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Abstract

The Tsetlin Machine have already shown great promise on pattern recognition and text categorization. The
board game GO is a highly complex game, and the Tsetlin Machine have not yet been tested extensively on
strategic games like this. This thesis introduces TsetlinGO and aims to Solve the game of Go with Tsetlin
Machine. For predicting the next moves a combination of Tsetlin Machine and Tree Search was used. In the
thesis a 9x9 board size was used for the game of Go, to prevent the problem from becoming to complex.

This thesis goes through hyper-parameter testing for classification of the Go board game. A solution with
Tree Search and Tsetlin Machine combined is used to perform self-play and matches between Tsetlin Machines
with different hyper-parameters.

Based on the empirical results, our conclusion is that the Tsetlin Machine is more than capable for classifi-
cation of the game of Go at various stages of play. Results from the experiments could be seen to achieve
around 90%, while further climbing up to around 95% upon re-training.

From examining the clauses, strong patterns was found that gave insight into how the machine works. The
Tsetlin Machine was able to play complete games of Go, making connections on the board through use of pat-
terns from the clauses. It was found that the size of the clauses had great impact as clauses with large patterns
had trouble getting triggered in early play. The high accuracy from classification was found to not correlate
with how strong the Tsetlin Machine would perform during self-play. This may indicate that producing training
data directly from self-play may be required to fine tune the assessment of board positions faced during actual
play. We can conclude that this thesis provide a benchmark for further research within the field of Tsetlin
Machine and the game of Go.
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Chapter 1

Introduction

1.1 Motivation

The problem outlined in this thesis is to solve the game of GO using the Tsetlin Machine and analyze patterns
in the results.

The game of GO is a highly complex game and it would be interesting to see how the Tsetlin Machine would
handle it using propositional logic. The Tsetlin Machine have previously shown great promise on pattern
recognition [14] and text categorization [15]. The Tsetlin Machine have not yet been extensively tested on
strategic games like Go, and that is a logical next step for the Tsetlin Machine.

The game of Go can consist of both small and larger patterns crossing the board. While the rules are simple it
is largely a tactical game where short term losses can give long term gains. The understanding of how neural
networks work is generally very poor, and not being able to look closer at what happens within the network
can lead to seemingly strong results being actually weak and a network that is easy to trick [24].

The game of Go have not yet been completely solved due to the high number of di�erent moves possible. A
19x19 Go board game have a higher amount of possible moves than Chess [23]. A 9x9 board will be used in our
approach to reduce the complexity allowing more resources to be used on optimizing settings and evaluating our
�ndings. The Tsetlin Machines patterns can also more easily be evaluated as the machine is more transparent
than other solutions currently available. Being able to closely examine the patterns gives more insight into the
function of the machine and how it handles the input.

The approach outlined in this paper focuses on training a Tsetlin Machine to being able to play the game of Go.
To play the game a tree search will be used instead of an algorithm in order to better test the Tsetlin Machine.
To limit the complexity of the problem a 9x9 board is used, which is often played by lower tier players of the
game. Further examination of the clauses and the patterns will give more insight into how the machine learns
and how it decides.
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1.2. Thesis de�nition Introduction

1.2 Thesis de�nition

The primary objective being outlined in this thesis is to solve the game of Go on a 9x9 board using the Tsetlin
Machine. The research is split into four goals following up with the thesis hypotheses.

1.2.1 Thesis Goals

Goal 1: Optimize hyper-parameters for the Tsetlin Machine using full boards. Evaluate classi�cation from a
given board position using the Tsetlin Machine.

Goal 2: Play the game of Go from a given position using Tree Search

Goal 3: Implement self-play on Go using Tree Search with di�erent Tsetlin Machine con�gurations.

Goal 4: Investigate the interpretability of the Tsetlin Machine by evaluating clauses and their patterns.

1.2.2 Hypotheses

Hypothesis 1: The Tsetlin Machine will be able to �nd patterns and predict the outcome of a game from
various stages

Hypothesis 2: The Tsetlin Machine will be able to play the game of Go.

