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ABSTRACT
A method has been presented recently for deriving integrals of spe-
cial functions using two kinds of integrating factor for the homo-
geneous second-order linear differential equations which many
special functions obey. The classical orthogonal polynomials are
well-suited for thismethod, and results are given here for the Gegen-
bauer, Hermite and Laguerre polynomials. All the integrals presented
here appear to be new and have been checked using Mathemat-
ica. Results for other orthogonal polynomials will be presented
separately.
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1. Introduction

In a recent paper [1], two integrating factors f (x) and f̂ (x) were considered for the
differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (1.1)

which is obeyed by many special functions for suitable choices of the functions p(x) and
q(x). The function f (x) is identical to the Lagrangian factor introduced in [2,3] and is given
by

f (x) = exp
(∫

p(x) dx
)

(1.2)

and in [2,3] an integration involving f (x) was derived∫
f (x)(h′′(x) + p(x)h′(x) + q(x)h(x)) dx = f (x)(h′(x)y(x) − h(x)y′(x)). (1.3)

where h(x) is an arbitrary twice differentiable function. The function f (x) is also the
integrating factor for the first two terms of Equation (1.1), such that

f (x)(y′′(x) + p(x)y′(x)) = (f (x)y′(x))′ (1.4)

and hence from Equation (1.1)

f (x)q(x)y(x) = −[f (x)y′(x)]′. (1.5)
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2 J. T. CONWAY

Multiplying both sides of Equation (1.5) bym(f (x)y′(x))m−1 and integrating gives [1] the
general integration formula∫

q(x)f m(x)y′m−1(x)y(x) dx = − f m(x)y′m(x)
m

(1.6)

which applies to all solutions y(x) of Equation (1.1).
The function f̂ (x) introduced in [1] is the integrating factor for the second two terms of

Equation (1.1), such that [1]

f̂ (x)
(
y′ + q(x)

p(x)
y(x)

)
= (f̂ (x)y(x))′ (1.7)

and this factor can only be introduced for p(x) �= 0, as f̂ (x) is given by

f̂ (x) = exp
(∫

q(x)
p(x)

dx
)
. (1.8)

Employing Equation (1.8) in Equation (1.1) gives

f̂ (x)y′′(x)
p(x)

= −[f̂ (x)y(x)]′ (1.9)

and multiplying both sides of Equation (1.9) by m(f̂ (x)y(x))m−1 gives on integration the
general (for p(x) �= 0) integration formula [1]∫

1
p(x)

f̂ m(x)ym−1(x)y′′(x) dx = − f̂ m(x)ym(x)
m

. (1.10)

Equations (1.6) and (1.10) were used in [1] to derive integrals of various special functions,
with Equation (1.10) giving integrals of a type which seem to have been little explored
previously. However, in [1] Equations (1.6) and (1.10) were not applied to the classical
orthogonal polynomials, which are some of the promising cases for these formulas, and
these functions are examined in Section 2 below. Section 3 examines some additional func-
tions which were also not covered in [1]. All integrals presented have been checked with
Mathematica [4].

2. Gegenbauer polynomials

The Gegenbauer polynomials y(x) = Cλ
n(x) for n ∈ N0 obey the differential equation [5]

y′′(x) − (2λ + 1)x
1 − x2

y′(x) + n(2λ + n)
1 − x2

y(x) = 0 (2.1)

for which

f (x) = (1 − x2)λ+ 1
2 ; f̂ (x) = x−n 2λ+n

2λ+1 . (2.2)

The derivatives of these polynomials are [5]

y′(x) = 2λCλ+1
n−1(x) (2.3)

y′′(x) = 4λ(λ + 1)Cλ+2
n−2(x) (2.4)
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and substituting these results into Equations (1.6) and (1.10) gives the respective integrals

∫
(1 − x2)m(λ+ 1

2 )−1(Cλ+1
n−1(x))

m−1Cλ
n(x) dx = −2λ(1 − x2)m

(
λ+ 1

2
)
(Cλ+1

n−1(x))
m

mn(2λ + n)
(2.5)

∫
(1 − x2)x−mn 2λ+n

2λ+1−1 (Cλ
n(x)

)m−1 Cλ+2
n−2(x) dx = (2λ + 1)x−mn 2λ+n

2λ+1
(
Cλ
n(x)

)m
4λ(λ + 1)m

. (2.6)

