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Abstract —Spectrum cartography constructs maps of metrics such as channel

gain or received signal power across a geographic area of interest using spa-

tially distributed sensor measurements. Applications of these maps include

network planning, interference coordination, power control, localization, and

cognitive radios to name a few. Since existing spectrum cartography tech-

niques require accurate estimates of the sensor locations, their performance

is drastically impaired by multipath affecting the positioning pilot signals, as

occurs in indoor or dense urban scenarios. To overcome such a limitation,

this paper introduces a novel paradigm for spectrum cartography, where esti-

mation of spectral maps relies on features of these positioning signals rather

than on location estimates. Specific learning algorithms are built upon this

approach and offer a markedly improved estimation performance than existing

approaches relying on localization, as demonstrated by simulation studies in

indoor scenarios.

Keywords—Spectrum cartography, location-free cartography, kernel-based learning,

spectrum map.

B.1 Introduction

Spectrum cartography constructs maps of a certain channel metric, such as received sig-

nal power, power spectral density (PSD), or channel gain over a geographical area of

interest by relying on measurements collected by radio frequency (RF) sensors [1–3]. The

obtained maps are of utmost interest in a number of tasks in wireless communication

networks, such as network planning, interference coordination, power control, and dy-

namic spectrum access [4–6]. For instance, power maps can be useful in network planning

since the former indicate areas of weak coverage, thus suggesting locations where new

base stations must be deployed. Since PSD maps characterize the distribution of the RF

signal power per channel over space, they can play a major role in increasing frequency

reuse to mitigate interference. These maps may also be of interest to speed up hand-off

in cellular networks since they enable mobile users to determine the power of all channels

at a given location without having to spend time measuring it. Additional use cases may

include cognitive radios, where secondary users aim at exploiting underutilized spectrum

resources in the space-frequency-time domain, or source localization, where the locations

of certain transmitters may be estimated by inspecting a map [2].
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Existing methods for mapping RF power apply spatial interpolation or regression

techniques to power measurements collected by spatially distributed sensors. Some of

these methods include kriging [1, 7, 8], orthogonal matchning pursuit [3], matrix com-

pletion [9], dictionary learning [10, 11], sparse Bayesian learning [12], or kernel-based

learning [13, 14]. Since these works can only map power distribution across space but

not across frequency, different schemes have been devised to construct PSD maps, for

instance by exploiting the sparsity of power distributions over space and frequency with a

basis expansion model [2,15] or by leveraging the framework of kernel-based learning [4].

Rather than mapping power, other families of methods construct channel-gain maps us-

ing Kriged Kalman filtering [16], non-parametric regression in reproducing kernel Hilbert

spaces (RKHSs) [17], low rank and sparsity [18], or hidden Markov random fields [19].

All the aforementioned schemes require accurate knowledge of the sensor locations.

For this reason, they will be collectively referred to as location-based (LocB) cartography.

However, location is seldom known in practice and therefore must be estimated from fea-

tures such as the received signal strength, the time (difference) of arrival (T(D)oA), or

the direction of arrival (DoA) of positioning pilot signals transmitted by satellites (e.g.

in GPS) or terrestrial base stations (e.g. in LTE or WiFi [20]) [21, 22]. Unfortunately,

accurate location estimates are often not available in practice due to propagation phe-

nomena affecting those pilot signals such as multipath, which limits the applicability of

existing cartography techniques, especially in indoor and dense urban scenarios. To see

the intuition behind this observation, Figs. B.1a and B.1b respectively show the x and

y coordinates of the location estimates obtained by applying a state-of-the-art localiza-

tion algorithm to TDoA measurements of 5 pilot signals received in free space (details of

the specific simulation setting can be found in Sec. B.5). On the other hand, Figs. B.1c

and B.1d depict the same estimates but in an indoor propagation scenario. As observed,

the estimates in the second case are neither accurate nor smooth across space, which

precludes any reasonable estimate of a spectrum map based on them.

To counteract this difficulty, there are three main types of indoor positioning sys-

tems [23]: (i) Those based on ultra-wideband (UWB) [24–26], which require a dedicated

infrastructure and relatively high costs, e.g. synchronized anchor nodes in the area where

the map has to be constructed. Therefore, localization cannot be carried out in an area

where such hardware is not present. (ii) Other indoor positioning systems are based on

fingerprinting [23, 27, 28], which involves a manual collection and storage of a dataset.

This dataset may comprise the measured power of multiple beacons at a set of known

locations. Note that this process is time consuming and typically expensive because a

human or robot should physically go through several known locations to take measure-

ments. Furthermore, if there are significant changes in the propagation environment,

these methods would require the acquisition of a new dataset. (iii) There exist other

indoor positioning systems that combine UWB or fingerprinting with ultrasound [29] or

RFID [30]. Thus, they inherit the limitations of (i) and (ii) and require furthermore

special sensors and/or line-of-sight propagation conditions. To sum up, all existing car-

tography schemes require accurate location information, which is not available in dense

multipath and indoor scenarios when there are no special localization infrastructure or

fingerprinting datasets.
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The main contribution of this paper is to address this limitation by proposing the

framework of location-free (LocF) cartography. The key observation is that inaccurate

location estimates introduce significant errors in spectrum map estimation. To bypass

this limitation, the proposed approach obtains spectrum maps indexed directly by (or as

a function of) features of the received pilot signals. Although many algorithms can be

devised within this framework, the present paper develops an algorithm based on kernel-

based learning for the sake of exposition. This is not only because of the simplicity,

flexibility, and good performance of kernel-based estimators, but also because they have

well-documented merits in spectrum cartography [4,15]. Similarly, the discussion focuses

on constructing power maps, but the proposed paradigm carries over to other metrics

such as PSD. Remarkably, as a byproduct of skipping the localization step, the resulting

cartography algorithm is typically computationally less expensive than its LocB counter-

parts and does not require additional localization infrastructure or the costly creation of

fingerprinting datasets. The second main contribution is a design of pilot signal features

tailored to multipath environments. The third contribution is a special technique to ac-

commodate scenarios where a sensor can only extract a subset of those features due to

low signal-to-noise ratio (SNR). Finally, the proposed LocF cartography scheme is studied

through Monte Carlo simulations in realistic propagation environments. As expected, the

proposed scheme outperforms LocB cartography in multipath scenarios, but traditional

LocB approaches are still preferable when accurate location estimates are available.

The rest of this paper is structured as follows: Sec. B.2 describes the system model,

states the problem, and reviews LocB cartography. Sec. B.3 introduces LocF cartography

along with the proposed map estimation algorithm, whereas Sec. B.4 deals with feature

design. Numerical tests are presented in Sec. B.5, and conclusions in Sec. B.6.

Notation: Scalars are denoted by lowercase letters. Bold uppercase (lowercase) letters

denote matrices (column vectors), IN is the N × N identity matrix and 1 is the vector

of all ones of appropriate dimension. The symbol  :=
√
−1 is the imaginary unit, (·)∗

stands for the complex conjugate, while ∗ denotes convolution. Furthermore, operators

(·)> and || · ||F represent transposition and the Frobenius norm, respectively.

B.2 Problem Formulation and LocB Cartography

This section formulates the general spectrum cartography problem and reviews the basics

of LocB cartography.