1.2.3 Summary

The �rst goal of the thesis is to optimize the hyper-parameters for the Tsetlin Machine, and analyze the results
from classifying a Go board game from a given position using the Tsetlin Machine. Second, is to play the game
of Go from a given position using Tree Search. The third is to implement a solution for self play using Tree
Search and Tsetlin Machines with di�erent con�gurations. Lastly, the �nal goal is to analyze the interpretability
of the Tsetlin Machine by evaluating the clauses created and their patterns.

4



1.3. Contributions Introduction

1.3 Contributions

This thesis introduces further testing of the propositional logic in the Tsetlin Machine for the strategic game
Go. As well as an analysis of the clauses and patterns from the results of using the Tsetlin Machine on the
board game Go.

By looking at clauses and patterns from the Tsetlin Machine one can see how the Tsetlin Machine interpret
the game, which is not possible by using a neural network. This thesis presents a method on how to solve the
game of Go with Tsetlin Machine and pattern analysis of the results.

There is to the best of our knowledge no documented research on using the Tsetlin Machine to solving the
board game Go, or analyzing the patterns from Go.
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1.4. Thesis outline Introduction

1.4 Thesis outline

Chapter 2 goes through the introductory background research used as method in the research later on. It will
look into the Tsetlin Machine (2.1), the Go board game (2.2), Tree Search (2.3), and K-Fold Cross-Validation
(2.4).

Chapter 3 will explore the current state-of-the-art for solutions in Go, where it will delve into AlphaGo (3.1),
AlphaGo Zero (3.2), OpenSpiel (3.3), and lastly Monte Carlo Tree Search (3.4).

Chapter 4 outlines the data structure used later in the experiments. It will go through the original Dataset
(4.1), Datasets for various game states (4.2), Data conversion (4.3), and Implementation of 10-Fold (4.4).

Chapter 5 introduces the proposed solutions for the goals de�ned in subsection 1.2.1. Section 5.1 outlines a
conceptual model of how the implementation was solved. Section 4.3 describes the Data Conversion with Gomill.
While section 5.3 describes how the Tree Search and Self Play was done for the experiments in the thesis.

Chapter 6, 7 and 8 presents and discuss results from experiments using the solutions presented in chapter 5.

Chapter 9 concludes the thesis' hypotheses and provides a summary of what has been done in the thesis. Section
9.2 introduces the future research related to the thesis.
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Chapter 2

Background

In this chapter the background theory for topics related to the research performed later will be de�ned. Section
2.1 will go through how the Tsetlin Machine and the various versions work, and will move on to describe the
Go board game in section 2.2, which is used in this research. Thereafter, section 2.3 will go through the Tree
Search method. In the end, it will go through the K-Fold Cross-Validation method in section 2.4.

2.1 Tsetlin Machine

The Tsetlin Machine consist of a collective of Tsetlin Automatas, that use propositional logic to solve complex
systems [14]. A Tsetlin Automata can be considered as a state machine that votes on the outcome and are
either penalized or rewarded for the vote. In Figure 2.1 a two action Tsetlin Automaton is viewed with solid
lines for rewards and dotted lines for penalty. Receiving rewards will move the state further along the action
path it is on and to be more resolved in the action performed, while being penalized will move the state in the
opposite direction towards the center and a possible action change.

Figure 2.1: A Tsetlin Automaton with two actions reprinted from [14].

The system of a Tsetlin Machine is built up by features and clausescontained in one or more Tsetlin Machines.
A feature is a distinctive attribute of the system that is to be modelled. Each input variable would be considered
a feature. A clause, is a conjunctive clause, built up by feature vectors and the weights. A clause attempts
to display a pattern logically and are controlled by the Tsetlin Automatas. Each feature contains two literals
controlled by an automata, one will vote to include or exclude the feature in the evaluation. During training
the automatas will adjust the patterns in the clause based on getting rewarded or punished. A generic example
of a trained clause would be

C1 = x1 ^ x3 ^ x4:
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2.1. Tsetlin Machine Background

To achieve even better results the automatas are not only looking for patterns that contain certain input, but
also looking into what input a pattern should not contain. Thus, we can have more complex clauses, but also
more complex modeling tasks can be performed

C2 = : x1 ^ x2:

The positive and negative evaluations are kept separate for easier handling. The logical̂ operation will be
performed upon evaluation of the output, making a clause to output either 0 or 1. Upon evaluation, the Tsetlin
Machine sums up the clauses

C(input ) =
X

Positive �
X

Negative:

In Figure 2.2, the Tsetlin Machines relation to clauses, features and literals are shown. For each outcome
a Tsetlin Machine is created containing both non-negated clauses and negated clauses, a clause will have
a feature for each input variable, and two Tsetlin Automatas agreeing on wether to include or exclude the
feature(variable):

Figure 2.2: Clauses with features and literals.

