Real Training Data

In practice, real maps may be available for training. However, in most cases, it will not

be possible to collect measurements at all grid points before the map changes. Besides, it

is not possible to obtain the entries of Ψ but only measurements of it. This means that

a real training set is of the form {Ψ̌t, t = 1, . . . , T}.
For training, one can plug this data directly into (C.4). However, pw may then focus

on learning just the values {[Ψ̃t(f)]i,j, (i, j) ∈ Ωt}, as would happen e.g. when pw is the

identity mapping. To counteract this trend, one can use one part of the measurements

as the input and another part as the output (target). For each t, construct the Qt pairs

of (not necessarily disjoint) subsets Ω
(I)
t,q ,Ω

(O)
t,q ⊂ Ωt, q = 1, . . . , Qt, e.g by drawing a given

number of elements of Ωt uniformly at random without replacement. Using these subsets,

subsample Ψ̃t(f) to yield Ψ̃
(I)

t,q (f):=P
Ω

(I)
t,q

(Ψ̃t(f)) and Ψ̃
(O)

t,q (f):=P
Ω

(O)
t,q

(Ψ̃t(f)). With these

TNf

∑
tQt training examples, one can think of training as

minimize
w

1
TNf

∑
tQt

∑
f∈F

∑T
t=1

∑Qt
q=1

∥∥∥P
Ω

(O)
t,q

(
Ψ̃

(O)
t,q (f)− pw

(
Ψ̌

(I)

t,q (f)
))∥∥∥2

F
, (C.6)

where Ψ̌
(I)

t,q (f) has Ψ̃
(I)
t,q (f) and M

Ω
(I)
t,q

as frontal slabs.

C.3.3.3 Hybrid Training

In practice, one expects to have real data, but only in a limited amount. It makes sense

to apply the notion of transfer learning [22, Ch. 15] as follows: first, learn an initial

parameter vector ŵ by solving (C.5) with synthetic data. Second, solve (C.6) with real

data, but using ŵ as initialization for the optimization algorithm. The impact of choosing

this initialization is that the result of solving (C.6) in the second step will be closer to a

“better” local optimum than if a worse initialization were adopted.

C.3.4 Deep Completion Autoencoders

This section proposes a deep neural network architecture based on convolutional autoen-

coders [29].

A (conventional) autoencoder [22, Ch. 12] is a neural network pw composed of two

parts, an encoder εw and a decoder δw, which satisfy pw(Φ) = δw(εw(Φ)) ∀Φ. The output

of the encoder λ:=εw(Φ) ∈ RNλ is referred to as the code or vector of latent variables and

is of a typically much lower dimension than the input Φ. An autoencoder is trained so
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Figure C.2: Estimation with Nλ = 4 latent variables: (left) true map, (middle) sampled

map portraying grid points {ξi,j} with |Ai,j| > 0, and (right) estimated map.

that δw(εw(Φ)) ≈ Φ ∀Φ, which forces the encoder to compress the information in Φ into

the Nλ variables in λ. The selection of Nλ will be addressed later.

A completion autoencoder adheres to the same principles as conventional autoen-

coders except for the fact that the encoder must determine the latent variables from a

subset of the entries of the input. If a mask is used, the transfer function must satisfy

Φ ≈ δw(εw(PΩ(Φ),MΩ)) ∀Φ and for a sampling set Ω that preserves sufficient infor-

mation for reconstruction. If Ω does not satisfy this requirement, then reconstructing Φ

is impossible regardless of the technique used. In the application at hand and with the

notation introduced in previous sections, the above expression becomes Ψ̃ ≈ δw(εw(Ψ̌)).

As indicated earlier, autoencoders are useful only when most of the information in

the input can be condensed in Nλ variables, i.e., when the possible inputs lie close to

a manifold of dimension Nλ. To see that this is the case in spectrum cartography, an

illustrating toy example is presented next. Suppose that there are two sources, each one

with a fixed (yet possible different) power, that can be placed at arbitrary positions in X
and suppose that propagation occurs in free space. All possible spectrum maps in this

setup are defined by Nλ = 4 quantities, which correspond to the x and y coordinates of

the two sources. Fig. C.2 illustrates this effect, where the left panel of Fig. C.2 depicts

a true map Ψ and the right panel shows its estimate using a completion autoencoder

with Nλ = 4. The quality of the estimate clearly supports the aforementioned manifold

hypothesis. Details about the network and simulation setup are provided in Sec. C.4. In

a real-world scenario, there may be more than two sources, their transmit power may not

always be the same, and there are shadowing effects, which means that Nλ ≥ 4 will be

required.

Since space limitations prevent us from detailing every design decision, the rest of this

section will be confined to outline the main aspects of the architecture developed in this

work and summarized in Fig. C.3.

The encoder mainly comprises convolutional and pooling layers. The motivation for

convolutional layers is three-fold: (i) relative to fully connected layers, they severely re-

duce the number of parameters to train and, consequently, the amount of data required.

Despite this drastic reduction, (ii) convolutional layers are still capable of exploiting the

spatial structure of maps and (iii) they result in shift-invariant transfer functions, a de-

sirable property in the application at hand since moving the sources in a certain direction
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Figure C.3: Autoencoder architecture.

Table C.1: Parameters of the proposed network.