The goal is to determine the power p(x) of a certain channel, termed channel-to-

map (C2M), at every location x ∈ X of a geographical region of interest X ⊂ Rd, with

d = 2 or 3. For example, this C2M can be an uplink or downlink channel of a cellular

network as well as a radio or TV broadcasting channel. To this end, a collection of

sensors gather N measurements at locations {xn}Nn=1 ⊂ X not necessarily known. The

noisy measurement of the power p(xn) at location xn will be represented as p̃n. Since

the sensors collect measurements at multiple locations in X , the number of measurements

may be significantly greater than the number of sensors.
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(a) (b)

(c) (d)

Figure B.1: Estimation of spatial coordinates using TDoA: (a)-(b) in free space, (c)-(d)

indoor where the solid black lines represent the walls of the building; the black dots

represent the locations of the anchor base stations. The color of each pixel represents

the value of the estimated location coordinate at each point in the 150 × 150 grid area.

Because location estimates in (a)-(b) coincide with the true locations, they can act as

colorbars to the estimates in (c)-(d).

In LocB cartography [1–4, 8–12, 14, 15, 17–19], a fusion center is ideally given pairs

{(xn, p̃n)}Nn=1, which include the exact sensor locations {xn}Nn=1, and obtains a function

estimate p̂(x) that provides the power of the C2M at any query location x ∈ X . With

this function, a node at location x can determine the power of the C2M if it knows

x. In practice, however, location is typically unknown and hence the sensor at the n-th

measurement point must estimate xn by relying on pilot signals {yl,n[k]}Ll=1, where yl,n[k]

denotes the k-th sample of the pilot signal transmitted by the l-th base station1 and

received at the n-th measurement point. For convenience, form the L×K matrix Y n whose

(l, k)-th entry is yl,n[k]. Note that these pilot signals are generally transmitted through

a separate channel, not necessarily the C2M. However, both channels may coincide, as it

occurs in certain cellular communication standards.

1Although the discussion assumes for simplicity that the pilot signals are transmitted by terrestrial

base stations, the proposed scheme can also be applied when these pilot signals are transmitted by

satellites.
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From Y n, the sensor at the n-th measurement point obtains the estimate x̂n :=

x̂(Y n) of xn by means of some localization algorithm [21, 22]. A fusion center then uses

{(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function p(x). Therefore, if the location

estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a node at an unknown query location

wishes to determine the power of the C2M, it will use the pilot signals Y to obtain an

estimate x̂ := x̂(Y ) of its location and will evaluate the map estimate as p̂(x̂). In this

case, Y is a matrix whose (l, k)-th entry is given by the k-th sample of the l-th pilot signal

yl[k] at the query location. Thus, such an estimation has two sources of error: first, the

location estimation error in x̂ and, second, the map estimation error in p̂(x).

Remark 2 One may argue that a node can determine the power of the C2M at its loca-

tion more efficiently by measuring it rather than by receiving the pilot signals, applying

a localization algorithm, and evaluating the map. Whereas this may be the case for a

single C2M, if the aim is to determine the PSD, the power of many C2Ms, or the im-

pulse response, then the associated measurement time may be prohibitive, which favors the

adoption of spectrum cartography approaches.

B.3 Location-Free Cartography

This section proposes LocF cartography, which bypasses the localization step involved

in all existing cartography approaches. To this end, the LocF cartography problem is

formulated as a function estimation task in Sec. B.3.1 and solved via kernel-based learning

in Sec. B.3.2.

B.3.1 Map Estimate as a Function Composition

As detailed in the previous section, existing spectrum cartography techniques are heavily

impaired by localization errors since the maps they construct are functions of noisy loca-

tion estimates. The main idea of the proposed framework is to bypass such a dependence.

To this end, it is worth interpreting LocB cartography from a more abstract perspec-

tive. As detailed in Sec. B.2, the LocB map estimate is of the form p̂(x̂) with x̂ := x̂(Y )

denoting the output of the selected localization algorithm when the pilot signals are given

by Y ∈ Y . Thus, this estimate can be seen as a function of Y , i.e. p̂Y (Y ) := p̂(x̂(Y )),

which can be expressed schematically as:

Y
x̂

−−−→ X
p̂

−−−→ R
Y −−−→ x̂(Y ) −−−→ p̂(x̂(Y )).

(B.1)

As mentioned in Sec. B.2, existing (LocB) cartography approaches obtain an estimate

p̂ of p using the data {(x̂(Y n), p̃n)}Nn=1 for instance by searching for a function in an

RKHS [4, 13, 14]. When x̂(Y ) is a reasonable estimate of the location x at which Y

has been observed, such a LocB approach works well. However, due to multipath prop-

agation effects impacting the pilot signals in Y , x̂(Y ) may be very different from x,

which drastically hinders the estimation of p. Thus, in those cases where the location
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(a) (b)

Figure B.2: Multi-lateration using ToA measurements with circles as possible sensor

locations: (a) consistent ToA with the sought sensor location being the intersection of the

circles (black square) and (b) inconsistent ToA measurements. The red stars represent

the locations of the anchor base stations.

estimates {x̂(Y n)}Nn=1 are noisy, the resulting estimate p̂, and consequently p̂Y , will be

correspondingly noisy.

Since the source of such an error is the dependency of p̂Y (Y ) = p̂(x̂(Y )) on the esti-

mated location x̂(Y ), one could think of bypassing this dependence by directly estimating

p̂Y as a general function of Y :

Y
p̂Y
−−−→ R

Y −−−→ p̂Y (Y ).
(B.2)

When pursuing an estimate of this general form, p̂Y (Y ) would not be confined to depend

on Y only through the estimated location. However, finding such an estimate given

{(Y n, p̃n)}Nn=1 by searching over a generic class of functions such as an RKHS would be

extremely challenging due the so-called curse of dimensionality [31, 32]. To intuitively

understand this phenomenon, note that the number of input variables of function p̂Y (Y )

is LK, typically in the order of hundreds or thousands. Since learning a multivariate

function up to a reasonable accuracy generally requires that the number of data points

be several orders of magnitude larger than the number of input variables, this approach

would need N to be significantly larger than LK, and therefore prohibitively large.

To summarize, the structure imposed by (B.2) is too generic, whereas the one imposed

by (B.1) is too restrictive. To attain a sweet spot in this trade-off, it is worth decomposing

x̂(Y ) as detailed next. Recall that x̂(Y ) is the result of applying a localization algorithm

to the pilot signals Y . For most existing algorithms, x̂(Y ) can be thought of as the

composition of two functions: a function φ : Y → F ⊂ RM that obtains M features from

Y , such as T(D)oA or DoA, and a function l̂ : F → X , that provides a location estimate
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l̂(φ) given a feature vector φ ∈ F . In this case, p̂Y (Y ) can be decomposed as:

Y
φ

−→ F
l̂

−→ X
p̂

−→ R

Y −→ φ(Y ) −→ l̂(φ(Y )) −→ p̂(̂l(φ(Y ))).
(B.3)

Observe that the reason why the location estimate x̂(Y ) = l̂(φ(Y )) is inaccurate in

multipath environments is because the algorithm that evaluates l̂ adopts a model where

there is a certain “agreement” among features φ(Y ). To see this, consider Fig. B.2,

which illustrates the task of estimating the location of a sensor in an area with L = 3

base stations. The features in φ ∈ RM , with M = L = 3, used in this example are

noiseless ToA features. For each pilot signal, there is a circle centered at the base station

and whose radius equals c times the ToA, where c is the speed of light. Thus, when

there is no multipath, the ToA features are accurate and the sensor to be located must

lie in the intersection of the three circles, as shown in Fig. B.2a. Thus, the localization

algorithm (embodied in l̂) just needs to return the location at which these circles intersect.