In order to prevent multiple clauses from targeting the same pattern, a upper limit/threshold T is used. The
Tsetlin Machine will ask some of the clauses to change ifjC(input )j > T . This way the Tsetlin Machine tries
to force some clauses to choose another pattern.

A value s determine the frequency of feedback based on how the Machine and the clauses evaluate. The feedback
consist of two types, Type I and Type II. Their role is to combat false output, and to force a Tsetlin Machines
clauses into another direction should it evaluate falsely. They are triggered based on thes value, with a higher
value increasing the chance of change. Type I handles false negative output and Type II handles false positive
output. The reference tables for the two types can be seen in Figure 2.3 and Figure 2.4.
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2.1. Tsetlin Machine Background

Figure 2.3: Type I Feedback to combat False neg-
ative output, reprinted from [15]

Figure 2.4: Type II Feedback to combat False
positive output, reprinted from [15]

Building further on the Tsetlin Machine, Prof. Granmo looked into Convolutional Neural Networks (CNN)
and the success of such methods in pattern recognition [16]. CNNs have been very popular and numerous
di�erent CNN architectures have been published. A general problem with CNNs is their complexity and being
non-transparent. CNNs perform very well, but exploring why they perform so well is hard, which limits the
steps of improvement. The new Convolutional Tsetlin Machine is a Binary CNN. Binary CNNs is a way of
mitigating the intense computations needed for training CNNs by only allowing two possible values. This allows
accumulations to replace many of the intense multiplications CNNs normally use. The CTM builds upon the
TM and the learning is still bandit based. Being based on fast summation and logical operators the CTM is an
extreme Binary CNN.

While in the TM the whole image is generated into a clause, the CTM uses each clause as a convolutional �lter.
And each clause will have patches that can be a smaller window of the image. Important to note is that this
also requires the patch to capture the x and y coordinates of the selected window dimension. So whereas before
the TM gave out one clause for one image, a clause would have several patches based on how many di�erent
ways the window dimension can �t within the whole image.

The CTM will select one of the patches that made the clause evaluate to 1 and will update the clause based on
it. It will do this randomly to increase the diversity in the clauses.

In late November 2019, Prof. Granmo improved upon the Tsetlin Machine with the Weighted Tsetlin Machine
(WTM) [25]. The idea here was simple yet very e�ective, and involved making the voting system more e�ective.
Since a clause can occur several times, the old Tsetlin Machine would repeat it for each occurrence. The new
approach involved giving value or "weighting" the clauses. Instead of repeating the clausesw number of times,
one clause would getw number of weights and the duplicates would be removed. A weight could also be given
less value by assigningw = 0.5. This makes it both more compact, faster and reduces memory usage.

Prof. Granmo recently released a new addition to the Tsetlin family called pyTsetlinMachineParallel [8]. This
version is a multi-threaded version of the Tsetlin Machine that allows for both the convolutional and weighted
settings in addition to running several operation at the same time, the parallel version increase the speed
additionally and during testing no substantial di�erences was detected between the results of running the
original machine and the parallel version.
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2.2. Go board game Background

2.2 Go board game

Go is an ancient board game with simple rules, and a game of Go can last for hours [7]. Go rewards patience
and balance, and early mistakes or gains can easily be reversed as the game progresses. Go originated in China
more than 2500 years ago, and is still played in its original form [1]. The game has a long history in China,
Japan and Korea, and naturally has its strongest players in this region, while western countries got its eyes for
Go in the early 1900s. The game is usually played on a 19x19 grid, although 9x9 and 13x13 is also common for
beginners [3].

