
Learning Automata-Based Object
Partitioning with Pre-Specified
Cardinalities

REBEKKA OLSSON OMSLANDSETER

SUPERVISORS

Lei Jiao
B. John Oommen

University of Agder, 2020

Faculty of Engineering and Science

Department of Information and

Communication Technology

UiA
University of Agder
Master’s Thesis

Faculty of Engineering and Science
Department of Information and
Communication Technology
c© 2020 Rebekka Olsson Omslandseter. All rights reserved.

Abstract

The Object Migrating Automata (OMA) has been used as a powerful AI-
based tool to resolve real-life partitioning problems. Apart from its orig-
inal version, variants and enhancements that invoke the pursuit concept
of Learning Automata, and the phenomena of transitivity, have more re-
cently been used to improve its power. The single major handicap that
it possesses is the fact that the number of the objects in each partition
must be equal. This thesis deals with the task of relaxing this constraint.
Thus, in this thesis, we will consider the problem of designing OMA-based
schemes when the number of the objects can be unequal, but pre-specified.
By opening ourselves to this less-constrained version, we encounter a few
problems that deal with the implementation of the inter-partition migration
of the objects. This thesis considers how these problems can be solved, and
in essence, presents the design, implementation and testing of two OMA-
based methods and all its variants, that include the pursuit and transitivity
phenomena.

iii

Preface and
Acknowledgements

This master thesis is part of an integrated Ph.D. study at the University
of Agder, Norway. The master thesis concludes the master’s education in
Information and Communication Technology. This thesis is a “long thesis”,
which constitutes 60 credits in the university system.

I would like to thank my supervisors, Dr. B. John Oommen and Dr. Lei
Jiao. They have been invaluable in the process of this thesis. Their out-
standing support and contributions have made this work possible. The
discussions have been very valuable and have enabled the research to hold
expected quality at all stages of the process. Many thanks for their guidance
and help to develop me in both my research and work methodology.

In addition, I would like to thank my better half, Rune A. Rummelhof, for
always supporting me and encouraging me when things get hard. Finally, I
want to thank my mother, father, and brother for always being present and
supporting me through life. My family is valuable in every way.

v

Table of Contents

Abstract iii

Preface and Acknowledgements v

Acronyms ix

List of Figures xvi

List of Tables xix

Table of Notations xxi

I Research Overview 1

1 Introduction 3

1.1 Motivation . 5

1.2 Problem Statement of the Thesis 6

1.3 Objectives of the Thesis . 7

1.4 Contributions . 8

1.5 Outline . 9

2 Background 11

2.1 Reinforcement Learning . 12

2.2 Learning Automata . 13

2.2.1 The Environment . 15

2.2.2 The LA . 16

2.2.3 Fixed Structure Stochastic Automata 19

2.2.3.1 The L2,2 Automaton 19

2.2.3.2 The L2S,2 Automaton 20

2.2.3.3 Multi-Action LA 23

vii

Table of Contents Table of Contents

2.2.3.4 The Concept of Convergence 24

2.2.4 Variable Structure Stochastic Automata 24

2.2.4.1 Two Linear VSSA Schemes 25

2.3 Partitioning Problems . 27

2.3.1 Previous Solutions to the OPP/EPP 30

2.3.1.1 The Hill Climbing Method 30

2.3.1.2 The Basic Adaptive Method (BAM) 31

2.3.1.3 Tsetlin and Krinsky Methods 33

2.3.2 The Paradigm of OMA Algorithms 35

2.3.2.1 The OMA 38

2.3.2.2 The EOMA 42

2.3.2.3 The PEOMA 48

2.3.2.4 The TPEOMA 51

II Contributions 55

3 Partitioning Problems with Pre-Specified Cardinalities 57

3.1 Motivation . 59

3.2 Problem Complexity . 60

3.3 Freedom of Cardinalities . 62

3.4 Evaluation Criteria . 63

3.4.1 Evaluation of Convergence Rate 64

3.4.2 Evaluation of Converged Partitioning 65

3.5 Proposed Algorithms . 67

3.5.1 Method 1 . 68

3.5.1.1 Proposed Functionality 69

3.5.1.2 Implementation 71

3.5.2 Method 2 . 73

3.5.2.1 Proposed Functionality 76

3.5.2.2 Implementation 79

III Experiments and Results 83

4 Results for EPPs 85

4.1 Simulation Provisions . 87

4.2 EOMA Variants . 88

4.2.1 Existing EOMA . 89

4.2.2 Method 1 EOMA . 92

viii

Table of Contents Table of Contents

4.2.3 Method 2 EOMA . 94
4.3 PEOMA Variants . 96

4.3.1 Existing PEOMA . 97
4.3.2 Method 1 PEOMA . 99
4.3.3 Method 2 PEOMA . 101

4.4 TPEOMA Variants . 103
4.4.1 Existing TPEOMA . 104
4.4.2 Method 1 TPEOMA 106
4.4.3 Method 2 TPEOMA 107

4.5 Discussion and Summary . 109

5 Results for NEPPs 111
5.1 NEPPs with a GCD . 113

5.1.1 Method 1 EOMA . 114
5.1.2 Method 2 EOMA . 120

5.2 NEPPs without a GCD . 125
5.2.1 Method 2 EOMA . 126

5.3 Discussion and Summary . 130

IV Conclusions 133

6 Conclusions and Future Work 135
6.1 Conclusions . 135
6.2 Future Work . 136

References 144

Appendices 145
A Extended Results for EPPs 145
B Extended Results for NEPPs 150
C List of Publications . 155

ix

Acronyms

LIP Linear Inaction-Penalty.

LRI Linear Reward-Inaction.

LRP Linear Reward-Penalty.

BAM Basic Adaptive Method.

CGHA Complete Greedy Heuristic Algorithm.

CKKHA Complete Karmarkar-Karp Heuristic.

EOMA Enhanced Object Migration Automata.

EPP Equi-Partitioning Problem.

FC Freedom of Cardinalities.

FSSA Fixed Structure Stochastic Automata.

GCD Greatest Common Divisor.

GHA Greedy Heuristic Algorithm.

HS Heuristic Searcher.

LA Learning Automata.

MAP Micro-Aggregation Problem.

ML Machine Learning.

xi

Acronyms Acronyms

NEPP Non-Equi-Partitioning Problem.

NOMA Non-Orthogonal Multiple Access.

OMA Object Migration Automata.

OPP Object Partitioning Problem.

PE Partition Evaluator.

PEOMA Pursuit Enhanced Object Migration Automata.

RL Reinforcement Learning.

TPEOMA Transitivity Pursuit Enhanced Object Migration Automata.

VSSA Variable Structure Stochastic Automata.

xii

List of Figures

2.1 A schematic of the LA-Environment model. 15

2.2 The state transitions of L2,2 for Reward. 20

2.3 The state transitions of L2,2 for Penalty. 20

2.4 The state transitions of L2S,2 for Reward. 21

2.5 The state transitions of L2S,2 for Penalty. 21

2.6 The operation of the LAS,A upon Penalty. 23

2.7 Example of the process in a Linear Reward-Penalty scheme. . 27

2.8 Example of a simplified partitioning process. 29

2.9 Visualization of the BAM operation, where o1 and o4 are the
accessed objects and o2 and o3 are moved away in the second
phase. 32

2.10 A schematic model of the operation of the OMA working in
conjunction with the Query Generator. 39

2.11 Initial distribution of objects in the example of the Deadlock
Situation. 43

2.12 The process of the OMA for a query stream constituting a
Deadlock Situation. 44

2.13 The state transition diagram of the EOMA operation. 46

2.14 The frequency matrix for query occurrences in the PEOMA. . 49

3.1 Example of partition links in Method 1 with 3 partitions and
4 states as described in the text. 70

3.2 Randomly initialized objects in a Standstill Situation. 74

3.3 Example of objects stuck in a Standstill Situation. 75

3.4 Example of the Penalty functionality for the Standstill Situ-
ation. 78

4.1 Simulated performance of the existing EOMA for 30 objects,
3 partitions, 10 states and with 10% noise. 91

xiii

List of Figures List of Figures

4.2 Simulated convergence based on 1,000 experiments involving
the existing EOMA for 30 objects, 3 partitions, 10 states and
with 10% noise. 91

4.3 Simulated performance of Method 1 EOMA for 30 objects, 3
partitions, 10 states and with 10% noise. 93

4.4 Simulated convergence based on 1,000 experiments involving
Method 1 EOMA for 30 objects, 3 partitions, 10 states and
with 10% noise. 93

4.5 Simulated performance of Method 2 EOMA for 30 objects, 3
partitions, 10 states and with 10% noise. 95

4.6 Simulated convergence based on 1,000 experiments involving
Method 2 EOMA for 30 objects, 3 partitions, 10 states and
with 10% noise. 95

4.7 Simulated performance of the existing PEOMA for 15 ob-
jects, 3 partitions, 3 states and with 35% noise. 99

4.8 Simulated convergence based on 1,000 experiments involving
Method 1 PEOMA for 15 objects, 3 partitions, 4 states and
with 35% noise. 101

4.9 Simulated convergence based on 1,000 experiments involving
Method 2 PEOMA for 15 objects, 3 partitions, 4 states and
with 35% noise. 103

4.10 Simulated convergence based on 1,000 experiments involving
the existing TPEOMA for 15 objects, 3 partitions, 4 states
and with 35% noise. 106

4.11 Average required number of queries considered by the LA
(Ψ) before convergence is achieved with the different existing
OMA types for Problem 2 with 20 % noise. 110

4.12 Average required number of queries generated by the Query
Generator (ΨQ) before convergence is achieved with the dif-
ferent existing OMA types for Problem 2 with 20 % noise. . . 110

5.1 Simulated performance of Method 1 EOMA for Problem 4,
with 6 states and 20% noise. 115

5.2 Simulated number of queries in relation to the converged LA
based on 100 independent experiments with Method 1 EOMA
for Problem 4, with 6 states and 20% noise. 116

5.3 Simulated performance of Method 1 EOMA for Problem 5,
with 6 states and 20% noise. Two of the 100 experiments did
not converge. 118

xiv

List of Figures List of Figures

5.4 Simulated number of queries in relation to the converged LA
with Method 1 EOMA for Problem 5, with 6 states and 20%
noise. 118

5.5 Simulated performance of Method 2 EOMA for Problem 4,
with 6 states and 10% noise. 121

5.6 Simulated performance of Method 2 EOMA for Problem 4,
with 6 states and 20% noise. 122

5.7 Simulated performance for Method 2 EOMA and Problem 5,
with 6 states and 20% noise. 124

5.8 Simulated performance for Method 2 EOMA and Problem 5,
with 4 states and 20% noise. 124

5.9 Simulated convergence rate based on 1,000 experiments of
Method 2 EOMA, for Problem 5 and 20% noise. 125

5.10 Simulated performance of Method 2 EOMA for Problem 6,
with 6 states and 30% noise. 127

5.11 Simulated performance of Method 2 EOMA for Problem 6,
with 6 states and 20% noise. 128

5.12 Simulated number of queries in relation to the converged
LA based on 1,000 independent experiments with Method 2
EOMA, for Problem 7 with 6 states and 30% noise. 129

A.1 Simulated performance for existing EOMA and 18 objects, 6
partitions, 10 states and 0% noise. 145

A.2 Simulated performance for existing EOMA and 18 objects, 6
partitions, 10 states and 10% noise. 146

A.3 Simulated performance for existing EOMA and 30 objects, 3
partitions, 10 states and 0% noise. 146

A.4 Simulated performance for Method 1 EOMA and 18 objects,
6 partitions, 10 states and 0% noise. 147

A.5 Simulated performance for Method 1 EOMA and 18 objects,
6 partitions, 10 states and 10% noise. 147

A.6 Simulated performance for Method 1 EOMA and 30 objects,
3 partitions, 10 states and 0% noise. 148

A.7 Simulated performance for Method 2 EOMA and 18 objects,
6 partitions, 10 states and 0% noise. 148

A.8 Simulated performance for Method 2 EOMA and 18 objects,
6 partitions, 10 states and 10% noise. 149

A.9 Simulated performance for Method 2 EOMA and 30 objects,
3 partitions, 10 states and 0% noise. 149

xv

List of Figures List of Figures

B.1 Simulated performance with Method 1 EOMA for Problem
5, with 10% noise and 6 states. 150

B.2 Simulated performance with Method 1 EOMA for Problem
5, with 15% noise and 6 states. 150

B.3 Simulated performance with Method 1 EOMA for Problem
5, with 20% noise and 6 states. 151

B.4 Simulated performance with Method 2 EOMA for Problem
5, with 10% noise and 6 states. 151

B.5 Simulated performance with Method 2 EOMA for Problem
5, with 15% noise and 6 states. 152

B.6 Simulated performance with Method 2 EOMA for Problem
5, with 20% noise and 6 states. 152

B.7 Simulated performance with Method 2 EOMA for Problem
6, with 10% noise and 18 states. 153

B.8 Simulated performance with Method 2 EOMA for Problem
6, with 30% noise and 6 states. 153

B.9 Simulated performance with Method 2 EOMA for Problem
7, with 10% noise and 6 states. 154

B.10 Simulated performance with Method 2 EOMA for Problem
7, with 30% noise and 6 states. 154

xvi

List of Tables

1 Table of notations utilized throughout the thesis. xxii

2.1 Examples of expected Penalty feedback for various values of
S in the L2S,2 automaton. 22

4.1 Statistics of the existing EOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 89

4.2 Statistics of the existing EOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 90

4.3 Statistics of Method 1 EOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments. . 92

4.4 Statistics of Method 1 EOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments. . 92

4.5 Statistics of Method 2 EOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments. . 94

4.6 Statistics of Method 2 EOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments. . 94

4.7 Statistics of the existing PEOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 97

4.8 Statistics of the existing PEOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 98

4.9 Statistics of the existing PEOMA for a case involving 15 ob-
jects, 3 partitions and different number of states averaged
over 1,000 experiments. 98

4.10 Statistics of Method 1 PEOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 99

xvii

List of Tables List of Tables

4.11 Statistics of Method 1 PEOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 100

4.12 Statistics of Method 1 PEOMA for a case involving 15 ob-
jects, 3 partitions and 4 states averaged over 1,000 experiments.100

4.13 Statistics of Method 2 PEOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 101

4.14 Statistics of Method 2 PEOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 102

4.15 Statistics of Method 2 PEOMA for a case involving 15 ob-
jects, 3 partitions and 4 states averaged over 1,000 experiments.102

4.16 Statistics of the existing TPEOMA for a case involving 18
objects, 6 partitions and 10 states averaged over 1,000 exper-
iments. 105

4.17 Statistics of the existing TPEOMA for a case involving 30
objects, 3 partitions and 10 states averaged over 1,000 exper-
iments. 105

4.18 Statistics of the existing TPEOMA for a case involving 15
objects, 3 partitions and 4 states averaged over 1,000 exper-
iments. 106

4.19 Statistics of Method 1 TPEOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 107

4.20 Statistics of Method 1 TPEOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 107

4.21 Statistics of Method 1 TPEOMA for a case involving 15 ob-
jects, 3 partitions and 4 states averaged over 1,000 experiments.107

4.22 Statistics of Method 2 TPEOMA for a case involving 18 ob-
jects, 6 partitions and 10 states averaged over 1,000 experi-
ments. 108

4.23 Statistics of Method 2 TPEOMA for a case involving 30 ob-
jects, 3 partitions and 10 states averaged over 1,000 experi-
ments. 108

4.24 Statistics of Method 2 TPEOMA for a case involving 15 ob-
jects, 3 partitions and 4 states averaged over 1,000 experiments.108

xviii

List of Tables List of Tables

5.1 Statistics of Method 1 EOMA for Problem 4 with different
noise levels, averaged over 1,000 experiments. 115

5.2 Statistics of Method 1 EOMA for Problem 5 with different
noise levels and 6 states, averaged over 1,000 experiments. . . 117

5.3 Statistics of Method 2 EOMA for Problem 4 with different
noise levels, averaged over 1,000 experiments. 120

5.4 Statistics of Method 2 EOMA for Problem 5 with different
noise levels and 6 states, averaged over 1,000 experiments. . . 123

5.5 Statistics of Method 2 EOMA for Problem 6, with different
noise levels and 6 states, averaged over 100 experiments. . . . 127

5.6 Statistics of Method 2 EOMA for Problem 6, with different
state depths averaged over 100 experiments. 127

5.7 Statistics of Method 2 EOMA for Problem 7, with different
noise levels and 6 states, averaged over 100 experiments. . . . 129

xix

Table of Notations

Notation Description
Θ Learning Automata
ξ Environment
A Set of possible actions, where A = {α1, ..., αA}
A Total number of actions
C Set of penalty probabilities, where C = {c1, ..., cA}
B Set of possible responses from ξ, where B = {β1, ..., βB}
B Total number of possible environmental responses
di The reward probability of action αi
n Discretized time instants, where n ∈ {1, ..., N}
S Set of states, where S = {φ1, ..., φAS}
S Number of states per action

Pr(...) Probability of ...
F(., .) Maps the current state and input into the next state
H(., .) Maps the current state and input into the next action
G(., .) Maps the current state to the next action
M(n) Average experienced penalty for a learning automaton
P (n) Action probability vector, where P (n) = {p1(n), ..., pA(n)}
M0 Pure-chance automaton
χ Updating algorithm in VSSA schemes

T [P (n),A(n),B(n)] Mapping of probability update of actions in VSSA
kR Example of updating constant for VSSA schemes
O Set of abstract objects, where O = {o1, ..., oO}
O Number of objects
K Number of partitions
K Set of partitions, where K = {%1, ..., %K}
Q A query. Q = 〈oi, oj〉 indicates oi and oj are accessed
Υ Sequence of queries, where Υ = {〈oi, oj〉, ...}
Z Relation among attributes in the Hill Climbing Method
w Number of attributes in the Hill Climbing Method
|Υ| Total length of query sequence

xxi

List of Tables List of Tables

Notation Description
Xi Real number value given to oi in the BAM

ω1 and ω2 Distance parameters for modifications in the BAM
∆∗ Optimal partitioning
∆0 Initial partitioning
∆+ Found partitioning through a partitioning solution

Πoi,oj Probability of objects oi and oj belonging together in ∆∗

θi Current state of oi
τ Probability threshold of query likeliness
κ Number of queries to be considered in the estimation phase
τt Transitivity probability threshold of query likeliness
M Frequency matrix of presented queries
πoi,oj Frequency of oi and oj accessed together
ρk Number of objects in partition k, where k ∈ {1, 2, ...,K}
Ξ Freedom of cardinalities (FC)
Ψ Nr. of queries considered by the LA before convergence

ΨQ Nr. of queries generated by Querygenerator before convergence
ΨT Number of queries generated by the transitivity concept

Γoi,oj Whether oi and oj are grouped in ∆∗ and ∆+

γ Accuracy of converged partitioning
W Number of combinations
xk Number of needed partitions for partition k in Method 1
ιk State range for partition k in Method 1
BO The O-th Bell number{
O
k

}
The Stirling numbers of the second kind [1]

λ Parameter for the O-th Bell number’s behavior
R Number of partitions in LA for Method 1
θBk

Boundary state of partition k
Λ Greatest Common Divisor (GCD)

Table 1: Table of notations utilized throughout the thesis.

xxii

Part I

Research Overview

1

Chapter 1

Introduction

In today’s high-tech society, with digital connections among an increasing
number of devices, services, and our entire existence, the resulting amount of
data is ever-increasing. Over the years, the development of storing such data
and analyzing its peculiarities have played a vital part in the growth of the
world. Machine Learning (ML) has turned out to be a valuable component
in data analytics and big data. ML is currently one of the major buzz
words considering the future of technology. In the paradigm of ML, we find
the research area of Learning Automata (LA). The field of LA and some
of its variants have shown themselves to outperform others in, e.g., solving
partitioning problems. In this thesis, we will study a set of LA algorithms,
namely the algorithms based on the Object Migration Automata (OMA),
which can be utilized for both solving the issues in database management
and for analyzing and learning more about our data.

In terms of big data, one key factor is the computational cost, i.e., the pro-
cessing “speed”. Thus, with the increasing amounts of data, we need to have
efficient ways to store and analyze its different parts, which includes differ-
ent ways of increasing the speed of accessing data and the speed of finding
solutions to analytically process it. The family of OMA algorithms have
shown themselves as powerful schemes for solving real-life applications, be-
cause they constitute efficient tools that can converge to accurate solutions
faster than their predecessors, while the computational complexity remains
low. To the best of our knowledge, the existing Enhanced Object Migra-
tion Automata (EOMA), Pursuit Enhanced Object Migration Automata

3

Introduction

(PEOMA) and Transitivity Pursuit Enhanced Object Migration Automata
(TPEOMA) constitute the state-of-the-art in the world of partitioning prob-
lems. Specifically, the OMA algorithms are able to solve partitioning prob-
lems, where the partitions are of equal size.

Partitioning problems, broadly speaking, concerns splitting a set of objects
into specified (or unspecified) sub-sets based on a certain criteria. In the
research field of partitioning, we refer to such problems as Object Partition-
ing Problems (OPPs) [2]. This splitting or optimization criterion for the
subsets can be complex in nature, considering the variety of aspects that
one can encounter for achieving an optimal partitioning of the objects. An
example of an OPP, can be to partition a set of users into either positive
or negative contributors based on their individual feedback. Other exam-
ples of applications can be the distribution of power budgets among sets
of users, the placement of files in a storage system or distributed database,
and the control of electricity profiles in a power grid. The partitioning
of purchased items in online shopping stores, is also an interesting case,
where OMAs can monitor items bought by customers, and modifications to
“other’s also bought” or “recommended items” can be based on the OMA’s
influences. Understandably, the field of OMA constitutes an interesting
area of study, with many possibilities in terms of various applications. Ex-
isting OMA algorithms1 can solve OPPs, where the sub-sets are of equal
size (termed Equi-Partitioning Problems (EPPs)), and have demonstrated
their applicability to cases in, e.g., mobile radio communications [3], noisy
sensor networks [4], and the design of single linked lists [5].

In recent years, the field of ML has accelerated quickly, and an increasing
number of algorithms have been published. As discussed above, the OMA
algorithms have many undiscovered applications and possibilities. However,
the design of an algorithm is only valuable if its results are satisfactory and
can be applied to problems that make enhancements to the research field and
technological development in its entirety. Even though the OMA algorithms
have shown astonishing results in terms of their convergence efficiency, sim-
ilar to other ML solutions, their applicability to different problems is crucial
for its realization. Therefore, the goal of this research is to further improve
the OMA algorithms by contributing to their applicability to different prob-

1In this thesis, we refer the EOMA, PEOMA and TPEOMA as the existing algorithms
in the OMA paradigm. Nonetheless, there are predecessors to the relevant algorithms
mentioned. These earlier versions of the OMA are sidelined in this thesis, in the interest
of simplicity when it concerns explanation.

4

1.1. Motivation Introduction

lems, and we intend to achieve this by eliminating some of the constraints
that the algorithms currently hold. For this reason, we hope to enhance the
OMA field, such that their extraordinary simplicity and accurate nature are
kept and, in addition, to make the algorithms more adaptive and applicable
to meet future demands in, e.g., big data and data science.

1.1 Motivation

The OMA algorithms are more than a hundred to thousand times faster
than their predecessors [4], making them powerful algorithms for solving
OPPs, and specifically EPPs. Enhancements to the algorithms have been
proposed over the years, fixing challenges related to deadlocks and slow
convergence [6, 7, 8, 9, 10]. However, the existing techniques in the OMA
paradigm are all dependent on the fact that all the subsets need to be of
equal size. Nevertheless, in a real system, we might want the subsets to be
of unequal sizes.

For example, let us consider a simplified geographically distributed file sys-
tem. In this system, there are 100 files, each of which is 1 GB, and we
want to distribute the files among four locations. With the existing OMA
solutions, solving such a problem would constrain the solution to reduce to
the best placement of 25 files in each location. Thus, we need to assume
that each location has a storage capacity of 25 GB (or more) without any
flexibility. In reality, the locations might have different storage capacities.
Hence, location 1 might have a storage capacity for 20 files, location 2 for
30 files, location 3 for 25 files, and location 4 for 25 files, which is not
solvable with existing OMA algorithms. Furthermore, if we add even more
capacity than the total 100 GB to the storage system, we would have no
flexibility with the existing solutions. Clearly, without the requirement of
equally-sized partitions, a much more comprehensive range of possibilities
originate. If we consider the extended storage capacity case, the solvable
case would be constrained to the minimum least possible number of files.
Hence, we would be able to solve the file distribution for 20 files in each
location, omitting the remaining files.

By considering the limitations in the original OMA algorithms, relaxing
the constraint of equi-partitioning would widen the variety of application
scenarios that the OMA algorithms can solve. For this reason, in this re-

5

1.2. Problem Statement of the Thesis Introduction

search, we will propose new policy schemes to the OMA algorithms, such
that the OMAs are able to solve problems of pre-specified cardinalities and
non-equally sized partitions. More specifically, we will consider problems
where the partitions’ cardinalities are not necessarily equal, but which are
specified beforehand. Thus, while we still consider the supervised partition-
ing case, we permit a higher flexibility than the existing solutions possess.
What is important to recognize is the fact that we will introduce a fac-
tor for the level of an index termed as the Freedom of Cardinalities (FC).
Hence, we will not consider complete Freedom of Cardinalities (even if it is
theoretically possible) in the set of experiments presented in this thesis.

1.2 Problem Statement of the Thesis

The OMA algorithms are able to solve partitioning problems with pre-
specified equi-sized partitions. There are various types of OMA algorithms,
but none of them can solve Non-Equi-Partitioning Problems (NEPPs). The
requirement of the partitions being equi-sized puts a limitation on the types
of problems that these algorithms can be used for. Therefore, we need to
relax the constraint on the OMA algorithms of only being able to solve
partitioning problems where the partition sizes are all equal.

The problem of solving NEPPs through OMA algorithms is completely
open, and has not yet been considered in the literature. The current
OMA algorithms are based on the premise that the elements that should be
grouped together, are presented to the LA in pairs indicating their “togeth-
erness”. Partitioning problems are, in general, NP-hard [4], and the number
of possible partitioning solutions for a set of objects is specified by a Bell
number, and the partitioning combinations with pre-specified cardinalities
grows substantially as the number of partitions and the number of elements
that is to be partitioned, increases. Consequently, solving NEPPs is far
from trivial.

The problem that we are going to solve in this thesis can be formalized as
follows: As mentioned, the existing algorithms in the OMA paradigm can
only solve partitioning problems where the subsets are of equal size and
this size is pre-specified. To enhance these algorithms’ applicability to real-
life issues, the functionality of the algorithms needs to be extended to also
handle partitioning problems where the partition sizes are non-equal, but

6

1.3. Objectives of the Thesis Introduction

have pre-specified cardinalities. It is important that the proposed algorithms
can also handle the problems that their predecessors can handle, i.e., EPPs,
in a satisfactory manner.

To solve the problem stated above, we will propose two methods that aim
to solve NEPPs in different ways. The first method, Method 1, will consider
a constrained version of NEPPs with pre-specified cardinalities, where we
need to have a non-unity GCD between the partition sizes. The second
method, Metod 2, will solve NEPPs with pre-specified cardinalities, but
without the GCD requirement between the sizes of the partitions.

1.3 Objectives of the Thesis

In order to improve the existing algorithms of the OMA paradigm, we need
to eliminate one of their greater drawbacks, namely their constraint of han-
dling only equi-sized partitions (EPPs). Our first objective is to relax the
EPP constraint, to evaluate the newly-proposed OMA methods compared
to the existing OMA types, and to consider the complexity of the differ-
ent schemes. Consequently, the objectives of the thesis can be outlined as
follows:

• Design a policy scheme and algorithm for Method 1 OMA that can
solve both EPPs and NEPPs, where the partition sizes requires a GCD
greater than unity between them.

• Design a policy scheme and algorithm for Method 1 EOMA that can
solve both the EPP and the NEPP, where the partition sizes require
a GCD greater than unity between them.

• Design a policy scheme and algorithm for Method 1 PEOMA that can
solve both the EPP and the NEPP, where the partition sizes again
require a GCD greater than unity between them.

• Design a policy scheme and algorithm for Method 1 TPEOMA that
can solve both the EPP and the NEPP, where the partition sizes again
require a GCD greater than unity between them.

• Design a policy scheme and algorithm for Method 2 OMA that can
solve both the EPP and the NEPP, where the partition sizes do not
require a GCD between them.

7

1.4. Contributions Introduction

• Design a policy scheme and algorithm for Method 2 EOMA that can
solve both the EPP and the NEPP, where the partition sizes do not
require a GCD between them.

• Design a policy scheme and algorithm for Method 2 PEOMA that can
solve both the EPP and the NEPP, where the partition sizes do not
require a GCD between them.

• Design a policy scheme and algorithm for Method 2 TPEOMA that
can solve both the EPP and the NEPP, where the partition sizes do
not require a GCD between them.

• Evaluate the newly-proposed methods’ performance compared to the
existing OMA algorithms for EPPs in terms of accuracy and efficiency.

• Evaluate the newly-proposed methods’ performance compared to one
another for NEPPs in terms of accuracy and efficiency.

1.4 Contributions

In this thesis, our contributions can be summarized as follows:

• We have proposed two novel OMA algorithms, namely Method 1 and
Method 2, that are able to solve both EPPs and NEPPs.

• Both of the methods showed similar performances when compared to
the existing OMA algorithms for EPPs.

• Method 1 can solve NEPPs, which possess a GCD between the parti-
tion sizes, and demonstrated a high accuracy to NEPPs even for high
levels of noise.

• Method 2 can solve NEPPs without a GCD requirement, and dis-
played a high performance in terms of accuracy and efficiency in the
required number of queries before convergence for problems with high
noise levels.

Solving the NEPP through algorithms of the OMA family has not yet been
considered in any literature, and both proposed methods are, therefore,
novel contributions both to the family of OMA algorithms and the field of
partitioning in general.

8

1.5. Outline Introduction

1.5 Outline

This thesis is organized as stated below:

Chapter 2 will survey the theory of LA as a model for RL, and the state-
of-the-art for partitioning solutions for EPPs. In relation to partitioning
problems, the estimator, pursuit and transitivity concepts of different en-
hancements to the OMA will be detailed. Thus, the constrained methods
of partitioning through OMA, are described as their emerging extensions,
and as they have been presented in the literature.

Chapter 3 will examine the motivation for developing computational policy
schemes (OMA-based) for problems of pre-specified cardinality. The com-
plexity of the problem, both in terms of equally sized and non-equally sized
partitions will be detailed. Thereafter, our modifications to the algorithms
will be proposed.

Chapter 4 presents the experiments and results of the existing OMA al-
gorithms compared to our proposed methods for EPPs. The algorithms
that we consider in this chapter from the existing OMA are the EOMA,
the PEOMA and the TPEOMA versions. Results for Method 1’s and
Method 2’s versions of the same types as the existing OMA algorithms,
will thereafter be presented and compared to the results of the existing
ones.

Chapter 5 presents the experiments and results of the proposed methods
for NEPPs. With regards to the proposed solutions, we demonstrate that
the OMA algorithms increase their applicability to real-life problems when
the constraints in Chapter 4 are eliminated. The algorithms that we con-
sider in this chapter is Method 1 EOMA and Method 2 EOMA. The reader
should note that this chapter is two-folded, and that Method 1 EOMA is
only applicable for one of the presented problem types. Thus, Method 1 can
only handle NEPPs where the cardinalities of the partitions have a GCD
greater than unity. Method 2 EOMA is able to solve problems without such
a GCD constraint, and is thus, also analyzed for additional problems that
Method 1 cannot handle.