However, in multipath environments, the ToA features obtained from Y do not generally

equal the time it takes for an electromagnetic wave to propagate from the corresponding

base station to the sensor. As a result, the aforementioned circles will not generally

intersect; see Fig. B.2b. In other words, the expected agreement among features is absent

and, hence, the localization algorithm will return an inaccurate estimate of the position.

In view of these arguments, the key idea in this paper is to pursue estimates p̂Y (Y )

of the form:

Y
φ

−−−→ F
d̂

−−−→ R

Y −−−→ φ(Y ) −−−→ d̂(φ(Y )).
(B.4)

In this setting, the problem is find an estimate d̂(φ) given {(φn, p̃n)}Nn=1, where φn :=

φ(Y n). By following this approach, the estimated map p̂(Y ) = d̂(φ(Y )) does not involve

a high number of inputs as in (B.2) and does not depend on the location estimate as

in (B.1). For the latter reason, this approach will be referred to as LocF cartography.

Since this approach does not need the agreement among entries of φ(Y ) illustrated in

Fig. B.2b, it is expected to outperform traditional spectrum cartography methods when

such an agreement is not present, as occurs in multipath environments.

B.3.2 Kernel-based Power Map Learning

This section applies kernel-based learning to provide an algorithm capable of learning the

function d̂ introduced in Sec. B.3.1.

Given pairs {(φn, p̃n)}Nn=1, where φn := φ(Y n), the problem can be informally stated

as finding a function d̂ that satisfies two conditions: CO1) d̂ fits the data, that is,

d̂(φn) ≈ p̃n, n = 1, . . . , N ; and CO2) d̂ generalizes well to unseen data, i.e., if a new pair

(φN+1, p̃N+1) is received, then d̂(φN+1) ≈ p̃N+1. A popular approach to solve the afore-

mentioned function learning problem is kernel-based learning, mainly due to its simplicity,

universality, and good performance [33]. Furthermore, multiple works have demonstrated

the merits of this framework for spectrum cartography; see Sec. B.1.
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The first step when attempting to learn a function is to specify in which family of

functions d̂ must be sought. In kernel-based learning, one seeks d̂ in a set known as a

reproducing-kernel Hilbert space (RKHS), which is given by:

H :=

{
d : d(φ) =

∞∑
i=1

αiκ(φ,φ′i), φ
′
i ∈ F , αi ∈ R

}
, (B.5)

where κ : F ×F → R is a symmetric and positive definite function known as reproducing

kernel [34]. Although kernel methods can use any reproducing kernel, a common choice

is the so-called Gaussian radial basis function κ(φ,φ′) := exp [−‖φ− φ′‖2/(2σ2)], where

σ > 0 is a parameter selected by the user. As any Hilbert space, H has an associated

inner product and norm. For an RKHS function d(φ) =
∑∞

i=1 αiκ(φ,φ′i), the latter is
given by:

‖d‖2
H :=

∞∑
i=1

∞∑
j=1

αiαjκ(φ′i,φ
′
j). (B.6)

Kernel-based learning typically solves a problem of the form:

d̂ = arg min
d∈H

1

N

N∑
n=1

L (p̃n,φn, d(φn)) + ω (‖d‖H) , (B.7)

where L is a loss function quantifying the deviation between the observations {p̃n}Nn=1 and

the predictions {d(φn)}Nn=1 returned by a candidate d; and ω is an increasing function.

The first term in (B.7) promotes function estimates satisfying CO1. The second term

promotes estimates satisfying CO2 by limiting overfitting. Intuitively, ‖ · ‖H captures a

certain form of smoothness that limits the variability of d.

Although there exist different candidate functions for L and ω in kernel-base learning,

typical choices are L(p̃n,φn, d(φn)) = (p̃n − d(φn))2 and ω(‖d‖H) = λ‖d‖2
H, where λ > 0

is a regularization parameter that balances smoothness and goodness of fit. For this

choice, d̂ is termed kernel ridge regression estimate [33, Ch. 4], and is the one used in

our experiments for simplicity. The goal is therefore to solve (B.7). However, since H
is generally infinite dimensional, (B.7) cannot be directly solved. Fortunately, one can

invoke the representer theorem [34], which states that the solution to (B.7) is of the form:

d̂(φ) =
N∑
n=1

αnκ(φ,φn), (B.8)

for some {αn}Nn=1. Although the representer theorem does not provide {αn}Nn=1, these

coefficients can be obtained by substituting (B.8) into (B.7) and solving the resulting

problem with respect to them. Applying this procedure for kernel ridge regression results

in the problem:

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (B.9)

where α := [α1, ..., αN ]>, p̃ := [p̃1, ..., p̃N ]>, and K is a positive-definite N ×N matrix

whose (n, n′)-th entry is κ(φn,φn′). Problem (B.9) can be readily solved in closed-form
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as α̂ = (K + λNIN)−1 p̃. The estimate d̂ solving (B.7) for kernel ridge regression can

be recovered by substituting the resulting {αn}Nn=1 into (B.8). To obtain the predicted

power of the C2M at a query location x where the pilot signals are given by Y , one just

evaluates the LocF estimate p̂Y (Y ) = d̂(φ(Y )).

B.4 Location-Free Features

As described in Sec. B.3.1, LocB cartography algorithms learn a function of the location

estimate. In the machine learning terminology, the features are the spatial coordinates of

the sensor locations. On the other hand, the features used by LocF cartography are the

entries of φ(·). In principle, φ(Y ) could be set to contain the same features as the ones

used by l̂(·); see Sec. B.3. However, it is generally preferable to use features specifically

tailored to LocF cartography. This section accomplishes the design of these features in

several steps.

B.4.1 Feature Extraction

In Sec.B.3.1, φ(Y ) comprised M features used by typical localization algorithms, e.g.

T(D)oA or DoA. The key observation is that, although these features are appropriate

for localization, a different set of features may be preferable for LocF cartography. To

come up with a natural feature design, this section first reviews the features used by typ-

ical localization algorithms (hence for LocB cartography) and analyzes their limitations.

Inspired by this analysis, a novel feature extraction approach is proposed. To simplify

the exposition, the scenario where sensors are synchronized with the base stations is pre-

sented first. A more practical setup, where this synchronization is not required, will be

considered next.