Go is a game between two players, named Black and White. It is played on a board, which consists of a plane
grid of 19 horizontal and vertical lines. A point on the board where the horizontal and vertical lines meet are
called an intersection. Two intersections are adjacent if they are distinct and connected by a horizontal or
vertical line with no other intersection between them. The tokens used to play in Go are called stones. Each
player is given su�cient stones to play with, usually 181 for Black and 180 for White. If this is insu�cient they
will be given more stones. An intersection can only have one of the following three states at any time during
the game; empty, occupied by a black stone, or occupied by a whites stone. A position consists of the state of
each intersection. It requires no information of whose turn it is, nor any information regarding previous moves
or states of the game. Two placed stones of the same color, or two empty intersections, are called connected if it
is possible to draw a trail from one to the other by only passing through adjacent intersections which have the
same state. A liberty of a stone in a given position is an empty intersection adjacent to the stone in question
or adjacent to a stone which is connected to the stone in question. [5, 4, 19, 20]

At the start of the game, the board is empty unless the players have agreed to have a handicap placed. Black
moves �rst, and the players alternate afterwards. When it is a players turn, they can either pass, and perform
no action, or play. A play comprise of the following steps:
Step 1: Place a stone of their color on an empty intersection.
Step 2: Remove any stones of the opponents color on the board that has no liberty.
(Step 3): Remove any stone of their own color on the board that has no liberty. [5, 4, 19, 20]

This means that on each turn a player moves once, either a play or pass. Step 3 can also be called self-capture
and most games states that any move that will result in a self-capture is illegal. To avoid very repetitive moves
the board can not change into a previous state. This rule is called theKo rule, and is there to avoid repetitive
capture as demonstrated in Figure 2.5 and Figure 2.6. [5, 4, 19, 20]

The game ends when both players have passed their turn consecutively. The position of the board at the
time both players pass consecutively is called the �nal position. When looking at the �nal position, an empty
intersection belongs to a player's territory if all the stones adjacent to it or to an empty intersection connected
to it are of that player's color. At the same time when looking at the �nal position, an intersection belongs to
a player's area if it either belongs to that player's territory or it is occupied by a stone of that player's color. If
one of the players has a higher score than the other, then the player with the highest score wins. If not, then
the game is drawn. [5, 4, 19, 20]

There are two main scoring systems; territory scoring and area scoring. For the territory a player's score is
determined by the number of empty intersections that the player has surrounded minus the number of stones
their opponent has captured. Area score is determined by the number of stones that player has on the board
as well as the empty area surrounded by the stones of that player. [5, 4, 19, 20]

Other rules that are optional are komi and handicap. Komi is a way to o�set black's advantage by having the
�rst move. It's a �xed amount of points, which are agreed upon before the match, added to white's score at
the end of the game. Common values used for komi are 5.5, 6.5, 7.5. If the game also uses handicap, the value
is often set to 0.5. Handicap is when the weaker player is allowed to take black and the �rst few moves for
white are forced as pass moves. The number of moves are usually the di�erence between the player's ranks.
[5, 4, 19, 20]

This project uses the area scoring as its scoring system. This is due to it using a Go library which has area
score implemented, but this swill be explained in more detail later in chapter 5
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2.2. Go board game Background

Figure 2.5: Illustration of Ko rule.

Figure 2.5 illustrates the Ko rule. To avoid the Ko rule player black can play a di�erent move in between the
capture of (D, 6) by white and recapture by black as seen in Figure 2.6.

Figure 2.6: Illustration of recapture by not breaking Ko rule.
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2.2. Go board game Background

Figure 2.7 depicts an example game of Go on a 4x4 board. For convenience when creating the �gure, the squares
are used as the intersections. In the �gure below you can see an example of a capture when Black does the
move D2 and White's stones at D3 and D4 gets captured. By following the area scoring the game ends up with
a score of 16 for Black, and a score of 0 for White. While if you follow the territory score then Black has a score
of 15, where 10 is territory and 5 is captures. White has 0 on this scoring system as well.

Figure 2.7: Illustration of an example game of Go.
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2.3. Tree Search Background

2.3 Tree Search

Often in board games there are several ways to achieve victory. The complexity in games can lead to an
extremely high number of possible moves and outcomes. To �nd the optimal solution, all options should be
tested, or one can settle for the best possible solution given time and cost required to achieve it.

In Figure 2.8 a tree search example is shown. An empty board tries all possible moves for player B, then the
new boards created will again try out all possible moves for player W.