9

1.5. Outline Introduction

In Chapter 4 and Chapter 5, results from the existing solutions and
proposed solutions equip us with the tools to compare and analyze our new
solutions to EPPs and NEPPs with pre-specified cardinalities, which can be
further utilized in Chapter 6. Thus, in Chapter 6, the thesis is concluded
with enhancements/modifications that could be considered for future work.

10

Chapter 2

Background

In this chapter, we present the relevant areas concerning the theories related
to the work done in this thesis. Within the field of ML, we have many
research areas, all boiling down to the concept of learning, and of the various
ways of achieving it. According to Skinner, learning can be defined as
“changes in the behavior of an organism that is the result of regularities in
the environment of that organism” [11]. Understandingly, imitating learning
in computers is a complex sphere, where the measure of attaining this goal
is intricate and open for discussion.

Within the paradigm of ML, we find the field of Reinforcement Learning
(RL), which is a thriving and dominant area of research [12]. A very in-
teresting subset of RL, is the domain of LA. In LA, we make non-human
agents learn with the goal of solving specified tasks through computer pro-
grams. The field of LA revolves around developing complex adaptive learn-
ing schemes that find solutions to the problems that are of an stochastic
nature through interactions with an entity, referred to as the Environment.
The areas of LA and RL are closely related, because in RL, a key com-
ponent of the Environment’s feedback for finding the optimal solution to
applications of stochastic nature, are akin to the LA’s inner workings and
operation.

A field that embraces many types of application issues involves so-called
“partitioning” problems. Similar to clustering, partitioning concerns group-
ing elements in an optimal manner based on specified requirements and

11

2.1. Reinforcement Learning Background

parameters. Partitioning problems have been extensively studied over the
years, and LA solutions have also been employed in solving them. For
solving certain types of partitioning problems, we shall concentrate on the
family of OMA algorithms, which, indeed, are the foundation of this thesis.
OMA algorithms can solve complex partitioning problems through learning
in environments with stochastic nature.

In this chapter, which presents an overview of the areas covered by the thesis,
we first present the fields of RL and LA, in Sections 2.1 and 2.2 respectively.
Thereafter, in Section 2.3, we will review the field of partitioning problems.
Firstly, we review the original version of the OMA [6]. Secondly, we consider
the EOMA [7] and its subsequent improvements1 presented in [9, 10, 13],
which use both the pursuit and transitivity concepts.

2.1 Reinforcement Learning

RL is based on the concept of a learner selecting different actions. In RL, a
learning agent should, without being told which specific actions to take, dis-
cover, and learn the actions that yield the highest Reward [12]. The learning
agent’s behavior is enhanced by the feedback of the teacher, often referred
to as the Environment. Intuitively, the concept of RL is based on the way
that humans learn, e.g., a baby learning to smile by randomly twitching
its facial muscles, which results in positive feedback from its parents, and
“strengthens” that behavior. In this way, RL aims to teach computer pro-
grams or algorithms through imitating a learner’s trial-and-error behavior,
and tunes the behavior through interactions with a teacher [14].

The field of RL is quite comprehensive, making it difficult to distinguish be-
tween RL and other types of learning. The authors of [12] address this issue
by stating that: “The most important feature distinguishing reinforcement
learning from other types of learning is that it uses training information that
evaluates the actions taken rather than instructs by giving correct actions.”
Thus, the learning agent should, through interactions, learn how to achieve
a task, given the tools to do so, but without any explanation of the final
goal. Sometimes the finite or secular goal becomes evident only after a num-
ber of actions, resulting in changes in the basis that the teaching instance

1Related improvements to the OMA were proposed using the pursuit concept in [8]
but are not considered in this thesis, because the method is covered in [9, 10, 13].

12

2.2. Learning Automata Background

reacts, referred to, in the literature [12] as the (temporal) credit assignment
problem.

One challenge in optimizing problems in RL is the balance between explo-
ration and exploitation. Thus, when a learning agent has been fortunate in
choosing one action, it might want to only choose that action. However, to
achieve the overall goal, the learning agent might need to choose an even
better action. The exploration issues can be related to human interactions
in the following way. A child has learned to say “hello”, and the responses
from its parents are overly positive. However, the child has to continue by
saying other words to achieve the skill of speaking. Thus, the child needs
to continue exploring, and not just think of exploiting the words which will
certainly yield rewards.

The field of RL has grown immensely over the years. The authors of [15]
present a comprehensive “state-of-the-art” review of RL. Additionally, the
RL field has been, more recently, investigated in [14, 16, 17], through the
perspective of deep RL.

2.2 Learning Automata

The field of LA2 was pioneered by the work of Michael Lvovitch Tsetlin
in the 1960s [18]. He was the first to use the term “automaton theory”,
and he modeled the automaton through the use of matrices. However,
as pointed out in [19], his research is quite different from the subsequent
line of research in the American and Western European countries. Over the
years, the term “Learning Automaton” has been utilized for describing both
deterministic and stochastic schemes used for improving the performance
of discrete systems in many different contexts. However, more recently, the
field of artificial neural networks have adopted ideas from the field of LA into
their designs. Therefore, the phenomenon of the “Learning Automaton” has
become a standard description in both the scope of learning in itself, and
in the field of ML.

LA has its roots from psychology, and is a result of a blend of the study of
behavior, the statistics of choosing actions based on past knowledge, the so-

2Note that, in this thesis, the term LA refers to several families and instances of
learning automaton. Also, the shortened term automaton is used interchangeably with
learning automaton.

13

2.2. Learning Automata Background

lution of the two-armed bandit problem, and the system theories for making
rational decisions in stochastic environments [19]. On the basis of learning,
a LA is a decision-maker agent operating in a random Environment, where
its policy for choosing actions is based on a sequence of responses (either
increasing or decreasing the probability of the LA choosing certain actions).
The configuration of such an automaton is indicated by an action-feedback,
and this is what constitutes the LA [19]. To solve problems in stochastic
environments, the field of LA has shown itself to be a powerful tool be-
cause fast and accurate convergence can be achieved at low computational
costs [4]. Through making groups of LA work together in making decisions,
the recently proposed Tsetlin Machine [20] has been able to achieve higher
accuracy than neural networks for certain datasets. In this way, the field
of LA is currently evolving and showing internationally promising results
in the domain of ML. The works of [21] and [22] report the state-of-the-art
results within the field of LA.

There are many different types of LA, which can be sorted into two cate-
gories: Fixed Structure Stochastic Automata (FSSA) and Variable Struc-
ture Stochastic Automata (VSSA). The original LA were designed as FSSA,
where time does not change the LA’s structure, and thus, LA solutions pro-
posed by Tsetlin can be described and analyzed as FSSA [18]. The Linear
Reward-Penalty (LRP) scheme, the Linear Reward-Inaction (LRI) scheme
and the Linear Inaction-Penalty (LIP) scheme are examples of LA methods
that use VSSA, where RL is incorporated in the LA’s feedback and updating
functionalities [23, 24]. The “linear” schemes have such a categorization be-
cause the action probabilities are increased in a linear manner. As opposed
to these, increasing the probabilities of the LA in a non-linear manner has
been investigated in [23, 24, 25]. Analyzing the feedback that the LA are
influenced by is also an important field of research. Continuous and dis-
cretized updating mechanisms are investigated in [26] and [27] respectively.
Further, LA can be represented through Markov chains, where the chain
itself can be ergodic [28] or absorbing [23].

As briefly mentioned above, we can model the LA’s operation by a feedback
loop between the Environment and the LA, as depicted in Figure 2.1. Thus,
the LA (denoted by Θ) selects a certain action from its set of possible
actions, which influences the Environment (denoted by ξ). This causes the
Environment to either respond in a positive or negative way. The LA’s
actions are indicated by {α1, α2, ..., αA} (where each element corresponds
to one action), and the Environment’s responses are indicated by {β1, β2}
(where the elements correspond to either a positive or negative feedback).

14

2.2. Learning Automata Background

The Environment’s response is a consequence of the system that we are
modeling and trying to solve using the LA as a tool. Additionally, the
feedback types and how the feedback evolves over time constitute the many
different types of LA.

Figure 2.1: A schematic of the LA-Environment model.

The two major components within the paradigm of LA are the Environment
and the LA, and, these two components will be further detailed in the
following subsections.

2.2.1 The Environment

In the world that we live in, the term “environment” can be defined as the
congregation of influences that affects the existence of an organism [19].
However, the definition of the Environment in the field of LA is not that
straightforward. In simplified terms, we can say that the Environment is the
entity within the LA can operate. Within the loop, the LA influences and
interacts with the Environment, and the Environment in turn, impacts and
responds to the LA [5]. We will further follow the notation and explanations
of the above entities as established in [19].

The Environment can be defined in mathematical terms through the three
quantities: A, C and B. Thus, it can be defined by:

ξ = {A, C,B}, (2.1)

where A = {α1, α2, ..., αA} is the set of A possible actions. Known only to
the Environment, is the set of Penalty probabilities, indicated by C, where

15

2.2. Learning Automata Background

we have a single probability for each action. Thus, C = {c1, c2, ..., cA}, and
each element, ci, is the probability of the Environment’s feedback being
a Penalty for the given action, αi. Naturally, if we want to consider the
Reward probabilities of the elements in C, we set it as di = 1− ci indicating
the Reward probability of action αi. The output of the Environment (which
depends on C), often referred to as the Environment’s response to a certain
action, is indicated by B. Thus, B is the set of possible feedback types from
the Environment. The most common feedback is a binary output set, where
we have B ∈ {β1, β2}. For example, in B, β1 = 0 might correspond to a
Reward and, β2 = 1 to a Penalty. Note that the feedback can also be a
finite set of responses, or a real-valued interval, depending on the type of
LA and the system that is being modeled, but we will not consider these
scenarios in our research.

Formally, the Penalty probability can be expressed as follows:

Pr(B(n) = 1 | α(n) = αi) = ci (i = 1, 2, ..., A). (2.2)

In a LA system, the LA’s interactions with the Environment are considered
in a discretized time space. Hence, for each discretized time instant n, the
LA chooses an action, seeking a feedback from the Environment. Note that
the probabilities in C might change with time depending on the system that
is being modeled, which leads to a so-called non-stationary Environment.
Alternatively, when the Penalty probabilities do not change with time but
remain constant, the Environment is said to be stationary.

2.2.2 The LA

As we have already seen, a LA operates by selecting different actions from a
finite set of actions affected by a stochastic Environment. Based on the LA’s
knowledge, which is maintained in a memory space, and the Environment’s
responses over time, the LA changes its behavior based on specified updat-
ing “functions”, as described presently. The memory space of the learning
automaton is preserved through the concept of internal states or memory
instances. These states are fundamental in updating the LA’s behavior,
or action probability according to the feedback given by the Environment.
Over time, the LA’s behavior constitutes a result of its interactions with
the Environment. Hopefully, it will end up selecting, more often, the action
that has the highest probability of Reward.

16

2.2. Learning Automata Background

The LA can be formalized by the following five parameters:

Θ = {S,A,B,F(., .),H(., .)}, (2.3)

where the S is the set of states [19] with S = {φ1, φ2, ..., φAS}. Clearly,
we have AS possible states, where there are S states per action. A is
the set of possible actions, or in other words, the LA’s possible outputs or
decisions. Additionally, B is the possible feedback from the Environment,
which corresponds to the input to the LA. F(., .) maps the current state
and current input into the next state, and so, formally, we can express the
function for the next state as F(., .) : S ×B → S. Changing from one state
to another might change the chosen action, or the probabilities of the LA
choosing the different actions, such that F(., .) for time instant n, F(., .)(n)
changes the outputted behavior. To present the change of actions, we utilize
the function H(., .), which maps the current state and current input into the
current output, which can be expressed asH(., .) : S×B → A. Note that the
LA’s current output and the next state depend on the input and current
state, but its output can alternatively depend only on its current state.
In such a case, the expression in Equation (2.3) needs a modification. In
more details, the parameter H(., .) is replaced by an output function G(., .),
which can be described as G : S → A, and the LA’s definition is modified
as follows:

Θ = {S,A,B,F(., .),G(., .)}. (2.4)

The LA is a deterministic automaton if both F(., .) and H(., .) (G(., .)) are
deterministic mappings. If F(., .) or H(., .) (G(., .)), or both, is stochastic,
it is referred to as a stochastic automaton. Another important observation
is that the current state and action of the LA only depends on the state
and input at the previous time instant.

The LA’s goal is to attain to a certain behavior that results in the highest
probability of a Reward. Evaluating its ability to achieve this can be quite
complex due to the large number of criteria and perspectives that can be
utilized in the assessment process. The authors of [19] quantify this in
terms of action probabilities of the LA, and it is used as the base-line for
establishing the universally accepted assessment criteria in LA. We first
define the function M(n), where M(n) yields the average Penalty for a

17

2.2. Learning Automata Background

particular action probability vector P (n) = [p1(n), ..., pA(n)], and is defined
as:

M(n) = E[B(n)|P (n)] = E[B(n) = 1|P (n)] (2.5a)

=
A∑
i=1

Pr[B(n) = 1|α(n) = αi]Pr[α(n) = αi] (2.5b)

=

A∑
i=1

cipi(n). (2.5c)

A natural comparison of the quality of learning is obtained by comparing
the LA’s behavior with a pure-chance scheme. Hence, we check whether the
LA performs better than choosing the actions randomly. The pure-chance
automaton selects the different actions in a uniformly random manner, with
equal probabilities for all the actions. Thus, if each action is chosen with
equal probability, M0 for pure chance is therefore given by:

M0 =
1

A

A∑
i=1

ci. (2.6)

The LA performs better than pure chance if its average Penalty is less than
M0. We usually consider this criterion as n→∞, and so the LA has to be
asymptotically better than M0. In particular, we consider E[M(n)], where:

E[M(n)] = E{E[B(n)|P (n)]} (2.7a)

= E[B(n)]. (2.7b)

We can define different LA’s learning behaviors as follows:

• The LA is said to be expedient if

lim
n→∞

E[M(n)] < M0. (2.8)

• The LA is said to be optimal if

lim
n→∞

E[M(n)] = c`, (2.9)

where, c` = mini{ci}.
18

2.2. Learning Automata Background

• The LA is said to be ε-optimal if

lim
n→∞

E[M(n)] < c` + ε, (2.10)

can be achieved with a proper choice of its parameters, and for any
arbitrary value of ε greater than zero.

• The LA is absolutely expedient if

E[M(n+ 1)|P (n)] < M(n), (2.11)

for all possible action probability vectors P (n). It can be shown that
absolute expediency also implies ε-optimal in stationary random en-
vironments.

This concludes our discussion of some of the preliminary concepts of LA.

2.2.3 Fixed Structure Stochastic Automata

Fixed Structure Stochastic Automata (FSSA) are a type of LA that have a
fixed policy for the inter-state transitions [19], and further, both the updat-
ing and decision functionalities are time-invariant. In the following subsec-
tions, we will present two important FSSA schemes3. These FSSA schemes
can be modeled as ergodic Markov chains. The FSSA utilize the concept of
memory through their states, and update them in a RL-manner triggering
the state transitions. Further, the LA’s actions are chosen by its current
state, and not by means of a priory probabilities as with the case of VSSA,
mentioned later. The OMA algorithms, which we shall describe, in detail,
are FSSA schemes.

2.2.3.1 The L2,2 Automaton

The first LA proposed by Tsetlin, was designed as a FSSA [18]. Tsetlin’s
simplest LA had two states and two actions, and was symbolized as L2,2,
where first subscript refers to the number of states and the second to the

3There are many families of FSSA schemes which have been omitted here because they
are not directly relevant for the thesis. However, some FSSA schemes are mentioned,
because of their relevance to partitioning, which is the focus of this thesis.

19

2.2. Learning Automata Background

number of actions. Consequently, φ1 and φ2 are the possible states, and α1

and α2 are the possible actions. Upon receiving an input of B = β1 (Re-
ward), the automaton remains in the current state. Because the automaton
only has two states, the automaton will output the same action at the next
time instant (n + 1). Upon receiving an input of B = β2 (Penalty), the
automaton changes its state, resulting in a change of the output in the next
time instant (n+ 1). The described functionality is depicted in Figures 2.2
and 2.3 [19]. Note that the policy for changing states is time-independent
and that a certain input does not always yield a specified action. In this
way, the L2,2 constitutes a simple, but adaptive decision-making agent.

φ1

α1

φ2

α2

B(n) = β1 B(n) = β1

Figure 2.2: The state transitions of L2,2 for Reward.

φ1

α1

φ2

α2

B(n) = β2

B(n) = β2

Figure 2.3: The state transitions of L2,2 for Penalty.

2.2.3.2 The L2S,2 Automaton

When observing the L2,2 machine, we understand that the automaton will
change its state, and thus its action very rapidly when exposed to a Penalty
feedback. Because it possesses a minimal number of states, the LA is very
sensitive to potentially noisy (erroneous) feedback from the Environment.
Indeed, the correct action might be the action that the LA has chosen.
However, if the Environment still responds with a Penalty, which can be
intended and natural in the modeling of the system, it will change to the
inferior action. Additionally, the L2,2 is only expedient [19].

Let us consider an example in which we have decided to use a L2,2 automa-
ton. Consider the scenario where the LA has been rewarded for choosing α1

20

2.2. Learning Automata Background

100 times, but when it is penalized once, it changes its action. However, in
reality, the LA should have continued to choose the output as α1. Clearly,
the LA retains no memory of the actions and feedback responses that have
happened before. Consequently, we need a LA that is not so sensitive to
noise, and that can remember “good actions” (actions that have a high
probability of Reward). The L2S,2

4, proposed by Tsetlin [19], incorporates
the functionality of memory, and is an improvement from the L2,2 machine.
More specifically, the L2S,2 has S states for each of the two actions, denoted
in the first subscript (2S), and two actions denoted by the second subscript.

φ1 φ2

α1

· · · φS φ2S · · · φS+2

α2

φS+1

β1 β1 β1 β1β1β1

β1 β1

Figure 2.4: The state transitions of L2S,2 for Reward.

φ1 φ2

α1

· · · φS φ2S · · · φS+2

α2

φS+1

β2 β2 β2 β2β2β2
β2

β2

Figure 2.5: The state transitions of L2S,2 for Penalty.

Figures 2.4 and 2.5, depict the behavior of the L2S,2 automaton. As depicted
in the figures, the states {φ1, φ2, ..., φS} belong to α1, and the following
{φS+1, φS+2, ..., φ2S} set of states belong to α2. In this way, the LA will
output α1 when being in a state that belongs to that action, and operate in
the same manner with α2. The LA will traverse the different states as it gets
rewards and penalties from the Environment, and only when being in the
boundary state (φS for α1, and φ2S for α2), will it change its action. Further,
if it is in one of the boundary states, it will transition to the boundary state

4Note that the N in L2N,2 in [19] is replaced with S because of the notation utilized
in this thesis.

21

2.2. Learning Automata Background

of the other action. All of these transitions are clearly depicted in Figure
2.5, from which we observe that the states help to keep track of how many
times the LA has been penalized or rewarded. The operations are further
detailed in Eq. (2.12) and Eq. (2.13).

S M(L2S,2)

1 0.32
2 0.235
3 0.209
...

...
∞ 0.2

Table 2.1: Examples of expected Penalty feedback for various values of S
in the L2S,2 automaton.

As shown in [19], the expression min{c1, c2} ≤ 1
2 determines whether or not

the L2S,2 is ε-optimal. Theoretically, an infinite state depth is needed for
the machine to be ε-optimal. However, as depicted in Table 2.1 [19], with
c1 = 0.2 and c2 = 0.8, the expected Penalty share of different state depth
configurations, yields a rather small difference in the expected Penalty but a
big difference in the efficiency considering using few states versus an infinite
number of states.

There are many different types of FSSA schemes, like the Krinsky, Krylov,
Ponomarev, and the Cover-Hellman machines [19]. All of these LA are built
on the same concepts as the L2,2 and L2S,2, and are thus not detailed in this
chapter. However, in some consecutive chapters, some of these are re-visited
when it concerns partitioning problems, which is the focus of this thesis.

FTsetlin(φj , β1) = φj−1 if (i− 1)S + 1 < j ≤ iS
= φj if j = (i− 1)S + 1,

(2.12)

and,

FTsetlin(φj , β2) = φj+1 if (i− 1)S + 1 ≤ j < iS

= φ((i+1)S) mod KS if j = iS,
(2.13)

22

2.2. Learning Automata Background

φ1 φ2

α1

· · · φS

φ2S

...

φS+2 α2

φS+1

φ3S · · · φ2S+2

α3

φ2S+1

φ4S

...

φ3S+2 α4

φ3S+1

β2 β2 β2 β2

β2

β2

β2

β2 β2 β2 β2

β2

β2

β2

β2

β2

Figure 2.6: The operation of the LAS,A upon Penalty.

2.2.3.3 Multi-Action LA

The L2,2 and L2S,2 schemes, discussed above, only have two actions. How-
ever, these schemes are easily extendable to more actions. The only differ-
ence is the state transitions when the LA needs to change its action. Instead
of only being able to transition to the other action, as in the case of the
two-action LA schemes, the A-action LA can now choose A− 1 actions, at
the central states. In regards to the state transitions, there are many possi-
ble extensions and policy schemes for what might happen. For example, if
the LA is in a boundary state, and is penalized, it can transition to another
action based on a historical action affiliation. Another solution is that the
next state upon a Penalty, when in a boundary state, is chosen based on a

23

2.2. Learning Automata Background

random choice with equal probability of choosing all the other actions, or
that the transition to other actions is pre-specified in a cyclic manner for
the boundary states.

In [19], a generalization of the multi-action LA is illustrated by considering
an example of a LAS,A. The LAS,A is a generalization of the L2S,2 machine.
Consider an example of a LAS,A with four actions (L4S,4). Upon a Penalty,
the machine will move towards the boundary state in its respective action,
and once it is in the boundary state, it will transit to another action cycli-
cally as depicted in Figure 2.6. However, on receiving a Reward, the LA
moves towards the innermost state, and if it is there, it stays in the inner-
most state (Equation (2.12) and (2.13)). In this way, the LAS,A handles
multiple states, and the same relates to other learning automaton schemes.

2.2.3.4 The Concept of Convergence

In any stochastic learning system, one has to measure the probability of
selecting an action after a certain time. Normally, in FSSA, we say that
the LA has converged when it has reached the innermost state of an action,
i.e., state 1 or 11 in a 2-action LA with S = 10. Clearly, for the LA
to reach the innermost state in an arbitrary action, it should have been
rewarded and possibly penalized several times. In LA, we often quantify
the rate of convergence as a performance parameter, and this refers to the
ensemble average of the number of rewards and penalties that the machine
has experienced before convergence. Specifically, we count the number of
interactions with the Environment needed for reaching absolute convergence
in the modeled system. More details of the concept of the rate of convergence
can be found in [19].

2.2.4 Variable Structure Stochastic Automata

Variable Structure Stochastic Automata (VSSA) are another family of LA,
where the machine is characterized by its ability to keep track of interac-
tions with the Environment by means of a probability vector, maintained as
an internal memory. This, in essence, is maintained and updated as the ac-
tion probability vector. Thus, while transitions in FSSA are constant, they
change with n for VSSA. Thus, in VSSA, the state and/or action proba-

24

2.2. Learning Automata Background

bilities are changed at each time instant based on the action and responses
from the Environment at that instant [19]. Because VSSA are different
from the model of the learning schemes of OMA, VSSA are not surveyed
in detail here; additional details can be found in [19]. Although VSSA can
be utilized in solving partitioning problems they possess limitations when it
concerns the number of objects that can be considered in the partitioning,
and novel and distinct methods are needed for VSSA to work. These will
not be surveyed here.

Formally, a VSSA can be represented by four variables as:

Θ = {A,B, P (n), χ}, (2.14)

where P (n) is the action probability vector whose component pi(n) is its
probability of choosing action i at time n. χ is the updating algorithm, and
the other terms are similar to the ones used for FSSA [19].

For VSSA, we can formulate the updating algorithm, or reinforcement
scheme, as:

P (n+ 1) = χ = T [P (n),A(n),B(n)], (2.15)

where the action probability is updated on the basis of the quantities at the
previous step [19], and T indicates a mapping. The reinforcement scheme
depends on the probability vector from the current time step (P (n)), the
chosen output for n (A(n)), and the response from the Environment, (B(n)).
The outputted action is determined based on the probability vector P . One
can easily see that the LA in a VSSA scheme is quite different from the
FSSA scheme.

When χ from Equation (2.15) is a linear function, the updating algorithm is
said to be linear. As a practical example, decreasing the non-chosen action’s
probability by a constant kR = 0.001, (i.e., Pj(n + 1) = kRPj , if αj is not
chosen), is considered to be a linear scheme. When P (n+ 1) is a non-linear
function of P (n), we term the VSSA to be non-linear.

2.2.4.1 Two Linear VSSA Schemes

Two well known VSSA schemes in LA are the Linear Reward-Penalty (LRP)
and Linear Reward-Inaction (LRI) scheme. These schemes are based on the
same principle. In the LRP , we consider both rewards and penalties and

25

2.2. Learning Automata Background

make changes to the action probabilities for both types of feedback. In the
LRI , we consider only the rewards, but ignore the penalties.

The LRP scheme can be formalized for the two actions α1 and α2, where
the probabilities of the machine choosing the different actions are given by
P (n) = [p1, p2]

T , and a and b are the Reward and Penalty parameters and
0 < a < 1 and 0 < b < 1. Furthermore, the updating scheme can then be
defined by:

p1(n+ 1) = p1(n) + a(1− p1(n))

p2(n+ 1) = (1− a)p2(n)

for A(n) = α1 and B(n) = β1 = 0,

for α1 being chosen and receiving a Reward as feedback from the Environ-
ment. Similarly we have:

p1(n+ 1) = (1− b)p1(n)

p2(n+ 1) = p2(n) + b(1− p2(n)))

for A(n) = α1 and B(n) = β2 = 1,

for α1 being chosen and receiving a Penalty. The same concept applies to
α2. In Figure 2.7, we present a practical visualization of the action selection
and updating functionality of the action probabilities, where a = 0.02 and
b = 0.02.

In Figure 2.7, we observe that the LA starts with an equal probability of
choosing any of the two actions. The arrows that emerge from the leftmost
state represent what happens to the LA upon selecting a particular action
and getting a Reward or a Penalty. It can be observed that if α1 is chosen,
the LA changes its action probabilities, such that in the next time instant, it
will have p1 = 0.51, and a lower value of p2 = 0.49. The same concept applies
further until the machine has converged. In absorbing VSSA schemes, we
consider that the machine has converged when it has reached a specified
probability for choosing one of the actions. In this example, the convergence
criterion is when any of the actions attains a probability greater than 0.99,
which is visualized in the state on the right side.

26

2.3. Partitioning Problems Background

[
0.5
0.5

]

[
0.49
0.51

]

[
0.51
0.49

]

[
0.51
0.49

]

[
0.49
0.51

]

A = α1,B = β2

A = α1,B = β1

A = α2,B = β2

A = α2,B = β1

· · ·

· · ·

· · ·

· · ·

[
0.99
0.01

]

Figure 2.7: Example of the process in a Linear Reward-Penalty scheme.

2.3 Partitioning Problems

Traditionally, set partitioning problems concern partitioning a set of in-
tegers into subsets, where the difference between the maximum and the
minimum sum of subsets is minimized [29]. Optimization versions of parti-
tioning problems, such as the “two-way number partitioning problem”, deal
with deciding whether a set of integers can be divided into only sub-sets
consisting of two integers where the sum of the integers in each sub-set
is as close as possible. The “two-way number partitioning problem” is an
NP-hard combinatorial optimization problem and can be solved using dif-
ferent heuristics [30]. The first heuristic for solving this problem was the
Greedy Heuristic Algorithm (GHA), where the integers were sorted in de-
scending order, and a sequence number was added to the subset that has
the lowest sum [30]. Subsequently, many other solutions followed, including
the KK heuristic [31] improving the GHA, the Complete Greedy Heuris-
tic Algorithm (CGHA) that sorted the integers in a descending order and
using a binary tree [32], and the Complete Karmarkar-Karp Heuristic (CK-
KHA) algorithm using a binary tree depth-first structure [33]. In recent

27

2.3. Partitioning Problems Background

years [30], a generalization of the “two-way number partitioning problem”
by partitioning vectors instead of integers, namely the Multidimensional
Two Way Number Partitioning Problem has been reported. This solution
used a genetic algorithm [34] and Variable Neighborhood Search and an
electromagnetism-like metaheuristic approach in [35]. In [36], the authors
proposed a recommendation system for “others also bought” through deep
RL methods. We emphasize that, the solutions proposed later in this thesis,
can also be used for such problems. Even if the deep RL solution can yield
accurate results, it is usually slow and hard to track the rationale for its
reasoning, compared to the solutions examined in this work.

In this thesis, we consider partitioning problems in a more generalized man-
ner than the partitioning problems mentioned above. Indeed, we do not
always consider integers as the elements to be partitioned, but we rather
consider abstract objects. Further, the criterion we use does not only concern
the sum of the partitioned elements but also other inter-object requirements.
In this way, we are able to consider an increasing number of applications,
and also handle partitioning problems from a broader perspective. As we
will explain, the field of partitioning resembles the field of clustering [37],
as both these fields aim at solving the same types of problems.

A sub-group of problems in relation to the partitioning field is the domain
of OPP [4]. OPPs concern dividing a set of objects, indicated by O, into
disjoint subsets, termed partitions (K). These objects should be partitioned
based on some user-specified criteria. In the field of OPP, we have the sub-
field of EPPs (first proposed in [38]), where all the partitions are of equal
size [5]. Partitioning problems are related to many real-life problems, i.e.,
distributing different files in a geographically-separated database, dividing
users with similar user behavior into categories, or defining which elements
are to be placed in desired location for solving the most effective placement
of stock items for an online shop - and many more. For ease of modeling the
different problems, we first present the terminology needed to comprehend
its nature. We therefore refer to the elements that we want to partition as
abstract objects [4]5.

In this thesis, the OPP is formalized as follows. We have O objects, where
the set of objects is denoted by O = {o1, o2, ..., oO}. We want to partition
these objects into K disjoint partitions, and the given set of partitions are

5Abstract objects and objects are used interchangeably throughout the rest of the
thesis.

28

2.3. Partitioning Problems Background

indicated by K, where K = {%1, %2..., %K}. For example, partition %1 might
consist of o1, o2 and o3, denoted as %1 = {o1, o2, o3}. Which objects that
should be grouped together is, in reality always unknown, and is based on a
specific but often hidden criterion only known to an “Oracle” or “Nature”.
In our work, we assume that there exists an optimal partitioning of the
objects, referred to as ∆∗, and the LA (or arbitrary solution) should be able
to determine a partitioning, say ∆+. The solution is optimal if ∆+ = ∆∗.

The initial and random initialization of the objects before the process of
partitioning starts, is indicated by ∆0. In simulations, we can specify the
optimal partitioning, referred to as the true partitioning [4], and deter-
mine the grouping criterion manually. In OPP, the basis of grouping is
that the objects that are accessed together most frequently should be put
together [4].

Figure 2.8: Example of a simplified partitioning process.