The Gegenbauer polynomials also obey the recurrences [5]

(
Cλ
n(x)

)′ − (n + 2λ)x
1 − x2

Cλ
n(x) = − n + 1

1 − x2
Cλ
n+1(x) (2.7)

(
Cλ
n(x)

)′ + nx
1 − x2

Cλ
n(x) = n + 2λ − 1

1 − x2
Cλ
n−1(x) (2.8)

and these equations can be integrated with integrating factors to give, respectively[
(1 − x2)−

n
2Cλ

n(x)
]′ = (n + 2λ − 1) (1 − x2)−

n
2−1Cλ

n−1(x) (2.9)[
(1 − x2)

n
2+λCλ

n(x)
]′ = −(n + 1)(1 − x2)

n
2+λ−1Cλ

n+1(x). (2.10)

The differential equation obeyed by a function of the form w(x) = a(x)y(x) where y(x)
obeys Equation (1.1) is

w′′(x) +
(
p(x) − 2

a′(x)
a(x)

)
w′(x)

+
(
2
(
a′(x)
a(x)

)2
− a′′(x)

a(x)
− p(x)

a′(x)
a(x)

+ q(x)

)
w(x) = 0. (2.11)

Therefore if we define

y1(x) = (1 − x2)−
n
2Cλ

n(x) ⇒ y′
1(x) = (n + 2λ − 1) (1 − x2)−

n
2−1Cλ

n−1(x) (2.12)

then y1(x) obeys the differential equation

y′′
1(x) − (2n + 2λ + 1)x

1 − x2
y′
1(x) + n (n + 2λ − 1)

(1 − x2)2
y1(x) = 0 (2.13)

for which

f (x) = (1 − x2)n+λ+ 1
2 . (2.14)

Similarly, defining

y2(x) = (1 − x2)
n
2+λCλ

n(x) ⇒ y′
2(x) = −(n + 1)(1 − x2)

n
2+λ−1Cλ

n+1(x) (2.15)

then y2(x) obeys the differential equation

y′′
2(x) + (2n + 2λ − 1)x

1 − x2
y′
2(x) + (n + 1)(n + 2λ)

(1 − x2)2
y2(x) = 0 (2.16)
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for which

f (x) = (1 − x2)−(n+λ− 1
2 ). (2.17)

Substituting these results for y1(x) and y2(x) into Equation (1.6) gives the respective
integrals

∫
(1 − x2)m

( n−1
2 +λ

)−1 (Cλ
n−1(x)

)m−1 Cλ
n(x) dx = − (1 − x2)m

( n−1
2 +λ

) (
Cλ
n−1(x)

)m
mn

(2.18)∫
(1 − x2)−m

( n+1
2
)−1 (Cλ

n+1(x)
)m−1 Cλ

n(x) dx = (1 − x2)−m
( n+1

2
) (
Cλ
n+1(x)

)m
m(n + 2λ)

. (2.19)

2.1. Additional relations

Six additional relations are given sequentially in [6] involving the functions Cλ
2n(

√
x) and

Cλ
2n+1(

√
x), which can be used to obtain 6 pairs of general integrals from Equations (1.6)

and (1.10). On grounds of space, only four of these are considered here. The first of the
relations, in notation somewhat different from [6], is

dr

dxr
[xλ+n+r−1Cλ

2n(
√
x)] = (λ)rxλ+n−1Cλ+r

2n (
√
x) (2.20)

which gives the derivatives

y′
3(x) = [xλ+nCλ

2n(
√
x)]′ = λxλ+n−1Cλ+1

2n (
√
x) (2.21)

y′′
4(x) = [xλ+n+1Cλ

2n(
√
x)]′′ = λ(λ + 1)xλ+n−1Cλ+2

2n (
√
x). (2.22)

The first step in obtaining the differential equations obeyed by y3(x) and y4(x) is to first
obtain the differential equation obeyed by y(x) = Cλ

n(
√
x). Transforming the independent

variable in Equation (2.1) gives this differential equation as

y′′(x) + 1 − 2(λ + 1)x
2x(1 − x)

y′(x) + n(2λ + n)
4x(1 − x)

y(x) = 0 (2.23)

and for n → 2n this becomes

y′′(x) + 1 − 2(λ + 1)x
2x(1 − x)

y′(x) + n(λ + n)
x(1 − x)

y(x) = 0 (2.24)

and for n → 2n + 1

y′′(x) + 1 − 2(λ + 1)x
2x(1 − x)

y′(x) + (2n + 1)(2λ + 2n + 1)
4x(1 − x)

y(x) = 0. (2.25)

