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Abstract

Accurate prediction of electricity usage is critical for grid companies in or-
der to ensure reliable power supply for their customers. Many factors in-
fluence usage patterns, but generally they consist of yearly-, weekly- and
daily trends in addition to stochastic noise due to random user behaviour.
Besides the above-mentioned cyclic trends, certain yearly events, i.e. events
that take place once per year, can affect usage patterns significantly and thus
may cause abnormally high or -low power consumption. Therefore, it is in
the interest of grid companies to predict the consumption on such events
so they can take measures in advance, if necessary. Much effort has been
put into developing methods of improving forecasting accuracy through the
use of time series clustering in conjunction with the actual prediction al-
gorithm, but the methods’ ability to specifically improve the prediction of
power consumption on yearly events has not yet been evaluated. In this the-
sis, we are going to utilize machine learning algorithms to cluster electricity
usage patterns and predict power consumption for yearly events based on
real operational data at the substation level. More specifically, groups of
similar usage profiles are formed by a clustering algorithm, and rather than
training a prediction model on a single time series, a similar series from the
same cluster is appended. In order to extend the prediction model’s training
set in this manner, the appended time series is transformed to fit the scale
of the initial time series. Our experiments reveal that combining similar
time series, thereby introducing additional yearly events to the prediction
model’s training set, can improve the accuracy of the load forecast on the
event. This approach is also capable of compensating for missing events in
the initial time series, when present in the appended-, similarly behaving
time series.

Keywords: Short-term load forecasting; Smart-metering; Time series clus-
tering; LSTM; XGBoost; K-Means; Hierarchical clustering
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1.1. Background Introduction

1.1 Background

1.1.1 Power grid and smart-metering

Electricity is delivered to consumers through a power grid which is struc-
tured into multiple layers. In Norway, these are: Transmission-, Regional-
and Distribution grid. The voltage is higher in the two first layers, par-
tially in order to minimize power loss as the electricity is transported across
vast areas through the grid. The Distribution grid itself is divided into two
parts: high voltage, which holds 11kV or 22kV, and low voltage, which
holds 230V or 400V. Most households and small industries are connected
to the low voltage Distribution grid. Substations transform the electricity
from high- to low voltage in this final layer of the grid, and connect directly
to end-users. These vital parts of the power grid are required to withstand
the combined usage of all connected consumers at any given time.

A major challenge facing grid companies in this regard, is the fact that many
users display a similar pattern of power consumption, or usage profile. When
many end-users connected to the same substation share a similar usage
profile, their peak demand in the course of a day may align, sometimes
resulting in a short period where the substation is required to handle a very
high demand.

In recent years, efforts have been made to aid in the reduction of this aligned
peak load, made possible with the introduction of smart-meters. These
digital power meters measure usage autonomously, and data is regularly
sent to power grid companies. Previously, readings had to be done manually,
resulting in time series that were sampled monthly, with sometimes irregular
intervals. When the reporting of power consumption is performed digitally,
the transmitted packets can contain data with a much higher resolution that
is also more precise, as well as regularly spaced.

This detailed information about the consumers’ usage profiles can also be
made available in real time for customers through a Home Area Network
(HAN) port. By accessing the usage data in real time, end-users are able to
utilize third party solutions that will regulate various equipment like water
heaters and heating cables automatically to even out the usage profile when
demand is high. This is especially interesting to customers producing their
own electricity with, for example solar panels, as they will also be able to
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1.1. Background Introduction

use such solutions to heat up their water additionally when production is
high and usage low. By doing so, the heater can be utilized as a buffer
that will allow the end-user to maximize the energy saving potential of the
installed solar panels. Another way of using this data is through learning
thermostats, which will tailor its behavior to align with the requirements
of the user in an optimal way. This is done by allowing an algorithm to
control a thermostat autonomously so that, for example heating cables, are
warm in the morning, turned off until the afternoon in weekdays, and by
the time the end-user is home from work, they have been brought back to
the desired temperature. While this solution does not address the peak
load phenomenon directly, it shows the usefulness of learning algorithms
in problems related to the efficient reduction of electricity usage, given the
data from smart-meters.