B.4.1.1 Sensors are Synchronized with Base Stations

The received pilot signal is generally modeled as:

yl,n[k] := al[k] ∗ hl,n[k] + wl,n[k], (B.10)

where al[k] is the k-th sample of the l-th transmitted pilot signal, hl,n[k] is the discrete-

time channel impulse response between the l-th base station and the sensor at the n-

th location, and wl,n[k] is the noise term. The discrete-time impulse response hl,n[k] is

obtained next from its analog counterpart hl,n(t), which follows the conventional multipath

channel model with Pl,n components:

hl,n(t) =

Pl,n∑
p=1

α
(p)
l,nδ

(
t− t(p)l,n

)
, (B.11)

where δ(·) is the Dirac delta distribution and α
(p)
l,n ∈ R and t

(p)
l,n are respectively the

amplitude and delay of the p-th path. After up-conversion to the carrier frequency fc,

the pilot signal of the l-th base station is transmitted and received by the sensor at the
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(a) (b)

Figure B.3: Extraction of ToA from digital impulse response measured at two points that

are spatially close. In (a), the ToA estimate is proportional to k2; whereas in (b), the

ToA estimate is proportional to k1.

n-th measurement point, which bandpass-filters with bandwidth B, down-converts, and

samples at the Nyquist rate T = 1/B. Therefore, the received noiseless samples are given

by yl,n[k] in (B.10), where [35,36]:

hl,n[k] =

Pl,n∑
p=1

α
(p)
l,ne
−2πfct(p)l,n sinc

(
k −

t
(p)
l,n

T

)
. (B.12)

In view of these expressions, one of the most natural estimators for the ToA τ l,n := t
(1)
l,n

is:

τ̂l,n := T ·min{k : |ĥl,n[k]| ≥ γ}, (B.13)

where ĥl,n[k] is an estimate of hl,n[k] and γ is typically set as a function of the signal-to-

noise ratio [26].

It will be argued next that such a ToA feature does not evolve smoothly over space in

presence of multipath, and therefore, this may negatively impact estimation performance,

as occurs with LocB cartography; see discussion about Fig. B.1 in Sec. B.1. For simplicity,

assume that al[k] = δ[k], where δ[k] is the Kronecker delta. In this case, one can directly

estimate hl,n[k] as ĥl,n[k] = yl,n[k] = hl,n[k]+wl,n[k], which is a noisy version of hl,n[k]. To

see the impact of multipath, consider a simple example where the measurement points xn1

and xn2 lie close to each other and the channel impulse responses are given by ĥl,n1 [k] =

α
(1)
l,n1
δ[k−k(1)

l,n1
]+α

(2)
l,n1
δ[k−k(2)

l,n1
]+wl,n1 [k] and ĥl,n2 [k] = α

(1)
l,n2
δ[k−k(1)

l,n2
]+α

(2)
l,n2
δ[k−k(2)

l,n2
]+

wl,n2 [k]. Due to their spatial proximity, it follows that:

α
(1)
l,n1
≈ α

(1)
l,n2
, α

(2)
l,n1
≈ α

(2)
l,n2
, (B.14a)

k
(1)
l,n1
≈ k

(1)
l,n2
≈ k1, k

(2)
l,n1
≈ k

(2)
l,n2
≈ k2, (B.14b)

for some k1 and k2. Assuming for simplicity that the effects of noise are negligible, if
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|α(1)
l,n1
| < γ < |α(2)

l,n1
| and γ < |α(1)

l,n2
|, then the ToA estimates are:

τ̂n1 := T ·min{k : |ĥl,n1 [k]| ≥ γ} = Tk
(2)
l,n1
≈ Tk2,

τ̂n2 := T ·min{k : |ĥl,n2 [k]| ≥ γ} = Tk
(1)
l,n2
≈ Tk1.

This scenario is illustrated in Fig. B.3. Despite how close their locations and observed

impulse responses are, the ToA estimates at locations xn1 and xn2 can be quite different,

which establishes that the ToA estimate in (B.13) is not a smooth function of the spatial

location.

Since this non-smoothness negatively affects the performance of the proposed LocF

cartography estimator (and since the latter does not need ToA estimates that are propor-

tional to the distance, as occurs in LocB cartography), a promising candidate for feature

would be the center of mass (CoM) of the estimated impulse response:

CoMl,n :=

∑K−1
k=0 |ĥl,n[k]|2k∑K−1
k=0 |ĥl,n[k]|2

,

where K is the number of samples. To see why such a feature evolves smoothly over space,

suppose that the effects of noise are negligible and note that this CoM feature applied to

the channel impulse responses in the previous example yields:

CoMl,n1 =
k

(1)
l,n1
|α(1)
l,n1
|2 + k

(2)
l,n1
|α(2)
l,n1
|2

|α(1)
l,n1
|2 + |α(2)

l,n1
|2

,

CoMl,n2 =
k

(1)
l,n2
|α(1)
l,n2
|2 + k

(2)
l,n2
|α(2)
l,n2
|2

|α(1)
l,n2
|2 + |α(2)

l,n2
|2

.

From (B.14), it follows that CoMl,n1 ≈ CoMl,n2 , which indicates that the CoM is in-

deed a feature that evolves smoothly over space, and therefore preferable for LocF car-

tography. In this case, the feature vector at the n-th sensor location becomes φn =

[CoM1,n, . . . ,CoML,n]>.

B.4.1.2 Sensors are not Synchronized with Base Stations

Since synchronization requires more expensive equipment and becomes challenging in

multipath scenarios, TDoA estimates are generally preferred for localization. TDoA

estimates are typically obtained by extracting the lag corresponding to the maximum

cross-correlation of a pair of received pilot signals [37]. Assuming zero-mean, the cross-

correlation between two pilot signals received by the sensor at the n-th location is defined

as:

cl,l′,n[i] := E{yl,n[k]y∗l′,n[k − i]} with l 6= l′. (B.15)

With al[k] = al′ [k] a white process with power σ2
a and uncorrelated with wl,n[k] and

wl′,n[k], also uncorrelated with each other, it can be easily seen that:

cl,l′,n[i] = σ2
a

(
hl,n[i] ∗ h∗l′,n[−i]

)
.
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A common estimate of the TDoA ∆l,l′,n is (see e.g. [37]):

∆̂l,l′,n = T · arg max
i
{
∣∣ĉl,l′,n[i]

∣∣}, (B.16)

where ĉl,l′,n[i] is an estimate of cl,l′,n[i]. To see the intuition behind this estimator, note

that ĥl,n[k] = α
(1)
l,nδ[k − k

(1)
l,n ] and ĥl′,n[k] = α

(1)

l′,n
δ[k − k

(1)

l′,n
] in a free-space channel with

large bandwidth B. This implies that:

cl,l′,n[i] = σ2
aα

(1)
l,n

(
α

(1)

l′,n

)∗
δ
[
i−
(
k

(1)
l,n − k

(1)

l′,n

)]
= σ2

aα
(1)
l,n

(
α

(1)

l′,n

)∗
δ
[
i−∆l,l′,n/T

]
,

and therefore the lag of the maximum magnitude of cl,l′,n[i] provides the TDoA in this

simple scenario.

Similar arguments to those used in Sec. B.4.1.1 to conclude that the ToA estimates

are not spatially smooth can also be invoked to reach the same conclusion for TDoA.

Likewise, following the same rationale as in Sec. B.4.1.1, this section proposes alleviating

the aforementioned issue by adopting features of the form:

CoMl,l′,n :=

∑K−1
i=−K+1 |cl,l′,n[i]|2 i∑K−1
i=−K+1 |cl,l′,n[i]|2

, (B.17)

where CoMl,l′,n is the CoM of the cross-correlation between the l-th and l′-th pilot signals.