Figure 2.8: Example of a Tree search.

There are many strategies to perform a tree search. Algorithms use di�erent approaches to achieve the desired
result. The di�erent algorithms can be grouped into two categories, uninformed search and informed search
[17]. Informed search algorithms uses a function to estimate additional information like cost to get there, called
heuristic values [9]. This way an informed search algorithm sacri�ces precision for speed. Uninformed search
does not contain heuristics, all they can do is evaluate if they have reached their goal or not [26]. There are still
di�erent methods of performing an uninformed search such as going depth �rst or breadth �rst. While informed
algorithms reduce the search space through its strategy of selecting the most likely candidates, uninformed
search traverse the three methodically requiring time and computer power [6]. If the search space becomes to
large, it becomes to complex for uninformed search algorithms.
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2.4. K-Fold Cross-Validation Background

2.4 K-Fold Cross-Validation

To avoid over-�tting, training and testing should be done with di�erent parts of the dataset. This could however
lead to selection bias, meaning that the selection for training and testing is abnormally good by pure chance of
random selection [27]. To avoid this, k-Fold Cross-Validation is commonly used within machine learning. The k
decides how many times the same test will be run with di�erent con�gurations of the dataset. A very common
number of k is 10. A common way of performing K-Fold Cross-Validation is splitting the dataset into k blocks
and divide it into test and training pair where each block is in the test set once and the remaining blocks are
in the training set [12]. An illustration of a k-Fold experiment is shown in Figure 2.9.

Figure 2.9: Illustration of k-Fold in practice.

Here the whole dataset is split up in blocks, where each block alternates being the test block while the rest are
used for training. Each result is then added and the average becomes the unbiased result.
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Chapter 3

State-of-the-art

3.1 AlphaGo

DeepMind is an organisation which was started by a team of scientists and engineers in 2010 that with the aim
to enhance the �eld of AI by using a interdisciplinary approach, by combining knowledge from several di�erent
�elds [2]. DeepMind have succeeded in producing methods, programs and results some say was years ahead of
its time. In 2014, DeepMind was bought by Google and have a special status under the Alphabet structure
which allows them to pursue research that might not be pro�table for years [28].

AlphaGo was introduced by Google DeepMind in early 2016 as a new approach towards mastering the game of
Go. Their approach consist of a combination of learning from games played by expert human Go players and
using self-play to optimize the outcome [29]. DeepMind �rst train a supervised learning network (SL), which
is then further improved by a reinforcement learning network (RL). The SL network was trained using moves
from expert human Go players. The SL network is further improved by the RL network that uses self play to
train the network more in the direction of winning games. This basically moves it from a predictive accuracy
direction towards a more long term view on winning the game. For each iteration, the RL network played
against a random previous version of itself. A regression trained value network was trained from 30 million
distinct self played games from the RL network and was further used to evaluate winning positions. Figure 3.1
illustrates how the asynchronous policy and value MCTS (APV-MCTS) traverse the tree.

Figure 3.1: AlphaGo's APV-MCTS reprinted from [29].
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3.1. AlphaGo State-of-the-art

APV-MCTS di�ers from normal MCTS by not doing the backpropagation and instead evaluate using the value
network and the the outcome of the simulation. AlphaGo was evaluated by holding an internal tournament
where AlphaGo was played against several of the presumed best Go programs at the time. It also managed to
win a tournament against human champions, which had never happened before. Notably Fen Hui a previous
three-time European Go champion said he had never seen humans play some of the moves AlphaGo did, but
after some time he was able to grasp how they connected to the rest of the board [22]. Some critics have
downplayed the AlphaGo and rather pointed towards the limits of its machine intuition [13]. To avoid loosing
on time an e�ectiveness algorithm tries to make sure that the approximately the same amount of time is made
on each move. While a human player would use longer time on deciding moments in the game, AlphaGo might
use to little time, evidently when it lost a game against grandmaster Lee.
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3.2. AlphaGo Zero State-of-the-art

3.2 AlphaGo Zero

AlphaGo Zero was introduced by DeepMind in 2017 and unlike the original AlphaGo, AlphaGo Zero starts
without any previous knowledge [30]. Starting with completely random moves it is trained entirely from self-
play. Figure 3.2 shows how AlphaGo Zero use self-play with tree search.