From Equations (2.11) and (2.24), y3(x) obeys the differential equation

y′′
3(x) + 1 − 4(λ + n) + 2(λ + 2n − 1)x

2x(1 − x)
y′
3(x) + (λ + n)(2λ + 2n + 1)

2x2(1 − x)
y3(x) = 0

(2.26)
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for which

f (x) = x
1
2−2λ−2n(1 − x)

1
2+λ (2.27)

and y4(x) obeys the differential equation

y′′
4(x) + 2(λ + 2n + 1)x − 3 − 4(n + λ)

2x(1 − x)
y′
4(x)

+ (2λ + 3 + 2n)(λ + n + 1) − 2(λ + 2n + 1)x
2x2(1 − x)

y4(x) = 0 (2.28)

for which

f̂ (x) = x− (λ+n+1)(2λ+2n+3)
4(λ+n)+3 [2(2n + λ + 1)x − 3 − 4(n + λ)]

(λ+n)(2λ+2n+1)
4(λ+n)+3 . (2.29)

Applying Equations (2.26) and (2.27) to Equation (1.6) gives the integral∫
x−m

(
n+λ+ 1

2
)−1(1 − x)m

(
λ+ 1

2
)−1

(
Cλ+1
2n (

√
x)
)m−1

Cλ
2n(

√
x) dx

= −
2λx−m

(
n+λ+ 1

2
)
(1 − x)m

(
λ+ 1

2
) (

Cλ+1
2n (

√
x)
)m

m(λ + n)(2λ + 2n + 1)
. (2.30)

Changing the dependent variable in the integral (2.30) such that t = √
x and then

relabelling such that t → x in the transformed integral gives the integral∫
x−m(2n+2λ+1)−1(1 − x2)m(λ+ 1

2 )−1(Cλ+1
2n (x))m−1Cλ

2n(x) dx

= −λx−m(2n+2λ+1)(1 − x2)m(λ+ 1
2 )(Cλ+1

2n (x))m

m(λ + n)(2λ + 2n + 1)
. (2.31)

Applying Equations (2.28) and (2.29) to Equation (1.10) gives the integral∫
(1 − x)x2m

(λ+n+1)(λ+n)
4λ+4n+3 −1

× [2(2n + λ + 1)x − 3 − 4(n + λ)]m
(λ+n)(2λ+2n+1)

4λ+4n+3 −1 (Cλ
2n(

√
x))m−1Cλ+2

2n (
√
x) dx

= −x2m
(λ+n+1)(λ+n)

4λ+4n+3 [2(2n + λ + 1)x − 3 − 4(n + λ)]m
(λ+n)(2λ+2n+1)

4(λ+n)+3 (Cλ
2n(

√
x))m

2mλ(λ + 1)
(2.32)

and changing the dependent variable such that t = √
x and relabelling as above gives the

integral∫
(1 − x2)x4m

(λ+n+1)(λ+n)
4λ+4n+3 −1

× [
2(2n + λ + 1)x2 − 3 − 4(n + λ)

]m (λ+n)(2λ+2n+1)
4λ+4n+3 −1

(Cλ
2n(x))

m−1Cλ+2
2n (x) dx

= −x4m
(λ+n+1)(λ+n)

4λ+4n+3
[
2(2n + λ + 1)x2 − 3 − 4(n + λ)

]m (λ+n)(2λ+2n+1)
4(λ+n)+3 (Cλ

2n(x))
m

4mλ(λ + 1)
.

(2.33)
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Three other relations of this type given in [6] which will be considered here are

dr

dxr
[
xλ+n+r− 1

2Cλ
2n+1(

√
x)
]

= (λ)rxλ+n− 1
2Cλ+r

2n+1(
√
x) (2.34)

dr

dxr
[
xr−n−1Cλ

2n(
√
x)
] = (λ)rx−n−1Cλ+r

2n−2r(
√
x) (2.35)

dr

dxr
[
xr−n− 3

2Cλ
2n+1(

√
x)
]

= (λ)rx−n− 3
2Cλ+r

2n−2r+1(
√
x). (2.36)