The introduction of smart-meters also leads to an increasing insight into
the patterns of power consumption on higher levels of the power grid. Sub-
stations have their own power meters installed that measure the combined
usage of all connected end-users, and transmit regularly to the grid compa-
nies. Those in possession of such data will then be able to better understand
the needs of the consumers, and the load requirements for components in
the power grid at different times during the day, week, month and year.
This deeper understanding of the pattern of power consumption makes it
possible to more precisely scale the components within the power grid to
meet the demand. It is also important for making informed decisions when
selling and purchasing electricity. This can be done in several ways, for
example through statistical analysis.

1.1.2 Load forecasting

Forecasting is also a valuable tool for predicting future demand. Grid com-
panies are quickly building up large databases containing history of usage
values, and can greatly benefit from using this data to predict future demand
for electricity. One reason why accurate forecasting is important relates to
the strict requirements to reliably deliver high quality power. Load forecasts
can allow the grid company to take measures in advance of peak loads by
detecting them before they occur, and thus ensure reliable power supply for
the connected end-users. If a substation goes through a period of excessive
load, its expected lifetime is reduced. This could lead to more frequent
maintenance work.

3



1.1. Background Introduction

In order to select a suitable prediction algorithm, and analyze the problem
in an efficient manner, it is important to define the scope of the forecast.
Load forecasting is typically divided into three main categories, based on
how far into the future one aims to predict: short-term, medium-term and
long-term. These categories refer to load forecasts over a period of one hour
to a week, from one week to a year, and more than one year respectively [1].
Sometimes very-short-term load forecasting is added to these categories,
which refers to predictions made for the next hour or less than a day [2][3].
Each of the types of forecasts provide valuable information for different
applications. A long-term forecast might be useful when predicting the load
requirements of components in the power grid like substations. However,
as it is not plausible to make such predictions with the accuracy required
for dispatchers responsible for maintaining the grid’s security and reliability,
short-term forecasts are mostly used for this purpose [3]. One reason for this
is that it is difficult to acquire accurate exogenous factors like weather data
far into the future, and one would have to rely on historical climate data to
estimate the future values. In the case of a grid company taking measures
in advance of periods of excessive loads on substations, a good short-term
forecast would provide the accuracy needed, as well as give them the time
to do so.

For short-term load forecasting, statistical prediction models along with Ma-
chine Learning (ML) algorithms are widely used, and can be used to train
a model to recognize patterns and correlations with factors that contribute
to change in power consumption, or solely on the historical load values.
The latter application would be the prediction of what is known as a uni-
variate time series, meaning no exogenous factors are added to the training
set. Temperature is one such factor which typically has a strong negative
correlation with power consumption caused by the increase in usage from
heating when the temperature is low. When using exogenous time series
like temperature in order to make predictions, it will naturally restrict how
many days in advance a predictions be made for any given day to the same
as the weather forecast. This should be taken into consideration when train-
ing a prediction model, as it contributes to the trade off between prediction
accuracy and how far ahead one can predict.

In addtion to weather, there are other factors that can be drawn out from the
time stamp of each value in the series like hour of the day, day of week and
month of year from which an ML model can learn much about customers’
usage profiles. Learning daily and weekly patterns (given that such patterns

4



1.1. Background Introduction

exist) requires relatively short history of values, as the model will see 52
examples of weekly patterns, and 365 daily patterns in the course of a single
year. These factors, or ML features, will reveal the cyclic trends common
in such time series like repeating daily and weekly patterns. Yearly events,
on the other hand, require an entire year for the model to train on a single
example of a given occurrence. If the training set contains one example
where an event took place, and the temperature was particularly high or
low causing unusually low power consumption, perhaps because of limited
attendance. Then the predictions for next year is likely to be too low, as it
has not learned the correlation between the event and weather conditions
through observing that single example. More generally, the model might
not learn the relation between the event and the effect it has on power
consumption at all. This could cause the grid company to fail to predict a
period of excessive load for a substation related to such an event.