29

2.3. Partitioning Problems Background

In Figure 2.8, we present a visualization of a partitioning example when
the learning tool involves LA (or an alternate learning scheme). The figure
explains the concept of starting with random initialization of objects, indi-
cated by ∆0. After n time instances, or until a specified maximum number
of time instances N has been reached, the LA (or other solution) has found
a partitioning of the objects, denoted by ∆+. As indicated in the figure,
the optimal partitioning, ∆∗, of the objects is unknown to the algorithm.
If ∆+ = ∆∗, we state that the solution that has been found is optimal. In
Chapter 3, we also present an evaluation parameter for analyzing the case
of sub-optimal solutions. In the following subsections we briefly explain,
some other methods for solving the OPP/EPP, and later, present all the
reported algorithms utilized in the OMA paradigm.

2.3.1 Previous Solutions to the OPP/EPP

In this section, we present previous solutions to the OPP. First, we consider
the Hill-Climbing solution proposed in [39], where a step-wise approach for
finding a sub-optimal partitioning was obtained. Thereafter, we consider
the Basic Adaptive Method (BAM). The BAM is a scheme that is similar
to clustering because it is based on distributing the objects into a discretized
space (a line) where, in essence, the distance between objects is considered
for partitioning them. Additionally, we also go through the Tsetlin and
Krinsky solutions, which obtained better results than the BAM to EPP. As
opposed to the earlier solutions, the Tsetlin and Krinsky solutions utilize
FSSA for solving the EPP.

2.3.1.1 The Hill Climbing Method

The authors of [40], proposed a Hill-Climbing method for solving local opti-
mization problems. The heuristic Hill-Climbing solution can also be utilized
in partitioning problems, as highlighted in [39]. Hammer et al considered
the problem of attribute partitioning, where the solution could obtain a sub-
optimal partitioning [39]. The technique had two parts, namely the Par-
tition Evaluator (PE) and the Heuristic Searcher (HS). These two phases
were used recursively until no further improvements could be obtained. The
PE calculated a measure for the “characteristic fitness” [39].

30

2.3. Partitioning Problems Background

Consider an example with a relation, Z [41], which is to be partitioned, and
which has w attributes. A partition in Z is a set of blocks with different
subsets of attributes. The initial candidate solution to the partitioning is
obtained by dividing all the w attributes into different blocks. First, the
method starts with a pairwise grouping of all combinations of pairs from
the current blocks, then the initial distribution yields one attribute in each
block. Hence, we can consider

(
w
2

)
combinations in the first step. There-

after, PE is utilized for scoring the variations of blocks (pairs), and if a
solution has a better score than the current partitioning, the new improve-
ment replaces the previous one. This algorithm then continues (pairing,
scoring, and replacing), until no further improvements can be made [4]. Af-
ter that, the phase of attribute regrouping starts6. More specifically, a single
attribute is moved at a time to another block for testing whether it yields a
better scoring, and the process continues until no further improvements are
found, and the partitioning terminates.

The reader should observe that the Hill-Climbing method for the OPP was
investigated in [42], but the authors claimed that no real-life simulations
could be done using this method. The readers are referred to [40] and [39]
for further details about this method.

2.3.1.2 The Basic Adaptive Method (BAM)

The Basic Adaptive Method (BAM), which is a scheme that can be used
for partitioning objects [43, 44], partitions O objects into partitions, where
the number of partitions does not have to be specified. As in the OPP,
partitions are determined based on objects that are accessed together, in
pairs. Whenever a pair of objects is accessed together (we refer to this as a
query), the scheme try to group them. In our work, a query is denoted by
Q, where Q = 〈oi, oj〉, which indicates that oi and oj are accessed together.
An example of an application where objects are accessed together is the
case of items that are purchased together in a store.

The BAM operates by assigning each object a real number, indicated by
Xi, where the index is the index of the object in the notation, i.e., oi. Thus,
as an example, o1 is given a real number indicated by X1. When presented
with a stream of queries, the algorithm handles the query one by one, and

6The search of better solutions by the pairwise grouping, and then attribute regrouping,
is what is referred to as the HS phase.

31

2.3. Partitioning Problems Background

Figure 2.9: Visualization of the BAM operation, where o1 and o4 are the
accessed objects and o2 and o3 are moved away in the second phase.

moves the queried objects towards each other, and thus, the Xi value of
each queried object is moved in the direction of the other on the numerical
axis, by a constant ω1. To prevent all the objects from being partitioned to
the same group, two other objects are selected, for each query, randomly,
and are moved away from each other by another constant. These randomly-
picked objects are moved a constant ω2 from each other. The partitions are
then determined from the objects that are near each other, as per the values
of {Xi}. To formalize this, we denote a stream of queries by Υ, where |Υ|
is the number of queries in the stream. The BAM has reports its solution
after the |Υ| considered queries. Further details of the method and how to
choose values of ω1 and ω2 are described in [44]. Also, Figure 2.9, depicts a
description of the BAM operation.

In Figure 2.9, we see that the Xi values have been distributed along a
line. On receiving a query consisting of o1 and o4, o1 will be moved by the
constant ω1 in the direction of o4, and o4 will be moved by ω1 in the direction
of o1. Additionally, two arbitrary indices will be chosen, and moved in the
opposite direction of one another, as indicated by the red arrows. Thus, o2
will move left by a constant ω2, and o3 will move right by a constant, ω2. In
this example, o1 and o4 might belong together, and o2 and o3 together. With
this in mind, we see that the BAM solution has some drawbacks because
the operation that prevents all objects from moving into the same partition,
influence other objects negatively. Even if the method succeeds in bringing
the correct objects together in the end, the solution has a slow convergence
rate, and since it utilizes floating-point numbers in its operations, it suffers
from an inefficient performance in terms of computation. Even if usable
results can be obtained through the BAM, superior performance is achieved
through the OMA algorithms and its enhancements [4].

32

2.3. Partitioning Problems Background

Algorithm 1 BAM Algorithm
Input:
• The objects O = {o1, ..., oO}.• The two parameters ω1 and ω2.
• A stream of queries, Υ, where Υ = {〈oi, oj〉, ...}.

Output:
• A partitioning of the O objects.

1: begin
2: Initialize Xl arbitrarily, where −∞ < Xl <∞ , for all 1 ≤ l ≤ O.
3: loop
4: for a sequence of |Υ| queries do
5: Read query Q = 〈oi, oj〉
6: if Xi < Xj then
7: Xi = Xi + ω1

8: Xj = Xj − ω1

9: else
10: Xi = Xi − ω1

11: Xj = Xj + ω1

12: end if
13: Select randomly distinct indices p and q, where 1 ≤ p, q ≤ O
14: and p 6= q 6= i 6= j
15: if Xp < Xq then
16: Xp = Xp − ω2

17: Xq = Xq + ω2

18: else
19: Xp = Xp + ω2

20: Xq = Xq − ω2

21: end if
22: end for
23: Print partitions based on nearness of the different values of Xl

24: end loop
25: end

2.3.1.3 Tsetlin and Krinsky Methods

In Section 2.2, we described the LA paradigm of learning. Specifically, we
detailed the L2,2 and L2S,2 machines, together with an explanation of the
extension to multiple actions, i.e., the LAS,A. The LAS,A Tsetlin automa-
ton can be utilized for solving EPP [19]. Similarly, another FSSA scheme,
namely the Krinsky automaton, has also been used to solve the EPP. More-
over, results obtained in [38] showed that the Tsetlin and Krinsky methods
produced better results than the BAM and that the Krinsky automaton per-
formed even better than the Tsetlin automaton. Consequently, the Tselin

33

2.3. Partitioning Problems Background

and Krinsky FSSA for solving the EPP are highly relevant to the scope of
this study.

First, let us consider the LAS,A for modeling and solving the EPP. The
reader must remember that the LAS,A has AS states, and A actions, and
that the operation of the LA is based on Reward and Penalty, as detailed in
Subsection 2.2.3, where the state transitions are also formalized. The reader
should remember that the partitions (actions) are K = {%1, ..., %K} = {%i}.
And that, given the partition i and i ∈ {1, 2, ...,K}, the states have a range
from (i− 1)S + 1 through iS.

In order to model the EPP problem so that it can be solved by the LAS,A,
we need to have the same number of actions as that of partitions, i.e.,
A = K. Furthermore, we will distribute the O objects into different states
of the LA, and let the action that the object resides in be the answer to
which partition that object belongs. For the FSSA solutions, we will also
consider accessed objects in queries (similar to the BAM). When presented
with a query Q = 〈oi, oj〉, the accessed objects are moved through the
state space as they are rewarded or penalized. Moreover, the objects are
rewarded if they are currently in the same action, and penalized if they are in
different actions. The reader should remember that the action of an object
indicates the partition of that object, and after a number of queries, we are
able to obtain a partitioning of the O objects into K partitions. Krinsky’s
automaton is identical to the Tsetlin’s, except the state transition function
upon a Reward. The Krinsky LA moves directly to the innermost state of
the action that the LA is currently in upon a Reward. This state transition
is expressed as:

FKrinsky(φj , β1) = φ(i−1)S+1 if (i− 1)S + 1 ≤ j ≤ iS. (2.16)

In [38], the authors tested the Tsetlin and Krinsky methods to resolve the
EPP. To simulate the Environment, they utilized the following distribution:

Pr{oi, oj accessed together} = Πoi,oj , for oi, oj ∈ ∆∗, ∀i, j, (2.17)

where Πoi,oj is the probability of a query consisting of objects that belong
together in ∆∗. The simulations in [38] showed that the BAM required
80 queries before convergence with Πoi,oj = 0.9 where four objects were
divided into two partitions, whereas the Tsetlin and Krinsky required 14
and 7 queries before convergence, respectively. With the same query access
probability and six objects to be divided into two partitions, the BAM

34

2.3. Partitioning Problems Background

required 240 queries, while the Tsetlin and Krinsky required 20 and 12
queries respectively. In this way, the two FSSA schemes were superior to
the BAM. On the other hand, the Tsetlin and Krinsky became impractical
when the number of partitions and the partition size increased [38]. More
details about the Tsetlin and Krinsky methods to solve the EPP, can be
found in [38].

2.3.2 The Paradigm of OMA Algorithms

The pioneering OMA solution to the OPP (when reduced to EPP) was ini-
tiated in [6]. By considering the concept that the accessed objects should be
grouped, a new paradigm for solving partitioning problems then emerged.
These methods have become the most efficient algorithms for solving par-
titioning problems of equally sized partitions [4, 5]. The OMA schemes are
based on FSSA and have many applications in different domains.

One of the applications for the OMA algorithm is cryptanalysis. In [45]
and [46], OMA was employed to solve a cipher using only plaintext and its
corresponding ciphertext. In cloud computing, for dividing traffic across
multiple virtual machines, an OMA solution was proposed and investigated
in [47] and [48]. This OMA-based solution achieved a 90 % cost reduction
compared to other solutions resolving similar issues. The OMA concept has
also been utilized for finding conceptually similar images in [49] and [50].
It was adopted for reputation systems in [51] for increasing the trustworthi-
ness of the reputation system. In [52], the NP -hard problem of resolving
questions of the data fragmentation and the cost of requests in a distributed
database system with graph-like connections was resolved by using OMA.
In addition, the OMA has been evaluated for securing statistical databases
in [53] and [54], where the OMA solution was superior to the state-of-the-art
for solving the Micro-Aggregation Problem (MAP). In [3], an OMA-based
algorithm was introduced in mobile radio communications for optimally
partitioning users in a Non-Orthogonal Multiple Access (NOMA) system.
Additionally, OMA algorithms were used in [4] for outlier detection prob-
lems, in noisy sensor networks, and adaptive singly-linked lists [5].

The concept that the OMA algorithms revolve around, is to bring elements
that are accessed together into the same sub-set or unit. Thus, the OMA
is based on the assumption that elements that are mostly accessed together
belong to the same group. Many applications can be modeled in such a

35

2.3. Partitioning Problems Background

way that the underlying relations are mapped onto an OMA paradigm. For
example, in a radio communications system, different subdivisions of users
can be tested together, and whether they receive an ACK can be used as
the criterion for inputting a query consisting of these users into the OMA.
In this way, one is able to determine the partitions of users that are most
likely to achieve successful transmissions when being grouped. One should
observe that the elements, or users, or any representative of what we want
to partition, are described as abstract objects, and that the abstract objects
can be grouped, where the real-life objects are correspondingly clustered.

The OMA employs semi-supervised learning in achieving their goal of equi-
partitioning O objects into K partitions, where O

K is an integer, implying
that the partitions are of equal size. By using different actions as the distinct
partitions, similar to the explained Tsetlin and Krinsky solutions to EPP, we
permit the objects to traverse the state space inside the LA through Reward
and Penalty based on the queries. Furthermore, by specified policy rules for
updating the states and actions of the objects, an adaptive and optimal/sub-
optimal partitioning of the objects can be obtained [4]. The methodology
is semi-supervised, because pairs of objects that should belong together are
given to the LA, but the overall optimal partitioning is unknown, and needs
to be obtained solely by the machine interacting with an Environment.
Thus, once a query is presented to the LA, the machine considers whether
the queried objects are currently together in the same partition (action).
If the objects are in the same action, the queried objects are rewarded.
Correspondingly, the queried objects are penalized if they are not grouped.
Thus, when presented with a query, the OMA algorithm will behave based
on its specified policy and current partitioning of objects. For the different
algorithms in the OMA paradigm, the policy schemes will vary with the
given OMA type. Due to these characteristics, the algorithms differ from
one another.

An important observation is that the OMA, similar to the BAM, only han-
dles queries in pairs with its current configurations [4]. Thus, if the accessed
objects are not in pairs, but rather multiple objects, the OMA algorithm
receives the multiple objects by pairing them. This involves handling the
objects two at a time. As an example, we might have the original sys-
tem occurrence of Q = 〈o1, o2, o3〉. Within the current OMA solutions [4],
the query would then be presented to the LA in pairs as Q1 = 〈o1, o2〉,
Q2 = 〈o1, o3〉, Q3 = 〈o2, o3〉. Hence, the system becomes more impres-
sionable to noisy queries, and if this is not handled properly, the system

36

2.3. Partitioning Problems Background

might converge too fast (in the sense that we may reach convergence, but
in reality, too few unique queries have been handled, and the OMA has not
achieved an adequate picture of the system yet). Therefore, we might need
to increase the state space (for slowing the convergence rate) or deciding to
only consider some pairs in each round of incoming accessed objects. In this
way, handling queries that consist of more than two objects is a complex
problem, which, in reality, constrains the number of accessed objects that
can be considered at a time7.

In the OMA paradigm, we often talk about noisy queries, which are queries
that do not perfectly reflect the nature of ∆∗. Consider an example of
six objects, which should be partitioned into two groups. If o1, o2, and o3
should be one partition in ∆∗ and o4, o5, and o6 another partition, the query
Q = 〈o1, o5〉, is considered as noise to the system. Thus, Q = 〈o1, o5〉 is a
noisy query, and Q = 〈o1, o2〉, is not a noisy query. As we will explain later,
a noise-free stream of queries can lead, in certain solution models, to more
trouble than a system with a higher percentage of noisy queries. In a real
Environment, we do not know whether a query is noisy or not. However,
in simulations, the level of noise can be customized for specific scenarios for
evaluation purpose.

There are different types of OMA algorithms. In what follows, we will de-
scribe in some detail, the original OMA, the Enhanced OMA (EOMA), the
Pursuit EOMA (PEOMA) and the Transitivity PEOMA (TPEOMA)8. The
OMA is the basic method of these algorithms and was proposed first in [38]
and [6]. Later, an enhancement to the OMA, termed the EOMA, was pro-
posed in [7], preventing the Deadlock Situation. The authors of [9] and [13]
proposed the improved PEOMA, where the pursuit concept was incorpo-
rated into the EOMA, reducing the levels of noise presented to the LA of the
system. Thereafter, the TPEOMA was introduced in [10], where the transi-
tivity concept was further augmented into the PEOMA algorithm, ensuring
even better results in certain environments, and reducing the required num-
ber of queries from the so called Query Generator before convergence [4].

7The problem of “queries of increased size” is outside the scope of this thesis, and is
rather considered as a problem for further study.

8As mentioned in the introduction, the POMA is another version of the OMA. However,
the concepts motivating the POMA are similar to its PEOMA variant. Thus, in this thesis,
we omit the details of the POMA. A detailed description of the POMA can be found in [8].

37

2.3. Partitioning Problems Background

2.3.2.1 The OMA

In what follows, we reuse notation and learning principles of LA as presented
in previous sections. The OMA is an FSSA for solving EPP, where the
number of actions is equal to the number of partitions in the underlying
partitioning problem. For each action, there are S states, and the LA
has AS = KS states in total. The OMA scheme is certainly different from
traditional LA because the objects that are to be partitioned are distributed
among the actions and move throughout the state space. Similar to the
principles regarding LA, explained in Section 2.2, the state of an object
indicates its current action, and thus, its partition. Each object in O resides
in a state and can move from one state to another, or migrate to another
action. The state transitions are dependent on the rewards and penalties
inputted from the Environment [6, 38]. Thus, the state of a certain object
oi, where i ∈ {1, 2, ..., O}, is indicated by θi. θi = φ(k−1)S+1 indicates
the innermost states and θi = φkS corresponds the boundary states, where
k ∈ {1, 2, ...,K} and k denotes the partition %k.

A visualization explaining the schematic of the operation of the OMA with
the Environment (i.e, Query system) is depicted in Figure 2.10. The Query
Generator, is the component that produces the query input to the LA For
modeling a real system, the Query Generator is a representation of the sys-
tem’s accessed objects. When the LA receives the input from the Query
Generator, it sends it directly to the Environment together with the ma-
chine’s current partitions (K). Once the Environment receives the input
from the LA, it responds with a Reward (B = β1) if the objects in the
query are in the same partition and with a Penalty (B = β2) if they are
in different partitions. The response from the Environment is outputted
to the LA, and the LA then updates the queried objects according to the
environmental input. Depending on the modeled system, the LA has the
ability to influence the system that selects the queries. As an example, if
we model a mobile communications system that groups users, their group
selection can be influenced by the LA while it is in operation. In this way,
the mobile communications system might be able to achieve better groups
even if an converged solution for the grouping has not been established yet9.

In Algorithm 2, we present a description of the overall OMA operation.
For partitioning, the objects in O into K equally sized partitions, we first
distribute the objects randomly among the KS different states, with the

9The influence to the Query Generator is a possible extension to the algorithm, and is
a topic for further study. 38

2.3. Partitioning Problems Background

Figure 2.10: A schematic model of the operation of the OMA working in
conjunction with the Query Generator.

constraint that it starts with O
K objects in each action. Then, for a se-

quence of queries (Υ), or until the automaton converges10, queries are read
and handled according to the automaton’s policy. For checking the cur-
rent partition of an object, we divide the current state of the object by the
number of states per action, evaluate the “Floor” function of that answer,

and add unity, i.e.,
(⌊

(θi−1)
S

⌋
+ 1
)

. We are then able to check whether the

objects in Q are in the same action/partition. Consequently, the different
objects are rewarded or penalized based on their current partition once the
LA receives a query. Upon receiving a Reward, we strengthen the LA’s
knowledge by moving the objects in Q towards the innermost states. Upon
receiving a Penalty, we eventually change the behavior of the automaton
by moving the objects towards the boundary, and apply a special policy for
the innermost and boundary states.

10Note that the OMA algorithm is considered to have converged when all objects are
in innermost states.

39

2.3. Partitioning Problems Background

Algorithm 2 The OMA Algorithm

Input:

• The objects O = {o1, ..., oO}.
• S states per action.
• A sequence of query pairs (Υ), where each element Q = 〈oi, oj〉.

Output:

• A partitioning (K = ∆+) of the O objects into K partitions.
• θi is the state of oi. It is an integer in the range {1, 2, ...,KS}.
• If (k − 1)S + 1 ≤ θi ≤ kS then oi is assigned to %k, which is done for

all i ∈ {1, 2, ..., O} and k ∈ {1, 2, ...,K} [4].

1: begin
2: Initialize θi, ∀ i, i ∈ {1, 2, ..., O} . As described in the text
3: while not converged or |Υ| queries not read do
4: Read query Q(n) = 〈oi, oj〉 from Υ

5: if
⌊
(θi−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then . The objects are rewarded

6: OMA Process Reward({θi, θj}, Q)
7: else . The objects are penalized
8: OMA Process Penalty({θi, θj}, Q)
9: end if

10: end while
11: Output the final partitioning based on θi, ∀ i.
12: end

The most critical operation of the OMA is how it handles Reward and
Penalty inputs from the Environment, and a brief picture of this behavior
can be interpreted as follows:

• Reward - the accessed objects are in the same group

– Case 1: None of the accessed objects are currently in the inner-
most state of their action. →Move both objects one step towards
the innermost state.

– Case 2: One of the objects is in the innermost state, and the other
object is in another state. → Make the object in the innermost
state remain in its state and move the other object (not currently
in the innermost state) towards its action’s innermost state.

– Case 3: Both objects are in the innermost state of their action.
→ Make both objects remain in the innermost state.

The Reward operation of the OMA is depicted in Algorithm 3.

40

2.3. Partitioning Problems Background

• Penalty - the accessed objects are not in the same group

– Case 1: None of the accessed objects are currently in the bound-
ary states of their respective actions. → Move both objects one
step towards the boundary state of their action.

– Case 2: One object is in the boundary state of its action, and the
other object is not in the boundary state of its action. → Move
the object that is not in the boundary state one step towards the
boundary state of its action and let the other object remain in
its current state.

– Case 3: Both objects are in the boundary states of their respec-
tive actions. →With equal probability, choose one of the objects
to be the staying object, and let the other object be the moving
object. Move the moving object to the current state of the stay-
ing object, and move one object from the action of the staying
object that is closest to the boundary, to the boundary state of
the action that the moving object came from.

The Penalty operation of the OMA is depicted in Algorithm 4.

As a visual representation of the original OMA’s operation, we can consider
the (a), (b) and (d) cases of the EOMA state transitions in Figure 2.13.
Note that for the original OMA version, we only move objects to another
state when both accessed objects are currently in the boundary states of
their actions. Therefore, the (c) alternative in Figure 2.13, is not a part of
the original OMA version.

Algorithm 3 OMA Process Reward({θi, θj}, Q)

Input:

• The states of the objects in Q ({θi, θj}).
• The query pair 〈oi, oj〉.

Output:

• The next states of oi and oj .

1: begin
2: if θi mod S 6= 1 then . Move oi towards the innermost state
3: θi = θi − 1
4: end if
5: if θj mod S 6= 1 then . Move oj towards the innermost state
6: θj = θj − 1
7: end if
8: end

41

2.3. Partitioning Problems Background

Algorithm 4 OMA Process Penalty({θi, θj}, Q)

Input:

• The states of the objects in Q ({θi, θj}).
• The query pair 〈oi, oj〉.

Output:

• The next states of oi and oj .

1: begin
2: if θi mod S 6= 0 and θj mod S 6= 0 then . Neither are in boundary

3: θi = θi + 1
4: θj = θj + 1
5: else if θi mod S 6= 0 and θj mod S = 0 then . oj is in boundary

6: θi = θi + 1
7: else if θi mod S = 0 and θj mod S 6= 0 then . oi is in boundary

8: θj = θj + 1
9: else . Both are in boundary states

10: temp = θi or θj . Store the state of moving object, oi or oj
11: θi = θj or θj = θi . Put moving object and staying object together

12: ol = unaccessed object in group of staying object closest to boundary

13: θl = temp . Move ol to the old state of moving object
14: end if
15: end

2.3.2.2 The EOMA

The Enhanced Object Migration Automata was presented in [7] and is an
enhancement to the original OMA. The contributions of the EOMA are in
the prevention of the Deadlock Situation in noise-free environments, and
in improving the convergence rate by changing the initial distributions of
objects and redefining the innermost states considered in the requirement
for convergence. In this way, the EOMA aims to solve the OMA’s two
drawbacks, namely the trait of slow convergence and the Deadlock Situation
in noise-free environments.

The Deadlock Situation prevents the OMA from converging. In the Dead-
lock Situation, the objects keep moving, but never attain a partitioning solu-
tion, because their configuration and the location of the objects keep them
in an “eternal” loop of moving back and forth without achieving conver-
gence. Such a Deadlock Situation is a drawback to the OMA’s applicability
of solving the EPP, and will be further detailed below.

42

2.3. Partitioning Problems Background

Let us consider an example which illustrates the Deadlock Situation. Con-
sider the case when we have six objects (O = 6), which should be partitioned
into K = 2 partitions, where the objects are O = {o1, o2, o3, o4, o5, o6} re-
spectively. The optimal partitioning is configured as ∆∗ = K = {%1, %2},
where {o1, o2, o3} should be together in one partition and {o4, o5, o6} in
the other partition. Note that because of the randomness in the initializa-
tion process, the correct partitioning is independent of {o4, o5, o6} being in
action %1 or %2, as long as they are grouped together. The objects are initial-
ized randomly (∆0) as depicted in Figure 2.11, and the LA is presented with
the query stream Υ = {〈o1, o2〉, 〈o1, o3〉, 〈o2, o3〉, 〈o4, o5〉, 〈o4, o6〉, 〈o5, o6〉} re-
peatedly. Consequently, no “noisy” queries are presented to the machine.
Following the OMA policy, the reader easily observes that the objects cy-
cles back to a similar distribution after one round of queries as depicted in
Figure 2.12, and will thus, remain in this loop for subsequent query rounds.

1 2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4, o5o3

Figure 2.11: Initial distribution of objects in the example of the Deadlock
Situation.

The EOMA was designed to mitigate the explained Deadlock Situation.
Consequently, the proposed behavior of the EOMA operation can be sum-
marized as follows:

• Initialization of Objects: Instead of distributing the objects ran-
domly across the KS states initially, the objects are distributed ran-
domly on the boundary states of the different actions, with O

K objects
in each action. In this way, the objects can easily change action when
presented with the first queries, lowering the average number of queries
required for the objects’ to change their actions. This change improves
the convergence rate of the OMA.

• Extension of the Convergence Criterion: In the EOMA scheme,
not only are the innermost states considered in the requirement of
convergence, but the two innermost states in the respective actions
are also included as states representing convergence. Thus, when all

43

2.3. Partitioning Problems Background

1

After 〈o1, o2〉 :

2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4, o5o3

1

After 〈o1, o3〉 :

2

%1

3 4 8 7

%2

6 5

o1o2 o6 o4, o5o3

1

After 〈o2, o3〉 :

2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4, o5o3

1

After 〈o4, o5〉 :

2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4, o5o3

1

After 〈o4, o6〉 :

2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4 o5o3

1

After 〈o5, o6〉 :

2

%1

3 4 8 7

%2

6 5

o1, o2 o6 o4, o5o3

Figure 2.12: The process of the OMA for a query stream constituting a
Deadlock Situation.

44

2.3. Partitioning Problems Background

objects in the LA are in θi = φ(k−1)S+1 or θi = φ((k−1)S+1)+1 for
all k ∈ {1, 2, ...,K} and i ∈ {1, 2, ..., O}, the machine is said to be
converged. One can observe that, the EOMA algorithm has a more
relaxed convergence criterion than the OMA.

• Change of Penalty Operation: In order to prevent the Deadlock
Situation, the EOMA introduces a new Penalty scheme. When one of
the objects in a query is in the boundary state, and when the other
object is in a non-boundary state, we move the boundary object to
the action of the non-boundary object. Consequently, another object
(the object closest to the boundary) is moved to the action of the
boundary object11. Other than that, the operation of the machine on
receiving penalties in the EOMA, is similar to the operation of OMA.

In this way, the EOMA marginally introduces a new Penalty scheme, and
the overall operation remains similar to the OMA’s operation depicted in
Algorithm 2. Consequently, for the EOMA, the OMA Process Penalty is
changed to be the EOMA Process Penalty in Algorithm 2. Note that the
EOMA’s Process Reward is similar to the OMA’s Process Reward. Besides,
even though the algorithms are similar, their configurations are different,
i.e., they possess different initial distributions of objects, Penalty policies
and the convergence criteria. A visualization of the state transitions of the
EOMA algorithm is depicted in Figure 2.13.

Note that for the visualization in Figure 2.13, the states are indicated by
using h and g in the indices, which are the representations of different
partitions (partition g and h in this example). Another concept that we
emphasize is that upon a Penalty, when one object of the query is in the
boundary state, and when the other is in another state at the same time,
we move the boundary state object to the same state as the non-boundary
object. This concept is similar to that in [5], although it is interpreted
slightly differently in [4], where the object at the boundary state is moved
to the boundary state of the non-boundary object’s action.

11Note that the reason for keeping O
K

objects in all actions at all times is for ensuring
that not all objects converge to the same action and become inseparable.

45

2.3. Partitioning Problems Background

φhSφhS−1

oj

φhS−2

· · ·

oi

φh1

αh

(a) On reward: Move the accessed abstract objects 〈oi, oj〉 towards the innermost state.

φgS φgS−1

· · ·
φg3 φg2 φg1

αg

φhSφhS−1

oi

φhS−2

· · ·
φh1

αh

(b) On penalty: Move the accessed abstract objects 〈oi, oj〉 towards their actions’ boundary states.

φgS φgS−1

· · ·
φg3 φg2

oj

φg1

αg

φhSφhS−1

oi

φhS−2

· · ·
φh1

ol

αh

(c) On penalty: Move the accessed abstract objects 〈oi, oj〉 to be in the same action. An extra object
ol in the action of oi is moved to the old action of oj .

oj

φgS φgS−1

· · ·
φg3 φg2 φg1

αg

φhS

oi

φhS−1φhS−2

· · ·
φh1

αh

(d) On penalty: If both abstract objects 〈oi, oj〉 are in the boundary states, move one of them, say oi,
to the boundary state of the other action. Another object, ol, closest to the boundary in oj ’s action
is moved to the old action of oi.

oj

φgS φgS−1

· · ·
φg3

ol

φg2 φg1

αg

Figure 2.13: The state transition diagram of the EOMA operation.

46

2.3. Partitioning Problems Background

Algorithm 5 EOMA Process Penalty({θi, θj}, Q)

Input:

• The states of the objects in Q ({θi, θj}).
• The query pair 〈oi, oj〉.

Output:

• The next states of oi and oj .

1: begin
2: if θi mod S 6= 0 and θj mod S 6= 0 then . Neither are in boundary
3: θi = θi + 1
4: θj = θj + 1
5: else if θi mod S 6= 0 and θj mod S = 0 then . oj is in boundary
6: θi = θi + 1
7: temp = θj . Store the state of oj
8: ol = unaccessed object in group of staying object closest to boundary

9: θj = θi
10: θl = temp
11: else if θi mod S = 0 and θj mod S 6= 0 then . oi is in boundary
12: θj = θj + 1
13: temp = θi . Store the state of oi
14: ol = unaccessed object in group of staying object closest to boundary

15: θi = θj
16: θl = temp
17: else . Both are in boundary states
18: temp = θi or θj . Store the state of moving object, oi or oj
19: θi = θj or θj = θi . Put moving object and staying object together

20: ol = unaccessed object in group of staying object closest to boundary

21: θl = temp . Move ol to the old state of moving object
22: end if
23: end

47

2.3. Partitioning Problems Background

2.3.2.3 The PEOMA

In the OMA paradigm, potentially noisy queries are presented to the OMA
algorithm. We shall now try to enhance the EOMA by invoking the so-
called pursuit concept. In LA, the pursuit concept concerns pursuing or
moving towards the action that is currently most likely to be the “Best”
action [22]. This prevents the impact of noisy inputs to the LA, that could
confuse its behavior. In the Pursuit Enhanced Object Migration Automata,
this pursuit concept is incorporated into the EOMA to further enhance its
performance [4, 8, 9, 13].

