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Abstract —Spectrum cartography constructs maps of metrics such as chan-

nel gain or received signal power across a geographic area of interest using

measurements of spatially distributed sensors. Applications of these maps in-

clude network planning, interference coordination, power control, localization,

and cognitive radio to name a few. Existing spectrum cartography methods

necessitate knowledge of sensor locations, but such locations cannot be ac-

curately determined from pilot positioning signals (such as those in LTE or

GPS) in indoor or dense urban scenarios due to multipath. To circumvent

this limitation, this paper proposes localization-free cartography, where spec-

tral maps are directly constructed from features of these positioning signals

rather than from location estimates. The proposed algorithm capitalizes on

the framework of kernel-based learning and offers improved prediction perfor-

mance relative to existing alternatives, as demonstrated by a simulation study

in a street canyon.

Keywords— Spectrum cartography, localization-free cartography, kernel-based learn-

ing, spectrum map.

A.1 Introduction

Spectrum cartography constructs maps of a certain channel metric, such as received sig-

nal power, interference power, or channel gain over the geographical area of interest [1–3].

Spectral maps are of utmost interest in wireless networks, especially for tasks such as

network planning, interference coordination, power control, and dynamic spectrum ac-

cess [4–6]. Further applications include source localization [2].

Existing approaches typically apply some spatial interpolation or regression technique

to measurements collected by spatially distributed sensors. Examples of these approaches

for mapping power over space include kriging [1, 7, 8], compressive sensing [3], matrix

completion [9], dictionary learning [10, 11], Bayesian models [12], and adaptive radial

basis functions [13]. Schemes to map power spectral density (PSD) have also been de-

vised by exploiting the sparsity of power distribution over space and frequency [2] and by

leveraging the frameworks of thin-plate spline regression [4, 14] and kernel-based learn-

ing [4]. Further schemes have been proposed to map alternative metrics such as channel

gain [15–17].

Since all the aforementioned schemes rely on the knowledge of the sensor locations,

they will be collectively referred to as localization-based cartography. In practice, lo-

cation is seldom known and therefore it must be estimated from features such as the

RSSI, the time (difference) of arrival, or the direction of arrival of positioning pilot sig-

nals transmitted by satellites (e.g. in GPS) or terrestrial base stations (e.g. in LTE or
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WiFi [18]). Unfortunately, accurate location estimates are often not available in prac-

tice due to propagation phenomena affecting those pilot signals such as multipath, which

limits the applicability of existing cartography techniques, especially in indoor and dense

urban scenarios.

The main contribution of this paper is to circumvent this limitation by proposing

localization-free cartography. The idea is that the localization step introduces significant

errors in the spectrum map estimation when the aforementioned features are not reliable.

Bypassing this step, the proposed approach obtains spectrum maps indexed directly by

(or as a function of) the features of the received pilots. As a byproduct of skipping

the localization step, the resulting cartography algorithm is also computationally less

expensive than its localization-based counterparts. For simplicity, this work focuses on

constructing power maps, but the proposed algorithm carries over to other metrics. Such

an algorithm is developed within the framework of kernel-based learning not only because

of the high simplicity, flexibility, and performance of kernel-based estimators, but also

because it has well-documented merits in spectrum cartography [4,14].

The rest of this paper is organized as follows: Sec. A.2 describes the problem and

reviews location-based cartography. Sec. A.3 presents the main contribution of the pa-

per, which is localization-free cartography. Simulations and conclusions are respectively

provided in Sec. A.4 and Sec. A.5.

A.2 Preliminaries

The goal is to determine the power p(x) of a certain channel, termed channel-to-map

(C2M), at every location x ∈ X of the geographical region X ⊂ R2 of interest. To this

end, N sensors are deployed across X at locations {xn}Nn=1 not necessarily known. The

n-th sensor acquires a measurement p̃n of the power p(xn) at its location xn.