The proposed feature has three advantages: i) it is smooth, as portrayed later in Sec. B.5.1,

ii) it does not require synchronization between the localization base stations and the

sensors, and iii) it does not require the knowledge of the impulse responses. With this

choice, the feature vector at the n-th measurement location becomes:

φn =[CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]>.
(B.18)

B.4.2 Cartography from a Reduced Set of Features

As argued earlier in Sec. B.3.1, learning becomes difficult when the number of input

features M is high. This section develops a scheme to reduce this number of features to

improve estimation performance in LocF cartography.

As stated in the previous section, in LocB cartography, the feature vectors correspond

to the coordinates of the estimated location. Application of the localization algorithm

represented by the function l̂ in (B.3) naturally reduces dimensionality from the originalM

features to just 2 or 3. On the other hand, in the case of LocF cartography, a larger number

N of measurements to learn d̂ in (B.4) may be necessary to attain a target accuracy if

M is large. This observation calls for a dimensionality reduction step that condenses the

information of the feature vectors {φn}Nn=1 ⊂ RM into vectors {φ̄n}Nn=1 ⊂ Rr of a reduced

size r. Intuitively, r should be the minimum number that preserves most information

while eliminating most of the noise in {φn}Nn=1. Even if some information is lost, the

reduction in the error entailed by the fact that the function to be estimated has fewer

input arguments may pay off in practice.
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Figure B.4: Singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-increasing order for a

multipath environment with L = 4 transmitters.

In the cases where the feature vectors {φn}Nn=1 lie close to a low-dimensional subspace,

the coordinates of these vectors with respect to a basis for such a subspace may constitute

a suitable reduced set of features. To see this, it is instructive to start by considering the

scenario of TDoA features. Suppose, for simplicity, that the effects of noise are negligible,

so that the TDoA estimates ∆̂l,l′,n approximately equal the true TDoAs ∆l,l′,n. Then,

the rows of Φ := [φ1, . . . ,φN ] are of the form ∆l,l′ := [∆l,l′,1,∆l,l′,2, . . . ,∆l,l′,N ]>. If

τ l := [τ l,1, . . . , τ l,N ]> collects the ToA from the l-th base station to all sensor locations,

then it clearly holds that ∆l,l′ = τ l−τ l′ . Consequently, ∆1,l−∆1,l′ = τ 1−τ l−(τ 1−τ l′) =

τ l′−τ l = ∆l′,l, which implies that all rows of Φ are linear combinations of the L−1 rows

{∆1,l}Ll=2. Thus, the rank of Φ is at most L− 1 or, equivalently, the vectors {φn}Nn=1 lie

in a subspace of dimension L− 1. When effects of noise are noticeable, one would expect

that the vectors {φn}Nn=1 lie close to a subspace of dimension L− 1.

Similarly, one can expect that when the entries of the vectors {φn}Nn=1 are given by

(B.17), these vectors also lie close to a low-dimensional subspace since CoM features are

proportional to the TDoAs in absence of multipath; see Sec. B.4.1. This phenomenon

can be illustrated through simulation (see Sec. B.5 for more details). Fig. B.4 depicts the

singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0 of Φ in non-increasing order for a multipath

environment described in Sec. B.5 with L = 4. As expected, roughly r = L − 1 = 3

directions capture almost all the energy of the rows of Φ.

When a set of random vectors lie close to a subspace, an appealing approach for

dimensionality reduction is principal component analysis (PCA) [31, Ch. 12], which

obtains the reduced feature vectors by projecting the input data vectors onto the subspace

that preserves most of the energy. Since in this paper no probabilistic assumptions have

been introduced on {φn}Nn=1, the typical formulation of PCA is not directly applicable.

However, as detailed next, it is not difficult to extend this idea to the fully deterministic

scenario, which furthermore provides intuition.

Assume w.l.o.g. a centered set of feature vectors, i.e., (1/N)
∑N

n=1φn = 0. If not

centered, just subtract the mean by replacing Φ with Φ − (1/N)Φ11>. The subspace

that captures most of the energy of the observations can be determined using the singular
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value decomposition (SVD) of Φ, which for M < N is given by:

Φ =
[
U1 U2

] [Σ1 0

0 Σ2

0

0

] [
V >1
V >2

]
, (B.19)

where Σ1 := diag {σ1, . . . , σr} contains the r largest singular values of Φ, Σ2 := diag {σr+1, . . . , σM}
contains the M − r smallest, and the columns of U :=

[
U1 U2

]
(respectively V :=

[V1,V2]) are the left (right) singular vectors of Φ. Clearly, if the data vectors {φn}Nn=1

are multiplied by the orthogonal matrix U>, the resulting vectors {φ′n}Nn=1, with φ′n :=

U>φn, contain the same information. Thus, one can replace Φ with Φ′ := U>Φ.

By applying this transformation, which can be thought of as a generalized rotation,

most of the energy of Φ′ is concentrated in its first r rows. To see this, note that the

energy of the first r rows of Φ′ is given by:

||U>1 Φ||2F = ||Σ1V
>

1 ||2F = Tr
(
Σ1V

>
1 V1Σ

>
1

)
= Tr

(
Σ1Σ

>
1

)
= ||Σ1||2F =

r∑
m=1

σ2
m,

whereas the energy of the last M − r rows of Φ′ is given by:

||U>2 Φ||2F = ||Σ2||2F =
M∑

m=r+1

σ2
m.

When r = L − 1, since the rows of Φ lie approximately in a subspace of dimension

r, it follows that σm ≈ 0 for m > r. Therefore
∑r

m=1 σ
2
m �

∑M
m=r+1 σ

2
m and, hence,

||U>1 Φ||2F � ||U>2 Φ||2F . Equivalently, most of the energy of the vectors {φ′n}Nn=1 is con-

centrated in their first r entries. This observation suggests using the first r entries of the

vectors {φ′n}Nn=1 as features, while discarding the rest. That is, the reduced dimension-

ality feature vectors will be given by {φ̄n}Nn=1, where φ̄n := U>1 φn. Note that φ̄n is just

the vector of coordinates of φn with respect to the basis composed of the columns of U1.

The number r of entries of the new feature vectors {φ̄n}Nn=1 may be potentially much

smaller than M and can therefore boost estimation performance meaningfully. For in-

stance, when {φn}Nn=1 are given by (B.18), this reduction is from M = L(L−1)/2 features

to r = L− 1 features.

In scenarios of very strong multipath, the rows of Φ may not lie close to any subspace

of dimension L − 1. In those cases, it may be worth choosing a value of r greater than

L− 1. A possibility is to specify a fraction η ∈ [0, 1] of the energy of Φ that must be kept

in Φ̄ := U>1 Φ, and choose r to be the smallest integer that guarantees this condition,

that is:

r = min

{
r′ :

∑r′

m̄=1 σ
2
m̄∑M

m=1 σ
2
m

≥ η

}
. (B.20)

To summarize, the problem of LocF cartography with the technique for reducing the set

of features introduced in this section is as follows. Given the original set of measurements

{φn}Nn=1 ⊂ RM , one must form the matrix Φ, compute U1 from the SVD in (B.19), and
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obtain the reduced features {φ̄n}Nn=1 ⊂ Rr where φ̄n = U>1 φn. Then, the function d̂ is

obtained form the pairs {(φ̄n, p̃n)}Nn=1 using the approach in Sec. B.3.2. To evaluate the

resulting map at a query location where the received pilot signals are given by Y , one

must simply obtain d̂(U>1 φ(Y )).