The pursuit design in the PEOMA is achieved by means of a matrix which
contains knowledge about the likeliness of a query based on previous queries.
Thus, the probability of a certain query being presented is calculated, and
this is checked before the new query is given to the LA. Based on the
frequency maintained in the matrix, M, where M is a O × O matrix that
contains the frequency of given queries. The frequency of Q = 〈o1, o2〉 is
represented by πo1,o2 , and a visualization of the pursuit matrix is depicted
in Figure 2.14.. Based on these entities, the probability of a given query
can be retained, and the query is rejected (i.e., treated as an erroneous
query), if its probability is below a certain threshold. To achieve this, we
introduce a parameter, τ , as the threshold value for whether a query should
be provided to the LA or not. Because the LA initially has no statistics of
the Reward probabilities, the PEOMA is equipped with another parameter,
κ, which quantifies how many queries the PEOMA should consider directly
before starting to filter queries based on M. The parameter τ should be
reasonably close to zero, and τ < 1

O , will prevent the automaton from
continuously discarding a query that might lead to better results [4]. The
value of κ should ensure sufficient exploration and procuring of statistics
before using the query estimations, and in [4], an educated guess for setting
this parameter was achieved through the following formula:

κ =

((
O

K

)2

−
(
O

K

))
K. (2.18)

Note that the matrix in Figure 2.14 is symmetric along the diagonal, and
so the order of the accessed objects in Q is not relevant. Since, M is
symmetric, both πo1,o2 and πo2,o1 need to be updated upon receiving the
query Q = 〈o1, o2〉, and both quantities need to be compared together to τ ,
in order to achieve the filtering. Obviously, only half ofM is actually needed

48

2.3. Partitioning Problems Background

in the process of the PEOMA. Additionally, the diagonal itself consists
of zeros, since, the frequency of an object accessed “with itself” does not
contribute any information.

M =

o1 o2 . . . oO

o1 0 πo1,o2 · · · πo1,oO
o2 πo2,o1 0 · · · πo2,oO
...

...
...

. . .
...

oO πoO,o1 πoO,o2 · · · 0

Figure 2.14: The frequency matrix for query occurrences in the PEOMA.

In Algorithm 6, we present a description of the PEOMA. The algorithm is
quite similar to the EOMA algorithm. The period before the κ queries have
been received by the LA is referred to as the estimation phase. In this es-
timation phase, the PEOMA operates similar to the EOMA algorithm, but
populates its frequency matrix, M. After κ queries have been considered,
we start filtering the queries before passing them on to the EOMA algorithm
for the thresholding phase. Thus, queries that are considered to be unlikely
are discarded and not handled by the EOMA. Any query is filtered based
on whether its probability of occurring is above τ , where this probability of
the occurrence is calculated by dividing the frequency of the query by the
total number of queries, obtained fromM. The pursuit concept in PEOMA
reduces the impact of noisy queries, increasing the algorithm’s convergence
rate in systems with high noise levels and helps the LA pursue the partition-
ing that is most likely [4]. Note that the Reward in the PEOMA is similar
to “OMA Process Reward”, and the Penalty scheme is “EOMA Process
Penalty”.

49

2.3. Partitioning Problems Background

Algorithm 6 PEOMA Algorithm
Input:

• A matrix, M, of query frequencies (all initially set to zeros).
• A user-defined threshold, τ , set to a value reasonable close to zero.
• A user-defined parameter, κ, indicating the number of queries in the estima-

tion phase.
• The objects O = {o1, ..., oO}.
• S states per action.
• A sequence of query pairs (Υ), where each element Q = 〈oi, oj〉.

Output:

• A partitioning (K = ∆+) of the O objects into K partitions.
• θi is the state of oi. It is an integer in the range {1, 2, ...,KS}.
• If (k − 1)S + 1 ≤ θi ≤ kS then oi is assigned to %k, which is done for all
i ∈ {1, 2, ..., O} and k ∈ {1, 2, ...,K} [4].

1: begin
2: Initialize θi, ∀ i, i ∈ {1, 2, ..., O} . As described in the text
3: while not converged or |Υ| queries not read do
4: Read query Q(n) = 〈oi, oj〉 from Υ
5: M[oi, oj] =M[oi, oj] + 1 . Update the frequency matrix
6: M[oj , oi] =M[oi, oj]

7: if i < κ then . Use EOMA directly in the estimation phase

8: if
⌊
(θi−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then . The objects are rewarded

9: OMA Process Reward({θi, θj}, Q)
10: else . The objects are penalized
11: EOMA Process Penalty({θi, θj}, Q)
12: end if

13: else . Filter query before using EOMA in the thresholding phase

14: if 2
M[oi,oj]∑
M ≥ τ then . Input Q to EOMA

15: if
⌊
(θi−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then . The objects are rewarded

16: OMA Process Reward({θi, θj}, Q)
17: else . The objects are penalized
18: EOMA Process Penalty({θi, θj}, Q)
19: end if
20: else . Discard Q
21: do nothing
22: end if
23: end if
24: end while
25: Output the final partitioning based on θi, ∀ oi.
26: end

50

2.3. Partitioning Problems Background

2.3.2.4 The TPEOMA

The most recent advancement to the family of OMA algorithms was pro-
posed in [10], where the concept of transitivity was added as an extension
of the PEOMA algorithm. More specifically, the Transitivity Pursuit En-
hanced Object Migration Automata considers the relations among objects
that it has learned previously into its operation. Thus, the TPEOMA is
based on the principle that if we know that oi and oj should be together,
and oj and ol should also be together, we can deduce that oi, oj and ol all
belong to the same group. Because the LA in the OMA paradigm base their
knowledge on queries presented by the Environment, artificially generated
queries are offered to the automaton once transitivity connections are de-
duced. By introducing the transitivity concept to the OMA paradigm, we
can exploit the LA’s knowledge even if the Query Generator is dormant.

A description of the TPEOMA algorithm is given in Algorithm 7. The tran-
sitivity relation among objects can be inferred from the frequency matrix,
M, which was earlier introduced in the PEOMA. In the TPEOMA, we in-
troduce a new threshold parameter, τt, for considering transitivity relations
among the given queries. One can observe that the TPEOMA is identical
to the PEOMA presented in the previous section, except that, once the LA
is presented with a query, and the query probability is above τ , we also
check that query’s transitivity relations. Thus, when a query is permitted
to be presented as an input to the PEOMA algorithm, in the TPEOMA,
we also check its transitivity relations according to M. If a transitivity
relation to any of the objects in the query has a probability above τt, we
create an artificial query consisting of those objects, and feed it also to the
LA. By way of example, consider the case when we have Q = 〈o1, o2〉 and
two other objects (o3, o4) in our system. Then if the query goes through the
PEOMA τ check, we look at the query pairs of Q = 〈o1, o3〉, Q = 〈o1, o4〉,
Q = 〈o2, o3〉, Q = 〈o2, o4〉 and whether the probability values of the pairs,
that is found based on πo1,o3 , πo1,o3 , πo1,o3 and πo1,o3 , are above τt. If any
query probability has a value above the specified TPOEMA parameter, we
feed the LA with an artificial query consisting of those objects. As reported
in [4], the TPEOMA threshold parameter should be defined in terms of:

1

O(O − 1)
< τt <

K

O(O −K)
. (2.19)

51

2.3. Partitioning Problems Background

The reader is referred to [10] for further details regarding the TPEOMA
algorithm. An important observation is that the TPEOMA is the current
state-of-the-art for the EPP. Indeed, the transitivity-based implementation
of the PEOMA is about two times faster than the non-transitivity OMA
versions for some scenarios when considering the required number of queries
from the Query Generator [5, 10].

Algorithm 7 TPEOMA Algorithm
Input:

• A matrix, M, of query frequencies (all initially set to zeros).
• A user-defined threshold, τ , set to a value reasonable close to zero.
• A user-defined parameter, κ (the number of queries in the estimation phase).
• A user-defined threshold, τt, as described in the text.
• The objects O = {o1, ..., oO}, S states per action and a sequence of queries.

Output:

• A partitioning (K = ∆+) of the O objects into K partitions.
• θi is the state of oi. It is an integer in the range {1, 2, ...,KS}.
• If (k − 1)S + 1 ≤ θi ≤ kS then oi is assigned to %k, which is done for all
i ∈ {1, 2, ..., O} and k ∈ {1, 2, ...,K} [4].

1: begin
2: Initialize θi, ∀ i, i ∈ {1, 2, ..., O} . As described in the text
3: while not converged or |Υ| queries not read do
4: Read query Q(n) = 〈oi, oj〉 from Υ
5: M[oi, oj] =M[oi, oj] + 1 . Update the frequency matrix
6: M[oj , oi] =M[oi, oj]
7: if i < κ then . Use EOMA directly in the estimation phase

8: if
⌊
(θi−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then . The objects are rewarded

9: OMA Process Reward({θi, θj}, Q)
10: else . The objects are penalized
11: EOMA Process Penalty({θi, θj}, Q)
12: end if

Note: The algorithm continues in the next page.

52

2.3. Partitioning Problems Background

Continuation of Algorithm 7:

13: else . Filter query before using EOMA in the thresholding phase

14: if 2
M[oi,oj]∑
M ≥ τ then . Input Q to EOMA

15: if
⌊
(θi−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then . The objects are rewarded

16: OMA Process Reward({θi, θj}, Q)
17: else . The objects are penalized
18: EOMA Process Penalty({θi, θj}, Q)
19: end if
20: for x ∈ {1, 2, ..., O} ∧ x 6= i, j do . Consider transitivity

21: if 2M[ox,oi]∑
M ≥ τt then

22: if
⌊
(θx−1)
S

⌋
+ 1 =

⌊
(θj−1)
S

⌋
+ 1 then

23: OMA Process Reward({θx, θj}, Q)
24: else
25: EOMA Process Penalty({θx, θj}, Q)
26: end if
27: else if 2

M[ox,oj]∑
M ≥ τt then

28: if
⌊
(θx−1)
S

⌋
+ 1 =

⌊
(θi−1)
S

⌋
+ 1 then

29: OMA Process Reward({θx, θi}, Q)
30: else
31: EOMA Process Penalty({θx, θi}, Q)
32: end if
33: end if
34: end for
35: else . Discard Q
36: do nothing
37: end if
38: end if
39: end while
40: Output the final partitioning based on θi, ∀ oi.
41: end

53

Part II

Contributions

55

Chapter 3

Partitioning Problems with
Pre-Specified Cardinalities

In this chapter, we will propose new functionalities to the algorithms that
utilize the OMA paradigm. Specifically, we want the algorithms to be able
to solve both the EPPs and the NEPPs, where the number of objects in
each partition is known, but the optimal partitioning of the O objects is
unknown. The concept of allowing pre-specified cardinalities to the OMA
paradigm is an extension of the already-existing OMA algorithms. However,
all the algorithms require a new design so as to handle the issues that the
pre-specified cardinalities introduce to the well-established methods.

In many applications, we might know the number of elements that fit in
each partition. There are many examples, including computer file localiza-
tion with known memory capacity, customer distribution in cruise ships with
specified room availability, online shopping baskets with a certain number
of items in each category fulfilling a particular sale requirement, and mobile
radio communications groups of specific sizes, that constitute partitioning
problems with known cardinalities. By incorporating an additional func-
tionality to the OMA that handles both groups of equally or unequally
sized pre-specified partitions, we can employ the OMA family of algorithms
to a broader range of applications.

Partitioning problems can be NP-hard [4], and the number of possible solu-
tions and combinations of objects grows exponentially with the number of

57

Pre-Specified Cardinalities

objects. Random grouping might result in a partitioning solution, but as
the number of elements increases, a random grouping that happens to be
an optimal solution to a smaller problem, is more unlikely to be the case for
the larger instantiation. Although we know the partition sizes, the individ-
ual partitions can have any combination of the objects, which makes such
problems more difficult when the number of objects increases. Similarly,
when the difference in the number of objects in each partition grows, the
possibility of a smaller partition getting “stuck” in a bigger partition in-
creases, which might result in the LA converging to a sub-optimal solution.
Consequently, it is clear that we first need an approach for indicating the
hardness of a particular partitioning problem. Once the complexity of the
problem is analyzed, we need an efficient algorithm for solving such prob-
lems. After that, we need pre-specified evaluation criteria for assessing the
algorithm’s performance.

The family of OMA algorithms need modifications for them to be able to
tackle problems of an NEPP flavor with pre-specified cardinalities. OMA
algorithms have been previously shown to be efficient algorithms for solving
the EPP [4, 5]. However, when presented with non-equally sized groups of
pre-specified cardinalities, they encounter problems that are non-existent
for the EPP. Keeping the effectiveness in mind is also a significant criterion
when one is considering the modifications and the implementations of the
corresponding solutions to problems with pre-specified non-equal and equal
partition sizes. Therefore, we propose two different methods that aim to
solve such problems. Solving partitioning problems with partitions of non-
equal size is far from trivial, and the proposed solutions are to be reckoned
as being methods in the initial phase, when it concerns being able to deal
with problems of this nature. The proposed methods are novel extensions
to the already-existing algorithms pertaining to the OMA paradigm, and
contribute to the research field of partitioning and the applicability of OMA
algorithms to real-life problems.

The proposed methods have different ways of handling inputs from the
Query Generator and they possess various properties in the ways that they
tackle the NEPP. In this thesis, for a lack of a better nomination here, we
shall refer to the proposed methods as Method 1 and Method 2, respectively.
We emphasize that these methods reduce to the original OMA algorithms
as special cases when the sizes of the partitions are all equal. In Method 1
and Method 2 we solve problems of pre-specified equally and non-equally
sized partitions. In Method 1, the partition sizes need to have a Greatest
Common Divisor (GCD), while Method 2 requires no GCD.

58

3.1. Motivation Pre-Specified Cardinalities

This chapter is organized as follows: We first illustrate the motivation of
the proposed functionality for handling the NEPP with pre-specified cardi-
nalities in Section 3.1. After that, in Section 3.2, we study the complexity
of handling partitions of equal, non-equal, and pre-specified size. In Section
3.3, we define a parameter for indicating the partitioning problem’s hard-
ness before we introduce the pertinent evaluation parameters in Section 3.4.
In Section 3.5, we present the two proposed methods for solving EPPs and
NEPPs.

3.1 Motivation for Introducing the Two Proposed
Methods

The existing OMA algorithms cannot handle partitions that have unequal
sizes. However, in modeling a real-life system for optimizing specific tasks,
the need for always handling partitions of equal size will surely be a con-
straint on the applicability of the current algorithms in the OMA paradigm.
Obviously, a grouping problem does not always have groups of equal sizes.
Therefore, we need a solution for handling partitioning problems of both
unequally and equally sized partitions.

Let us consider an example where we want to use the existing OMA al-
gorithms for a problem consisting of non-equally sized partitions. For ex-
ample, we would like to distribute 30 students into three classes based on
their grades. The first class has 11 spots, the second has 7 places, and the
last one has 12 spots. If we were to use the existing OMA algorithms, we
would need to downsize the problem to model the requirement of being an
EPP. Because the smallest group consists of seven places, we would need
to limit the problem based on this group size. Specifically, we would only
be able to consider 21 of the 30 students. Consequently, we would have 9
students without a group. One possibility is to group these 9 students as
a separate case and cluster them to the most appropriate group in the first
grouping based on a secondary clustering method. However, none of the
current OMA algorithms would be able to handle a problem of this type.

The field of ML has attracted much interest over the last few years, and an
increasing number of companies are interested in using (and are using) ML
techniques in their work [55]. As ML techniques become more prevalent in
the industry, we need to make the methods robust to the types of problems

59

3.2. Problem Complexity Pre-Specified Cardinalities

they face and, thus, increase their applicability to real-life problems. By
demonstrating the efficiency and accuracy of the algorithms in solving var-
ious issues, we can boost the interest in these types of algorithms, and, at
the same time, increase the value and innovation within the research field
of LA and partitioning.

As mentioned above, the existing OMA algorithms are not applicable for
partitioning involving problems that deal with partitions of unequal size.
If the OMA algorithms were able to handle the NEPP, these ML methods
would be more applicable to real-life problems and future needs in the ML
field. Therefore, our goal is to relax the requirement of the partitions be-
ing equally-sized, when it concerns the OMA algorithms, and extend their
functionality to handle NEPPs.

3.2 Problem Complexity Analysis

In this section, we investigate the complexity of various types of partitioning
problems that can be solved using the existing OMA algorithms and the pre-
specified OMA algorithms proposed in this thesis. The complexity of these
problems is related to their respective combinatorics. We emphasize that,
in reality, we cannot perform an exhaustive search to determine the optimal
partitioning because, in traditional OMA problems, we are only presented
with queries encountered as time proceeds, and do not have a performance
parameter that directly indicate the fitness of a particular partitioning.

When we consider the objects and their group affiliations, the minimum
number of possible partitions of the set of objects is given by an unordered
Bell number. Note that we consider the Bell number to be unordered be-
cause we do not care about the order of the objects, and we only consider
whether the objects are grouped. The Bell number is a count of the dif-
ferent partitions that can be established from a set with O elements (the
objects, in our case). In our problems, we want to partition O objects into
K non-empty sets, where we note that each object can only be assigned to
a single group. Thus, we have BO partitioning options, where BO is the
O-th Bell number, where the O-th Bell number is given by:

BO =

O∑
k=1

{
O

k

}
, (3.1)

60

3.2. Problem Complexity Pre-Specified Cardinalities

where
{
O
k

}
is the Stirling numbers of the second kind [1], and k ∈ {1, ..., O}.

For the O-th Bell number, it follows that:(
O

e lnO

)O
< BO <

(
O

e1−λ lnO

)O
, (3.2)

which has exponential behavior for O and λ > 0. However, in our case, the
partitioning is pre-defined, independent of whether we have an EPP or a
NEPP. Consequently, what we need to consider is the different combinations
of objects in the various partitions. For partitions where each of the groups
have the possibility to have a different number of objects, we have the
following formula:

W =
O!

ρ1!ρ2!ρ3!...ρK !
, (3.3)

where ρk is the number of objects in each partition and k ∈ {1, ...,K} [56],
where ρ1 is the number of objects in %1, ρ2 the number of objects in %2 and
so on. Note that in Eq. (3.3), none of the numbers of objects are equal, and
thus, ρ1 6= ρ2 6= ρ3 6= ... 6= ρK and ρ1+ρ2+ρ3+ ...+ρK = O . For partitions
where some of the partition sizes are equal [57], we have the expression:

W =
O!

(u!)xx!(v!)yy!...(w!)zz!
, (3.4)

where we have x groups of size u, y groups of size v, and so on for all groups
and sizes. Note that, in this case, ux + vy + ... + wz = O. Consequently,
when all groups are of equal sizes, as is the case for EPPs, we have:

W =
O!(

O
K !
)K

K!
, (3.5)

where O
K is an integer.

As a result of the above, we observe that the partitioning problems are
characterized by a combinatorial issue. As the number of objects increases
and the difficulty in regards to the difference between the objects in each
partition grows, the problem can become more complicated “on the combi-
natorial scale”.

In addition to the combinatorial complexity of the problem, the interactions
between the Environment and the algorithm can also be contaminated by
noise. In other words, the queries may include misleading messages. There-
fore, the algorithm should also be robust in noisy environments. The OMA

61

3.3. Freedom of Cardinalities Pre-Specified Cardinalities

algorithms can, indeed, handle high levels of noise, and still find the cor-
rect partitioning [4]. Due to the stochastic nature of the system, modeled
through the Query Generator, the problem is more complicated than just
finding an instantaneous optimal partitioning, because the optimal parti-
tioning is defined stochastically. Consider an example, in which we follow
queries along four hours. During these four hours, the optimal partitioning
might have been given by three different configurations. If we examine the
partitions statistically, we will average the accessed objects over the inter-
val that we have observed to make a partitioning of the objects. However,
this averaged version will not be able to capture the changes, which are
composed of the three different optimal configurations, along time. The LA
will be able to follow these changes along time, and will adaptively change
according to the changes in the Environment.

3.3 Freedom of Cardinalities

To consider the hardness of the pre-specified cardinalities, we need a param-
eter for comparing the different problems that we might have. To achieve
this, we introduce a factor for representing the Freedom of Cardinalities
(FC). A partitioning problem with equally sized partitions should be zero,
and as the number increases, the hardness of the problem should be higher.
Consequently, we define the FC factor as:

Ξ =

∑K−1
k=1 |ρk − ρk+1|
O(K − 1)

, (3.6)

where K is the number of partitions and ρk is the number of objects in
partition k with k ∈ {1, 2, ...,K}. As observed in Eq. (3.6), an equi-
partitioning problem, has zero FC. In a potential extreme case, we have a
single partition that has all the objects, and the other partitions are empty,
which results in Ξ = 1. In this way, the quantity FC ranges between 0 and
1. As Ξ increases, and the FC quantity increases, the partitioning problem
becomes harder to solve. As an example, if we have K = 3, where we have
two partitioning scenarios. In the first problem, we have ρ1 = 4, ρ1 = 5, ρ1 =
5 and in the second one we have ρ1 = 2, ρ1 = 9, ρ1 = 3. Consequently, we
have Ξ = 0.036 and Ξ = 0.46, respectively as the FCs for different cases.
Consequently, the first problem has less difference between the number of
objects in each partition, and constitutes a simpler problem than the second
problem.

62

3.4. Evaluation Criteria Pre-Specified Cardinalities

The FC is vital for the simulations done in this thesis because it yields a
measure for representing the OMA algorithms’ performance for different Ξ
factors. These Ξ factors can be a reference in future experiments. This
parameter has not, to the best of our knowledge, been used in any prior
literature.

3.4 Evaluation Criteria

We measure the efficiency of OMA algorithms by counting the required
queries presented to the LA before convergence. As the number of queries
needed increases, so does the processing time. The larger the number of
queries needed, the less efficient is the algorithm. Note that the processing
time might be different according to, e.g., the computer specifications and
the programmer’s code. However, the number of queries for similar sim-
ulation configurations is almost equivalent to one another. Consequently,
the number of queries is a useful parameter for evaluation purposes. The
number of queries presented to the LA is, in principle, equal to the number
of responses from the Environment before convergence, which is a standard
performance criterion in LA. However, for the different types of OMA, these
two performance criteria are not identical. This is because the number of
queries generated by the Query Generator and the number of responses from
the Environment can be different among distinct OMA types.

When the OMA has converged, it’s partitioning (∆+) can either represent
a partitioning that is equal to the optimal partitioning of the objects, ∆+ =
∆∗ or not (∆+ 6= ∆∗). Although the optimal partitioning is the objective,
another partitioning that is not that far from the optimal partitioning might,
in certain cases, be sufficient. Considering the number of states and the
number of queries required for convergence, a sub-optimal partitioning can
be acceptable based on the assessor’s criteria. If we recall Table 2.1, we see
that there was a relatively small difference (9 % more expected penalties for
three states compared to an infinite number of states) between an infinite
number of states and three states. Consequently, the infinite number of
states will surely require much more time before convergence than what
three states requires. Therefore, there is a balance and trade-off between
them. In other words, the determination of what is “sufficient” is highly
dependent on the assessor’s criteria. Nevertheless, for assessing simulations
of both OMA and the proposed methods, we need certain parameters that

63

3.4. Evaluation Criteria Pre-Specified Cardinalities

we can use so as to achieve a comparison between the different simulation
cases.

In the following subsections, we will discuss the details of the performance
criteria for the existing OMA and the proposed OMA algorithms. In Sub-
section 3.4.1, we define the number of queries as an evaluation criterion for
the different OMA types. After that, in Subsection 3.4.2, we establish a
way of evaluating any partitioning solution when it is compared with the
optimal solution, which yields an accuracy parameter for the discovered
partitioning.

3.4.1 Evaluation of Convergence Rate

For the OMA, the EOMA, and its proposed variants, a generated query al-
ways results in a response from the Environment. Therefore, for the OMA
and EOMA types, measuring the number of queries is equivalent to measur-
ing the feedbacks from the Environment in the standard LA. We will denote
the number of queries received before the LA has reached convergence, by
the parameter Ψ. The number of queries before convergence is called the
convergencce rate of the LA, and so if a LA requires 100 queries before con-
vergence, we say that Ψ = 100. Note that the OMA type, the noise level,
and the number of states influence the convergence rate.

In the PEOMA and its proposed variants, we have a different scenario. In
the PEOMA, a query is only considered by the LA if the estimated joint
probability of the accessed objects is greater than a threshold (τ). Thus,
we filter out some queries before we send them to the LA. For this reason, a
query will not always result in a response from the Environment. Therefore,
we need to have a clear perspective of what the number of queries means for
the PEOMA. For the PEOMA, the number of queries that the LA receives
is indicated by Ψ. Thus, the number of queries, Ψ, indicates the number
of queries that are let through the filtering process before the LA reaches
convergence. For the total number of queries required before the automaton
has converged, we will utilize the parameter ΨQ. In this way, ΨQ indicates
the number of queries that were generated by the Query Generator. Note
that Ψ is equal to ΨQ for the OMA and the EOMA variants (Ψ = ΨQ).

The TPEOMA and its pre-specified version have another concept that fur-
ther elaborates on the number of queries as an evaluation parameter. The

64

3.4. Evaluation Criteria Pre-Specified Cardinalities

TPEOMA, similar to the PEOMA, also filters out queries before they are
given to the LA. However, in TPEOMA, artificially generated queries are
also presented to the automaton due to the transitivity phenomenon. There-
fore, in the TPEOMA, Ψ, includes both the queries that “survive” the pur-
suit filtering, and the artificially generated queries. Again ΨQ indicates the
number of queries made by the Query Generator. In addition, we introduce
the parameter ΨT for counting the number of artificially generated queries.

To summarize the notations presented above, Ψ is the number of queries
considered by the LA before convergence. ΨQ is the total number of queries
that have been generated by the Query Generator. Additionally, ΨT is the
number of artificially generated queries presented to the LA through the
transitivity concept implemented in the TPEOMA method.

3.4.2 Evaluation of Converged Partitioning

When the OMA algorithms and their pre-specified versions have reached
convergence, we can analyze the partitioning that they have discovered. To
be able to explain the discovered partitioning in a similar manner for differ-
ent configurations, we need a parameter for indicating the similarity of the
converged partitions, when compared with ∆∗. To achieve this, we intro-
duce the parameter γ, which is referred to as the accuracy of the converged
partitioning. We define the accuracy parameter as:

γ =

∑
∀i,∀j,i6=j Γoi,oj∑K
k=1

ρk!
2!(ρk−2)!

, (3.7)

where i, j ∈ {1, 2, ..., O}, i 6= j and k ∈ {1, 2, ...,K}. Additionally, the reader
should note that

∑
∀i,∀j,i6=j Γoi,oj indicates the number of queries that are

correctly grouped, and that
∑K

k=1
ρk!

2!(ρk−2)! indicates the total number of
potentially correct queries. For determining γ, we need to check all possible
query pairs, observe whether the objects in a given query are grouped both
in ∆+ and ∆∗, and divide this by the total of possible correct queries. More
specifically, we define:

Γoi,oj =

{
1, if oi and oj is grouped in ∆∗ and ∆+.

0, otherwise.
(3.8)

In this way, when ∆+ = ∆∗, we have an accuracy of 100 %, which implies
an optimal solution. Additionally, we will refer to an accuracy above 80 %
as a sub-optimal partitioning (γ ≥ 80 %).

65

3.4. Evaluation Criteria Pre-Specified Cardinalities

Consider an example where we have seven objects that should be grouped
in three groups, and ρ1 = 2, ρ2 = 3, ρ3 = 2, ∆∗ = {%1 = {o1, o2}, %2 =
{o3, o4, o5}, %3 = {o6, o7}}. Note that the indices of the the partitions might
be any of 1, 2, or 3, depending on how the automaton converges, since we
only care about whether the objects are grouped correctly, and not about
the identity of the partition that they reside in. It follows that:

K∑
k=1

ρk!

2!(ρk − 2)!
=

ρ1!

2!(ρ1 − 2)!
+

ρ2!

2!(ρ2 − 2)!
+

ρ3!

2!(ρ3 − 2)!
,

=
2!

2!(2− 2)!
+

3!

2!(3− 2)!
+

2!

2!(2− 2)!
,

= 1 + 3 + 1,

= 5.

Let us imagine that ∆+ = {%1 = {o1, o6}, %2 = {o3, o4, o5}, %3 = {o2, o7}}.
We calculate

∑
∀i,∀j,i6=j Γoi,oj , and find that the answer is 3. Thus, only the

queries Q = 〈o3, o4〉, Q = 〈o3, o5〉 and Q = 〈o4, o5〉 are grouped in ∆∗ and
∆+. Therefore, we have:

γ =

∑
∀i,∀j,i6=j Γoi,oj∑K
k=1

ρk!
2!(ρk−2)!

,

=
3

5
,

= 0.6 = 60 %.

We observe that the partitioning received an accuracy of γ = 60 %, which,
according to our definitions, does not constitute a sub-optimal solution to
the problem. Note that this partitioning problem either can achieve 100 %,
60 %, or less. Thus, for some partitioning problems, depending on the
assessor, another accuracy level than 80 % might be a better criterion for
indicating a sub-optimal solution.

66

3.5. Proposed Algorithms Pre-Specified Cardinalities

3.5 Proposed Algorithms for Partitioning Prob-
lems with Pre-Specified Cardinalities

Problems involving pre-specified partition cardinalities, where the partition
sizes can either be equal or non-equal, is an area that remains unresolved in
the field of OMA algorithms. In this section, we will propose two methods
that aim to relax the equi-partitioning constraint associated with the family
of OMA algorithms.

The reader should remember that the OMA algorithms can find optimal
partitioning solutions based only on the information of pairs of objects.
Traditionally, these objects are presented in a query as a result of having
some relationship that makes them belong together. The OMA algorithm
has no knowledge of which partition they should really belong together in,
but will try to migrate them to the same partition, independent of their
current partition affiliation. When dealing with NEPPs, this information is
rather sparse. By following the functionality of original OMA, without mod-
ification, a smaller partition of objects might get stuck in a larger partition,
without any possibility of bringing them out of their current placement.
For this reason, they occupy the space that other objects should take, and
prevent them from converging to the partition with the correct cardinality.
Clearly, the OMA might, therefore, quickly converge to a sub-optimal, and
inferior, solution.

When proposing the new operations of OMA solutions, we need to resolve
the issues that the non-equal partitions introduce. The two methods that
we propose in this section have distinct approaches to solving NEPPs. The
reason why we have chosen to include both these methods, is that the field
of solving NEPPs through OMA algorithms is completely open, and no pre-
vious solutions have been proposed in the literature. Therefore, all the novel
contributions and methodologies might lead to good solutions for NEPPs,
either at present, or in the future, because other researchers could poten-
tially use these results as a basis for further research. We would like to
emphasize that many other approaches for solving NEPPs through OMA-
based schemes were also tested during the progress of this thesis. However,
the two proposed methods are the ones that proved to be the most promising
for solving both EPPs and NEPPs.

Although the methods proposed in this section target at solving NEPPs,
they differ from one another because they have different types of size config-

67

3.5. Proposed Algorithms Pre-Specified Cardinalities

urations that they can solve. Additionally, the methods are fundamentally
different. The first method (Method 1) can only solve problems in which the
cardinalities have a GCD that is not unity. Thus, for example, Method 1
can solve a problem that has ρ1 = 3, ρ2 = 6 and ρ3 = 12, but can not solve
a partitioning problem with ρ1 = 3, ρ2 = 4 and ρ3 = 5. Method 1 uses
equally-sized partitions in the LA, and they are considered together to yield
partitions of larger sizes. In this way, we encounter a common number of
objects that allows us to be able to obtain all partition sizes in the problem.