1.1.3 Usage profile clustering

With the improved data quality from smart-meters, it is also possible to
detect similarities in usage profiles. This can be used to improve prediction
accuracy, as described later in the thesis. This classification, or cluster-
ing, is useful in order to for example better understand the composition of
the customers under substations. Because it is not simply the number of
residential-, industrial- or any other type of customer connected to a sub-
station that determines whether the substation’s usage profile as a whole
resembles any of these profiles, it is of value to be able to categorize these
aggregated time series. While it can be easy to distinguish usage profiles
and detect similarities when manually observing the time series, it is a much
more difficult process to automate which is necessary in order to do this on
a large scale with thousands, or even hundreds of thousands of time series.
This additional knowledge about the usage profile measured at the substa-
tion level could potentially be useful for prediction algorithms, for adjusting
the algorithms according to the substation for which it makes predictions.

Depending on the goal of the classification, there are several ways one can go
about clustering time series: whole time series-, subsequence- and time point
clustering [4][5]. Whole time series clustering forms groups based on some
metric calculated for each time series in its entirety. This includes a feature
based approach, where for example statistical properties are gathered from
each time series and put into a vector, and similarity is determined by

5



1.2. Problem statement Introduction

comparing this vector of features. Another variant of whole time series
clustering is shape based. Like the feature based approach, it often utilizes
conventional clustering algorithms, but the similarity is measured based on
the actual shape of the time series. Non linear manipulation of the time axis
is also applied to be able to detect similarities even when the patterns are
not perfectly aligned. Subsequence clustering is when a single time series
is split into equally sized sections, and a clustering algorithm is applied to
this set of sequences. This could be used to detect patterns within a time
series and categorize for example daily usage profiles. Time-point clustering
creates groups of similar time points rather than sequences.

1.2 Problem statement

For a power grid company, it is necessary to accurately predict the electricity
usage of its customers in order to provide high quality power reliably. The
recent introduction of smart-meters provides modern algorithms with the
information needed to perform more precise predictions of power consump-
tion. The usage patterns are generally speaking largely made up of yearly-,
weekly- and daily cyclic trends in addition to stochastic noise. However,
some yearly events, like for example Christmas, affect consumers differently
resulting in unusually high or -low usage. It is in the interest of power grid
companies to predict these abnormalities as they might want to take mea-
sures in advance of the event. If such events are missing, or sparse in a time
series, they will be more difficult to predict, and a prediction model will
likely be less accurate. Power consumption is measured at multiple levels
of the power grid, and the combined usage of end-users measured at the
substation level is easier to predict than for each individual customer. It is
also a critical point in the power grid where overloads can occur as a result
of aligned peak loads related to yearly events.

1.3 Thesis definition

This thesis will attempt to compensate for sparsity in-, or lacking yearly
events in the training sets of ML prediction models. This will be achieved
through forming groups of similar time series in such a manner that an ML
model can learn across them to better understand the impact of a yearly
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1.3. Thesis definition Introduction

event on power consumption, and thus improve its accuracy when predicting
power consumption during the event.

1.3.1 Thesis goals

Goal 1:
Improve prediction of electricity consumption on yearly events at the sub-
station level.

Goal 2:
Develop a method to create a single training set from multiple similar time
series originating from different substations.

1.3.2 Hypotheses

Hypothesis 1:
A prediction of power consumption at the substation level around yearly
events can be improved by training an ML model on additional data from
other, similarly behaving time series.

Hypothesis 2:
Time series related to power consumption on the substation level can be
clustered into similarly behaving groups.

Hypothesis 3:
Substations with generally similar power consumption patterns also share
the same behavior in periods with a yearly event.

1.3.3 Summary

Electricity is delivered to end-users through a multi-layered power grid.
Substations are where often multiple end-users are connected, meaning that
these essential components of the grid have to endure the combined usage
of all connected users. Certain events take place only once per year, that
cause many end-users to alter their usage patterns in a similar way. This
can cause aligned spikes in power consumption that result in short periods

7



1.4. Thesis structure Introduction

where the substation must handle a much higher load than outside of such
events. The recent introduction of smart-meters makes it possible to deploy
sophisticated ML prediction models to make accurate load forecasts that
allow the grid companies to take measures in advance of such spikes. How-
ever, these yearly events can be difficult to predict, as they are sparse in the
time series. This thesis will address this problem through the combined use
of clustering- and prediction algorithms.