B.4.3 Dealing with Missing Features

Due to propagation effects, the signal-to-noise ratio of some of the received pilot signals

may be too low for feature extraction. In this case, the features associated with those

pilot signals may be unreliable or simply unavailable. This section develops techniques to

cope with such missing features.

Let Ω ⊂ {1, . . . ,M} × {1, . . . , N} be such that (m,n) ∈ Ω iff the m-th feature is

available at the n-th measurement location and define the “incomplete” feature ma-

trix Φ̆ ∈ (R ∪ {FiM})M×N as:

(Φ̆)m,n =

{
(φn)m + ςm,n if (m,n) ∈ Ω

FiM otherwise,
(B.21)

where ςm,n explicitly models error in the feature extraction and the symbol FiM represents

that the corresponding feature is missing. Since the matrix Φ̆ contains missing features,

the LocF cartography scheme presented so far is not directly applicable. The missing

features must be filled first. Hence, the goal is, given Φ̆, find Φ ∈ RM×N that agrees

with Φ̆ on Ω. A popular approach to address such a matrix completion task is via rank

minimization [38]:

minimize
Φ

rank (Φ)

subject to PΩ(Φ) = PΩ(Φ̆),
(B.22)

where

PΩ : (R ∪ {FiM})M×N −→ RM×N

Φ̆ 7−→ PΩ(Φ̆),

with (
PΩ(Φ̆)

)
m,n

=

{
(Φ̆)m,n if (m,n) ∈ Ω

0 if (m,n) /∈ Ω.

Although this problem is non-convex, efficient solvers exist based on convex relax-

ation [39, 40]. A legitimate question would be what is the minimum number of available

features required to recover a reasonable reconstruction of Φ. As a guideline, a result

in [41] establishes that, under certain conditions, the minimum number of available fea-

tures to recover Φ ∈ RM×N is O
(
Ñ rank(Φ) log(Ñ)

)
where Ñ = max(M,N).

Although the aforementioned rank minimization approach could, in principle, be used,

it suffers from two limitations. First, it does not exploit the prior information that Φ can

be well approximated by a matrix of rank r, where r is typically L − 1; see Fig. B.4.
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Second, the constraint in (B.22) would render the reconstructed matrix sensitive to the

noise {ςm,n}m,n present in Φ̆. Thus, an appealing alternative to (B.22) would be:

Φ̊ :=argmin
Φ

1

2
||PΩ(Φ)− PΩ(Φ̆)||2F

subject to Φ ∈Mr,

(B.23)

where Mr := {Φ ∈ RM×N : rank(Φ) = r} is the smooth manifold of r-rank M × N

matrices.

There exist algorithms to find local minima of the non-convex problem (B.23). One

example based on manifold optimization [42] is the linear retraction-based geometric con-

jugate gradient (LRGeomCG) method from [43]. A less computationally expensive al-

ternative is the singular value projection (SVP) method in [44], which is based on the

traditional projected subgradient descent method.

After solving (B.23), all the columns of Φ̊ := [φ̊1, . . . , φ̊N ] clearly lie in a subspace of

dimension r. From the arguments in Sec. B.4.2, learning the map can be improved by

suppressing this redundancy. To this end, one could use the technique in Sec. B.4.2,

which would obtain the reduced-dimensionality feature vectors as follows:

Φ̄ := [φ̄1, . . . , φ̄N ] = Ů>1 Φ̊. (B.24)

Here, the columns of Ů1 are the left singular vectors corresponding to the r largest singular

values of Φ̊. Nevertheless, since Φ̊ has rank r, it is not necessary to obtain Ů1 by means

of an SVD. Namely, the columns of Ů1 can be directly obtained by orthonormalizing the

first r linearly independent columns of Φ̊, e.g. through Gram-Schmidt.

To sum up, to estimate a map using the proposed LocF cartography in presence of miss-

ing features is as follows. First, matrix Φ̆ is formed with the available features. Then, the

completed matrix Φ̊ is obtained using LRGeomCG or SVP. Next, Ů1 is obtained through

Gram-Schmidt over this completed matrix. Finally, one learns d̂ from {(φ̄n, p̃n)}Nn=1,

where φ̄n is the n-th column of Φ̄ in (B.24), using the approach in Sec. B.3.2.

To evaluate the estimated map at a test location, one would require in principle the

feature vector φ ∈ RM at that location or, alternatively, its reduced-dimensionality version

φ̄ ∈ Rr. However, due to the phenomena described earlier, only some of the features of φ

may be available, which can be collected in the vector φ̆ ∈ (R ∪ {FiM})M . The problem

now is to find the reduced-dimensionality feature vector φ̄ given φ̆.

Since the columns of Φ̊ lie in an r-dimensional subspace for which the columns of Ů1

form an orthonormal basis, it is reasonable to say that the feature vector at the testing

point φ ∈ RM also lies in that subspace, meaning that this vector can be written as

φ = Ů1φ̄ for some φ̄. The procedure to recover φ̄ depends on whether φ̆ contains enough

observed features. Let Ω′ ⊂ {1, . . . ,M} be such that the m ∈ Ω′ iff the m-th feature

is available in φ̆. If M̆ := |Ω′| ≥ r, one can think of finding φ̄ using the well-known

regularized least squares (RLS) method as:

ˆ̄φ = arg min
φ̄

∥∥∥PΩ′(φ̆)− PΩ′(Ů1φ̄)
∥∥∥2

+ µ(φ̄− φ̄avg)>C−1(φ̄− φ̄avg),

(B.25)
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Figure B.5: (left) True map, (middle) LocB (λ′ = 3.3 × 10−3, σ′ = 0.5 m), and (right)

LocF (λ = 1.9 × 10−4, σ = 37 m) estimated maps; N = 300, L = 5, B = 20 MHz, and

K = 10. The black crosses indicate the sensor locations and the solid white lines represent

the walls of the building.

where

PΩ′ : (R ∪ {FiM})M −→ RM

φ̆ 7−→ φ, (φ)m =

{
(φ̆)m if m ∈ Ω′

0 if m /∈ Ω′,

µ > 0 is a regularization parameter, φ̄avg and C ∈ Rr×r are respectively the sample mean

vector and covariance matrix of the coordinates of the completed features in the traning

phase, that is, φ̄avg = (1/N)Φ̄1 and C = (1/N)(Φ̄ − φ̄avg1
>)(Φ̄ − φ̄avg1

>)>. To solve

Problem (B.25), let the elements of Ω′ be denoted as Ω′ := {m1, . . . ,mM̆}. Then:

ˆ̄φ =
(
Ů>1 S

>SŮ1 + µC−1
)−1

(
Ů>1 S

>SPΩ′(φ̆) + µC−1φ̄avg

)
,

(B.26)

where S ∈ {0, 1}M̆×M is a row selection matrix with all entries equal to zero except for

the entries (1,m1), . . . , (M̆,mM̆), which equal to 1. Thus, SPΩ′(Ů1φ̄) = SŮ1φ̄. On the

other hand, if M̆ := |Ω′| < r, it is not possible to identify φ̄ from φ̆. The extreme case

would be when M̆ = 0. A natural estimate at such point can be the spatial average of

the signal power (1/N)
∑

n p̃n.