Figure 3.2: Illustration of how AlphaGo Zero use self-play reprinted from [30].

AlphaGo Zero was evaluated against the AlphaGo version that defeated the Go champion Lee Sedol 4-1, and a
second machine using the same architecture as AlphaGo Zero but trained based on expert human players moves
(Supervised learning). Figure 3.3 shows that although supervised learning achieved better prediction of expert
human moves, reinforcement learning quickly outperformed in evaluation rating.

Figure 3.3: AlphaGo Zero performance reprinted from [30].
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3.3. OpenSpiel State-of-the-art

3.3 OpenSpiel

In December 2019, the DeepMind team released OpenSpiel: A Framework for Reinforcement Learning in Games.
OpenSpiel is an open framework with multiple environment and algorithms and a large number of games
implemented[21]. OpenSpiel also allow for the user to add new algorithms and new games to the collection.
With a number of tools for visualization and evaluation OpenSpiel presents an easy entry into the world of AI
research. With the framework in place, new algorithms can be added and tested again di�erent games, and new
game can be added and tested against existing algorithms as well as new ones.
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3.4. Monte Carlo Tree Search State-of-the-art

3.4 Monte Carlo Tree Search

The Monte Carlo Tree Search or MCTS for short is a family of algorithms used to get the value of an action
through simulation and using this value to adjust the policy towards what the best next move will be [11].
MCTS will build a partial game tree, and as it goes on it will become more accurate as it will take into account
previous results from exploring the game tree.

MCTS will iteratively build a search tree until a constraint is reached. This constraint could be based on time,
memory or number of iterations. Upon reaching the constraint the best performing root action is returned.
Common criteria for selecting best performing root action could be based on maximum value output, most
visited node, a combination of value and most visited or nodes based on safety.
Figure 3.4 shows the four steps applied in a search iteration.

Figure 3.4: The four steps during an iteration in Monte Carlo Tree Search reprinted from [11].

1. Selection: Starting from the root node, nodes are recursively selected until a node that is not fully expanded
is found.

2. Expansion: The node is expanded, giving the tree a new leaf node.

3. Simulation: A simulation is run from this node.

4. Backpropagation: The value of the simulation run on this node is backpropagated up the nodes and
updates the statistics of the nodes.
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3.4. Monte Carlo Tree Search State-of-the-art

The most popular algorithm is the Upper Con�dence Bounds for Trees or UCT for short.

UCT = �X j + 2Cp

q
2ln n
n j

With Cp as a non-zero constant, exploitation based on reward are encouraged by the reward term�X j . Thep
(2lnn)=(nj ) term is there to encourage exploration of less frequented nodes.n is the visitation counter for

the current node, j is the selected child node, andnj is the visitation counter for the child node. The algorithm
gives each node a chance to be selected by balancing the exploitation and the exploration part. The exploration
part is there to ensure that even low rewarding nodes have a probability to be selected. When a child node is
visited nj will increase, giving the node slightly less probability of being selected, also then counter for the
parent will increase and thereby giving the sibling nodes a higher probability of being selected, which should
ensure that less frequented nodes will get higher chance of visitation as time goes on. A node will also keep
count of how many times it have been been visited and a total payed out reward value. Once a budget on either
most visited node, value or a combination as discussed earlier, is reached, the child (of the root) that scores the
best will be selected as the best move.
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Part II

Contributions
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Chapter 4

Data Structure

4.1 Dataset

The dataset used in this paper was collected from a site with a collection of self played games using policy
network probability [18]. The dataset 9x9 10k r104 144x20k also called 9x9Aya was chosen due to 9x9 being
less complex, while the number of games in the dataset was quite extensive and would provide good data
for further research. The 9x9Aya dataset contained 2,340,000 played games of variable length. Each game is
contained in a separate.sgf �le with all the moves played, and the score and information on which player won
the game. An example of how the �le looks is shown in Figure 4.1.

Figure 4.1: Shows the content of a game �le.