Equation (2.34) gives two functions y5(x) and y6(x) for which the first and second deriva-
tives, respectively, are simple. The functions, the differential equations they obey, f (x), f̂ (x)
and the final resulting integrals in the form where

√
x → x are given by

y′
5(x) =

[
xλ+n+ 1

2Cλ
2n+1(

√
x)
]′ = λxλ+n− 1

2Cλ+1
2n+1(

√
x) (2.37)

y′′
5 + (2n + λ)x − (

2n + 2λ + 1
2
)

x(1 − x)
y′
5(x) + (n + λ + 1)

(
n + λ + 1

2
)

x2(1 − x)
y5(x) = 0 (2.38)

f (x) = x−2n−2λ− 1
2 (1 − x)λ+ 1

2 (2.39)∫
x−2m(n+λ+1)−1(1 − x2)m

(
λ+ 1

2
)−1

(
Cλ+1
2n+1(x)

)m−1
Cλ
2n+1(x) dx

= −
λx−2m(n+λ+1)(1 − x2)m

(
λ+ 1

2
) (

Cλ+1
2n+1(x)

)m
2m(n + λ + 1)

(
n + λ + 1

2
) (2.40)

y′′
6(x) =

[
xλ+n+ 3

2Cλ
2n+1(

√
x)
]′′ = λ(λ + 1)xλ+n− 1

2Cλ+2
2n+1(

√
x) (2.41)

y′′
6(x) + (2n + λ + 2)x − (

2n + 2λ + 5
2
)

x(1 − x)
y′
6(x)

+
(
n + λ + 3

2
)
(n + λ + 2) − (2n + λ + 2)x

x2(1 − x)
y6(x) = 0 (2.42)

f̂ (x) = x− (n+λ+2)(2n+2λ+3)
4n+4λ+5

[
(2n + λ + 2)x −

(
2n + 2λ + 5

2

)] (n+λ+1)(2n+2λ+1)
4n+4λ+5

(2.43)

∫
(1 − x2)xm

(2n+2λ+3)(2n+2λ+1)
4n+4λ+5 −1

[
(2n + λ + 2)x2 − 2n − 2λ − 5

2

]m (n+λ+1)(2n+2λ+1)
4n+4λ+5 −1

× (
Cλ
2n+1(x)

)m−1 Cλ+2
2n+1(x) dx

= −xm
(2n+2λ+3)(2n+2λ+1)

4n+4λ+5
[
(2n + λ + 2)x2 − 2n − 2λ − 5

2
]m (n+λ+1)(2n+2λ+1)

4n+4λ+5
(
Cλ
2n+1(x)

)m
2mλ(λ + 1)

.

(2.44)

Equation (2.35) gives two functions y7(x) and y8(x) where

y′
7(x) = [

x−nCλ
2n(

√
x)
]′ = λx−n−1Cλ+1

2n−2(
√
x) (2.45)
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y′′
7(x) + 1 + 4n − (4n + 2λ + 2) x

2x(1 − x)
y′
7(x) + n(2n − 1)

2x2(1 − x)
y7(x) = 0 (2.46)

f (x) = x2n+
1
2 (1 − x)λ+ 1

2 (2.47)∫
xm(2n−1)−1(1 − x2)m

(
λ+ 1

2
)−1

(
Cλ+1
2n−2(x)

)m−1
Cλ
2n(x) dx

= −
λxm(2n−1)(1 − x2)m

(
λ+ 1

2
) (

Cλ+1
2n−2(x)

)m
mn(2n − 1)

(2.48)

y′′
8(x) = [

x1−nCλ
2n(

√
x)
]′′ = λ(λ + 1)x−n−1Cλ+2

2n−4(
√
x) (2.49)

y′′
8(x) + 2n − 3

2 − (2n + λ − 1)x
x(1 − x)

y′
8(x) + (n − 1)

(
n − 3

2
)+ (2n + λ − 1)x

x2(1 − x)
y8(x) = 0

(2.50)

f̂ (x) = x
(n−1)(2n−3)

4n−3

[
2n − 3

2
− (2n + λ − 1)x

] n(1−2n)
4n−3

(2.51)

∫
(1 − x2)x−4mn(n−1)

4n−3 −1
[
2n − 3

2
− (2n + λ − 1)x2

]mn(1−2n)
4n−3 −1

× (Cλ
2n(x))

m−1Cλ+2
2n−4(x) dx

= −x−4mn(n−1)
4n−3

[
2n − 3

2 − (2n + λ − 1)x2
]mn(1−2n)