The second method, Method 2, can solve, for example, the problem of
ρ1 = 3, ρ2 = 4 and ρ3 = 5, but can encounter a particular situation of
objects and partitions referred to as the Standstill Situation, so that, even
if this issue is considered in the method, one can encounter issues involving
the convergence rate. Thus, Method 2 perform, less efficiently for problems
involving more differences in the partition sizes and numbers of partitions.
The main difference in Method 2, when compared to the existing OMA, is
that it is capable of dealing with a special configuration of objects through
adaptively changing the partition sizes throughout its operation.

In Section 3.5.1, we propose our first methodology for solving EPPs and
NEPPs involving groups with pre-specified cardinalities but with a GCD.
Thereafter, we present our second method for solving such problems in
Section 3.5.2, which does not require a GCD.

3.5.1 Method 1

In this method, we utilize much of the traditional concepts of the OMA
algorithms, while extending their functionality to be able to handle NEPPs.
In traditional OMA, we handle pairs of objects and try to bring them to-
gether. Following this concept, when the objects in the query are in the
same partition, they are rewarded. They are penalized when they are in
different partitions. By always replacing the object that changes its parti-
tion, we ensure that the number of objects in each partition remains equal
to the number of objects in the partitions initially. The reader will observe
that in one of the methods to be proposed (Method 2), this functionality
causes problems in NEPPs. However, as a starting point, we utilize this
concept to our advantage in Method 1. Specifically, we study a special case
where the sizes of partitions have a GCD that is greater than unity. In
this way, we can link some of the partitions, and consider them as the same
partition in terms of rewards and penalties.

68

3.5. Proposed Algorithms Pre-Specified Cardinalities

3.5.1.1 Proposed Functionality

To extend the OMA functionality to handle NEPPs with non-unity GCDs,
we need to change two fundamental concepts in the OMA algorithms. In-
deed, we need to (1) change the initialization of objects to follow the GCD,
and (2) link the required partitions in the OMA together to fulfill the size
requirement of the partitions. These links need to be a part of the Reward
and Penalty functionalities. Additionally, the links also need to be imple-
mented in checking which objects that are together in the reported solution
of the LA. Due to these changes, the new functionality affects many parts
of the original OMA structure.

To make the partition links for Method 1, we need to consider the GCD
of the partitions. We will denote the GCD of the partitioning problem by
Λ, and the GCD can be found by factoring all the partition sizes of the
problem. Consequently, the minimum number that is common in all the
factors should be our value of Λ. Thus, if we have partition sizes of ρ1 = 8,
ρ2 = 12 and ρ3 = 48, their factorization shows that their GCD is four
(Λ = 4). By this, the reader will perceive that if the partitioning problem
does not have a GCD greater than unity, we cannot solve the problem using
Method 1. After we have found the GCD of the partition sizes, we need to
link the partitions together in the LA and consider them as a single entity.
When a certain partition size is not equal to Λ, we need to consider two
or more partitions together as a single overall partition. The number of
partitions that need to be considered together for a given partition k is, in
this formula, indicated by xk, and can be calculated as follows:

xk =
ρk
Λ
, (3.9)

where xk = 1 for a partition size equal to Λ, indicating that the partition is
single and is not part of any link. For indicating the links between partitions
inside the LA, we can utilize the state space, and consider the set of states
given in ranges for the overall partition k as follows:

ιk = {max(ιk−1) + 1, ...,max(ιk−1) + xkS}, ∀k, (3.10)

where the state range {a, .., b} indicates that the objects with states within
a and b are inside partition k. The reader should note that partition 1
(%1 = 1), in reality, has no previous partition. Thus, for %1, ι0 = 0 and
max(ι0) = 0, which leads to ιk = {1, ..., x1S}. The max function indicates
that we use the highest value in the state range from the previous partition

69

3.5. Proposed Algorithms Pre-Specified Cardinalities

Figure 3.1: Example of partition links in Method 1 with 3 partitions and 4
states as described in the text.

to make the state range of the next partition. To clarify this, we consider
an example where we have ι1 = {1, ..., 4}. Consequently, it follows that
max(ι1) = 4. One should also note that we have one state range for each
of the K partitions in our problem. The Reward and Penalty responses
from the Environment is thus based on whether the objects in the query
are currently in the same state range or not. Note that in the LA, we have
R =

∑K
k=1 xk partitions for Method 1.

Consider an example with the partitioning sizes of ρ1 = 3, ρ2 = 9 and
ρ3 = 12. Additionally, we have four states (S = 4) in the LA. The states
of this example is visualized in Figure 3.1. As indicated by the colors in
the figure, to comply with the partition sizes, we need to consider %1 as
a partition in itself. In contrast, partition two to four is another overall
partition, and partition five to eight constitute the last overall partition.
Thus, if one object in a query is in state 17, and the other object is in state
30, we will reward them, and not penalize them, as we would have done in
the original OMA for EPPs. Following Eq. (3.10), we have ι1 = {1, ..., 4},
ι2 = {5, ..., 16} and ι3 = {17, ..., 32}, as the ranges for the states of our
partitions %1, %2 and %3 respectively.

70

3.5. Proposed Algorithms Pre-Specified Cardinalities

Algorithm 8 Method 1 OMA
Input:

• The objects O = {o1, ..., oO}.
• S states per partition.

• A sequence of query pairs Υ, where each entry Q = 〈oi, oj〉.
• Initialized θi for all objects. Initially all θi, where i ∈ {1, 2, ..., O}, is given

a random state from {1, 2, ...,
∑K
k=1 xkS}, where we have Λ objects in each

of the R =
∑K
k=1 xk partitions. Thus, in each of the R partitions in the LA,

we have Λ objects in each range [(r− 1)S+ 1, rS] ∀r, where r ∈ {1, 2, ..., R}.
Output:

• A partitioning (K = ∆+) of the O objects into K partitions.

• θi is the state of oi and is an integer in the range {1, 2, ...,
∑K
k=1 xkS}.

• If θi ∈ ιk, where ιk = {max(ιk−1) + 1, ...,max(ιk−1) + xkS}, then oi is
assigned to %k, which is done for all i ∈ {1, 2, ..., O} and k ∈ {1, 2, ...,K}.

1: begin
2: while not converged or |Υ| queries not read do
3: Read query Q(n) = 〈oi, oj〉 from Υ

4: if θi and θj ∈ ιz, where z =
(⌊

(θi−1)
S

⌋
+ 1
)

then

5: OMA Process Reward({θi, θj}, Q) . Reward (Algorithm 3)
6: else
7: OMA Process Penalty({θi, θj}, Q) . Penalty (Algorithm 4)
8: end if
9: end while

10: Output the final partitioning based on θi, ∀ i. . According to state ranges
11: end

3.5.1.2 Implementation

To change the OMA functionality as for Method 1, we need to change both
the original OMA and the EOMA. We emphasize that these changes also
apply to the PEOMA and TPEOMA versions, but because these algorithms
utilize the EOMA as a basis, we can directly invoke the same principles in
their operations. The OMA version of Method 1 is described in Algorithm 8,
and the EOMA version of Method 1 is given in Algorithm 9. As observed
in the algorithms, Method 1 is quite similar to the existing OMA operation.
However, the Environment uses the fact of whether the objects are in the
same state range as the criterion for its response. If the objects are in
the same state range, we reward them. If the objects are in different state
ranges, they are penalized.

71

3.5. Proposed Algorithms Pre-Specified Cardinalities

In Method 1, the objects are still initialized in the same manner as before,
but instead of placing K

O objects in each partition, we put Λ objects in
each partition initially. For the OMA, the objects are randomly distributed
into the

∑K
k=1 xkS states, while they are distributed among the

∑K
k=1 xk

boundary states in the EOMA version. We also utilize the existing Reward
and Penalty functionalities. Because we fulfill the requirement of having
equally-sized partitions, we do not need to make any changes to the existing
transitions on being rewarded and penalized. Understandingly, when two
objects are rewarded, they behave as if they were in the same partition even
though they are in different partitions in the LA. Similarly, the objects in
a query need to be in different state ranges to be penalized.

Algorithm 9 Method 1 EOMA
Input:

• The objects O = {o1, ..., oO}.
• S states per partition.

• A sequence of query pairs Υ, where each entry Q = 〈oi, oj〉.
• Initialized θi for all objects. Initially all θi, where i ∈ {1, 2, ..., O}, is given a

random boundary state, where we have Λ objects in each of the R =
∑K
k=1 xk

partitions. Thus, in each of the R partitions in the LA, we have Λ objects
in each boundary state rS ∀r, where r ∈ {1, 2, ..., R}.

Output:

• Convergence happens when all objects are in the any of the two most internal
states, and the converged partitioning is reported. If convergence is not
achieved within |Υ| queries, the LA should return its current partitioning.

• The LA thus outputs its partitioning (K = ∆+) of the O objects into K
partitions.

• θi is the state of oi and is an integer in the range {1, 2, ...,
∑K
k=1 xkS}.

• If θi ∈ ιk, where ιk = {max(ιk−1) + 1, ...,max(ιk−1) + xkS}, then oi is
assigned to %k, which is done for all i ∈ {1, 2, ..., O} and k ∈ {1, 2, ...,K}.

1: begin
2: while not converged or |Υ| queries not read do
3: Read query Q(n) = 〈oi, oj〉 from Υ

4: if θi and θj ∈ ιz, where z =
(⌊

(θi−1)
S

⌋
+ 1
)

then

5: OMA Process Reward({θi, θj}, Q) . Reward (Algorithm 3)
6: else
7: EOMA Process Penalty({θi, θj}, Q) . Penalty (Algorithm 5)
8: end if
9: end while

10: Output the final partitioning based on θi, ∀ i. . According to state ranges
11: end

72

3.5. Proposed Algorithms Pre-Specified Cardinalities

3.5.2 Method 2

In Method 2, we aim to solve NEPPs without a GCD requirement for the
partition sizes. Method 2 can solve partitioning problems with partitions
of arbitrary non-equal or equal sizes. The change between Method 2 and
the existing reported OMA solutions is that Method 2 posses the ability
to adaptively swap the partition sizes throughout its operation. In such
a solution, we encounter some obstacles that are not present for the EPP
and Method 1. More specifically, when we have partitions of pre-specified
cardinalities, even if the number of object locations in each partition of
the LA is randomly configured initially, the objects can become stuck in a
situation that we refer to as a Standstill Situation1. The Standstill Situation
means that the objects get stuck in a loop that might not even be resolved
even with an infinite time-frame.

In a Standstill Situation, the LA is not able to reach convergence due to
the constraints imposed by the pre-specified cardinalities. Moreover, once
the partitions have been initialized with their respective numbers of object,
these allocations will, without modification, keep the same. Thus, the ob-
jects of a smaller partition that randomly happen to be within a bigger
partition, prevent the excess objects in that partition from being grouped
with the objects that they, in reality, should be together with, and traps
them. Due to the fact that OMA algorithms always remain to have the
same number of objects in each partition, our initial belief was that a new
initialization process was the only component needed to solve the NEPP.
However, as discussed above, the Standstill Situation is a serious issue, and
the difficulty of solving NEPP is more intricate.

We can explain this with an example where we have a partitioning problem
with three partitions. We have room for three objects in a partition, three
objects in another, and two objects in the remaining one. Consequently, we
have eight objects and three partitions. Let us assume that there are four
states associated with each partition, and that the true partitioning is given
by ∆∗ = {{o1, o2, o3}, {o4, o5, o6}, {o7, o8}}. Consider the case in which we
use the existing EOMA. The objects are randomly initialized in the different
boundary states, and the number of allocations is not dependent on a certain
partition, but have the pre-specified sizes. Thus, the number of spaces

1The Standstill Situation must not be confused by the Deadlock Situation previously
considered by the authors in [7].

73

3.5. Proposed Algorithms Pre-Specified Cardinalities

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7, o8, o1 o2, o4, o6

o3, o5

Figure 3.2: Randomly initialized objects in a Standstill Situation.

in the partitions are also randomly initialized. In Figure 3.2, we depict
the initialized placements of the objects. After considering an arbitrary
number of queries, the EOMA might be stuck in a Standstill Situation, as
visualized in Figure 3.3. We observe that in Figure 3.3, o4 is stuck in %1. o4
will most likely, depending on the level of noise in the system, be queried
together with o5 or o6. Consequently, o4 will be swapped with o5 or o6
according to the policy schemes of the EOMA, since our premise is that we
specify the cardinalities and make no modifications to the algorithm itself.
The swapping process will then continue until the objects are randomly
moved out of %1 and made accessible by the whole group of o4, which makes
convergence unlikely to occur within a reasonable time-frame.

The reader should note that the depicted figures in Figure 3.2 and Figure 3.3
are for explanatory purposes only, and that an actual Standstill Situation
can occur for many different distributions of objects and other courses of
action. Thus, sometimes the OMA might be able to converge due to the
randomness in the initialization process and the levels of random noise in the
system. At the same time, without changing the policy schemes according
to the constraints imposed by pre-specifying the number of objects in each
partition, we will have OMA algorithms that perform poorly by yielding
slow convergence or not attaining to convergence at all. Specifically, if
the queries provided by the Environment are noise-free, upon entering a
Standstill Situation, an OMA will not be able to converge at all. On the
contrary, if some queries are noisy, the OMA algorithm can resolve the issue,

74

3.5. Proposed Algorithms Pre-Specified Cardinalities

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7, o8 o4

o5, o6

o1, o3o2

Figure 3.3: Example of objects stuck in a Standstill Situation.

and be able to converge in the end. However, the convergence rate might
be slow.

Understandably, the Standstill Situation becomes more critical as more par-
titions are introduced to the OMA algorithm, and it increases with the
difference in the number of objects in each partition. Thus, when we have
more possibilities for a smaller partition to be stuck in a bigger partition, the
complexity for solving the problem with pre-specified cardinalities increases,
and the probability of the OMA algorithm having a slow convergence rate,
or not converging at all, correspondingly grows.

To solve the challenge of the Standstill Situation, we need to propose a
new policy when considering the penalties of the OMA algorithms. More
specifically, we need to make the algorithms adapt to changes in the num-
ber of objects in the partitions even after initialization. Thus, we need to
introduce a policy such that a partition can change its partition size and
yet continue to fulfill the system’s requirements of the problem’s partition
sizes. We emphasize that it might seem easy to propose new policies to
these algorithms. However, it is far from trivial to suggest solutions that
work and which are simple enough to not undermine the algorithms related
to the OMA paradigm’s simplicity and fast convergence.

75

3.5. Proposed Algorithms Pre-Specified Cardinalities

Algorithm 10 Pre-Specified Object Initialization for OMA
Input:

• The number of partitions K and ρk for all k ∈ {1, 2, ...,K}.
• The objects O = {o1, ..., oO}.
• S states per partition.

Output:

• An initialization of the O objects into the K partitions.

1: begin
2: for all partitions k, where k ∈ {1, 2, ...,K} do
3: temp1 = ρk randomly selected objects from O . That have no partition
4: for all objects x in temp1 do
5: temp2 = a random state between (k − 1)S + 1 and kS
6: θx = temp2 . Place object in a random state in %k
7: end for
8: end for
9: end

3.5.2.1 Proposed Functionality

Method 2 is an extension of the existing algorithms. The first part of
Method 2 concerns the initialization of the objects. Because the fundamen-
tal operation of the OMA and the EOMA algorithms are different, these
two methods will be considered separately. To achieve this, we first remem-
ber that for the OMA, the objects are distributed randomly across the KS
states of the LA, while the objects in the EOMA are distributed randomly
across the K boundary states of the LA. In Algorithm 10, we specify the
initialization of objects for the OMA, while in Algorithm 11, we specify the
initialization of objects in the EOMA. For both the algorithms, the differ-
ence due to the pre-specification of cardinalities is that we need to distribute
the objects among the partitions of the automaton according to the speci-
fied number of objects in each partition. The new functionality is similar,
independent of whether the pre-specified cardinalities of the partitions are
equal or unequal.

In the second part of Method 2, we try to mitigate the Standstill Situation
by introducing a new policy for a Penalty to the system when an object
in a query is in a boundary state, and at the same time, the other object
is in the innermost state of another partition. When such a situation oc-
curs, we check the number of objects in the partition of the object in the

76

3.5. Proposed Algorithms Pre-Specified Cardinalities

innermost state. We, thereafter, move the boundary object to the inner-
most object’s partition if such a transition fulfills the size requirements for
all the partitions. If such a transition requires more objects to fulfill the
size requirements, and if there are more objects in the boundary or in the
second nearest state to the boundary of the boundary object’s partition,
we check the partition sizes and move the required number of objects from
these states (chosen randomly) together with the boundary object, to the
innermost object’s partition. This solution to the Standstill Situation is
depicted in Figure 3.4, where o4 is allowed to move to the partition of o5
and o6, without any replacement.

Algorithm 11 Pre-Specified Object Initialization for EOMA
Input:
• The number of partitions K, and ρk for all k ∈ {1, 2, ...,K}.
• The objects O = {o1, ..., oO}.
• S states per partition.

Output:
• An initialization of the O objects into the K partitions.

1: begin
2: for all partitions k, where k ∈ {1, 2, ...,K} do
3: θBk

= kS . The boundary state of %k
4: temp = ρk randomly selected objects from O . That have no partition
5: for all objects x in temp do
6: θx = θBk

. Place selected object in boundary state of %k
7: end for
8: end for
9: end

Note that when we move a single object according to the new policy, we
move it to the same state as the queried object in the innermost state (sim-
ilar to the principle in [4]). If we move more than a single object, we might
choose some objects in the process that, in reality, should not be changing
its partition. Thus, when moving more than a single object in this process,
we will move them to the boundary state of the innermost object’s parti-
tion. In this way, we compromise between the scheme’s convergence rate
and accuracy. The new Penalty function is presented in Algorithm 12. We
emphasize that for Algorithm 12, we introduce the parameter θBk

, which in-
dicate the boundary state of partition k (k ∈ {1, 2, ...,K}). Additionally, we
assume that the distribution of the randomly-chosen objects in the scheme
is uniform. If we are not able to move any objects in the new Penalty, we
check the rest of the Penalty statements. Thus when, for example, an ob-
ject is in an innermost state, the other is in a boundary state, and we are

77

3.5. Proposed Algorithms Pre-Specified Cardinalities

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7, o8 o4

o5, o6

o1, o3o2

o4

Figure 3.4: Example of the Penalty functionality for the Standstill Situation.

not able to swap partition sizes, we will handle them according to one ob-
ject being in the boundary and the other object not being in the boundary
according to the existing rules of the EOMA.

By introducing the new functionality, the LA can actively swap the cardinal-
ities and partition relations while it is executing its operation. An example
of this functionality, where one object changes its partition without replace-
ment, and thus, changes the partition size of the partition it moves to, can
be observed in Figure 3.4.

78

3.5. Proposed Algorithms Pre-Specified Cardinalities

Algorithm 12 Method 2 Process for Standstill Situation({θi, θj}, Q)

Input:

• The states of all objects θl, where l ∈ {1, 2, ..., O}.
• The query pair Q = 〈oi, oj〉.
• ρk for all k ∈ {1, 2, ...,K}.

Output:

• The next states of oi, oj and other affected objects.

1: begin
2: temp1 = state of the innermost object in Q . Staying Object
3: temp2 = state of the boundary object in Q . Moving Object
4: if Moving Object to partition of Staying Object fulfills all ρk then
5: θi or θj = temp1 . Move Moving Object to state of Staying Object
6: else
7: for all objects x in partition of Moving Object do
8: temp3← ox when θx = temp2 or θx = temp2− 1
9: end for

10: temp4 = the difference between the partition sizes of oi and oj
11: if objects in temp3 ≥ temp4 and fulfills all ρk then

12: temp5 =
⌊
(temp1−1)

S

⌋
+ 1 . Partition of Staying Object

13: θBtemp5
= temp5S . Boundary state of Staying Object’s action

14: temp6 = (temp4− 1) randomly selected objects from temp3
15: θi or θj = θBtemp5

. Moving Object to Staying Object’s boundary
16: for all objects x in temp6 do
17: θx = θBtemp5 . Move objects to boundary of Staying Object
18: end for
19: else
20: Continue Process Penalty
21: end if
22: end if
23: end

3.5.2.2 Implementation

As discussed, the new behavior evolves around a new initialization of objects
and a new functionality that is invoked as the machine encounters a certain
placement of the objects and when it receives a Penalty. In this way, the
proposed functionality can be implemented into the already existing algo-
rithms by merely changing some of their already-established behaviors. To
crystallize matters for the new Penalty functionality, the proposed Penalty
operations for the OMA and the EOMA are given in Algorithm 13 and
Algorithm 14 respectively.

79

3.5. Proposed Algorithms Pre-Specified Cardinalities

To summarize, for Method 2 OMA, the initialization of objects is given by
Algorithm 10, and its Penalty functionality is given by Algorithm 13, while
the rest of the established method remains the same. For the Method 2
EOMA, the initialization follows Algorithm 11 and it’s Penalty scheme is
given by Algorithm 14. Again the rest of the Method 2 EOMA behavior is
similar to the existing EOMA. Additionally, the functionality of Method 2
can be easily extended to the PEOMA and the TPEOMA. This terminates
our discussion on Method 2.

Algorithm 13 Method 2 OMA Process Penalty({θi, θj}, Q)

Input:
• The states of the objects in Q ({θi, θj}).
• The query pair Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ...,K}.

Output:
• The next states of oi, oj and other affected objects.

1: begin
2: if θi mod S 6= 0 and θj mod S 6= 0 then . Neither are in boundary states
3: θi = θi + 1
4: θj = θj + 1
5: else if θi mod S = 1 and θj mod S = 0 then . oi is in innermost state
6: Method 2 Process for Standstill Situation (Algorithm 12)
7: else if θi mod S = 0 and θj mod S = 1 then . oj is in innermost state
8: Method 2 Process for Standstill Situation (Algorithm 12)
9: else if θi mod S 6= 0 and θj mod S = 0 then . oj is in boundary state

10: θi = θi + 1
11: else if θi mod S = 0 and θj mod S 6= 0 then . oi is in boundary state
12: θj = θj + 1
13: else . Both are in boundary states
14: temp = θi or θj . Store the state of Moving Object, oi or oj
15: θi = θj or θj = θi . Put Moving Object and Staying Object together
16: ol =unaccessed object in group of Staying Object closest to boundary
17: θl = temp . Move ol to the old state of Moving Object
18: end if
19: end

80

3.5. Proposed Algorithms Pre-Specified Cardinalities

Algorithm 14 Method 2 EOMA Process Penalty({θi, θj}, Q)

Input:
• The states of the objects in Q ({θi, θj}).
• The query pair Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ...,K}.

Output:
• The next states of oi, oj and other affected objects.

1: begin
2: if θi mod S 6= 0 and θj mod S 6= 0 then . Neither are in boundary states
3: θi = θi + 1
4: θj = θj + 1
5: else if θi mod S = 1 and θj mod S = 0 then . oi is in innermost state
6: Method 2 Process for Standstill Situation (Algorithm 12)
7: else if θi mod S = 0 and θj mod S = 1 then . oj is in innermost state
8: Method 2 Process for Standstill Situation (Algorithm 12)
9: else if θi mod S 6= 0 and θj mod S = 0 then . oj is in boundary state

10: θi = θi + 1
11: temp = θj . Store the state of oj
12: l = index of an unaccessed object in group of oi closest to the boundary
13: θj = θi
14: θl = temp
15: else if θi mod S = 0 and θj mod S 6= 0 then . oi is in boundary state
16: θj = θj + 1
17: temp = θi . Store the state of oi
18: l = index of an unaccessed object in group of oj closest to the boundary
19: θi = θj
20: θl = temp
21: else . Both are in boundary states
22: temp = θi or θj . Store the state of Moving Object, oi or oj
23: θi = θj or θj = θi . Put Moving Object and Staying Object together
24: ol =unaccessed object in group of Staying Object closest to boundary
25: θl = temp . Move ol to the old state of Moving Object
26: end if
27: end

81

Part III

Experiments and Results

83

Chapter 4

Simulation Results for
Equi-Partitioning Problems

In this chapter, we compare the results of existing algorithms and the newly-
proposed methods for EPPs. Because the existing OMA algorithms can
only solve EPPs, we have decided to devote one chapter to EPPs, and
a second one to NEPPs. For the problems in this chapter, we have O

K
objects in each partition, where O

K is an integer. Such problems have the
same characteristics as the problems that the existing OMA algorithms are
created to solve. Therefore, we consider the existing OMA algorithms as
the benchmark in this chapter. The newly-proposed methods will thus be
compared to these benchmark algorithms, and against each other.

The newly-proposed methods in this thesis can solve both EPPs and NEPPs
with pre-specified cardinalities. Consequently, a significant part of the pro-
posed methods is tied to adequately solving EPPs. For EPPs, the existing
and proposed solutions are quite similar. However, their conceptual dif-
ferences might lead to distinct results for the same problems. The best
outcome would be that the proposed methods are as good as, or better,
than the existing OMA algorithms. Nevertheless, it is also important to
remember that the proposed methods can solve NEPPs, which the existing
algorithms are not able to.

To compare the performance of the different methods, we will utilize the
evaluation parameters established in Chapter 3. Thus, we will consider the
algorithms’ convergence rate and accuracy of the converged partitioning.

85

Results for EPPs

We have three metrics for evaluating the convergence rate, namely Ψ, ΨQ,
and ΨT . Ψ is the number of queries considered by the LA, ΨQ is the number
of generated queries from the Query Generator, and ΨT is the number of
queries generated based on the transitivity concept in TPEOMA. In other
words, Ψ and ΨQ are the only parameters that we can compare among all
of the methods. ΨT is uniquely related to the TPEOMA types. The reader
should remember that Ψ = ΨQ for the OMA and EOMA types. For the
converged partitioning, we will evaluate the percentage of the experiments
that have ∆+ = ∆∗, and the overall average accuracy given by γ. Conse-
quently, to sufficiently demonstrate the performance of the methods, they
will be tested for various levels of noise in different partitioning problems.

Mainly, we will consider two partitioning problems in this chapter. Both
problems will be considered with 0%, 5%, and 10% noise. The first problem
that we will consider is the case of 18 objects divided into six partitions,
which means that we have O

K = 3 objects in each partition. The second prob-
lem consists of 30 objects and three partitions, implying here that O

K = 10.
The reason why we only present two partitioning scenarios is to keep the
results short and concise, and we believe that these problems are sufficient
to demonstrate the performance of the various methods. Additionally, for
certain algorithm types, other results from some specific configurations are
presented so as to demonstrate specific features that we want to highlight.
The problems are chosen to demonstrate the algorithms’ performance in the
case of “many partitions” and “many objects in each partition”. We will
refer to these cases as Problem 1 and Problem 2, respectively. For Prob-
lem 1 and Problem 2, we will equip the algorithms with ten states in each
partition as a basis for comparison (S = 10). We will also present graphs
that are related to their convergence rate and accuracy of partitioning, and
additionally, graphs that cumulatively show the convergence rate. Note that
the EPPs have Ξ = 0, and thus, these problems have zero FC.

The reader will observe that we analyze many algorithms in this chapter.
As a benchmark, we have the existing OMA algorithms, including its four
variants the OMA, EOMA, PEOMA, and TPEOMA. However, as discussed
in Chapter 2, zero noise can lead to the Deadlock Situation for the existing
OMA algorithm. In our simulations and results, we wanted to also demon-
strate the algorithms’ performance in noise-free environments. In addition,
the existing OMA version is the earliest algorithm, and the other existing
OMA algorithms are improvements based on this. Therefore, the original
OMA algorithm and proposed types are not part of the simulations and

86

4.1. Simulation Provisions Results for EPPs

results in this chapter. The results presented will thus include the EOMA,
PEOMA, and TPEOMA for the existing OMA algorithms, and Method 1
and Method 2.

The remainder of this chapter is organized as follows: We first address
some orientations regarding the simulations in Section 4.1. Thereafter, we
present the results for the different existing OMA methods and the proposed
methods in chronological order. Thus, the EOMA and its proposed methods
are considered in Section 4.2. After that, the PEOMA version is considered
in Section 4.3. In Section 4.4, we consider the TPEOMA version. Finally, in
Section 4.5, we analyze and discuss the methods from an overall perspective.
Appendix A, contains some extended results for other simulations of EPPs.

4.1 Simulation Provisions

Similar to the concept for simulations of the Environment presented in Sec-
tion 2.3.1.3, in this chapter and the next, we will utilize a noise parameter
for testing the solutions’ performance under various degrees of noise. In this
context, one should remember that noise is defined as being noisy queries,
when queries that do not represent objects that are together in ∆∗ are en-
countered. In other words, noisy queries mislead the LA and might cause
the LA to attain to a different partitioning than the optimal one. A system
with noisy queries might also yield to a slower convergence rate than a sys-
tem with fewer (or zero) noisy queries. Similar to Eq. (2.17), reproduced
here for simplicity, we will use:

Pr{oi, oj accessed together} = Πoi,oj , for oi, oj ∈ ∆∗, ∀i, j,

as the probability reference for the Query Generator generating correct
queries to the algorithms in the simulations. Thus, Πoi,oj is the probability
of oi and oj being accessed together and being together in ∆∗.

The reader should note that noisy queries are challenging to monitor in
simulation environments. Due to the randomness introduced in the noise
level provided within the Query Generator, the noise level might be higher
or smaller than what we imagine when the simulation is not long enough1.

1Note that due to the fast convergence of the algorithms, the number of queries that
the algorithm receives may not reflect the statistical nature of the Environment, making
the results biased.

87

4.2. EOMA Variants Results for EPPs

Thus, we need to take the ensemble average over several experiments to be
able to show the true nature of the algorithms in the analyses.

For conducting the simulations in this thesis, we used PyCharm 2018.2.4
IDE and Python as the programming language. For all figures in the sim-
ulations, we used the MatPlotLib library in the Python paradigm, which is
similar to the visualizations that MATLAB can generate.

For all the simulations, we utilized one hundred thousand queries as the
maximum number of queries. If the OMA algorithm had not converged
within the consideration of |Υ| = 105, we say that the algorithm has not
converged. The various tables and graphs will be further detailed below.

4.2 Variants of EOMA Algorithms for EPPs

In this section, we will consider the existing EOMA algorithm and pro-
posed EOMA methods for different partitioning problems and noise levels.
We will use the existing EOMA results to discuss the performance of the
proposed methods. The methods will also be compared to one another. In
the EOMA variant, the LA use queries, depending on the method’s func-
tionality, to partition a set of objects. With the EOMA in general, the
objects are initialized randomly into the boundary states, and the EOMA
has an extended Penalty functionality when compared to the existing OMA
algorithm. Additionally, the reader should remember that the two inner-
most states are considered as the convergence criterion. Thus, all objects
in the LA need to be in the innermost or second innermost state for the
algorithm to report as having converged.

The converged partitioning is what we will evaluate through the evaluation
parameters. The experiments that have not converged are not part of the
statistics (average convergence rate and accuracy). However, they are indi-
cated by a “not converged” (Not Conv.) column in the tables. The results
are presented in tables, and the graphs demonstrate the convergence. The
reader will recognize the evaluation parameters throughout the displayed
results in this section.