Layers Parameters

Conv2D/

Conv2DTranspose
Kernel size = 3 × 3, stride = 1, activation = PLReLU,

64 filters

AveragePooling2D Pool size = 2, stride = 2

Upsampling2D Up-sampling factor = 2, bilinear interpolation

Dense 64 neurons (encoder), 1024 neurons (decoder)

Figure C.4: Power map estimate with the proposed neural network. (left): true map,

(center left): sampled map portraying the locations of the grid points {ξi,j} where |Ai,j| >
0; (center right) and (right): estimated maps. White areas represent buildings.

must be corresponded by the same movement in the estimated map. These layers compute

[Φ(O)]i,j,cout =

Cin∑
cin=1

k∑
u=−k

k∑
v=−k

[Fcout ]u,v,cin [Φ(I)]i−u,j−v,cin ,



C.4. NUMERICAL EXPERIMENTS 102

where Φ(O) is the output tensor, Φ(I) is the input tensor, and Fcout is the cout-th filter

(or kernel), which is of size 2k + 1 × 2k + 1. Layer indices were omitted in order not to

overload notation. The activation functions used here are parametric leaky rectified linear

units (PLReLUs) [30] whose leaky parameter is also trained.

On the other hand, average pooling layers down-sample the outputs of convolutional

layers, thereby condensing the information gradually in fewer features. Additionally,

pooling features are approximately shift invariant as well [22, Ch. 9].

The last layer of the encoder is fully-connected. Since the previous layers were con-

strained to be convolutional or pooling layers, a final fully-connected layer is included in

the encoder so that the latent variables can capture arbitrary relations among the shift

invariant features obtained by the output of the second-to-last layer.

As usual in autoencoders, the decoder follows a “reverse” architecture relative to the

encoder. Wherever the encoder has a convolutional layer, the decoder has a correspond-

ing convolution transpose layer [31], sometimes called “deconvolutional” layer. Likewise,

the pooling layers of the encoder are matched with up-sampling layers, which use bilinear

interpolation in the architectures that we investigated. Finally, the fully connected layer

of the encoder is paired with a fully connected layer in the decoder. The overall network

architecture is summarized in Fig. C.3 and Table C.1.

C.4 Numerical Experiments

This section validates the proposed framework and network architecture through nu-

merical experiments. Due to space limitations, the focus is on the most fundamental

cartographic aspects, where the main novelty resides. Thus, F is set to the single-

ton F = {900 MHz}. X is a square area of side 100 m, discretized into a grid with

Ny = Nx = 32. The two considered transmitters have height 1.5 m and transmit power

11 and 7 dBm over a bandwidth of 5 MHz.

Two classes of maps are generated. First, T = 4 · 105 maps are obtained where

the two transmitters are placed uniformly at random and where propagation adheres to

the Gudmundson model [32] with pathloss exponent 3, gain at unit distance −30 dB,

and shadowing correlation E {Hl(x1, f)Hl(x2, f)} = σ2
sh0.95||x1−x2|| with σ2

sh = 10 dB2.

Sensors are distributed uniformly at random without replacement across the grid points.

A separate set of maps is generated using Remcom’s Wireless InSite software in an urban

scenario. Sensors are distributed uniformly at random without replacement across the grid

points that lie on the streets. To better observe the impact of propagation phenomena,

υ(x, f) is set to 0. Each measurement Ψ̃(ξi,j, f) is obtained by adding zero-mean Gaussian

noise with standard deviation 1 dB to Ψ(ξi,j, f), (i, j) ∈ Ω.

The network proposed in Sec. C.3.4 is implemented in TensorFlow and trained using

the ADAM solver with learning rate 10−4. Due to lack of space, only one training ap-

proach can be analyzed, in this case (C.5) with {(Ψ̌t,Ψt)}Tt=1 the Gudmundson data set.

The algorithm is compared against the state-of-the-art competitors described next, whose

parameters were tuned to approximately optimize their performance in the second exper-

iment. (i) The kriging algorithm in [1] with regularization parameter 10−5 and Gaussian



C.4. NUMERICAL EXPERIMENTS 103

Figure C.5: Comparison with state-of-the-art alternatives. Even though the parameters

of the competing algorithms were tuned for this specific experiment, the proposed network

offers a markedly better performance.

radial basis functions with parameter σK :=3
√

∆yNy∆xNx/|Ω|, which is approximately 3

times the mean distance between two points at which measurements have been collected.

(ii) The multikernel algorithm in [17] with 20 Laplacian kernels with parameter uniformly

spaced between [0.1σK , σK ] and regularization parameter 10−4. As a benchmark, (iii)

the K-nearest neighbors (KNN) algorithm with K = 5 is also shown.

The first experiment shows an estimated map using the proposed algorithm. The first

panel of Fig. C.4 depicts the true map, which was generated using the Remcom data

set. The second panel shows Ψ̃ whereas the third and fourth show map estimates using

different numbers of measurements. Observe that with just |Ω| = 52 measurements, the

estimate is already of a high quality. Note that details due to diffraction or the directivity

of the antennas are not reconstructed because the Gudmundson model used to train the

network does not capture them and therefore the network did not learn these features.

This illustrates the need for training over data sets that model the reality as close as

possible.

The second experiment compares the root mean square error

RMSE =

√
E{||Ψ− Ψ̂||2F}

NyNx

,

of the aforementioned algorithms, where Ψ is the true map, drawn at random from the

Gudmundson data set, Ψ̂ is the estimated map, and E{·} denotes expectation over maps,

noise, and sensor locations. From Fig. C.5, the proposed scheme performs approximately

a 20 % better than the next competing alternative. The parameters of the competing

algorithms were tuned for this specific experiment, so their performance as in Fig. C.5 is

optimistic. In practice one must expect a greater performance gap.
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C.5 Conclusions

Learning propagation features from data yields spectrum cartography algorithms that

require fewer measurements to attain a target performance. Deep neural networks can

bring this idea into practice and offer a performance that beats the state-of-the-art. Future

work will design more sophisticated network architectures relying on larger data sets.
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