4n−3 (Cλ
2n(x))

m

2mλ(λ + 1)
. (2.52)

Equation (2.36) gives two functions y9(x) and y10(x) such that

y′
9(x) =

[
x−n− 1

2Cλ
2n+1(

√
x)
]′ = λx−n− 3

2Cλ+1
2n−1(

√
x) (2.53)

y′′
9(x) + 2n + 3

2 − (2n + λ + 2)x
x(1 − x)

y′
9(x) + n

(
n + 1

2
)

x2(1 − x)
y9(x) = 0 (2.54)

f (x) = x2n+
3
2 (1 − x)λ+ 1

2 (2.55)∫
x2mn−1(1 − x2)m

(
λ+ 1

2
)−1

(
Cλ+1
2n−1(x)

)m−1
Cλ
2n+1(x) dx

= −
λx2mn(1 − x2)m

(
λ+ 1

2
) (

Cλ+1
2n−1(x)

)m
2mn

(
n + 1

2
) (2.56)

y′′
10(x) =

[
x−n+ 1

2Cλ
2n+1(

√
x)
]′′ = λ(λ + 1)x−n− 3

2Cλ+2
2n−3(

√
x) (2.57)

y′′
10(x) + 4n − 1 − 2(2n + λ)x

2x(1 − x)
y′
10(x) + n(2n − 3) + 1 + 2(2n + λ)x

2x2(1 − x)
y10(x) = 0 (2.58)

f̂ (x) = x
(n−1)(2n−1)

4n−1 [4n − 1 − 2(2n + λ)x]−
n(2n+1)
4n−1 (2.59)
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∫
(1 − x2)x−m(2n−1) 2n+1

4n−1−1 [4n − 1 − 2(2n + λ)x2
]−mn(2n+1)

4n−1 −1

× (
Cλ
2n+1(x)

)m−1 Cλ+2
2n−3(x) dx

= −x−m(2n−1) 2n+1
4n−1

[
4n − 1 − 2(2n + λ)x2

]−mn(2n+1)
4n−1

(
Cλ
2n+1(x)

)m
4mλ(λ + 1)

. (2.60)

3. Hermite polynomials

The Hermite polynomials Hn(x) obey the differential equation [5]

y′′(x) − 2xy′(x) + 2ny(x) = 0 (3.1)

and the four recurrence relations for these polynomials given in [5] are equivalent to the
two relations

H′
n(x) = 2nHn−1(x) (3.2)

H′
n(x) − 2xHn(x) = −Hn+1(x). (3.3)

Equation (3.3) can be integrated with an integrating factor to give

(e−x2Hn(x))′ = −e−x2Hn+1(x) (3.4)

andEquations (3.2) and (3.4) can be differentiated any number of timeswith the derivatives
remaining simple. Defining

u1(x) = Hn(x) (3.5)

then

u′
1(x) = 2nHn−1(x) (3.6)

u′′
1(x) = 4n(n − 1)Hn−2(x) (3.7)

and as u1(x) obeys Equation (3.1) we have

f (x) = e−x2 (3.8)

f̂ (x) = x−n. (3.9)

Applying Equations (3.5), (3.6) and (3.8) to Equation (1.6) gives the integral

∫
e−mx2Hm−1

n−1 (x)Hn(x) dx = −e−mx2Hm
n−1(x)

m
(3.10)

and applying Equations (3.5), (3.7) and (3.9) to Equation (1.10) gives the integral
∫

x−mn−1Hm−1
n (x)Hn−2(x) dx = 2x−mnHm

n (x)
4mn(n − 1)

. (3.11)
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Defining

u2(x) = e−x2Hn(x) (3.12)

then

u′
2(x) = −e−x2Hn+1(x) (3.13)

u′′
2(x) = e−x2Hn+2(x) (3.14)

where the function u2(x) obeys the equation

u′′
2(x) + 2xu′

2(x) + 2(n + 1)u′
2(x) = 0 (3.15)

for which

f (x) = ex
2
; f̂ (x) = xn+1. (3.16)

Applying these results to Equations (1.6) and (1.10) gives the respective integrals∫
Hm−1
n+1 (x)Hn(x) dx = Hm

n+1(x)
2m(n + 1)

(3.17)

∫
e−mx2xm(n+1)−1Hm−1

n (x)Hn+2(x) dx = −2e−mx2xm(n+1)Hm
n (x)

m
. (3.18)

The relation

dr

dxr
(xr−n−1H2n(

√
x)) = (2n)!