For the EOMA type, we have the existing EOMA, Method 1 EOMA, and
Method 2 EOMA. All of these algorithms have the same baseline. How-
ever, they are all different in the way that they handle queries and their

88

4.2. EOMA Variants Results for EPPs

partition affiliation, rewards, and penalties. Therefore, it is fascinating to
analyze their behavior for actual simulated problems. We present the sim-
ulation results in the following order: Existing EOMA, Method 1 EOMA,
and Method 2 EOMA. After that, we will discuss the different variants’
performance in an overall manner in the last section.

4.2.1 Existing EOMA

In this subsection, we analyze the existing EOMA performance for solving
the two described partitioning problems. Let us first discuss the existing
EOMA algorithm’s performance for Problem 1. In Table 4.1, we present the
existing EOMA’s performance for 0%, 5% and 10% noise. As we observe
from the table, the EOMA had the fastest convergence for 0% noise, with
approximately 147 required queries before convergence. As the noise level
increases, we observe that the convergence rate decreased to approximately
176 and 217 queries for 5% and 10% noise, respectively. We emphasize
that the LA had ten states and that ten states required more queries than
what, e.g., four states would have required. Nevertheless, the accuracy of
the discovered partitioning was impeccable, with 100% achieved accuracy
for both γ and the LA’s determined partitioning being identical to ∆∗. All
of the 1,000 experiments attained convergence, which was as expected with
the demonstrated convergence rate for Problem 1, and for different noise
levels.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 147.15
5% 100% 100% 0% 175.82
10% 100% 100% 0% 216.62

Table 4.1: Statistics of the existing EOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

In Table 4.2, we can observe the existing EOMA’s performance for Prob-
lem 2. As observed in the table, the number of iterations required for
convergence for this problem was higher than that needed for Problem 1.
In Problem 2, we had more objects in each partition, and thus, more ob-
jects in total. For 0% noise, the algorithm had a slower convergence with
approximately 305 required queries before convergence, compared with ap-
proximately 351 and 425 required queries for 5% and 10% noise, respectively.

89

4.2. EOMA Variants Results for EPPs

In this way, we see that a harder problem, quantified in terms of the num-
ber of objects in each partition, and the number of objects, required more
queries in total. Although more queries was required, we observe that it
yielded the same optimal accuracy and convergence to the optimal parti-
tioning (∆+ = ∆∗), and that all of the experiments did converge.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 305.36
5% 100% 100% 0% 350.71
10% 100% 100% 0% 425.08

Table 4.2: Statistics of the existing EOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

To further demonstrate the algorithm’s performance for Problem 2 with
10% noise, we consider Figure 4.1. In this figure, we record the number of
iterations required for 100 independent experiments, where the various ex-
periments are listed on the x-axis and the iterations required on the y-axis.
The green color of the bars indicates that the LA was able to discover the
optimal partitioning. As we observe in the figure, the iterations varied sig-
nificantly for different experiments, although the average number of queries
was 419.41. This is probably due to the stochastic Environment that was
modeled in the simulations. In some cases, the combination of the queries
was advantageous to the LA, while for other cases, the query stream could
lead to the objects in the LA alternating between partitions to a greater
extent (increasing the number of iterations required).

In Figure 4.2, we display the convergence rate in a cumulative manner for
1,000 independent experiments. In this figure, we record the number of
queries on the x-axis, and the number of converged LA on the y-axis. We
observe that approximately 50% of the experiments had converged after
400 queries. Furthermore, we observe that only approximately 5% of the
experiments required more than 600 queries.

90

4.2. EOMA Variants Results for EPPs

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

600
Nu

m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 419.41

Existing EOMA 30 objects, 3 partitions, 100 experiments and 10 % n ise

Δ+ =Δ Δ

Figure 4.1: Simulated performance of the existing EOMA for 30 objects, 3
partitions, 10 states and with 10% noise.

0 200 400 600 800
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 4.2: Simulated convergence based on 1,000 experiments involving the
existing EOMA for 30 objects, 3 partitions, 10 states and with 10% noise.

91

4.2. EOMA Variants Results for EPPs

4.2.2 Method 1 EOMA

Method 1 EOMA is the first of our proposed methods and is the algorithm
that is most similar to the existing EOMA algorithm. Let us, again, first
consider Problem 1 for the different noise levels. The results for Problem 1 is
presented in Table 4.3. As observed for the different noise levels, Method 1
EOMA required approximately 147, 174, and 218 queries before convergence
for 0%, 5%, and 10% noise, respectively. These convergence rates levels
are almost equal to those of the existing EOMA algorithm. As the noise
level increased, the number of iterations increased, as expected. As more
noisy queries are presented to the LA, more objects are “misguided” to be
together, even if the contrary represents reality. Interestingly, Method 1
also demonstrated its ability to find accurate partitioning solutions.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 147.46
5% 100% 100% 0% 174.25
10% 100% 100% 0% 218.38

Table 4.3: Statistics of Method 1 EOMA for a case involving 18 objects, 6
partitions and 10 states averaged over 1,000 experiments.

For Problem 2, we observed a similar behavior as to what was demonstrated
for Problem 1. This is depicted in Table 4.4. With increased noise levels,
the number of iterations required went up, and thus, the noise contributed
to slower convergence rate. The approximately 307, 353, and 422 required
queries before convergence were similar to the results of the existing EOMA.
Method 1 EOMA also yielded 100% accuracy for the converged partitioning,
and all experiments discovered the optimal partitioning. Clearly, Method 1
EOMA and the existing EOMA algorithm had comparable results for both
the proposed problems. This behavior is expected. When Method 1 EOMA
was presented with partitions of equal sizes, it would consider all partitions
in the LA separately, which, in essence, yielded a similar operation to that
of the existing EOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 307.04
5% 100% 100% 0% 353.10
10% 100% 100% 0% 421.89

Table 4.4: Statistics of Method 1 EOMA for a case involving 30 objects, 3
partitions and 10 states averaged over 1,000 experiments.

92

4.2. EOMA Variants Results for EPPs

In Figure 4.3, we submit the results of a simulation with 100 experiments,
and can observe whether the experiments resulted in an optimal partitioning
of the objects for Problem 2 with 10% noise. We observed that for all the
independent experiments, the LA found the optimal partitioning. Similar
to the results for the existing EOMA, the number of queries before conver-
gence varied between the experiments. Figure 4.4 illustrates the number
of iterations required for the convergence in a different manner. Similar to
the results for existing EOMA, about half of the LA converged within 400
queries, and approximately 95% of the experiments converged within 600
queries. Nevertheless, from the results shown in Figure 4.4, the algorithm
seemed to have a slightly faster convergence than its predecessor.

0 20 40 60 80 100
Experiment

0

200

400

600

800

Nu
m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 425.42

Method 1 EOMA 30 objects, 3 partitions, 100 experiments and 10 % n ise

Δ+ =Δ Δ

Figure 4.3: Simulated performance of Method 1 EOMA for 30 objects, 3
partitions, 10 states and with 10% noise.

0 200 400 600 800 1000
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 4.4: Simulated convergence based on 1,000 experiments involving
Method 1 EOMA for 30 objects, 3 partitions, 10 states and with 10% noise.

93

4.2. EOMA Variants Results for EPPs

4.2.3 Method 2 EOMA

One of the main differences between Method 2 EOMA and existing EOMA
is that it considers the case when a single object in the query is in the bound-
ary, and the other is in the innermost state of another partition. However,
because in problems with equally sized partitions, no legal swapping of ob-
jects without replacement can be done, the new policy does not apply to
these problems. We thus expect Method 2 EOMA to have results similar
to those of the existing EOMA. Let us consider its performance for Prob-
lem 1, which is depicted in Table 4.5. As observed in the table, the required
number of queries for the simulations with 0%, 5%, and 10% noise were
147, 177, and 217, respectively. These values are almost equal to the values
of the existing EOMA, and thus, also to Method 1 EOMA. Furthermore,
similar to the previous two methods, this method achieved 100% accuracy
for the problem without any non-converged experiments.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 147.29
5% 100% 100% 0% 177.16
10% 100% 100% 0% 216.59

Table 4.5: Statistics of Method 2 EOMA for a case involving 18 objects, 6
partitions and 10 states averaged over 1,000 experiments.

For Problem 2, the results are depicted in Table 4.6. Again the method
yielded 100% accuracy for the experiments, with a required number of
queries that ranged between approximately 300 and 418 for the noise levels
between 0% to 10%. The convergence rate was similar to the values that was
observed for the existing EOMA. Although Method 2 EOMA had almost
eight less required queries for 10% noise, the rest of the values demonstrated
the same performance level when compared with the existing EOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 100% 100% 0% 304.44
5% 100% 100% 0% 349.79
10% 100% 100% 0% 417.89

Table 4.6: Statistics of Method 2 EOMA for a case involving 30 objects, 3
partitions and 10 states averaged over 1,000 experiments.

In Figure 4.5, we observe Method 2 EOMA’s convergence rate for 100 ex-
periments. We can observe that the number of iterations for convergence

94

4.2. EOMA Variants Results for EPPs

on the y-axis varies for the different independent experiments on the x-axis.
Nevertheless, the average number of queries did not differ much from the
results obtained for the same problem with 1,000 experiments in Table 4.6.
In Figure 4.6, we display the number of converged LA in relation to the
number of queries. We observed that a smaller share of the experiments
required more than 600 queries. In this way, we saw that Method 2 EOMA
would, for about 95% of the cases, converge within 600 queries for Problem 2
with 10% noise (Πoi,oj = 0.9).

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

600

700

800

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 415.74

Method 2 EOMA 30 objects, 3 partitions, 100 experiments and 10 % oi%e

Δ+ =Δ *

Figure 4.5: Simulated performance of Method 2 EOMA for 30 objects, 3
partitions, 10 states and with 10% noise.

0 200 400 600 800
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 4.6: Simulated convergence based on 1,000 experiments involving
Method 2 EOMA for 30 objects, 3 partitions, 10 states and with 10% noise.

95

4.3. PEOMA Variants Results for EPPs

4.3 Variants of PEOMA Algorithms for EPPs

In this section, we will show the results of our PEOMA methods’ perfor-
mance for Problem 1 and Problem 2. In addition, we will consider another
problem for illustrating the algorithm’s performance in higher levels of noise
than what we have considered previously. The reader should remember that,
in the PEOMA variants, we filter out “unlikely” queries (i.e. the less infor-
mative ones) and only let the LA handle the likely ones. This functionality
is made possible by a frequency matrix, which can be used to record queries
that have come from the Query Generator, and allows us to calculate the
probability of a query being uninformative, as new queries come into the
system. In this way, not all queries that are made by the Query Generator
is considered by the LA. Thus, we have both Ψ and ΨQ, which monitor the
queries considered by the LA, and the queries made by the Query Genera-
tor, respectively. Clearly, because we filter out some queries before they are
considered by the LA, we will have Ψ ≤ ΨQ.

The PEOMA filters out queries before presenting them to the LA. Conse-
quently, a PEOMA system is more robust to higher levels of noise. There-
fore, in this section, we also present the results for another problem, which
we will refer to as Problem 3. Problem 3 has 15 objects and three partitions,
i.e., 15

3 = 5 objects in each partition. For Problem 3, we will expose the
algorithms to higher levels of noise than we have considered previously, and
we will thus be able to measure their performance for even harder prob-
lems. To further illustrate the algorithm’s performance, we will configure
the automatons with an even shallower state space, i.e., S = 3 or S = 4.

In these simulations, we have used the proposed formula for the κ parameter,
as defined in Section 2.18. For the threshold value for whether the query
should be sent to the LA or not, we used τ = 0.1

O , unless another value
is stated, which fulfills the requirement that τ < 1

O as recommended in
Section 2.3.2.3. We have not focused on tuning and finding other values for
the hyper-parameters, even though this would certainly yield even better
results than what is presented in this section.

For the PEOMA, we have two proposed variants, namely Method 1 PEOMA
and Method 2 PEOMA. Consequently, we will present the results for the
existing PEOMA algorithm first. After that, we present the results for
Method 1 and Method 2 in PEOMA. The existing PEOMA variant is con-
sidered to be the benchmark, and thus, we will compare the proposed meth-
ods to this algorithm’s results. 96

4.3. PEOMA Variants Results for EPPs

4.3.1 Existing PEOMA

For the existing PEOMA algorithm, we can observe its results for Problem 1
in Table 4.7. For 0% noise, we observed that the algorithm possessed a
similar convergence rate to the existing EOMA, which is intuitive. With
zero noise, the algorithm had no reason to filter out any of the queries. In
this way, Ψ = ΨQ, as expected. For 5% noise and 10% noise, the number
of iterations for convergence were approximately 176 and 210 respectively.
For 5% noise, we observed that we did not have that much benefit from the
pursuit concept, because Ψ was almost similar to ΨQ. For 10% noise, we
saw that we had some benefit from the pursuit. Consequently, the results
for Problem 1 were comparable to the results obtained in Existing EOMA,
both in terms of convergence rate and accuracy.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 147.54 147.54 36
5% 100% 100% 0% 175.92 176.44 36
10% 100% 100% 0% 210.29 213.39 36

Table 4.7: Statistics of the existing PEOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

In Table 4.8, we can observe that Ψ and ΨQ were a bit different for the
simulations, which implied that we had filtered out some queries, and had
some benefits from the pursuit filtering. However, following the formula in
Section 2.18, the κ parameter was possibly the reason for the low portion
of filtering in these experiments. As indicated in Table 4.7, κ = 270. Other
values of κ and τ could have resulted in better results. For the simulation
with 0% noise, we observed that we had approximately the same convergence
rate as the existing EOMA. However, the convergence rates of 349 and 398
for 5% and 10% noise were faster than our convergence rate for existing
EOMA. The pursuit concept came in handy for problems with a larger
proportion of noise. This is an interesting observation, and with these results
we can see the benefit of the pursuit concept compared to previous methods.
We still have 100% accuracy, but our experiments converged faster.

97

4.3. PEOMA Variants Results for EPPs

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 307.42 309.71 270
5% 100% 100% 0% 348.98 356.67 270
10% 100% 100% 0% 398.11 417.58 270

Table 4.8: Statistics of the existing PEOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

The results for different noise levels and κ configurations for Problem 3 are
included in Table 4.9. For these simulations, we utilized τ = 0.3

15 = 0.02,
and κ is configured with values of 60 and 180. A bigger κ value meant
that we give the LA the chance to explore more before we started using
the pursuit phenomenon. In addition, we captured more samples before we
started using the frequency matrix’s knowledge, which can indeed lead the
discovered solution to be more accurate. As we can observe in the table, the
results with κ = 180 yielded more experiments converging to the optimal
solution than with κ = 60. For these experiments, we had S = 3 and S = 4.
We can observe that the algorithm achieved a higher accuracy with S = 4
when compared to S = 3. With the high noise levels of 30% and 35%,
we observed that the PEOMA filtered out more queries than for the lower
levels in Tables 4.7 and 4.8. Even with relatively high levels of noise, we
achieved above 90% convergence to the optimal partitioning for both three
and four states. In this way, the existing PEOMA is a powerful algorithm
for systems with more noise.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ κ
30% 3 97.60% 93.60% 0% 120.53 162.86 60
35% 3 97.28% 92.30% 0% 136.41 205.87 60
30% 4 99.84% 99.5% 0% 137.92 194.11 60
35% 4 99.73% 99.30% 0% 163.79 265.13 60
35% 3 96.82% 91.2% 0% 227.41 288.36 180
35% 4 99.8% 99.4% 0% 249.26 330.58 180

Table 4.9: Statistics of the existing PEOMA for a case involving 15 objects,
3 partitions and different number of states averaged over 1,000 experiments.

From Figure 4.7, we present an example of a simulation with 100 indepen-
dent experiments of Problem 3. We observe that the convergence rate varied
for the different experiments. We also see that many of the experiments that
did not yield the optimal partitioning possessed low convergence rates in the
context of the other experiments which converged optimally. This indicates

98

4.3. PEOMA Variants Results for EPPs

that sometimes, we could have had fast convergence at the expense of lower
accuracy. Nevertheless, this result was obtained with only 3 states for 35%
noise, which, indeed, is a very respectable achievement.

0 20 40 60 80 100
Experiment

0

200

400

600

800

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 314.74

Existing PEOMA 15 objects, 3 partitions, 100 experiments and 35 % oi%e

Δ+ =Δ *

+ + *

Figure 4.7: Simulated performance of the existing PEOMA for 15 objects,
3 partitions, 3 states and with 35% noise.

4.3.2 Method 1 PEOMA

Method 1 PEOMA’s results for solving Problem 1 are displayed in Table
4.10. We observe that the convergence rate values were similar to the ones
we obtained for the existing PEOMA. The percentage of the experiments
that achieved an optimal solution, and the average accuracy, was 100%.
Clearly, the proposed Method 1 PEOMA had comparable results to the
existing PEOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 147.73 147.73 36
5% 100% 100% 0% 173.87 174.39 36
10% 100% 100% 0% 207.35 210.24 36

Table 4.10: Statistics of Method 1 PEOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

Simulation results of Problem 2 are given in Table 4.11. The average values
for the iterations, namely, 303, 352 and 417 were a bit higher than those of

99

4.3. PEOMA Variants Results for EPPs

the existing PEOMA. However, the results were comparable to the existing
EOMA. These variations could have been due to the stochastic behaviors
of the queries in the simulations. Nevertheless, for 10% noise, we observe
that we had the highest gain from including the pursuit phenomenon. This
coincides with our intuition, as the more the noisy queries are part of the
system, a larger number of queries will be filtered.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 303.84 305.9 270
5% 100% 100% 0% 352.1 360.07 270
10% 100% 100% 0% 398.39 417.96 270

Table 4.11: Statistics of Method 1 PEOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

Table 4.12 and Figure 4.8, present the results for Problem 3. We observe
that the accuracy for the different simulations in the table differed slightly
from the existing PEOMA. However, for the case with 35% noise, this so-
lution had a lower percentage of experiments that converged to the optimal
solution, while for the case with 30% noise Method 1 PEOMA was better.
However, their differences were quite marginal. Figure 4.8, demonstrates
that within 200 queries, 40% of the experiments had converged. Within 300
queries, around 700 experiments had converged. Even if the convergence
rate also varied for this method, we can say that the method possessed a
high probability (around 90%) of converging within 400 queries for a prob-
lem similar to Problem 3.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
30% 99.89% 99.6% 0% 140.80 198.67 60
35% 99.57% 98.8% 0% 158.55 252.72 60

Table 4.12: Statistics of Method 1 PEOMA for a case involving 15 objects,
3 partitions and 4 states averaged over 1,000 experiments.

100

4.3. PEOMA Variants Results for EPPs

0 200 400 600 800 1000 1200
Number of queries

20 %

40 %

60 %

80 %

100 %
Pe

rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 4.8: Simulated convergence based on 1,000 experiments involving
Method 1 PEOMA for 15 objects, 3 partitions, 4 states and with 35% noise.

4.3.3 Method 2 PEOMA

Method 2 PEOMA is expected to have analogous results to the existing
PEOMA and Method 1 PEOMA. The reader should remember that the
pursuit concept only applies to filtering the queries before they are allowed
to be considered by the LA. In Table 4.13, we observe that the convergence
rate for 0% noise was again similar between the queries that were considered
by the LA, and that are made by the Query Generator. For 5% and 10%
noise, the pursuit concept filtered out some of the queries before they were
considered by the LA. The biggest difference between Ψ and ΨQ was, again,
for the highest level of noise.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 147.54 147.54 36
5% 100% 100% 0% 175.97 176.51 36
10% 100% 100% 0% 208.01 211.03 36

Table 4.13: Statistics of Method 2 PEOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

101

4.3. PEOMA Variants Results for EPPs

Table 4.14, displays the results for Problem 2 with Method 2 PEOMA.
Again, the values of both the accuracy and the number of required queries
were almost similar to the results of the existing PEOMA and Method 1
PEOMA, which indeed, demonstrate that our proposed Method 2 PEOMA
has similar performance to the existing PEOMA algorithm.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
0% 100% 100% 0% 308.65 310.91 270
5% 100% 100% 0% 350.69 358.72 270
10% 100% 100% 0% 393.14 411.80 270

Table 4.14: Statistics of Method 2 PEOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

From Table 4.15 and Figure 4.9, we can observe the algorithm’s performance
for Problem 3. For this method, we see that that the percentage of experi-
ments that converged to the optimal solution had a different statistic than
Method 1 PEOMA. For the case with 30% noise, we had a lower percentage
than for the existing PEOMA, and for the case with 35% noise, we also had
a lower percentage. However, the corresponding accuracy was higher for
both, but the number of iterations required was also higher. In Figure 4.9,
we can observe that the graph resembled Method 1 PEOMA, where most of
the objects converged within 400 queries, although Method 2 PEOMA had
marginally lower number of experiments that exceeded 600 queries, when
compared to Method 1 PEOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ) ΨQ κ
30% 99.72% 99.2% 0% 138.99 196.02 60
35% 99.59% 98.8% 0% 156.08 246.2 60

Table 4.15: Statistics of Method 2 PEOMA for a case involving 15 objects,
3 partitions and 4 states averaged over 1,000 experiments.

102

4.4. TPEOMA Variants Results for EPPs

0 200 400 600 800 1000 1200
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 4.9: Simulated convergence based on 1,000 experiments involving
Method 2 PEOMA for 15 objects, 3 partitions, 4 states and with 35% noise.

4.4 Variants of TPEOMA Algorithms for EPPs

In this section, we analyze the TPEOMA versions of the existing and pro-
posed methods. In general, the TPEOMA variants are extensions of the
PEOMA algorithm. Since the TPEOMA utilizes the pursuit concept to
filter out noisy queries, it also follows the queries that are most likely to
yield the correct partitioning in the end, where the pursuit concept is made
possible through the employment of a frequency matrix. In the TPEOMA,
this frequency matrix is further utilized to contribute to the generation of
transitivity pairs. Thus, as a query consisting of a pair of objects is let
through the pursuit filtering, we also check the objects’ transitivity pairs. If
any of the different objects’ pairs have a probability above a certain thresh-
old (τt), we will infer transitivity pairs of the paired object and the other
object of the query. As an example, if we have Q = 〈oi, oj〉, we check oi’s
probability of being together with ox. If the probability of these objects
together is above τt, we will feed the LA with Q = 〈oj , ox〉. In this way, oi
introduces oj to new relations. This operation is maintained both ways.

For the TPEOMA variants, we evaluated their performance for Problem 1,
Problem 2 and Problem 3. Problem 3 was introduced in Section 4.3. We had
three evaluation parameters for the TPEOMA variant: Ψ, ΨQ and ΨT . ΨT

103

4.4. TPEOMA Variants Results for EPPs

is unique to the TPEOMA variant, and indicates the number of pairs made
through, transitivity that was presented to the LA. The transitivity func-
tionality was designed to require fewer queries from the Query Generator,
and it allowed the algorithm to function even when the Query Generator
was dormant.

In Section 2.3.2.4, the parameter τt was defined to be less than K
O(O−K) and

more than 1
O(O−1) . For Problem 2, this would result in 0.001 < τt < 0.003

approximately, which yielded a rather low value of τt. Therefore, we decided
not to apply the recommendations for the τt value. For the transitivity
filtering, we used τ = τt for the different problems. More specifically, we
utilized τt = 0.2

O for Problem 1 and Problem 2. For Problem 3, we used
τt = 0.3

O . We emphasize that even more tuning of the associated parameters
of the TPEOMA variants could have resulted in better results than the ones
listed here. However, we did not conduct a hyper-parameter-tuning in this
thesis due to time constraints.

For the TPEOMA, we have our two proposed variants, which are Method 1
TPEOMA and Method 2 TPEOMA. In what follows, we will initiate discus-
sions from the existing TPEOMA, and then move on to the newly-proposed
methods.

4.4.1 Existing TPEOMA

The existing TPEOMA is the improved version of the PEOMA, and is
the state-of-the-art in the OMA paradigm. However, as we will observe
in the results, the transitivity concept probably requires more tuning and
greater caution than the other existing OMA algorithms, especially in noisy
systems. Let us first consider Problem 1. The results for Problem 1 can
be observed in Table 4.16. We see that it required 82 queries from the
Query Generator for the noise free Environment compared to 146 for exist-
ing PEOMA, which was a significant improvement. The same applied to
the 5% and 10% noise settings, where this method required approximately
50 less queries for these noise levels. However, the number of queries con-
sidered by the LA was significantly higher. For 10% noise, we see that
this method required around 280 more queries than the existing PEOMA.
Clearly, the transitivity phenomenon introduced more artificially-generated
queries to the LA, while lowering the number of queries required from the
Query Generator. Nevertheless, the method reported the same percentage

104

4.4. TPEOMA Variants Results for EPPs

of experiments finding the optimal solution and the average accuracy as the
previous methods.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 170.62 82.45 88.21
5% 100% 100% 0% 341.65 128.05 215.64
10% 100% 100% 0% 489.59 165.70 331.01

Table 4.16: Statistics of the existing TPEOMA for a case involving 18
objects, 6 partitions and 10 states averaged over 1,000 experiments.

For Problem 2, in Table 4.17, we can observe the same behavior as for
Problem 1. Indeed, the required number of queries from the Query Gen-
erator was lower than that of existing PEOMA, but the required number
of queries considered by the LA before convergence was higher. We can
observe that for Problem 2 with 10% noise, we needed 316 queries from the
Query Generator, and the LA handled 556 queries before convergence. For
the existing PEOMA, the same problem configuration required 417 queries
from the Query Generator and 398 queries considered by the LA to con-
verge. In other words, the TPEOMA allowed us to use less queries from
the Query Generator, but this did not necessarily mean that we reduced
the overall number of queries required for the LA to converge. The number
of queries made by the transitivity could be tuned by τt, and could have
resulted in a better balance between Ψ and ΨQ. Observing the ΨT value,
we clearly see that ΨQ and ΨT together, agreed well with Ψ.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 369.55 275.46 96.28
5% 100% 100% 0% 436.57 290.97 150.84
10% 100% 100% 0% 555.63 316.91 253.81

Table 4.17: Statistics of the existing TPEOMA for a case involving 30
objects, 3 partitions and 10 states averaged over 1,000 experiments.

In Problem 3 we can analyze the existing TPEOMA’s performance for higher
levels of noise. In Table 4.18, we present it’s performance for 30% and 35%
noise. Compared to the existing PEOMA, we can again observe that this
method required less queries from the Query Generator, but more queries for
the LA to converge. In addition, this method had less experiments converg-
ing to the optimal partitioning. For the existing PEOMA we had 99.84%
and 99.73% accuracy, respectively, while this method obtained 97.73% and

105

4.4. TPEOMA Variants Results for EPPs

97.44% accuracy for Problem 3 with 30% and 35% noise. With this, we can
deduce that for higher levels of noise, the transitivity pairs can also be cor-
rupted, which can lead to less accuracy in the partitioning. In Figure 4.10,
we have illustrated 100 independent runs for Problem 3 with 35% noise. We
can observe that non-optimal solutions often occurred when less queries had
been presented to the algorithm. Both the pursuit and transitivity concept
in the OMA paradigm benefited greatly from accurate statistics about the
queries, which increased with the number of queries being processed. In this
way, we infer that tuning the parameters to achieve such behavior could be
an idea in terms of increasing accuracy.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

30% 97.73% 91.8% 0% 344.15 160.13 225.36
35% 97.44% 91.10% 0% 388.19 194.54 257.40

Table 4.18: Statistics of the existing TPEOMA for a case involving 15
objects, 3 partitions and 4 states averaged over 1,000 experiments.

0 20 40 60 80 100
Experiment

0

100

200

300

400

Nu
m
be
r o
f q
ue
rie
s b
ef
or
e
co
nv
er
ge
nc
e

Average 176.84

Existing TPEOMA 15 objects, 3 partitions, 100 experiments and 35 % noise

Δ+ =+ *
++ ≠+ *

Figure 4.10: Simulated convergence based on 1,000 experiments involving
the existing TPEOMA for 15 objects, 3 partitions, 4 states and with 35%
noise.

4.4.2 Method 1 TPEOMA

Method 1 TPEOMA is expected to have an approximately similar perfor-
mance to the existing TPEOMA. Observing the results in Table 4.19, we

106

4.4. TPEOMA Variants Results for EPPs

see that the values for Ψ, ΨQ, and ΨT were almost identical to that of the
existing TPEOMA. The method had high accuracy and a high percentage
of experiments that converged to the optimal solution, but as the number
of queries increased in an overall manner, the transitivity pairs made due
to this property, correspondingly increased. This behavior could have been
because more samples had been collected, and more pairs had a probability
above τt.

In Table 4.20, we see that the required number of queries for the different
parameters were almost identical to the ones for the existing TPEOMA for
Problem 2. A similar performance was also the case for Problem 3, which
is indicated in Table 4.21. As with the existing TPEOMA, the accuracy
decreased for the TPEOMA variant for solving Problem 3 with the relatively
high noise levels of 30% and 35%, compared to the existing PEOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 170.53 82.44 88.13
5% 100% 100% 0% 344.53 128.68 217.87
10% 100% 100% 0% 494.46 167.35 334.36

Table 4.19: Statistics of Method 1 TPEOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 371.59 275.37 98.54
5% 100% 100% 0% 445.47 292.54 158.68
10% 100% 100% 0% 553.50 316.94 251.72

Table 4.20: Statistics of Method 1 TPEOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

30% 97.86% 92.4% 0% 332.51 155.61 215.99
35% 97.62% 91.8% 0% 394.74 194.50 263.33

Table 4.21: Statistics of Method 1 TPEOMA for a case involving 15 objects,
3 partitions and 4 states averaged over 1,000 experiments.

4.4.3 Method 2 TPEOMA

Method 2 TPEOMA’s performance for Problem 1 is displayed in Table 4.22.
The different noise levels were almost identical to the benchmark algorithm
(the existing TPEOMA). The required number of queries for the LA to
converge was significantly higher than the number of queries required from

107

4.4. TPEOMA Variants Results for EPPs

the Query Generator. However, comparing the results from the Method 2
TPEOMA for Problem 1 with 10% noise to the existing EOMA, we see that
ΨQ = 216 for the EOMA, while we only needed ΨQ = 166 for the Method 2
TPEOMA. Thus, the advantage of transitivity was clearly demonstrated by
the smaller number of queries required from the Query Generator.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 168.18 81.69 86.53
5% 100% 100% 0% 345.84 128.80 219.05
10% 100% 100% 100% 490.54 166.00 331.69

Table 4.22: Statistics of Method 2 TPEOMA for a case involving 18 objects,
6 partitions and 10 states averaged over 1,000 experiments.

Method 2 TPEOMA’s performance for Problem 2 and Problem 3 are pre-
sented in Tables 4.23 and 4.24. Comparing Problem 2 and Problem 3, we
see that the increased noise level made the TPEOMA achieve a less ac-
curate partitioning than that with lower levels of noise. The results were
similar to what we had observed for the existing TPEOMA and Method 1
TPEOMA, with a relatively big gap between Ψ and ΨQ. This gap between
the queries required by the LA and the queries made by the Query Genera-
tor represented the benefit of this algorithm, although it also indicated that
the algorithm could have a varying result if it was not tuned correctly.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

0% 100% 100% 0% 362.26 274.16 90.08
5% 100% 100% 0% 448.10 293.23 160.81
10% 100% 100% 0% 551.48 315.43 250.13

Table 4.23: Statistics of Method 2 TPEOMA for a case involving 30 objects,
3 partitions and 10 states averaged over 1,000 experiments.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT

30% 98.13% 93.6% 0% 331.12 155.55 214.77
35% 98.01% 93.30% 0% 390.08 195.39 259.21

Table 4.24: Statistics of Method 2 TPEOMA for a case involving 15 objects,
3 partitions and 4 states averaged over 1,000 experiments.