1.4 Thesis structure

The remainder of the thesis is organized as follows: In Chapter 2, previous
work related to load forecasting and clustering of usage profiles is presented.
Chapter 3 describes the proposed solution of this thesis which will address
the problem that has already been presented. Chapter 4 explains what-
and how experiments were conducted, and discusses the results. Chapter 5
evaluates the results, and whether the thesis goals are achieved or not, before
describing what can be done as further research on the topic of this thesis.
Appendix contains graphs showing aggregated results from the different
prediction experiments as well as examples of single predictions.
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Chapter 2

Related work
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2.1. Prediction algorithms Related work

This chapter will present work that has been done previously, leading up to
the state-of-the-art for the topic of this thesis. The chapter is structured as
follows: Section 2.1 will briefly describe the development from early statisti-
cal prediction models to more sophisticated ML algorithms. In Section 2.2,
different applications for clustering algorithms will be described as they re-
late to time series clustering. Section 2.3 will present the state-of-the-art by
evaluating various implementations of the combined use of clustering- and
prediction algorithms.

2.1 Prediction algorithms

While accurate load forecasting is a difficult task, as power consumption to
some degree is stochastic in nature, much effort has been put into tackling
this issue. Statistical approaches, such as Auto-Regressive Integrated Mov-
ing Average (ARIMA) [6] have for a long time been very popular. While
originally being used for univariate time series, it has been used in conjunc-
tion with other models that handle the effect of temperature on usage, as
seen in [7].

Another approach is to introduce temperature as an explanatory variable,
as seen in [8]. What is meant by this, is to introduce an additional correlated
but independent time series to the model. This method can be seen in later
iterations of such models, like Seasonal Auto-Regressive Integrated Moving
Average with eXogenous factor (SARIMAX), which can utilize additional
time series, like temperature, to improve predictions [9]. Another improve-
ment is that SARIMAX also handles some seasonality in the time series,
where as ARIMA requires the time series to be made stationary. This means
removing any trend and cyclic variations in the time series before training
the model, and then reintroducing it into the predicted values. A potential
drawback of statistical models for predicting power consumption is the need
for statistical analysis, and an in depth understanding of the time series at
hand. This makes the process difficult to perform autonomously on a large
scale, as the various time series may differ significantly in terms of statistical
properties.

In more recent years, the use of ML has become quite popular, as it can
learn the relationship between factors like weather data, holidays, day of
week, hour of the day and power consumption at a given point in time.
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2.2. Clustering algorithms Related work

All of these factors combined will, as a general rule, be good indicators on
which predictions can be based. Among the most popular types of algo-
rithms are neural networks like Recurrent Neural Networks (RNNs) [10],
Convolutional Neural Networks (CNNs) [11] and Artificial Neural Networks
(ANNs) [12]. Long Short-Term Memory (LSTM) belongs to the category
of RNNs, and has become a popular algorithm for short-term load forecast-
ing due to its ability to learn both short- and long term dependencies in
time series, given enough data [10]. It has also been shown to outperform
more traditional statistical prediction methods. ANN has been compared
to statistical approaches when performing short-term load forecasting, like
SARIMAX in [12], showing that for both one day ahead, and weekly pre-
dictions, SARIMAX outperformed the NN in the actual forecasting stage
of the experiments. Another popular ML algorithm is eXtreme Gradient
Boosting (XGBoost), which is a type of gradient boosted decision tree. It
has had much success in ML competitions on sites such as Kaggle where
one year 17 of the 29 winning solutions implemented XGBoost [13]. It can
be used for both classification and regression, and is a more transparent
algorithm than NNs. What is meant by this is that the trained models can
be analyzed more easily, even down to the level of looking at the splits in
each tree made during the training phase. It has also shown to perform bet-
ter than more traditional algorithms like the aforementioned LSTM [14] for
short-term load forecasting, both with the regular- and with the proposed
implementation of the XGBoost regressor.