(2n − 2r)!
x−n−1H2n−2r(

√
x) [n ≥ r] (3.19)

is given along with some similar relations in [6] and these can be used to derive integrals
similar to some of those derived for Gegenbauer polynomials in the previous section. Here
only Equation (3.19) will be employed. Defining

u3(x) = x−nH2n(
√
x) (3.20)

then Equation (3.19) gives

u′
3(x) = 2n(2n − 1)x−n−1H2n−2(

√
x) (3.21)

and defining

u4(x) = x−n+1H2n(
√
x) (3.22)

then Equation (3.19) gives

u′′
4(x) = 2n(2n − 1)(2n − 2)(2n − 3)x−n−1H2n−4(

√
x). (3.23)

When the independent variable is changed to
√
x in Equation (3.1) and n → 2n, this

equation becomes

y′′(x) +
(

1
2x

− 1
)
y′(x) + n

x
y(x) = 0 (3.24)
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with a solution y(x) = H2n(
√
x). The function u3(x) obeys the equation

u′′
3(x) +

(
4n + 1
2x

− 1
)
u′
3(x) + n(2n − 1)

2x2
u3(x) = 0 (3.25)

for which

f (x) = x2n+
1
2 e−x (3.26)

and the function u4(x) obeys the equation

u′′
4(x) +

(
4n − 3
2x

− 1
)
u′
4(x) +

(
(n − 1)(2n − 3)

2x2
+ 1

x

)
u4(x) = 0 (3.27)

for which

f̂ (x) = x
(n−1)(2n−3)

4n−3 (4n − 3 − 2x)−
n(2n−1)
4n−3 . (3.28)

Substituting these results into Equations (1.6) and (1.10) gives the respective integrals
∫

xm(2n−1)−1e−mx2(H2n−2(x))m−1H2n(x) dx = −2xm(2n−1)e−mx2(H2n−2(x))m

m
(3.29)

∫
x−4mn(n−1)

4n−3 −1(4n − 3 − 2x2)−mn(2n−1)
4n−3 −1(H2n(x))m−1H2n−4(x) dx

= −x−4mn(n−1)
4n−3 (4n − 3 − 2x2)−mn(2n−1)

4n−3 (H2n(x))m

8mn(2n − 1)(2n − 2)(2n − 3)
. (3.30)

4. Laguerre polynomials

The Laguerre polynomials Lα
n(x) for n ∈ N0 obey the differential equation

y′′(x) +
(

α + 1
x

− 1
)
y′(x) + n

x
y(x) = 0. (4.1)

The recurrences given in [5] are equivalent to the four relations[
Lα
n(x)

]′ = −Lα+1
n+1(x) (4.2)[

Lα
n(x)

]′ − Lα
n(x) = −Lα+1

n (x) (4.3)[
Lα
n(x)

]′ − n
x
Lα
n(x) = −n + α

x
Lα
n−1(x) (4.4)

[
Lα
n(x)

]′ + n + α + 1 − x
x

Lα
n(x) = n + 1

x
Lα
n+1(x) (4.5)

and Equations (4.3)–(4.5) can be integrated with integrating factors to give[
e−xLα

n(x)
]′ = −e−xLα+1

n (x) (4.6)[
x−nLα

n(x)
]′ = −(n + α)x−n−1Lα

n−1(x) (4.7)[
xn+α+1e−xLα

n(x)
]′ = (n + 1)xn+αe−xLα

n+1(x). (4.8)
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Equations (4.2) and (4.6) give simple derivatives on differentiation any number of times,
but Equations (4.7) and (4.8) do not. The relation

dr

dxr
(
xαe−xLα

n(x)
) = (n + r)!

n!
xα−re−xLα−r

n+r (x) (4.9)

is given in [6] and will also be used here.
For

v1(x) = Lα
n(x) (4.10)

then

v′
1(x) = −Lα+1

n−1(x) (4.11)

v′′
1(x) = Lα+2

n−2(x) (4.12)

and v1(x) obeys Equation (4.1) for which

f (x) = xα+1e−x; f̂ (x) = (α + 1 − x)−n. (4.13)