In localization-based cartography, a fusion center is ideally given pairs {(xn, p̃n)}Nn=1,

which include the exact sensor locations {xn}Nn=1, and obtains a function estimate p̂(xq)

that provides the power of the C2M at any query location xq ∈ X . With this function,

a node at xq can determine the power of the C2M if it knows xq. In practice, however,

location is typically unknown and hence the n-th sensor must estimate xn by relying on

pilot signals {ym,n[k]}Mm=1, where ym,n[k] denotes the k-th sample of the m-th pilot signal

received by the n-th sensor. For convenience, form the M ×K matrix Yn whose (m, k)-th

entry is ym,n[k]. From Yn, the n-th sensor computes an estimate x̂n(Yn) of xn by means

of some localization algorithm; see Sec. A.4 for a specific example. The fusion center

then uses {(x̂n, p̃n)}Nn=1 to obtain an estimate p̂(x) of the function p(x). Therefore, if

the location estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a node at a query location

xq wishes to know the power of the C2M, it will use the pilot signals Yq to obtain an

estimate x̂q := x̂(Yq) of its location and will evaluate the map estimate as p̂(x̂q). Here,

Yq is a matrix whose (m, k)-th entry is given by the k-th sample of the m-th pilot signal

ym,q[k] at the query location xq. Thus, such an evaluation has two sources of error: first,

the location estimation error in x̂q and, second, the map estimation error in p̂(xq).

From a more general perspective, the function that is actually learned in this approach
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can be expressed as p(Y ) := p(x̂(Y )), where x̂(Y ) denotes the output of the chosen

localization algorithm when the pilot signals are given by Y . From this perspective,

the problem that is being solved is: given {(Yn, p̃n)}Nn=1, find an estimate p̂(Y ) of p(Y ).

Indeed, localization-based cartography seeks an estimate for the latter function within a

certain family of functions that can be expressed as p(Y ) = g(x̂(Y )) for some function

g : X → R. The next section investigates estimates with alternative forms, which will be

preferable whenever x̂(Y ) is not an accurate estimator of x.

Remark 1 One may argue that a node can determine the power of the C2M at its location

more efficiently by measuring it rather than by locating itself and evaluating a map. While

this may be the case for a single C2M, determining the power of many C2Ms, or other

channel parameters such as the impulse response, may incur a higher cost. In these cases,

the benefits of spectrum cartography would be more significant.

A.3 Localization-free Cartography

This section proposes localization-free cartography, which bypasses the localization step

involved in all existing cartography approaches. To this end, the localization-free cartog-

raphy problem is formulated as a function estimation task in Sec. A.3.1 and solved via

kernel-based learning in Sec. A.3.2.

A.3.1 Map Estimate as a Function Composition

From an abstract perspective, spectrum cartography amounts to learning a function p :

CM×K → R that provides the power p(Y ) of the C2M at a location in X where the

pilot signals Y are received. The direct approach to spectrum cartography would be

to learn such a function directly from data {(Yn, p̃n)}Nn=1. Since learning a multivariate

function up to a reasonable accuracy generally requires the number of data points to

be several times larger than the number of input variables, the direct approach would

need N to be significantly larger than MK, which is prohibitively large since MK is

typically in the order of hundreds or thousands. For this reason, existing (localization-

based) cartography schemes do not follow such a direct approach. Instead, they avoid

its complexity by confining the search for estimates of p(Y ) to those functions that can

be expressed as the composition of a fixed function x̂ : CM×K → X ⊂ R2, where x̂(Y )

corresponds to the output of a localization algorithm when the pilot signals are Y , and a

map function g : X ⊂ R2 → R that needs to be determined; (cf. Sec. A.2). Clearly, finding

g requires a significantly smaller N than learning the general function p : CM×K → R
since g has only two scalar inputs. When x̂(Y ) is a reasonable estimate of the location x

at which Y has been observed, such a localization-based approach works well. However,

due to propagation effects impacting the pilot signals in Y , x̂(Y ) may be very different

from x and it is easy to see that this drastically hinders the estimation of g. From this

observation, it can be concluded that the two scalar outputs of x̂(Y ) fail to capture the

relevant information in Y : more outputs are needed. In summary, neither the above

direct approach, which estimates a function with MK inputs, nor the localization-based
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approach, which estimates a function of 2 inputs, are appropriate in presence of multipath

effects, as is the case in indoors or urban scenarios.

To tackle this difficulty, the proposed approach is to estimate a function whose number

of inputs is larger than 2 and smaller than MK. To answer the question on which

inputs should be used, it is worth delving further into why the above localization-based

approach fails. Localization algorithms typically proceed in two steps: first, they extract

some features from Y , and then they feed these features to an algorithm L that exploits

a spatial model to determine the location. Those features comprise e.g. estimates of

distance, time (difference) of arrival, or angle of arrival. If φ(Y ) ∈ D ⊂ RM denotes the

vector stacking these M features and l(φ) denotes the output of algorithm L, it follows

that x̂(Y ) = l(φ(Y )). The root of the problem is therefore that the model assumed by

L is inaccurate: it typically assumes free space propagation, which would imply a certain

consistency between the features in φ(Y ) that does not hold in presence of multipath.