B.5 Numerical tests

This section evaluates the performance of LocF cartography in presence of multipath,

where localization algorithms cannot achieve accurate location estimates. To this end,

the simulations are carried out in a 42 × 27 m structure comprising several parallel vertical

planes modeling the external and internal walls of a building, the latter is located in a 60

× 40 m rectangular area X .

All the experiments described in this paper can be reproduced with the MATLAB

code which is available at the first author’s homepage.

The simulation area contains L active transmitters. Some of these are positioned

inside the building, others outside. Matrix Y n ∈ CL×K containing the noisy received
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Figure B.6: Maps of the M = 10 LocF features with L = 5, B = 20 MHz, and K = 10.

The solid black lines represent the walls of the building and the black stars represent the

transmitter locations.

Table B.1: Parameters used for the experiment in Fig. B.8.

B (MHz) 50 100 200 700

K 25 50 100 350

LocB
σ′ (m) 10.1 8.9 9 7

λ′ 1.8× 10−3 9.1× 10−4 7.1× 10−4 2.1× 10−4

LocF
σ (m) 27 41 53 28

λ 3.81× 10−4 6.1× 10−5 1.1× 10−5 5× 10−4

pilot signals is generated according to (B.10), where K is adjusted depending on B to

capture all the multipath components. For simplicity, the pilot signals are given by2

al[k] = δ[k] which implies that the rows of Y n ∈ CL×K contain the impulse responses of

the bandlimited channels between the L transmitters and the n-th measurement location.

The channel hl,n[k] is generated following (B.12) with a carrier frequency of 800 MHz and

pilot channel bandwidth B = 1/T . The noise samples wl,n[k] are independent normal

random variables with zero-mean and variance -70 dBm. Propagation adheres to the

Motley-Keenan multi-wall radio propagation model [45], which accounts for the direct

path, up to 5 first-order wall reflections, and up to 5 wall-to-wall second-order reflections.

Remarkably, the model captures the impact of the angle of incidence on the power of

the reflected ray. For simplicity, the C2M is chosen to be the channel where localization

pilot signals are transmitted. In practice, this is the case in the downlink of a cellular

communication system such as LTE where the base stations transmit both communication

signals and localization pilots.

To ensure that the measurements are obtained in the far-field propagation region,

sensor locations are spread uniformly at random over X̄ , which comprises those points in

X lying at least 3 wavelengths away from all transmitters. Note that, although the number

of sensor locations is sometimes in the order of hundreds, this does not mean that a large

2Amplitude units are such that a signal x[k] = 1, ∀k, has power 1 W.
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Figure B.7: Performance comparison between the LocF cartography (λ = 1.9 × 10−4,

σ = 37 m) and the LocB cartography (λ′ = 3.3 × 10−3, σ′ = 0.5 m) with B = 20 MHz

and K = 10.

Figure B.8: LocF and LocB map NMSE as a function of the number of walls for different

values of the bandwidth, L = 5, N = 300.

number of sensing devices must be used since each device may gather measurements at

tens or hundreds of spatial locations. The power measurement pn (measured in dBW) of

the C2M at position xn is corrupted by additive noise εn to yield p̃n = pn + εn, where

{εn}Nn=1 are independent normal random variables with zero-mean and variance σ2
ε . This

variance is such that the signal-to-noise ratio defined as 10 log10(p̄2/σ2
ε ) ≈ 40 dB, where

p̄ :=
∫
X̄ p(x)dx/

∫
X̄ dx is the spatial average of p(x). This SNR is considered practical

since the measurement noise power σ2
ε can be driven arbitrarily close to zero in practice

by averaging over a sufficiently long time window.

Quantitative evaluation will compare the normalized mean square error (NMSE) de-

fined as:

NMSE =
E{|p(x)− p̂Y (Y (x), T )|2}

E{|p(x)− p̄|2}
, (B.27)

where p̂Y (Y (x), T ) (measured in dBW) denotes the result of evaluating the map con-

structed from the training set T := {(Yn, p̃n)}Nn=1 at the location x, where Y (x) comprises
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Figure B.9: LocF estimated map NMSE for different values of number of features M and

sensor locations N , with L = 5, B = 20 MHz, K = 10, λ = 1.9× 10−4, and σ = 37 m.

the received pilot signals at x. The denominator in (B.27) normalizes the square error of

the considered algorithm by the error incurred by the best data-agnostic estimator, which

estimates the spatial average p̄ at all points. Thus, the adopted performance metric is

higher than traditional NMSE, meaning that it is more challenging to obtain lower values.

Furthermore E{·} denotes the expectation over the sensor locations and noise.

B.5.1 LocF vs. LocB

To avoid the need for synchronization between transmitters and sensors, the LocF algo-

rithm utilizes the features in (B.17), which additionally provide robustness to multipath

and evolve smoothly over space; see Sec. B.4.1. Since this center of mass can be thought

of as a lag, it is scaled by the sampling period T and speed of light c to obtain the

corresponding range difference, i.e.:

φn := Tc [CoM1,2,n,CoM1,3,n, . . . ,CoM1,L,n,

CoM2,3,n, . . . ,CoML−1,L,n]>.
(B.28)

Using these features, the LocF algorithm uses the kernel ridge regression technique in

Sec. B.3.2 with Gaussian radial basis functions with parameter σ. The reason is that this

universal kernel is capable of approximating arbitrary continuous functions that vanish at

infinity [46]. On the other hand, for LocB cartography, the feature vector φn = x̂n ∈ R2

comprises estimates of the spatial coordinates of the n-th sensor location obtained by the

iterative re-weighting squared range difference-least squares (IRWSRD-LS) algorithm [47],

which features state-of-the-art localization performance. This algorithm is applied over

TDoA features extracted from {Y n}Nn=1 through (B.16). At the n-th sensor location,

these features {∆̂1,l′,n}Ll′=2 comprise the TDoA between a reference base station and the

remaining L−1 base stations. Enlarging this set by including TDoA measurements ∆̂l,l′,n

with l 6= 1 would not be beneficial for the estimation performance as discussed in [48].
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(a)

(b)

Figure B.10: Maps of: (a) all the M = 10 features and (b) r = 4 reduced features with

L = 5, B = 20 MHz, and K = 10. The solid black lines represent the walls of the

building and the black stars represent the transmitter locations. The maps are obtained

by representing the value of the feature at every location in X .

The reason is the redundancy inherent to TDoA features described in Sec. B.4.2. To

ensure a fair comparison, LocB utilizes the same function learning algorithm as LocF; see

Sec. B.3.2. Specifically, given {(x̂n, p̃n)}Nn=1, the map is estimated as p̂(x̂) = κ′>(x̂)β̂

where κ′(x̂) := [κ′(x̂, x̂1), . . . , κ′(x̂, x̂N)]>, β̂ := (K ′+λ′NIN)−1p̃, and K ′ is an N ×N
matrix with (n, n′)-th entry κ′(x̂n, x̂n′) and κ′ is a Gaussian radial basis function with

parameter σ′. In this way, this benchmark LocB algorithm coincides with those in [4,13]

when a power map must be estimated on a single frequency and with a single kernel. In

all experiments, the values of λ, λ′, σ, and σ′ used by the LocF and LocB schemes were

tuned to approximately yield the lowest NMSE.