108

4.5. Discussion and Summary Results for EPPs

4.5 Discussion and Summary

In this chapter, we studied the existing OMA algorithms and proposed
methods for solving EPPs. We tested the algorithms’ performance for differ-
ent partitioning problems and levels of noise. Although many of the results
were similar between existing OMA algorithms, Method 1 and Method 2
variants, the goal of this chapter was to verify that the newly-proposed
methods could handle EPPs. Partitions of equal sizes are the types of prob-
lems that the existing OMA algorithms are made to solve. Therefore, as
also proven by the overall results, we see that these methods are efficient at
solving such types of problems. Our aim to demonstrate that the proposed
methods would perform equally or better than the already existing ones,
was confirmed.

As expected, the existing EOMA, Method 1 and Method 2 were quite similar
in terms of their performance, which is because, for partitioning problems
of equally sized partitions, the proposed methods essentially had the same
functionality as the already existing ones. At the same time, the new policies
and handling of partitions, rewards, and penalties are an embedded part of
them. By presenting the results in such a detailed way, we have confirmed
that the variants of Method 1 and Method 2, even with the new functionality
embedded, can handle EPPs as well as the existing methods.

In Figure 4.11 and Figure 4.12, we present the average number of required
queries for the different OMA types of the existing OMA algorithms. As per
to the figures and the results for the existing OMA, Method 1 and Method 2,
we understand that the PEOMA type requires a lesser number of iterations
when considering the required queries before convergence, especially as the
noise increases. However, it could also utilize more queries generated by
the Query Generator, because it only considered the queries from it that
proceeded through its filtering process. The PEOMA variant is thus a
proper fit in noisy systems. The TPEOMA variant required the lowest
number of queries from the Query Generator, but generated many queries
itself, such that the number of required queries considered by the LA could
be higher than those for the other types. If the accuracy is the highest
priority, TPEOMA is probably not the best scheme. On the other hand, if
a problem has a low throughput of queries from the Query Generator, the
TPEOMA is an excellent option.

109

4.5. Discussion and Summary Results for EPPs

EOMA PEOMA TPEOMA
OMA t pe

0

200

400

600

800

Nu
m
be

r o
f q

ue
rie

s
Number of required queries considered b the LA (Ψ)

Figure 4.11: Average required number of queries considered by the LA (Ψ)
before convergence is achieved with the different existing OMA types for
Problem 2 with 20 % noise.

EOMA PEOMA TPEOMA
OMA ty e

0

100

200

300

400

500

600

700

800

Nu
m
be
r o

f q
ue
rie

s

Number of required queries generated by the Query Generator (ΨQ)

Figure 4.12: Average required number of queries generated by the Query
Generator (ΨQ) before convergence is achieved with the different existing
OMA types for Problem 2 with 20 % noise.

110

Chapter 5

Simulation Results for
Non-Equi-Partitioning
Problems

In this chapter, we compare the different, newly-proposed methods’ per-
formance when they encounter NEPPs. For these types of problems, the
partitioning configurations can consist of partitions with unequal, but pre-
specified, cardinalities. The existing OMA algorithms are not able to solve
these types of problems, and are thus, not considered in this chapter. Con-
sequently, we have no benchmark algorithms which can be used to compare
with our newly-proposed methods. We will, therefore, only compare the
proposed methods against each other for the same types of problems. The
hardness of the problems will be indicated by Ξ, which was introduced in
Chapter 3, and the presented problems will be selected to display a range
of potential scenarios, and the corresponding simulation results obtained by
using our proposed methods.

As presented in Chapter 4, the PEOMA and the TPEOMA variants can
enhance the convergence rate of the methods in different ways. However, as
they are important parts of the OMA paradigm, repeating the same meth-
ods’ performance with the EOMA, PEOMA, and TPEOMA might not be
necessary to analyze and discuss their performance for NEPPs. Therefore,
in this chapter, we will rather do a more thorough analysis of the proposed
methods’ EOMA variants. This demarcation gives us the opportunity to
compare several problems, and also discuss them to a greater extent than

111

Results for NEPPs

we could do otherwise. Rather than listing all the different methods exten-
sively, we present them as an overall phenomenon. The reader should note
that Method 1 is only able to solve one of the problem types.

Similar to the evaluations in Chapter 4, we will use the evaluation param-
eters in Chapter 3 to analyze the results in this chapter. For the problems
that we have introduced, the FC factor (Ξ), is a more important component
than that for EPPs. For EPPs, the Ξ parameter is equal to zero for all of the
problems, while for NEPPs, it can assume other values. The FC factor will
thus be presented for all of the problems in this chapter and can be used as
a reference in future studies. Because we only consider the EOMA variants
of the methods in this chapter, the Ψ queries that are considered by the
LA before convergence (which is equal to ΨQ for the EOMA types), is the
only parameter for the convergence rate that we consider. However, for the
converged partitioning, we again utilize both the percentage of experiments
converging to the optimal partitioning and the accuracy parameter γ. We
emphasize that we have not used hyper-parameter schemes for optimally
tuning the number of states or any other parameters. Therefore, if we had
attempted such a hyper-parameter strategy, we believe that we could have
obtained even better results than the ones presented here.

The first problem type that we will consider are problems where the cardi-
nalities have a GCD greater than unity. Method 1 EOMA and Method 2
EOMA are both able to solve this problem type. We will consider two prob-
lems, the first problem has ρ1 = 3, ρ2 = 6, and ρ3 = 9, and is referred to
as Problem 4 (so as to continue the number sequence for the problems as
given in the previous chapter). The second problem has ρ1 = 2, ρ3 = 4,
ρ4 = 6 and ρ3 = 8 and is referred to as Problem 5. The second problem type
does not have a GCD between the partition sizes and will involve more gen-
eral NEPPs. Specifically, we will consider Problem 6 with ρ1 = 4, ρ2 = 5,
ρ3 = 6,ρ4 = 7, and ρ5 = 8 and Problem 7 with ρ1 = 4, ρ2 = 9, and ρ3 = 13.
We emphasize that Method 1 is not able to solve the second problem type,
which does not have a GCD greater than unity.

The problems will be evaluated for different noise levels. The reader should
remember that NEPPs are generally harder than EPPs, and that these
methods are novel solutions for the problems that they have been intro-
duced to solve. Because the problems are now different from the previous
ones, the same method results as for the EPPs might not be the case here.
Therefore, the tables and graphs in this chapter could exhibit greater vari-
ations between the methods in both accuracies and converged experiments.

112

5.1. NEPPs with a GCD Results for NEPPs

This chapter is organized as follows: First, in Section 5.1, we consider par-
titioning problems with a non-unity GCD. After that, in Section 5.2, we
look at problems that have relatively big differences in the partition sizes,
and problems that have relatively many partitions of unequal sizes with-
out a non-unity GDC requirement. Finally, in Section 5.3, we summarize
the performance of the two different methods from an overall perspective.
Appendix B, contains some extended results for other simulations of NEPPs

5.1 Partitioning Problems with a Non-Unity GCD

In this section, we will analyze Method 1 EOMA’s and Method 2 EOMA’s
performance for NEPPs with a non-unity GCD between the respective par-
tition sizes. Both of the newly-proposed methods can solve these types of
problems. Of course, because all the algorithms are new innovations to
the field of partitioning and domain of OMA, the methods could possibly
yield dissimilar results. However, we have chosen certain problems, pre-
sented through simulations, with the aim of demonstrating the methods’
depth, strengths, and weaknesses. We emphasize that another concern in
the selection of the problems has been to consider the time aspect of the sim-
ulations. Choosing very big and tedious problems is not effective when the
essence, nevertheless, is obvious for less resource-intensive settings. That
being said, the simulations still took a relatively long time to run, and to
obtain the results listed below.

The first problem that we will consider is Problem 4, which has three par-
titions and 18 objects in total. The first partition has a room for three
objects (ρ1 = 3), the second partition has a room for six objects (ρ2 = 6),
and the last partition has a room for nine objects (ρ3 = 9). This problem
has approximately Ξ = 0.17. For this reason, the problem is harder than the
FC factor of the EPP, which has Ξ = 0. Clearly, the GCD of this problem
set is three (Λ = 3). For Problem 4, the maximum number of queries was
assigned to the standard |Υ| = 105.

The second problem that we will consider in this section is referred to as
Problem 5, which has 20 objects in total and four different unequally-sized
partitions. More specifically, we have one partition with a room for two
objects (ρ1 = 2), a second partition with four objects ρ2 = 4, the third
with six objects (ρ3 = 6), and the last one with a room for eight objects

113

5.1. NEPPs with a GCD Results for NEPPs

(ρ5 = 8). Such a partition size configuration has a GCD of two (Λ = 2).
The value of the FC factor is approximately Ξ = 0.10, which is slightly
less than that of Problem 4, which means that Problem 4 is harder than
Problem 5. However, Problem 5 has more partitions, and will probably
require more queries before convergence. For Problem 5, the maximum
number of queries was increased to |Υ| = 106, for being able to analyze the
methods’ converged partitioning in greater detail.

The methods will tackle the two proposed problems in different ways. In
the following, we first consider Method 1 EOMA for the different problems
and configurations. After that, we consider our proposed Method 2 EOMA
for similar problems.

5.1.1 Method 1 EOMA

With Method 1 EOMA, the number of the GCD is considered as the num-
ber of objects in each partition of the LA, and thus, more partitions are
considered together to make the partitions of sizes greater than the GCD
number. The rest of the functionality of Method 1 EOMA is relatively sim-
ilar to that of the existing EOMA, which makes its performance for NEPPs
especially interesting.

Let us first consider Method 1 EOMA’s performance for Problem 4. The
statistics for Problem 4 is given in Table 5.1. For 0% noise and 3 states, we
can observe that the method had issues with obtaining the optimal solution.
However, the accuracy was not at the same low level, but was around 70%
on average, which means that most of the objects that should have been
grouped were grouped in the LA. The reason for simulating a noise-free
Problem 4 that utilized only 3 states, was because the method achieved
convergence only for a minimum of the experiments with 6 states. To an-
alyze the converged partitioning, we thus made a modification to the state
depth. With more states, the method could have achieved a better accuracy
and a higher percentage of the experiments converging to the optimal parti-
tioning but this would have required more queries, and we would thus have
had to modify the maximum number of queries. The reader will observe
that for Problem 5, the maximum number of queries was increased.

Observing the results for 10% and 20% noise for Method 1 EOMA in Ta-
ble 5.1, we see that we were able to obtain a higher percentage of the

114

5.1. NEPPs with a GCD Results for NEPPs

experiments converging to the optimal solution with respectively 98.90%
and 99.90% for the different noise levels. Additionally, the accuracy and
the percentage of experiments converging to the optimal partitioning in-
creased as the noise level became higher. Although it turns out that we
simultaneously needed an increased number of queries, the accuracy of the
algorithm increased in line with the noise level, when one compares these
results to the case of the noise-free simulation of Problem 4. From this we
understand that Method 1 EOMA encounters significant problems dealing
with noise-free environments. Thus, when the system was noise-free, or the
noise level was lower, the algorithm performed less accurately and would
require more queries if one considered the state depth. The reason for this
behavior could be that less noise created less movement of the objects in
the LA, as we shall see in greater detail later.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 3 69.56% 14.49% 0% 3,168.04
10% 6 99.63% 98.90% 0% 7,880.37
20% 6 99.98% 99.90% 0% 24,864.40

Table 5.1: Statistics of Method 1 EOMA for Problem 4 with different noise
levels, averaged over 1,000 experiments.

0 20 40 60 80 100
Experiment

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 3168.07

Method 1 EOMA 18 objects, [3, 6, 9] partitioning, 100 experiments and 20 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure 5.1: Simulated performance of Method 1 EOMA for Problem 4, with
6 states and 20% noise.

115

5.1. NEPPs with a GCD Results for NEPPs

In Figure 5.1, we present an illustration of the method’s performance for
Problem 4 for 100 independent experiments with 20 % noise. As one can
observe, the algorithm did yield a high percentage in the number of experi-
ments that converged to the optimal partitioning, which was also confirmed
for the same problem configuration in Table 5.1. At the same time, the iter-
ations required before convergence was relatively low compared to the con-
vergence rate for 1,000 experiments. The high convergence rate for the sim-
ulation in the table was probably because some experiments became “stuck”
in an unfortunate configuration of objects, that required more queries for
the scheme to “break” out of it. For the simulation results shown in Fig-
ure 5.1, it is likely that the 100 experiments were insufficient for observing
such “stuck” situations.

The percentage of converged LA in relation to the required number of queries
for this to happen, followed a similar configuration to the one illustrated in
Figure 5.1, and is presented below in Figure 5.2. From the graph, we can
observe that around 70% of the LA converged within 4,000 queries, and less
than 5% of the experiments required more than 8,000 queries. This figure
illustrates the large stochastic differences in the convergence rate.

0 2000 4000 6000 8000 10000 12000
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 5.2: Simulated number of queries in relation to the converged LA
based on 100 independent experiments with Method 1 EOMA for Problem 4,
with 6 states and 20% noise.

In Table 5.2, we present the results for Problem 5 with Method 1 EOMA.
One can observe that these simulations involved higher noise levels than
those for our previous problem. For Problem 4, we had earlier remarked

116

5.1. NEPPs with a GCD Results for NEPPs

that the algorithm struggled with noise-free environments. Therefore, for
this problem, we wanted to demonstrate its performance for more noise
levels, but without the case of zero noise. With the increased noise levels, the
accuracy of the algorithm increased in terms of finding the optimal solution
and the method’s average accuracy. Additionally, the method required more
queries for the case of 5% noise compared with the case of 10% noise. Based
on this observation, surprisingly, we confirm that a higher noise level is
easier to manage than a lower one. In real-life problems, the noise levels are
usually unknown, which might cause a problem to this method if it is to be
used in practice.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
5% 99.73% 98.6% 0% 85,397.82
10% 99.93% 99.6% 0% 68,945.01
15% 99.98% 99.9% 0% 111,335.16
20% 100% 100% 2.8% 248,926.46

Table 5.2: Statistics of Method 1 EOMA for Problem 5 with different noise
levels and 6 states, averaged over 1,000 experiments.

For the 20% noise scenario displayed in Table 5.2, only 97.2% of the ex-
periments converged. The reader should remember that for Problem 5, we
increased the maximum number of queries to be 1 million. Hence, for 20%
noise for Problem 5, one required a relatively high number of queries for
some of the experiments, even if the average number of queries was around
250,000. With a shallower state space, we might have reached convergence
faster, but then we could, just as well, have achieved less accurate results.
For the case of 20% noise, the accuracy and percentage that converged to
the optimal solution were both 100%, which meant that we achieved accu-
rate results even in high levels of noise but that this required a relatively
high number of queries.

In Figure 5.3, we report the results of studying Problem 5 for 100 inde-
pendent experiments, where we had 20% noise and 6 states. Similar to
the results obtained in the table above, all of the experiments discovered
the optimal partitioning. For the displayed results, the number of required
queries before convergence varied widely between the experiments. Still, the
scheme captured a similar average number of the required number of queries
as for the case presented in Table 5.2 for 1,000 experiments. Additionally,
2% of the 100 experiments did not converge within the maximum number of
queries. Figure 5.4 displays the convergence rate in greater detail. As can
be seen, around 55% of the experiments required less than 200,000 queries,

117

5.1. NEPPs with a GCD Results for NEPPs

and around 5% required more than 800,000 queries, which indeed, illustrates
that some experiments take a long time to converge, but that the largest
proportion is centered at a lower level.

0 20 40 60 80 100
Experiment

0

200000

400000

600000

800000

1000000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 265232.87

Method 1 EOMA 20 objects, [2, 4, 6, 8] partitioning, 100 experiments and 20 % noise

Δ+ =Δ Δ

Figure 5.3: Simulated performance of Method 1 EOMA for Problem 5, with
6 states and 20% noise. Two of the 100 experiments did not converge.

0 200000 400000 600000 800000 1000000
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 5.4: Simulated number of queries in relation to the converged LA
with Method 1 EOMA for Problem 5, with 6 states and 20% noise.

118

5.1. NEPPs with a GCD Results for NEPPs

From the results, the performance of Method 1 EOMA seemed to increase
for higher noise levels. This behavior might seem counter-intuitive. How-
ever, one observes that a high level of noise causes more movement of the
objects, which is desirable phenomenon for the convergence rate, and miti-
gates problems of “stuck” objects. If some objects have clustered together
with objects that they should be together with, but also with other objects
that should not be together with them in the same partition, it represents
a scenario which is hard to break when the noise levels are zero or small. If
we consider the case of a noise-free Environment, the objects will only be
accessed together, and go deeper, with no ability to move out of a partition
that they should not be in. Thus, the noise helps objects being moved out
of “stuck” situations. This “stuck” situation is similar to what happens in
a Deadlock Situation.

We can explain the behavior of noise helping the LA, rather than compli-
cating it, by means of an example. Consider the case when oj and oi are in
%1 together with oa and ob, where the pair oj and oi and the pair oa and ob
should individually belong together. In a system without noise, these object
pairs will be accessed together and go deeper. Let us consider the case that
oj and oi should also be together with ol, but ol is in another partition.
Queries made from these three objects will be presented, but it can take a
lot of effort for all three of them to reach the same partition. If we have
more noise, this will ensure that more objects that should, in reality, not be
together, are given to the LA. If many objects are now deep, and partially
correctly grouped, the noise will move them towards the outer states, and
may redo the entire object distribution, which will eventually make them
find the correct partitioning with a higher probability.

As we have observed from the above simulations, Method 1 EOMA strug-
gled in systems that were noise-free or had low noise levels. Even if the
number of queries is large, the greater proportion of the experiments con-
verged at a lower required number of queries than the slowest experiments,
At the same time, for the case of 20% noise for Problem 5, we observed a
high number of queries before convergence, and some experiments did not
even attain convergence. For this reason, the effectiveness and robustness of
the method when presented with even harder partitioning problems is ques-
tionable. The PEOMA and TPEOMA extensions were designed to reduce
the noisy queries presented to the LA, which means that these extensions
could even make the issues worse. Correspondingly, Method 1 EOMA would
probably require new policies and enhancements so as to be able to handle

119

5.1. NEPPs with a GCD Results for NEPPs

NEPPs in a better manner. Such a modification needs to be studied further,
and is a case for future studies.

5.1.2 Method 2 EOMA

Method 2 EOMA incorporates a novel penalty functionality. In this method,
we allow the partition sizes to change adaptively throughout the system’s
operation, and the objects are randomly distributed across the boundary
states initially, according to the pre-specified cardinalities of the partition-
ing problem. In this section, we will evaluate its performance through sim-
ulations.

In Table 5.3, we present the results for Method 2 for Problem 4. Let us
first consider the case of a noise-free Environment. With 3 states, we can
observe that the percentage that converged to the optimal solution was
around 20% and that the average accuracy was around 75%, which can-
not even be considered to be a sub-optimal performance level. Increasing
the state depth to 6 states increased the accuracy to above 90%, and the
percentage finding the optimal solution increased from approximately 20%
to 67%. This increased performance required more queries before conver-
gence. For 3 states, the method required around 1,000 queries, while it
needed around 12,000 queries for the 6 state case. From these numbers,
we observe the trade-off between state depth and the increasing number
of required queries. The reader should note that the case with 6 states
only converged for approximately 65% of the experiments, and that the
non-converged solutions were not part of the statistics. However, for this
method, unlike Method 1 EOMA, the majority of experiments converged
for this problem, and these results are presented here.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
0% 3 75.61% 20.1% 0% 991.92
0% 6 92.38% 67.39% 35.9% 12,107.42
10% 6 97.78% 91.9% 0% 28,868.11
20% 6 99.67% 98.9% 0% 4,848.77

Table 5.3: Statistics of Method 2 EOMA for Problem 4 with different noise
levels, averaged over 1,000 experiments.

We can observe that the number of required queries increased for 10% noise
with 6 states compared to the case of 0% noise with 6 states. At the same

120

5.1. NEPPs with a GCD Results for NEPPs

time, the percentage that converged to the optimal partitioning increased
for 10% noise, and all of the experiments for this noise level converged.
However, because there were many experiments that did not converge for
0% noise, which was not accounted for in the presented number of itera-
tions, the required iterations before convergence could possibly, in reality,
be higher. This would correspond to the fact that the number of required
queries actually decreased with a higher noise level. Thus, for 20% com-
pared to 10% noise, we can observe that the accuracy increased, while the
number of iterations required for convergence decreased. This behavior can
be explained in the same way as for Method 1 EOMA. While the accu-
racy was similar to Method 1 EOMA, the number of iterations required for
convergence was less for this method for Problem 4 with 20% noise.

In Figure 5.5 and Figure 5.6, we can study the differences between the 10%
and 20% noise levels in more detail. Both figures are based on 100 indepen-
dent experiments for machines that have 6 states. As can be observed, the
noise level of 20% had more experiments that converged to the optimal par-
titioning at a lower number of required queries than what was achieved and
observed for the 10% noise case. The average number of iterations required
resembled the ones in our table above, and we clearly see that Method 2
EOMA also performed better for higher noise levels.

0 20 40 60 80 100
Experiment

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 31193.88

Method 2 EOMA 18 objects, [3, 6, 9] partitioning, 100 experiments and 10 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure 5.5: Simulated performance of Method 2 EOMA for Problem 4, with
6 states and 10% noise.

121

5.1. NEPPs with a GCD Results for NEPPs

0 20 40 60 80 100
Experiment

0

5000

10000

15000

20000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 3098.29

Method 2 EOMA 18 objects, [3, 6, 9] partitioning, 100 experiments and 20 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure 5.6: Simulated performance of Method 2 EOMA for Problem 4, with
6 states and 20% noise.

In Table 5.4, we present the results for simulations of Problem 5 with
Method 2 EOMA. From the table, we observe that the accuracy increased
as the noise level increased. At the same time, the required number of
queries decreased. This behavior demonstrates Method 2 EOMA’s weak-
ness, namely its susceptibility to low levels of noise. With 5% noise, the
method only obtained the optimal solution in 43.55% of the cases. Al-
though the average accuracy was sub-optimal, with approximately 89%,
the required number of queries was much higher than, for example, the case
with 30% noise. Interestingly, the case with 30% noise required more than
ten times fewer queries, on average, before convergence. Thus, both the
convergence rate and the accuracy improved as the noise level increased,
which was, indeed, a similar behavior to what we learned from Problem 4
and Method 2 EOMA.

Comparing the results in Table 5.4 to Table 5.2, we observe that for the
5% noise case, Method 1 EOMA had the fastest convergence rate, the best
accuracy, and percentage of experiments that converged to the optimal so-
lution, For 10%, we can observe that the convergence rate was better for
Method 2 EOMA, while the accuracy was better for Method 1 EOMA. For
15% and 20% noise, we can observe that Method 2 EOMA again had bet-
ter convergence, but that the Method 1 EOMA had better performance

122

5.1. NEPPs with a GCD Results for NEPPs

in terms of accuracy and percentage that converged to the optimal parti-
tioning. However, for 20% noise, we observe that not all experiments con-
verged for Method 1 EOMA. In this case, Method 1 had a higher number
of queries as the noise levels increased and relatively accurate performance,
while Method 2 EOMA had a better convergence rate and a bit lower ac-
curacy.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
5% 88.55% 43.55% 1.5% 115,659.07
10% 93.38% 67.60% 0% 60,644.21
15% 97.44% 87.60% 0% 31,983.52
20% 99.34% 96.6% 0% 15,812.46
30% 99.98% 99.90% 0% 10,267.74

Table 5.4: Statistics of Method 2 EOMA for Problem 5 with different noise
levels and 6 states, averaged over 1,000 experiments.

In Figures 5.7 and 5.8, we demonstrate the effect of state depth. For 6 states,
as already been observed in the table above, we achieved high accuracy for
the case of 20% noise for Problem 5. At the same time, we might have
desired to have an even lower required number of queries. In the simulation
examples depicted in these figures, we have 6 states in Figure 5.7, and 4
states in Figure 5.8. As we can observe, the required number of queries
was lower for the case with 4 states compared to the case with 6 states.
However, we can observe that the number of experiments that discovered
the optimal solution decreased for the case with 4 states, compared to the
6 state case. Consequently, the states could be tuned, either way, to either
achieve a higher or lower accuracy. Clearly, a deeper state-space helped the
LA tackle noise in a better manner, even though the required number of
queries increased as the number of states increased.

As observed in Figure 5.7 and Figure 5.8, the number of iterations required
varied noticeably between very high levels to very low levels. Observing the
convergence rate in a cumulative way, which was done for the simulations in
Figure 5.9, was more informative to display how fast the LA converged in
most cases. According to the graph, approximately 80% of the LA converged
within 22,000 queries, and only 10% required more than 40,000 queries. The
fact that there is a large variation in the convergence rate might indicate
that some of the experiments, which required large numbers of queries to
converge, ended up in a situation where the objects were essentially “stuck”.

123

5.1. NEPPs with a GCD Results for NEPPs

0 20 40 60 80 100
Experiment

0

20000

40000

60000

80000

100000

Nu
m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 18114.24

Method 2 EOMA 20 objects, [2, 4, 6, 8] partitioning, 100 experiments and 20 % n ise

Δ+ =Δ Δ

Figure 5.7: Simulated performance for Method 2 EOMA and Problem 5,
with 6 states and 20% noise.

0 20 40 60 80 100
Experiment

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 7503.74

Method 2 EOMA 20 objects, [2, 4, 6, 8] partitioning, 100 experiments and 20 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure 5.8: Simulated performance for Method 2 EOMA and Problem 5,
with 4 states and 20% noise.

For Method 2 EOMA, we observed the occurrence of a similar case as to
what happened for Method 1 EOMA, where the performance was insufficient
for noise-free environments. In addition, Method 2 EOMA struggled with
environments with low noise levels. For Method 2 EOMA, the issues with
“stuck” object distributions was more akin to the Standstill Scenario than

124

5.2. NEPPs without a GCD Results for NEPPs

the Deadlock Situation. Although we did succeed in fixing some of the
issues with regard to the Standstill phenomenon, it seems as if the policies
that we introduced in the method were not strong enough to rectify the
situations when the noise levels were low. This suggests that, improvements
to Method 2 are probably needed for fixing the issue with slow convergence
rates. On the other hand, the accuracy was shown to be high, especially for
the cases with high noise levels, but also on average in terms of accuracy
for lower noise levels. With this in mind, we can conclude that the method
can, relatively accurately, solve NEPPs.

0 20000 40000 60000 80000 100000 120000
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en

ta
ge

 o
f c

on
ve

rg
ed

 L
A

Development of converged LA in relation to queries

Figure 5.9: Simulated convergence rate based on 1,000 experiments of
Method 2 EOMA, for Problem 5 and 20% noise.

5.2 Partitioning Problems without a Non-Unity
GCD

In this section, we will analyze Method 2 EOMA for NEPPs without the
non-unity GCD requirement between the sizes of the various partitions.
Clearly, Method 1 EOMA is not able to solve the problems considered in
this section. We emphasize that we have not hyper-tuned the parameters
that can be tuned for the method, and that the method might yield better
results than those presented here with the optimal configuration. However,
we still believe that the results illustrate the essence of the algorithm, and
the problems were carefully selected to achieve this.

125

5.2. NEPPs without a GCD Results for NEPPs

We will mainly consider two partitioning problems. The first one had “many
partitions”, and the second problem had “big partition size differences”.
These problems are referred to as Problem 6 and Problem 7 respectively.
The first problem, Problem 6, had ρ1 = 4, ρ1 = 5, ρ2 = 6, ρ3 = 7, and
ρ4 = 8. The second problem, Problem 7, had ρ1 = 4, ρ2 = 9, and ρ3 = 13.
The FC for these problems were Ξ = 0.0677 and Ξ = 0.173, respectively.
We again analyze the performance of the algorithm for different noise levels
(10%, 20% and 30%).

5.2.1 Method 2 EOMA

Let us first consider Method 2 EOMA’s performance for Problem 6. In
Table 5.5 we present the results for simulations with Method 2 EOMA for
this problem. Here, we observe that the number of required queries before
convergence increased as the levels of noise increased. This was opposite
to the behavior of what we observed for Problem 4 and Problem 5. At the
same time, the accuracy increased as the noise level increased, similar to
the cases of Problem 4 and Problem 5. The reason for this behavior could
possibly be that Problem 5 is easier for Method 2 EOMA to solve than
Problem 4. In this problem, we had relatively many partitions, but the
pairwise difference was only unity, and the FC parameter had a lower value.
In this way, the algorithm did not, possibly, experience the phenomenon of
being “stuck” in the same way, resulting in the noise being a component
that again complicated issues rather than dissolving “stuck” situations and
increasing the required number of queries.

In Table 5.5, the percentage of experiments that discovered the optimal
partitioning increased from 91% to 98% and 99% for 10%, 20% and 30%
noise, respectively. Clearly, the method was able to find accurate solutions
that were not far from the optimal ones. Similar to the problems with a
GCD, this level increased together with the noise level. With increased
noise levels, the objects were forced to move in “unexpected ways”, which
could have contributed to the method discovering the optimal partitioning
with a higher probability. Nevertheless, independent of the noise level, we
observed that the average accuracy (γ), was at the same level. Combining
the results for the accuracy together with the percentage of finding the op-
timal partitioning, we understand that for the non-optimal solutions, there
were only one or two objects that were in the incorrect partitioning as the
LA converged.

126

5.2. NEPPs without a GCD Results for NEPPs

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
10% 99.25% 91.0% 0% 1,704.01
20% 99.83% 98.0% 0% 3,379.18
30% 99.95% 99.00% 0% 22,631.58

Table 5.5: Statistics of Method 2 EOMA for Problem 6, with different noise
levels and 6 states, averaged over 100 experiments.

To consider Problem 6 in greater detail, we increased the state depth from
6 states to 12 states and 18 states, respectively. The difference that these
changes made, is seen in Table 5.6. Clearly, increasing the state depth
from 6 states to 12 states did not make that much improvement to the 10%
noise case. However, with 18 states, we saw that we achieved the optimal
partitioning for 98% of the cases compared with 91% of the cases for 6
states, which is, indeed, interesting.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
10% 12 99.05% 89.00% 0% 3762.31
10% 18 99.84% 98.00% 0% 6248.06

Table 5.6: Statistics of Method 2 EOMA for Problem 6, with different state
depths averaged over 100 experiments.

0 20 40 60 80 100
Experiment

0

20000

40000

60000

80000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 22631.58

Method 2 EOMA 30 objects, [4, 5, 6, 7, 8] partitioning, 100 experiments and 30 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure 5.10: Simulated performance of Method 2 EOMA for Problem 6,
with 6 states and 30% noise.

127

5.2. NEPPs without a GCD Results for NEPPs

In Figure 5.10, we present 100 independent experiments for Problem 6 with
Method 2 EOMA. We observe that the convergence rate had a varying
value due to the stochastic behavior of the system. The figure illustrates
the variation in the convergence rate. Comparing these result to the case
of 20% noise in Figure 5.11, we perceive that as the noise increased, the
variation in the convergence rate also increased. However, for the 20% noise
case, we still had some experiments that really increased the average value
of the number of queries, but the overall impression was that the “lower”
required number of iterations, were more similar.

0 20 40 60 80 100
Experiment

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 3379.18

Method 2 EOMA 30 objects, [4, 5, 6, 7, 8] partitioning, 100 experiments and 20 % no se

Δ + = Δ Δ

Δ + ≠ Δ Δ

Figure 5.11: Simulated performance of Method 2 EOMA for Problem 6,
with 6 states and 20% noise.