Applying Equations (4.1) and (4.10)–(4.13) to Equations (1.6) and (1.10) gives the
respective integrals

∫
xm(α+1)−1e−mx (Lα+1

n−1(x)
)m−1 Lα

n(x) dx = xm(α+1)e−mx (Lα+1
n−1(x)

)m
mn

(4.14)

∫
x(α + 1 − x)−mn−1 (Lα

n(x)
)m−1 Lα+2

n−2(x) dx = − (α + 1 − x)−mn (Lα
n(x)

)m
m

. (4.15)

Defining

v2(x) = e−xLα
n(x) (4.16)

then

v′
2(x) = −e−xLα+1

n (x) (4.17)

v′′
2(x) = e−xLα+2

n (x) (4.18)

and v2(x) obeys the differential equation

v′′
2(x) +

(
α + 1
x

+ 1
)
v′
2(x) + n + α + 1

x
v2(x) = 0 (4.19)

for which

f (x) = xα+1ex; f̂ (x) = (α + 1 + x)n+α+1. (4.20)

Applying these results to Equations (1.6) and (1.10) gives the respective integrals

∫
xm(α+1)−1 (Lα+1

n (x)
)m−1 Lα

n(x) dx = xm(α+1) (Lα+1
n (x)

)m
m(n + α + 1)

(4.21)
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∫
x(α + 1 + x)m(n+α+1)−1e−mx (Lα

n(x)
)m−1 Lα+2

n (x) dx

= − (α + 1 + x)m(n+α+1)e−mx (Lα
n(x)

)m
m

. (4.22)

Defining

v3(x) = x−nLα
n(x) (4.23)

then

v′
3(x) = −(n + α)x−n−1Lα

n−1(x) (4.24)

and v3(x) obeys the differential equation

v′′
3(x) +

(
2n + α + 1

x
− 1

)
v′
3(x) + n(n + α)

x2
v3(x) (4.25)

for which

f (x) = x2n+α+1e−x. (4.26)

Applying these results to Equation (1.6) gives the integral∫
xm(n+α)−1e−mx (Lα

n−1(x)
)m−1 Lα

n(x) dx = xm(n+α)e−mx (Lα
n−1(x)

)m
mn

. (4.27)

Defining

v4(x) = xn+α+1e−xLα
n(x) (4.28)

then

v′
4(x) = (n + 1)xn+αe−xLα

n+1(x) (4.29)

and v4(x) obeys the differential equation

v′′
4(x) +

(
1 − 2n + α + 1

x

)
v′
4(x) + (n + 1)(n + α + 1)

x2
v4(x) = 0 (4.30)

for which

f (x) = x−(2n+α+1)ex. (4.31)

Applying these results to Equation (1.6) gives the integral∫
x−m(n+1)−1 (Lα

n+1(x)
)m−1 Lα

n(x) dx = −x−m(n+1) (Lα
n+1(x)

)m
m(n + α + 1)

. (4.32)

Defining

v5(x) = xαe−xLα
n(x) (4.33)

then from Equation (4.9) we have

v′
5(x) = (n + 1)xα−1e−xLα−1

n+1(x) (4.34)

v′′
5(x) = (n + 1)(n + 2)xα−2e−xLα−2

n+2(x) (4.35)
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and v5(x) obeys the differential equation

v′′
5(x) +

(
1 + 1 − α

x

)
v′
5(x) + n + 1

x
v5(x) (4.36)

for which

f (x) = x1−αex; f̂ (x) = (1 − α + x)n+1. (4.37)

Applying these results to Equations (1.6) and (1.10) gives the respective integrals

∫ (
Lα−1
n+1(x)

)m−1 Lα
n(x) dx = −

(
Lα−1
n+1(x)

)m
m

(4.38)∫
xmα−1e−mx(1 − α + x)m(n+1)−1 (Lα

n(x)
)m−1 Lα−2

n+2(x) dx

= −xmαe−mx(1 − α + x)m(n+1) (Lα
n(x)

)m
m(n + 1)(n + 2)

. (4.39)

As Lα
n(x) is the derivative of −Lα−1

n+1(x), Equation (4.38) can be considered to be an
elementary integral.

5. Comments and conclusions

All the integrals presented here appear to be new and have been checked by differentiation
using Mathematica [4]. Many more integrals of this type can be derived using this method
for these three polynomials. Results for other orthogonal polynomials will be presented
separately.
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