Combining these observations, a sensible approach is to (i) preserve the dimensionality

reduction capability of φ (from MK to M); and (ii) avoid the error introduced by l(φ).

Thus, one can seek localization-free function estimates of the form p̂LF(Y ) = f(φ(Y )) for

some f : D ⊂ RM → R. In this localization-free setup, φ(Y ) comprises M features of the

pilot signals, but they need not be those used by the localization algorithms (e.g. time

(difference) or angle of arrival). In short, whereas localization-based cartography learns a

function of the spatial location estimated from features of the pilot signals, the proposed

localization-free approach directly learns a function of such features.

A.3.2 Kernel-based Power Map Learning

This section provides a kernel-based learning algorithm to learn the function f introduced

in Sec. A.3.1. Given pairs {(φn, p̃n)}Nn=1, where φn := φ(Yn), the regression problem is

informally to find f such that f(φ(Y )) ≈ p(Y ) for all Y . To address this problem,

one must specify in which family of functions such an f must be found. In kernel-based

learning, one seeks f in a set known as a reproducing-kernel Hilbert space (RKHS) and

given by

F :=

{
f : f(φ) =

∞∑
i=1

αiκ(φ, φ̄i), φ̄i ∈ D, αi ∈ R

}
,

where κ : D×D → R is a symmetric and positive definite function known as reproducing

kernel [19]. A common choice is the so-called Gaussian radial basis function κ(φ,φ′) :=

exp [−‖φ− φ′‖2/(2σ2)], where σ is a parameter selected by the user. Like any Hilbert

space, F has an associated inner product and norm. For an RKHS function f(φ) =∑∞
i=1 αiκ(φ, φ̄i), the latter is given by

‖f‖2
F :=

∞∑
i=1

∞∑
j=1

αiαjκ(φ̄i, φ̄j). (A.1)

Kernel-based learning typically solves a problem of the form

f̂ = arg min
f∈F

1

N

N∑
n=1

L (p̃n,φn, f(φn)) + Ω(‖f‖F), (A.2)
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where L is a loss function quantifying the deviation between the observations {p̃n}Nn=1

and the predictions {f(φn)}Nn=1 returned by a candidate f ; and Ω is an increasing

function. The first term in (A.2) promotes function estimates that fit well the data

whereas the second term promotes “smooth” estimates; where the notion of smoothness is

determined by the RKHS norm ‖·‖F . Typical choices are L (p̃n,φn, f(φn)) = (p̃n−f(φn))2

and Ω(‖f‖F) = λ ‖f‖2
F , where λ > 0 is termed regularization parameter and balances

smoothness and goodness of fit. For this choice, f̂ is termed kernel ridge regression

estimate [20], and is the one pursued here for simplicity. The goal is therefore to solve

(A.2). However, since F is infinite dimensional in general, (A.2) cannot be directly solved.

Fortunately, one can invoke the representer theorem [19], which states that the solution

to (A.2) is of the form

f̂(φ) =
N∑
n=1

αnκ(φ,φn). (A.3)

for some {αn}Nn=1. Although the representer theorem does not provide the coefficients

{αn}Nn=1, they can be obtained by substituting (A.3) into (A.2) and solving the result-

ing problem with respect to these coefficients. Applying this procedure for kernel ridge

regression results in the problem

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (A.4)

where α := [α1, ..., αN ]>, p̃ := [p̃1, ..., p̃N ]>, and K is an N ×N matrix whose (n, n′)-th

entry is κ(φn,φn′). Problem (A.4) can be solved in closed form as

α̂ = (K + λNIN)−1 p̃. (A.5)

The estimate f̂ solving (A.2) for kernel ridge regression can be recovered by substituting

(A.5) into (A.3). To obtain the predicted power of the C2M at a query location xq where

the pilot signals are given by Yq, one just evaluates p̂LF(Yq) = f̂(φ(Yq)).

A.4 Numerical tests

This section evaluates the performance of localization-free cartography in a scenario with

multipath. The latter is a urban canyon or street canyon, which comprises two parallel

vertical planes modeling the walls (or buildings) at each side of the street and a hori-

zontal plane modeling the ground. Propagation is characterized by the so called six-ray

model [21], which accounts for the direct path, the ground reflection, 2 first-order wall

reflections, and 2 wall-to-wall second-order reflections. The sensors are spread uniformly

at random over the street, which is 250 m long and 30 m wide.