Fig. B.5 (left) depicts the true map generated through the multi-wall model, where

the black crosses indicate the sensor locations and the solid white lines represent the

walls of the building. The middle and right panels respectively show the LocB and LocF

map estimates, obtained by placing a query sensor at every location. It is observed that

the quality of the LocF estimate is considerably higher than that of the LocB estimate.

The cause for the poor performance of the LocB algorithm is that the location estimates

evolve in a non-smooth fashion across space, and attempting to learn the C2M from such

non-smooth features is more challenging; see Figs. B.1c and B.1d and the discussion in

Sec. B.1. To illustrate how the LocF approach alleviates this issue, Fig. B.6 depicts the



B.5. NUMERICAL TESTS 82

Figure B.11: Estimated map NMSE with reduced features for different r and without

reduced features; L = 5, B = 20 MHz, K = 10, λ = 1.6× 10−3, and σ = 25 m.

features used by the LocF estimator across X . Specifically, if φ(x) denotes the feature

vector, obtained as in (B.28) for location x, then the m-th panel titled ϕm in Fig. B.6

corresponds to the m-th entry of φ(x) for each x ∈ X . It is observed that the evolution of

these proposed features across space is significantly smoother than the one in Figs. B.1c

and B.1d. A quantitative comparison is provided in Fig. B.7, which shows the NMSE as a

function of the number of sensor locations N for L = 4 and 7 transmitters. The error bars

delimit intervals of 6 standard deviations of the NMSE across the 200 independent Monte

Carlo runs. It is observed that, with high significance, the proposed LocF cartography

scheme outperforms its LocB counterpart for both values of L provided that the number

of measurement locations is roughly larger than 150.

The rest of the section studies the impact of multipath on the LocF and LocB car-

tography approaches by varying the number of walls. Fig. B.8 shows the NMSE as a

function of the number of walls for different values of B. The parameters used for both

LocF and LocB schemes are listed in Table B.1. The NMSE is obtained by also averaging

over wall locations, which are confined to be in the positions of the walls in Fig. B.6 plus

an additional wall that divides the room in two.

As expected, for all the simulated values of B, the performance of both LocF and

LocB schemes is degraded (yet more severely in LocB) as the number of walls increases.

Moreover, the performance of the LocB improves significantly with the bandwidth, since

a higher bandwidth allows a more accurate estimation of the TDoA. This is because

multipath components arriving within a time interval of length T = 1/B cannot be

resolved; see Sec. B.4.1 and references therein. As intuition predicts, when multipath

is sufficiently low and the bandwidth is sufficiently high, LocB cartography outperforms

LocF. It is remarkable that LocF cartography exhibits robustness to multipath since the

NMSE remains approximately constant even for a significant increase of multipath.
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Figure B.12: (top) Average number of missing features and (bottom) estimated map

NMSE, both as a function of Γ with L = 5, B = 20 MHz, K = 10, λ = 1.9 × 10−4,

µ = 5.42, and σ = 37 m.

B.5.2 Feature Design

This section provides empirical support for the findings in Sec. B.4.2. From now on,

all experiments will involve only the LocF estimator. The first experiment investigates

the impact of the number of features, which in all previous simulations was equal to

M = L(L− 1)/2. To this end, Fig. B.9 shows the NMSE as a function of the number M

of features for two different numbers N of sensor locations. The expectation operators

in (B.27) also average with respect to all choices of M features out of the L(L− 1)/2.

As observed, the NMSE improves from M = 4 to roughly M = 7 features, and remains

approximately the same for M ≥ 7. Although this effect may look counter-intuitive

at first glance, this is a common phenomenon in machine learning related to the bias-

variance trade-off [32] and the curse of dimensionality [31,32]; see Sec. B.3.1. Clearly, this

effect motivates the feature dimensionality reduction techniques proposed in Sec. B.4.2.

The rest of this section corroborates the merits of such techniques. A more challenging

scenario with more walls will be considered. The first step is to determine the number

of reduced features to be used. It can be seen that r = 4 in (B.20) retains at least

η = 99% of the variance of the features in all tested scenarios. Thus, in principle, a
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map can be learned using the reduced features φ̄n := U>1 φn ∈ R4 without meaningfully

sacrificing estimation performance. Before corroborating that this is actually the case, it

is instructive to visualize the aforementioned reduced features across space. Fig. B.10a

portrays the maps of the M = 10 original features, which correspond to the entries of

φ(x); see Sec. B.5.1. On the other hand, the panels of Fig. B.10b depict the reduced

features over space, i.e., the 4 entries of the vector φ̄(x) := U>1 φ(x) for each x ∈ X .

These figures reveal that the reduced features inherit the spatial smoothness of the original

features.

To quantify the impact of reducing the dimensionality of the feature vectors, Fig. B.11

compares the NMSE of the LocF map estimate that relies on the original features (M =

10) with the one that relies on the reduced features (r = 2, 3, 4). As observed, using

just the 4 reduced features attains a similar performance to the estimator built on the 10

original features. This is expected given the bias-variance trade-off mentioned earlier. At

this point, it might seem that the effects observed in Fig. B.9 contradict those of Fig. B.11

since in the former the NMSE is lower when 10 features are used relative to the case where

only 4 are used. However, that should not be concluded since the features in Fig. B.9

correspond to the entries of φn (see (B.28)) whereas the features in Fig. B.11 correspond

to the entries of φ̄n := U>1 φn.

B.5.3 LocF cartography with Missing Features

This section assesses the performance of the techniques developed in Sec. B.4.3 to cope

with missing features.

A feature will be deemed missing at a given sensor location if the received power of

at least one of the two associated pilot signals is below a sensitivity threshold Γ. The

top panel of Fig. B.12 depicts the average number of missing features as a function of Γ.

The average is taken with respect to the sensor locations and noise. The bottom panel

of Fig. B.12 shows the LocF map NMSE also as a function of Γ. The matrix completion

problem in (B.23) is solved with both SVP and LRGeomCG; the implementation for

the latter is the one provided in the ManOpt toolbox [49]. For higher values of N , the

performance of both algorithms is clearly strongly determined by the average number of

missing features. SVP seems to outperform LRGeomCG in terms of NMSE. Besides, the

computation time of SVP is roughly half the one of LRGeomCG.

B.6 Conclusions

Location-free (LocF) cartography has been proposed as an alternative to classical location-

based (LocB) schemes, which suffer a strong performance degradation when multipath

impairs the propagation of localization pilot signals. The central idea is to learn a map as

a function of certain features of the localization pilot signals. Building upon this approach,

kernel-ridge regression was applied to estimate power maps from these features. Practical

issues addressed in the paper include feature design, dimensionality reduction, and dealing

with missing features. Simulations corroborate the merits of LocF cartography relative

to LocB alternatives. Future research will include mapping other channel metrics such
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as power spectral density (PSD) and channel gain, as well as developing distributed and

online extensions.
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