GM[ ] means what type of game is in question, SZ[ ] is the size of the board, KM[ ] is the amount of komi
assigned in the game, RE[ ] is the results from the game where it's represented by a color and the amount they
win by, and RU[ ] means what rule-set is being used for that game. W/B[ ] is a move for either Black or White
with the coordinates of the move. The number next to it is from the policy network probability used to create
the dataset. [10]
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4.1. Dataset Data Structure

Each �le contains the amount of moves done for that game. The minimum moves done in the dataset is 68, while
the maximum moves done is 189. The distribution of the dataset per moves done can be seen in Figure 4.2.
You can see from the �gure that most of the moves is located around the 80 to 108 moves area.

Figure 4.2: An illustration showing the distribution of the dataset by the total moves in the game.

From the player with black stones point of view, the Table 4.1 show the distribution of win, loss and draw in
the dataset.

Status Amount Percentage
Win 1,072,674 45.84 %
Loss 1,090,240 46.59 %
Draw 177,086 7.57 %

Total 2,340,000

Table 4.1: Dataset statistics for end game results when all moves have been completed.
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4.2. Datasets for various game states Data Structure

4.2 Datasets for various game states

Both playing a game to the end and stopping before the end would prove interesting, although before the end
the player currently in the best position might not be the one ending up as a the winner. In Table 4.2 the
datasets generated for moves completed is shown. As can be seen there was relatively few duplicates in the
dataset, so no measure to remove the duplicates was taken. When creating the datasets with a certain amount
of moves completed, only the boards that had said amount of moves or more were added to the datasets. This
means that if the dataset contains board positions after 80 moves, only boards that have 80 moves or more were
added. So if a board had 79 moves, it was excluded. Some datasets were also made with a game-threshold.
This means that the board game positions were after for example 80 moves, but only the boards that have for
example 90 or more moves were included.

Moves completed Dataset size Duplicates Win % Loss % Draw %
All 2,340,000 1 45.84 % 46.59 % 7.57 %
100 614,871 0 55.07 % 41.20 % 3.73 %
95 1,088,475 1 52.84 % 41.91 % 5.25 %
90 1,629,693 6 50.10 % 43.52 % 6.38 %

90 100T 614,871 2 55.07 % 41.20 % 3.73 %
85 2,062,356 11 47.95 % 44.97 % 7.09 %
80 2,283,679 17 46.36 % 46.20 % 7.54 %

80 90T 1,629,693 16 50.1 % 43.52 % 6.38 %

Table 4.2: Datasets with their amount of moves played and duplicates within each dataset.

Figure 4.3 shows the board at various stages of game play with the current score at the bottom, and illustrates
how the leader changes as the game progress.

Figure 4.3: A game board is shown in various period of play, 50% moves played, 75% and 100%.
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4.3. Data conversion Data Structure

4.3 Data conversion

In order to generate a dataset to predict win, loss or draw, the moves in the various game �les had to be played
out according to the moves documented, and the rules of the game. Figure 4.4 demonstrates the board before
a move, after a move and the board after the white stone was removed from the board according to the rules.

Figure 4.4: An illustration showing a move on the board leading to the capture of the opponents stone.

After performing the moves in the game �les, the resulting board needed to be prepared for input into the
Tsetlin Machine. The Tsetlin Machine uses bit format, and due to the 9x9 dimension, each color was given a
range of 81 bits each, totaling 162 bits + 1 bit to declare the winner. Figure 4.5 illustrates how a 3x3 dimension
board would have been translated into the bit format. Since the player with the black stones start the game,
the black positions is added �rst in the �nal string, followed by the white and then by the �nal result bit.

Figure 4.5: Generation of dataset from played moves using 1 for black win, 0 for white win and 2 for draw.
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4.4. Implementation of 10-Fold Data Structure

4.4 Implementation of 10-Fold

The total bit dataset was then divided into pure win, loss and draw datasets. Each dataset was then randomized
to avoid potential patterns in the descending datasets. The win, loss and draw datasets are then divided into 10
blocks ensuring that the same percentage of each type is represented in each block and each game only occurs
once. The blocks are then used to create a 10-fold dataset. To ensure that all experiments have the same train
and test sets, 10 training and 10 test datasets are created. Figure 4.6 show how using the blocks to create
training and test datasets ensures that no test set occurs in their partner training set, meaning that each k-Fold
will �rst be trained on 90% of the dataset, and then tested on the remaining unknown 10%.

Figure 4.6: k-Fold Cross-Validation performed on dataset.
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