We now consider Problem 7. In Table 5.7, we present the statistics for
simulations for Problem 7 with Method 2 EOMA. From these results, we
see that the method again had better performance both in terms of accuracy
and convergence as the noise increased. For 30% noise compared to 20%
noise, the required number of queries was less than halved. Ironically, the
noise seemed to increase the algorithm’s ability to reach convergence for
Problem 7.

In Figure 5.12, we can observe a simulation of the configuration that achieved
the lowest required number of queries in the table above. As indicated in the
graph, the majority of the experiments required a lower number of queries
than what a minority of them did. By studying the graph, we see that

128

5.2. NEPPs without a GCD Results for NEPPs

only approximately 5% of the 1,000 experiments required more than 20,000
queries before convergence for Problem 7 with Method 2 EOMA.

Noise Accuracy ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)
10% 97.11% 90.62% 36% 134,405.40
20% 100% 100% 0% 44,974.36
30% 100% 100% 0% 4,764.84

Table 5.7: Statistics of Method 2 EOMA for Problem 7, with different noise
levels and 6 states, averaged over 100 experiments.

As the results above indicate, Method 2 EOMA struggled for partitioning
problems with lower noise levels as the difference between the partition sizes
increased, as for Problem 7. For such cases, the noise helped the algorithm to
continue “exploring” by keeping them more in the outer states. For example,
if all the objects, except some, are correctly placed, they might be introduced
to a noisy query that moves them into shallower states, which might solve
issues of being in “stuck” and thus lead to sub-optimal situations. For easier
problems, like Problem 6, we observe that the noise has the opposite effect.
Indeed, for problems with less differences between the partition sizes, the
noise complicated the convergence of the LA by misleading it. For both
problems, we attained to rather high accuracy levels, in general.

0 5000 10000 15000 20000 25000 30000 35000
Number of queries

20 %

40 %

60 %

80 %

100 %

Pe
rc
en
ta
ge
 o
f c
on
ve
rg
ed
 L
A

Development of converged LA in relation to queries

Figure 5.12: Simulated number of queries in relation to the converged LA
based on 1,000 independent experiments with Method 2 EOMA, for Prob-
lem 7 with 6 states and 30% noise.

129

5.3. Discussion and Summary Results for NEPPs

5.3 Discussion and Summary

In this chapter, we have analyzed the newly-proposed Method 1 EOMA’s
and Method 2 EOMA’s performance for NEPPs. We have thus tested their
convergence rates and accuracies for various partitioning problems and noise
levels. We have considered two problem types, namely partitioning problems
with cardinalities possessing a non-unity GCD, and partitioning problems
without a non-unity GCD. While Method 2 EOMA can solve problems
of both types, Method 1 EOMA can only solve problems with a non-unity
GCD. Unlike the results in Chapter 4, the simulations in this chapter showed
great differences in the various methods. At the same time, the methods
had a similar weakness to noise-free environments.

For problems with a non-unity GCD, Method 1 EOMA and Method 2
EOMA struggled when the queries had 0% noise. For increasing levels
of noise, Method 2 EOMA had a lower number of required queries than
what was needed by Method 1 EOMA. While Method 1 EOMA had an
increasing number of queries as the noise level increased, Method 2 EOMA
had a decreasing number of queries. For the increasing noise levels, the
methods had approximately similar performance in terms of accuracy and
percentage of experiments converging to the optimal partitioning, but the
Method 2 EOMA had a worse performance than Method 1 EOMA for lower
levels of noise. To summarize, Method 1 EOMA has better accuracy and
percentage of LA discovering the optimal partitioning in an overall manner
but struggles with the convergence rate as the noise increases. Method 2
EOMA has a better performance in terms of convergence rate as the noise
increases, achieves high accuracy for problems with more noise, but has low
performance for problems with less noise.

For problems without a non-unity GCD, we could only analyze Method 2
EOMA, because Method 1 EOMA cannot solve such problems. We ob-
served a similar behavior as for Problem 7, where the partition sizes had
relatively big differences. For this problem, Method 2 EOMA had a better
performance for higher noise levels than for lower noise levels, but achieved
100% accuracy and a relatively low required number of queries for 30%
noise compared to 10% noise. Thus, for complicated problems, where there
are many objects that need to switch partitions and to also change par-
tition sizes, the noise helped the algorithm to explore new solutions, and
kept the objects stay longer in the outer states, before moving them inside

130

5.3. Discussion and Summary Results for NEPPs

and creating “stuck” situations. For Problem 6, which had relatively many
partitions, but rather small differences between them, the noise had the op-
posite, and more intuitive behavior. Thus, for Problem 6, increased noise
levels made the method require more queries before convergence. Addition-
ally, the increased noise levels also increased the LA’s accuracy, which was
probably due to the increased number of queries processed, or a result of
the movement of objects that the increased noise caused.

Method 2 EOMA did not require a GCD to find accurate solutions, which
makes this algorithm very promising for future study. However, the method
did not handle environments with noise-free or low noise settings in a partic-
ularly good way. For low noise levels, Method 1 EOMA was better in terms
of accuracy and also convergence rate, but Method 1 EOMA could not han-
dle noise-free environments either. Consequently, we understand that both
methods had limitations and weaknesses that need to be addressed to be
able to solve NEPPs in a more satisfactory manner. At the same time, the
methods showed high accuracy levels in grouping the objects that should
have been together even with relatively high levels of noise.

We conclude by emphasizing that these methods are novel to the field of
partitioning and OMA and that they are in the initial phase of being able to
solve the particularities and complicated situations that NEPPs introduce.

131

Part IV

Conclusions

133

Chapter 6

Conclusions and Future
Work

This chapter summarizes and concludes the work of this thesis, and we dis-
cuss future enhancements that can be applied to the presented algorithms.

6.1 Conclusions

The existing algorithms that work with the OMA paradigm can only solve
partitioning problems with partitions of equal sizes. The constraint of hav-
ing equally-sized partitions is a limitation to the algorithms’ application to
real-life issues. With the growing interest in the field of ML and its ability
to solve problems efficiently and in an intriguing manner, it is crucial to
improve the opportunities that lie within this field of research and to design
solutions that are more advantageous to the industry. In this thesis, we
have, therefore, proposed two novel extensions, referred to as Method 1 and
Method 2, to the already-existing algorithms in the OMA paradigm. These
extensions allow the algorithms in the field of OMA, to solve not only EPPs
but also NEPPs with pre-specified cardinalities. Our experimental analysis
of the proposed algorithms shows that they have comparable performance
to the existing algorithms in regards to solving EPPs, and that they can
also solve NEPPs accurately. The OMA approach to solving NEPPs was
entirely open, and no previous solutions existed, which makes the proposed
solutions of this thesis a contribution to both the field of partitioning and
the OMA paradigm of algorithms.

135

6.2. Future Work Conclusions and Future Work

6.2 Potential Enhancements and Future Work

Both of the proposed methods solved EPPs similar to the performance of
the existing OMA algorithms. For NEPPs, Method 2 is less constrained
than Method 1. Method 1 can only handle NEPPs with a GCD greater
than unity between the partitions. For this reason, Method 2 might be the
most promising for future studies. At the same time, both methods struggle
with noise-free environments. Additionally, Method 2 performs better as
the noise level increases, as opposed to Method 1, which is disadvantaged
by noise. Therefore, if we can mitigate the incidents of smaller partitions
being stuck in bigger partitions, and, of objects residing together in groups
to which they, in reality, should not be for Method 2, Method 2 has better
prospects compared to Method 1. The reason for this is that Method 2 has
a lower level of required queries before convergence even in high levels of
noise, which Method 1 does not have. By solving the problem according to
the conditions as mentioned earlier, we can thus increase the performance
of Method 2.

The biggest problem for Method 2, and also Method 1, is that there are
not strong enough forces to bring “lost” objects out of a partition that
do not lead them to success. In the current algorithms, we only consider
forces bringing objects together. Thus, a query consists of objects that
should be grouped, and the LA, therefore, tries to group them. Objects
that migrate to other partitions, do this because they are either queried
along with an object in the partition they are moving to, or because of it
being an excess object for another one moving into its current partition.
What no one has considered till today, is the migration and operation of
an object once it is co-located with objects that it should not be together
with. In many cases, we have information concerning which objects should
not belong together, either directly or as a result of knowing which objects
that should be together and thus deducing which should not. Consequently,
this resource of additional information would permit us to be able to force
objects out of disproportionate partitions.

Given the new information about objects that should not be together, we
can introduce forces that help us move objects that are together with those
that they should not be together with, out of the current partition. This
information would potentially mitigate the issues that the proposed methods
hold, and would be a notable and significant contribution to the field of

136

6.2. Future Work Conclusions and Future Work

OMA algorithms. In the worst case, we are probably using only half of the
obtainable information. Thus, by utilizing the information of objects that
should be grouped, and of those that should not be grouped, we would be
able to use all the information in a better way, and understand more about
the groupings that the OMA algorithms can converge to.

In future studies, this extended information about objects that should not be
together could lead to new OMA algorithms and functionalities. For these
new algorithms, we could also use the pursuit and transitivity concepts “over
and above” the current ones as proposed in this thesis. Thus, we can use
the pursuit to filter out noisy queries and make transitivity pairs of objects
being queried and belonging together. However, with the new information,
we might be able to utilize these concepts also in the internal operation of
the LA and at a greater scale than previously. With the pursuit concept,
we could make objects migrating to another partition follow the partition
of the objects that they are most likely belonging together with. With
the information of objects not belonging together, we could, in addition,
possibly create transitivity pairs for objects being accessed together and
objects that should not be together with them. Let us consider a simple
example, where oi and oj belong together. With the help of an “opposite”
frequency matrix to the already one established in the PEOMA, we could
derive information that oi and ox should not be together. Consequently,
we could feed the LA with a query saying that oj and ox should not be
together. In this way, we can make transitivity pairs based on knowledge of
objects belonging together, and also of those not belonging together, which
can increase the utilization of the transitivity concept.

Another enhancement to the OMA paradigm would be to establish an LA-
based solution that can find the optimal partitioning, and the optimal size
configuration for the partitions in an unsupervised manner. As an example,
we might want to solve the task of filling three servers, where we would like
to determine where to store 300 GB of data optimally among them. This is
a future task that an unsupervised OMA algorithm might be able to solve.
In addition, if the system could adaptively create new branches of partitions
as they were needed, the OMA paradigm would be even more applicable to
real-life problems, and prove interesting for solving partitioning tasks. Even
if this is a dream scenario, the algorithms in the OMA paradigm provide
fascinating scenarios for further investigation. Indeed, there are many areas
for improvement and ideas to build upon, in this field of research.

137

References

[1] D. Berend and T. Tassa, “Improved Bounds on Bell Numbers and on
Moments of Sums of Random Variables,” Probability and Mathematical
Statistics, vol. 30, no. 2, pp. 185–205, 2010.

[2] S. Glimsdal and O.-C. Granmo, “A Novel Bayesian Network Based
Scheme for Finding the Optimal Solution to Stochastic Online Equi-
Partitioning Problems,” in 2014 13th International Conference on Ma-
chine Learning and Applications, pp. 594–599, Dec. 2014.

[3] R. O. Omslandseter, L. Jiao, Y. Liu, and B. John Oommen, “User
Grouping and Power Allocation in NOMA Systems: A Reinforcement
Learning-Based Solution,” in IEA/AIE 2020, Springer, Sep 2020.

[4] A. Shirvani, Novel Solutions and Applications of the Object Partitioning
Problem. PhD thesis, Carleton University, Ottawa, 2018.

[5] E. Bisong, “On Designing Adaptive Data Structures with Adaptive
Data “Sub”-Structures,” Master’s thesis, Carleton University, Ottawa,
2018.

[6] B. John Oommen and D. C. Y. Ma, “Stochastic Automata Solutions
to the Object Partitioning Problem,” The Computer Journal, vol. 35,
pp. A105–A120, 1992.

[7] W. Gale, S. Das, and C. T. Yu, “Improvements to an Algorithm for
Equipartitioning,” IEEE Transactions on Computers, vol. 39, pp. 706–
710, May 1990.

[8] A. Shirvani and B. John Oommen, “On Enhancing the Object Migra-
tion Automaton Using the Pursuit Paradigm,” Journal of Computa-
tional Science, vol. 24, pp. 329–342, Jan. 2018.

139

References References

[9] A. Shirvani and B. John Oommen, “On Enhancing the Deadlock-
Preventing Object Migration Automaton Using the Pursuit Paradigm,”
Pattern Analysis and Applications, Apr. 2019.

[10] A. Shirvani and B. John Oommen, “On Invoking Transitivity to En-
hance the Pursuit-Oriented Object Migration Automata,” IEEE Ac-
cess, vol. 6, pp. 21668–21681, 2018.

[11] J. De Houwer, D. Barnes Holmes, and A. Moors, “What Is Learning?
On the Nature and Merits of a Functional Definition of Learning,”
PSYCHONOMIC BULLETIN & REVIEW, vol. 20, no. 4, pp. 631–
63142, 2013.

[12] Richard S. Sutton, Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning, Cambridge, Mass: MIT Press,
1998.

[13] A. Shirvani and B. John Oommen, “On Utilizing the Pursuit Paradigm
to Enhance the Deadlock-Preventing Object Migration Automaton,” in
2017 International Conference on New Trends in Computing Sciences
(ICTCS), pp. 295–302, Oct 2017.

[14] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, pp. 26–38, Nov 2017.

[15] M. Wiering and M. V. Otterlo, eds., Reinforcement Learning: State-of-
the-Art. Adaptation, Learning, and Optimization, Berlin Heidelberg:
Springer-Verlag, 2012.

[16] G. Li, R. Gomez, K. Nakamura, and B. He, “Human-Centered Re-
inforcement Learning: A Survey,” IEEE Transactions on Human-
Machine Systems, vol. 49, pp. 337–349, Aug 2019.

[17] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and
D. I. Kim, “Applications of Deep Reinforcement Learning in Commu-
nications and Networking: A Survey,” IEEE Communications Surveys
Tutorials, vol. 21, pp. 3133–3174, Fourthquarter 2019.

[18] Tsetlin, Automation Theory and Modeling of Biological Systems. Aca-
demic Press, Feb. 1974. Google-Books-ID: 3wLEDm bnsC.

[19] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Courier Corporation, Dec. 2012.

140

References References

[20] O.-C. Granmo, “The Tsetlin Machine - A Game Theoretic Bandit
Driven Approach to Optimal Pattern Recognition with Propositional
Logic,” arXiv:1804.01508 [cs], Feb. 2019. arXiv: 1804.01508.

[21] A. Yazidi, X. Zhang, L. Jiao, and B. John Oommen, “The Hierarchical
Continuous Pursuit Learning Automation: A Novel Scheme for En-
vironments with Large Numbers of Actions,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–15, 2019.

[22] X. Zhang, L. Jiao, B. John Oommen, and O.-C. Granmo, “A Conclu-
sive Analysis of the Finite-Time Behavior of the Discretized Pursuit
Learning Automaton,” IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–11, 2019.

[23] S. Lakshmivarahan, Learning Algorithms: Theory and Applications.
New York: Springer, 1981.

[24] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Courier Corporation, May 2013.

[25] S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely Expedient
Algorithms for Stochastic Automata,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 3, pp. 281–286, 1973.

[26] B. John Oommen and M. Agache, “Continuous and Discretized Pursuit
Learning Schemes: Various Algorithms and Their Comparison,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 31, no. 3, pp. 277–287, 2001.

[27] X. Zhang, O.-C. Granmo, and B. John Oommen, “Discretized Bayesian
Pursuit - A New Scheme for Reinforcement Learning,” in Proceedings
of IEA-AIE 2012, (Dalian, China), pp. 784–793, Jun. 2012.

[28] A. S. Poznyak and K. Najim, Learning Automata and Stochastic Opti-
mization, vol. 3. Springer, 1997.

[29] L.-H. Tasi, “The Modified Differencing Method for the Set Partitioning
Problem with Cardinality Constraints,” Discrete Applied Mathematics,
vol. 63, no. 2, pp. 175–180, 1995.

[30] M. Hacibeyoglu, V. Tongur, and K. Alaykiran, “Solving the BI-
Dimensional Two-Way Number Partitioning Problem with Heuristic

141

References References

Algorithms,” in 2014 IEEE 8th International Conference on Applica-
tion of Information and Communication Technologies (AICT), pp. 1–5,
Oct 2014.

[31] N. Karmarker and R. M. Karp, “The Differencing Method of Set Parti-
tioning,” Tech. Rep. UCB/CSD-83-113, EECS Department, University
of California, Berkeley, 1983.

[32] R. E. Korf, “From Approximate to Optimal Solutions: A Case Study
of Number Partitioning,” in IJCAI, 1995.

[33] R. E. Korf, “A Complete Anytime Algorithm for Number Partition-
ing,” Artificial Intelligence, vol. 106, pp. 181–203, Dec. 1998.

[34] P. C. Pop and O. Matei, “A Genetic Algorithm Approach for the Mul-
tidimensional Two-Way Number Partitioning Problem,” in Learning
and Intelligent Optimization (G. Nicosia and P. Pardalos, eds.), Lecture
Notes in Computer Science, (Berlin, Heidelberg), pp. 81–86, Springer,
2013.

[35] J. Kratica, J. Kojić, and A. Savić, “Two Metaheuristic Approaches for
Solving Multidimensional Two-Way Number Partitioning Problem,”
Computers & Operations Research, vol. 46, pp. 59–68, June 2014.

[36] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, and J. Tang, “Deep Rein-
forcement Learning for Page-Wise Recommendations,” in Proceedings
of the 12th ACM Conference on Recommender Systems, RecSys ’18,
(Vancouver, British Columbia, Canada), pp. 95–103, Association for
Computing Machinery, Sept. 2018.

[37] Garima, H. Gulati, and P. K. Singh, “Clustering Techniques in Data
Mining: A Comparison,” in 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom), pp. 410–
415, March 2015.

[38] B. John Oommen and D. C. Y. Ma, “Deterministic Learning Automata
Solutions to the Equipartitioning Problem,” IEEE Transactions on
Computers, vol. 37, no. 1, pp. 2–13, 1988.

[39] M. Hammer and B. Niamir, “A Heuristic Approach to Attribute Par-
titioning,” in The International Conference on Management of Data
(SIGMOD), pp. 93–101, ACM, 1979.

142

References References

[40] M. Hammer and A. Chan, “Index Selection in a Self-Adaptive Data
Base Management System,” in The International Conference on Man-
agement of Data (SIGMOD), pp. 1–8, ACM, 1976.

[41] J. D. Ulman, Principles of Database Systems. Computer Science Press,
1982.

[42] D. Ciu and Y. Ma, Object Partitioning by Using Learning Automata.
PhD thesis, Carleton University, 1986.

[43] C. Yu, M. Siu, K. Lam, and F. Tai, “Adaptive Clustering Schemes:
General Framework,” in The IEEE COMPSAC Conference, pp. 81–
89, 1981.

[44] C. T. Yu, C. Suen, K. Lam, and M. K. Siu, “Adaptive Record Cluster-
ing,” ACM Transactions on Database Systems (TODS), vol. 10, no. 2,
pp. 180–204, 1985.

[45] B. John Oommen and J. Zgierski, “A Learning Automaton Solution to
Breaking Substitution Ciphers,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 15, pp. 185–192, 1993.

[46] B. John Oommen and J. R. Zgierski, “Breaking Substitution Cyphers
Using Stochastic Automata,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 15, no. 2, pp. 185–192, 1993.

[47] A. Jobava, “Intelligent Traffic-Aware Consolidation of Virtual Ma-
chines in a Data Center,” Master’s thesis, Carleton University, Ottawa,
2015.

[48] F. M. Ung, “Towards Efficient and Cost-Effective Live Migrations of
Virtual Machines,” Master’s thesis, Carleton University, Ottawa, 2015.

[49] B. John Oommen and C. Fothergill, “The Image Examination and
Retrieval Problem: A Learning Automaton-Based Solution,” in In
Proceedings ICARCV’92, International Conference on Automation,
Robotics, and Computer Vision, IEEE, 1992.

[50] B. John Oommen and C. Fothergill, “Fast Learning Automaton-Based
Image Examination and Retrieval,” The Computer Journal, vol. 36,
no. 6, pp. 542–553, 1993.

[51] A. Yazidi, O.-C. Granmo, and B. John Oommen, “Service Selection
in Stochastic Environments: A Learning-Automaton Based Solution,”
Applied Intelligence, vol. 36, no. 3, pp. 617–637, 2012.

143

References References

[52] A. S. Mamaghani, M. Mahi, and M. R. Meybodi, “A Learning Au-
tomaton Based Approach for Data Fragments Allocation in Distributed
Database Systems,” in Computer and Information Technology (CIT),
2010 IEEE 10th International Conference on, pp. 8–12, IEEE, 2010.

[53] E. Fayyoumi and B. John Oommen, “A Fixed Structure Learn-
ing Automaton Micro-Aggregation Technique for Secure Statistical
Databases,” in International Conference on Privacy in Statistical
Databases, pp. 114–128, Springer, 2006.

[54] E. Fayyoumi and B. John Oommen, “Achieving Microaggregation for
Secure Statistical Databases Using Fixed-Structure Partitioning-Based
Learning Automata,” IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), vol. 39, no. 5, pp. 1192–1205, 2009.

[55] CompTIA, “Research Report: Emerging Business Opportuni-
ties in AI.” https://www.comptia.org/content/research/

emerging-business-opportunities-in-ai, May 2019. [Online;
accessed 27-February-2020].

[56] Vaibhav Sawhney, “Permutations & Combinations – Division into
Groups: Part 2.” Library Catalog: doubleroot.in [Online; accessed
09-March-2020].

[57] Vaibhav Sawhney, “Permutations & Combinations – Division into
Groups: Part 1.” Library Catalog: doubleroot.in [Online; accessed
09-March-2020].

144

https://www.comptia.org/content/research/emerging-business-opportunities-in-ai
https://www.comptia.org/content/research/emerging-business-opportunities-in-ai

Appendices

A Extended Results for EPPs

In this section, some figures that were not included in Chapter 4 are pre-
sented.

0 20 40 60 80 100
Experiment

0

25

50

75

100

125

150

175

200

Nu
m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 143.04

Existing EOMA 18 objects, 6 partitions, 100 experiments and 0 % n ise

Δ+ =Δ Δ

Figure A.1: Simulated performance for existing EOMA and 18 objects, 6
partitions, 10 states and 0% noise.

145

A. Extended Results for EPPs References

0 20 40 60 80 100
Experiment

0

100

200

300

400

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 224.55

Existing EOMA 18 objects, 6 partitions, 100 experiments and 10 % noise

Δ+ =Δ Δ

Figure A.2: Simulated performance for existing EOMA and 18 objects, 6
partitions, 10 states and 10% noise.

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 305.55

Existing EOMA 30 objects, 3 partitions, 100 experiments and 0 % noise

Δ+ =Δ Δ

Figure A.3: Simulated performance for existing EOMA and 30 objects, 3
partitions, 10 states and 0% noise.

146

A. Extended Results for EPPs References

0 20 40 60 80 100
Experiment

0

50

100

150

200

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 145.46

Method 1 EOMA 18 objects, 6 partitions, 100 experiments and 0 % noise

Δ+ =Δ Δ

Figure A.4: Simulated performance for Method 1 EOMA and 18 objects, 6
partitions, 10 states and 0% noise.

0 20 40 60 80 100
Experiment

0

50

100

150

200

250

300

350

400

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 215.39

Method 1 EOMA 18 objects, 6 partitions, 100 experiments and 10 % oi%e

Δ+ =Δ *

Figure A.5: Simulated performance for Method 1 EOMA and 18 objects, 6
partitions, 10 states and 10% noise.

147

A. Extended Results for EPPs References

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

600

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 313.74

Method 1 EOMA 30 objects, 3 partitions, 100 experiments and 0 % oi%e

Δ+ =Δ *

Figure A.6: Simulated performance for Method 1 EOMA and 30 objects, 3
partitions, 10 states and 0% noise.

0 20 40 60 80 100
Experiment

0

50

100

150

200

250

300

350

Nu
m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 234.65

Method 2 EOMA 18 objects, 6 partitions, 100 experiments and 0 % n ise

Δ+ =Δ Δ

Figure A.7: Simulated performance for Method 2 EOMA and 18 objects, 6
partitions, 10 states and 0% noise.

148

A. Extended Results for EPPs References

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 332.98

Method 2 EOMA 18 objects, 6 partitions, 100 experiments and 10 % oi%e

Δ+ =Δ *

Figure A.8: Simulated performance for Method 2 EOMA and 18 objects, 6
partitions, 10 states and 10% noise.

0 20 40 60 80 100
Experiment

0

100

200

300

400

500

Nu
m
be

r o
f q

ue
rie

s b
ef
or
e
co
nv

er
ge

nc
e

Average 301.05

Method 2 EOMA 30 objects, 3 partitions, 100 experiments and 0 % n ise

Δ+ =Δ Δ

Figure A.9: Simulated performance for Method 2 EOMA and 30 objects, 3
partitions, 10 states and 0% noise.

149

B. Extended Results for NEPPs References

B Extended Results for NEPPs

In this section, some figures that were not included in Chapter 5 are pre-
sented.

0 200 400 600 800 1000
Experiment

0

100000

200000

300000

400000

500000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 68945.01

Method 1 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 10 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.1: Simulated performance with Method 1 EOMA for Problem 5,
with 10% noise and 6 states.

0 200 400 600 800 1000
Experiment

0

100000

200000

300000

400000

500000

600000

700000

800000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 111335.16

Method 1 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 15 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.2: Simulated performance with Method 1 EOMA for Problem 5,
with 15% noise and 6 states.

150

B. Extended Results for NEPPs References

0 200 400 600 800 1000
Experiment

0

200000

400000

600000

800000

1000000

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 248926.46

Method 1 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 20 % oi%e

Δ+ =Δ *

Figure B.3: Simulated performance with Method 1 EOMA for Problem 5,
with 20% noise and 6 states.

0 200 400 600 800 1000
Experiment

0

100000

200000

300000

400000

500000

600000

700000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 60644.21

Method 2 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 10 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.4: Simulated performance with Method 2 EOMA for Problem 5,
with 10% noise and 6 states.

151

B. Extended Results for NEPPs References

0 200 400 600 800 1000
Experiment

0

50000

100000

150000

200000

250000

300000

350000

400000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 31983.52

Method 2 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 15 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.5: Simulated performance with Method 2 EOMA for Problem 5,
with 15% noise and 6 states.

0 200 400 600 800 1000
Experiment

0

20000

40000

60000

80000

100000

120000

Nu
m
be
r o

f q
ue
rie

s b
ef
or
e
co
nv
er
ge
nc
e

Average 15812.46

Method 2 EOMA 20 objects, [2, 4, 6, 8] partitioning, 1000 experiments and 20 % oi%e

Δ+ =Δ *

+ + *

Figure B.6: Simulated performance with Method 2 EOMA for Problem 5,
with 20% noise and 6 states.

152

B. Extended Results for NEPPs References

0 20 40 60 80 100
Experiment

0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 6248.06

Method 2 EOMA 30 objects, [4, 5, 6, 7, 8] partitioning, 100 experiments and 10 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.7: Simulated performance with Method 2 EOMA for Problem 6,
with 10% noise and 18 states.

0 20 40 60 80 100
Experiment

0

20000

40000

60000

80000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 22631.58

Method 2 EOMA 30 objects, [4, 5, 6, 7, 8] partitioning, 100 experiments and 30 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.8: Simulated performance with Method 2 EOMA for Problem 6,
with 30% noise and 6 states.

153

B. Extended Results for NEPPs References

0 10 20 30 40 50 60
Experiment

0

200000

400000

600000

800000

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 134405.41

Method 2 EOMA 26 objects, [4, 9, 13] partitioning, 100 experiments and 10 % noise

Δ+ =Δ Δ

Δ+ ≠Δ Δ

Figure B.9: Simulated performance with Method 2 EOMA for Problem 7,
with 10% noise and 6 states.

0 20 40 60 80 100
Experiment

0

2500

5000

7500

10000

12500

15000

17500

Nu
m

be
r o

f q
ue

rie
s b

ef
or

e
co

nv
er

ge
nc

e

Average 4764.84

Method 2 EOMA 26 objects, [4, 9, 13] partitioning, 100 experiments and 30 % no se

Δ + = Δ Δ

Figure B.10: Simulated performance with Method 2 EOMA for Problem 7,
with 30% noise and 6 states.

154

C. List of Publications References

C List of Publications

The author of this thesis has two publications during her Master’s study,
which are listed below:

• R. O. Omslandseter, L. Jiao, and M. A. Haglund, “Field Measure-
ments and Parameter Calibrations of Propagation Model for Digital
Audio Broadcasting in Norway” was published in “2018 IEEE 88th Ve-
hicular Technology Conference (VTC-Fall)”, which is a flagship IEEE
conference. The paper is obtainable from IEEE Xplore.

• R. O. Omslandseter, L. Jiao, Y. Liu, and B. John Oommen, “User
Grouping and Power Allocation in NOMA Systems: A Reinforcement
Learning-Based Solution” was accepted as a full paper to “The 33th
International Conference on Industrial, Engineering & Other Appli-
cations of Applied Intelligent Systems (IEA/AIE 2020)”, and will be
part of their Springer publication. The paper is attainable upon re-
quest.

155

UiA
University of Agder
Master’s Thesis

Faculty of Engineering and Science
Department of Information and
Communication Technology
c© 2020 Rebekka Olsson Omslandseter. All rights reserved.

	Abstract
	Preface and Acknowledgements
	Acronyms
	List of Figures
	List of Tables
	Table of Notations
	I Research Overview
	Introduction
	Motivation
	Problem Statement of the Thesis
	Objectives of the Thesis
	Contributions
	Outline

	Background
	Reinforcement Learning
	Learning Automata
	The Environment
	The LA
	Fixed Structure Stochastic Automata
	The L2,2 Automaton
	The L2S,2 Automaton
	Multi-Action LA
	The Concept of Convergence

	Variable Structure Stochastic Automata
	Two Linear vssa Schemes

	Partitioning Problems
	Previous Solutions to the OPP/EPP
	The Hill Climbing Method
	The Basic Adaptive Method (BAM)
	Tsetlin and Krinsky Methods

	The Paradigm of OMA Algorithms
	The OMA
	The EOMA
	The PEOMA
	The TPEOMA

	II Contributions
	Partitioning Problems with Pre-Specified Cardinalities
	Motivation
	Problem Complexity
	Freedom of Cardinalities
	Evaluation Criteria
	Evaluation of Convergence Rate
	Evaluation of Converged Partitioning

	Proposed Algorithms
	Method 1
	Proposed Functionality
	Implementation

	Method 2
	Proposed Functionality
	Implementation

	III Experiments and Results
	Results for EPPs
	Simulation Provisions
	EOMA Variants
	Existing EOMA
	Method 1 EOMA
	Method 2 EOMA

	PEOMA Variants
	Existing PEOMA
	Method 1 PEOMA
	Method 2 PEOMA

	TPEOMA Variants
	Existing TPEOMA
	Method 1 TPEOMA
	Method 2 TPEOMA

	Discussion and Summary

	Results for NEPPs
	NEPPs with a GCD
	Method 1 EOMA
	Method 2 EOMA

	NEPPs without a GCD
	Method 2 EOMA

	Discussion and Summary

	IV Conclusions
	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendices
	Extended Results for EPPs
	Extended Results for NEPPs
	List of Publications