For simplicity, the pilot signals are impulses centered at time 0 filtered to the pilot

channel with bandwidth 5 MHz and carrier frequency 800 MHz, which implies that Yn
comprises the impulse responses of the bandlimited channels between the M transmitters

of pilot signals and the n-th sensor. For simplicity and robustness to timing errors, the
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Figure A.1: (a) True map, (b) localization-free, and (c) localization-based estimated maps

(λ = 3× 10−3, N = 160).

features used by the proposed localization-free algorithm equal the center of mass of the

corresponding impulse responses, that is,

[φn]m :=

∑K
k=1 tk|ym,n[k]|2∑K
k=1 |ym,n[k]|2

,

where tk is the time of the k-th sample.

The proposed algorithm, which uses Gaussian radial basis functions with σ = 30

m, is compared with its localization-based counterpart, which is a special case of the

estimators in [2, 4, 22] for estimating power maps. We use Gaussian RBFs because they

are universal kernels [23], i.e., able to approximate arbitrary functions. For localization,

the square-range-based least squares (SR-LS) algorithm [24] is applied to the time-of-

arrival measurements obtained from the pilots {Yn}Nn=1. Function g (cf. Sec. A.2) is

obtained by applying a similar procedure as in the proposed localization-free algorithm:

Given {(x̂n, p̃n)}Nn=1, the estimate of g is given by g(x̂q) = κ′>(x̂q)β̂ where κ′(x̂q) :=
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[κ′(x̂q, x̂1), ..., κ′(x̂q, x̂N)]>, β̂ = (K′ + λNIN)−1p̃, and K ′ is an N × N matrix with

(n, n′)-th entry κ′(x̂n, x̂n′) and κ is a Gaussian radial basis function with σ = 35 m.

Quantitative evaluation will compare the normalized mean square error (NMSE) de-

fined as

NMSE =
E{|p(x)− p̂(Y (x) + Υ, T )|2}

E{|p(x)− p̄|2}
,

where Y (x) comprises the received pilot signals at location x, Υ represents noise, p̄ is the

spatial average of p(x), and T is the training set, defined as T := {(Yn+Υn, p̃n+ εn)}Nn=1

with Υn and εn representing noise. Specifically, {εn}Nn=1 are independent log-normal

random variables with zero-mean and standard deviation 0.5 dB (p̃n is measured in dBW).

Furthermore E{·} denotes expectation over a random location x uniformly distributed

across X , the locations of the sensors, and noise.

The true map generated through the canyon model is depicted to the left of Fig.

A.1. The middle and right panels respectively show the localization-free and localization-

based map estimates, which are obtained by placing a query sensor at each location. Black

crosses indicate the positions of the N sensors used to estimate the map. As expected, the

estimation is better in areas with more sensors. Visually, the quality of the localization-

free estimate is higher than that of the localization-based estimate due to multipath.

Fig. A.2a shows the NMSE as a function of N for different numbers M of pilot sig-

nals. Each point is obtained by averaging 200 independent Monte Carlo iterations. As

anticipated, performance improves with N . Furthermore, for fixed N , the NMSE is non-

increasing with M , yet M = 2 and 3 yield roughly the same NMSE because of the

geometry of the simulation setup.

Fig. A.2b shows the NMSE as a function of the number of sensors N used to estimate

pLF and pLB. With significant evidence, one may claim that the proposed localization-free

cartography scheme outperforms its localization-based counterpart when N > 60 since

the error bars in Fig. A.2 span over 6 standard deviations of the NMSE across realizations.

The reason for a poorer performance of the localization-based scheme is that multipath

propagation can mislead the localization algorithm, inducing errors in location estimation

that increase deviations in the map estimation as well.

A.5 Conclusions

Localization-free cartography has been proposed as an alternative to classic localization-

based schemes, which do not operate properly when multipath impairs the propagation of

localization pilot signals. Kernel-ridge regression was applied to estimate power maps from

features of those pilot signals collected by a number of sensors. Simulations corroborate

the merits of localization-free cartography relative to localization-based methods. Future

research will include an extensive simulation study in indoor environments and develop

distributed and online extensions.
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Figure A.2: (a) Estimated map NMSE for different values of number of features, M and

sensors, N ; and (b) Performance comparison between the localization-free cartography

and the localization-based cartography (λ = 3× 10−3,σ = 30 m).
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