2.2 Clustering algorithms

While much has been done to improve the prediction accuracy of electrical
power consumption, the process of forming groups of similar usage pro-
files has also been of interest for a long time. As previously stated, the
introduction of smart-meters provides a greater insight into the end-users’
consumption patterns. Many different clustering methods have been devel-
oped with the aim of capturing characteristics of parts of- or entire usage
time series, and categorizing them. Like with time series forecasting, there
are different kinds of time series clustering, and the optimal method, as
well as algorithm, is dependent on the goal one wishes to achieve. This sec-
tion will show some uses of popular clustering methods, and briefly explain
algorithms used in relevant research articles.
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2.3. Improving prediction through clustering Related work

Clustering customers based on their usage profiles has been shown in [15]
to be a viable method of correctly classifying the various types of customers
defined by power grid companies. Self-organizing maps were used in order
to capture the most characteristic time points within each series, removing
stochastic noise and reducing the computational complexity of the problem
by limiting the size of the training set. Then the actual clustering methods
were applied. Both K-Means and Hierarchical clustering were used for this
purpose. While these two algorithms are widely used, they work quite
differently. K-Means requires the number of clusters to be specified by
the user, and while there are methods to determine the optimal number of
clusters, it is still eventually determined by the user. Hierarchical clustering
will initially form a cluster of the two most similar candidates. Then the
cluster will be treated as a single candidate, and the process is repeated
until there is only one large cluster. The user is required to select at which
stage of this process the clusters will be decided. This is why it is said to
operate from bottom to top.

ARIMA has for a long time been a popular statistical prediction model.
However, it has also been used in model based clustering applications as
well [6]. Time series were modeled by the prediction algorithm, and clusters
were then created based on these modeled time series. The model captured
the characteristics of the time series in such a manner that clustering on
these yielded better results than when applying the clustering algorithm to
the original time series.

For shape based clustering, algorithms like Dynamic Time Warping are pop-
ular. As previously mentioned, a part of shape based clustering is applying
some manipulation of the time axis. Although this is done to more accu-
rately align time series displaying similar patterns, the current implementa-
tion does not preserve each time series unique characteristics sufficiently for
certain clustering applications [16]. This would in turn possibly compromise
the ability to create meaningful clusters of similarly behaving time series.

2.3 Improving prediction through clustering

Prediction models have been implemented in various ways in order to im-
prove their accuracy. The combined use of clustering- along with prediction
algorithms is one such implementation. This section will look at the use of
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clustering to improve predictions directly, or improving data quality allow-
ing for better prediction models to be trained. It will also reflect on how
the solutions proposed in the presented articles relate to the problem of this
thesis.

In the case of power consumption at the substation level, this can be done
as seen in [17][18][19] by clustering the customers under a single substation
based on similarity in consumption pattern. A forecast is then made for
each cluster, and the summarized forecasts are shown to be more accurate
than a single prediction made for the combined usage of all customers under
the same substation.

The aforementioned application of clustering to improve forecasting accu-
racy may help predict yearly events by better predicting each cluster’s be-
havior at that given point in time, but requires a large number of customers
to be connected to the substation in question. This is because in order
to find similarities in the different consumption patterns one would need
an adequate sample size, and also so that the similarities in the patterns
will stand out enough when the usage within each cluster is aggregated
compared to the stochastic noise.

However, more recently clustering has been applied to independent time se-
ries in order to improve load forecast accuracy, as seen in [5]. The goal was to
train an ML model across a cluster of similar time series in order to improve
forecasts. Predictions were made by an LSTM NN, and the time series were
clustered using several clustering algorithms with a feature vector consisting
of statistical properties describing each time series. Expanding the training
data in this manner is a way of addressing the challenge faced by more com-
plex forecasting models, such as LSTM and other ML algorithms, of having
enough data. Further more, it allows the model to better understand recent
data, rather than being affected by data that is outdated [5]. This means
that the pattern in power consumption is subject to change over time, as
the composition of customers underneath a single substation can change.
The dataset used to evaluate the model had a monthly resolution [20], and
consisted of 72 time series, each with at most 108 datapoints (months of
data), so limited historical values were a major challenge. The number of
datapoints to forecast was up to 12 months.

While this approach to clustering in order to improve forecast accuracy
does address the issue of having insufficient data to train an ML model
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like LSTM, the resolution of the time series must be much higher than in
these experiments in order to register a single day yearly event. However,
it shows that a prediction model can be trained on similar time series to
improve predictions for this application. If the method can be adjusted to
achieve similar results with an hourly sampled time series, then the ability
to predict yearly events can be evaluated.

Using similar sets of data to compensate for missing values has been done
in [21]. This method was aimed at creating a regularly spaced time series
from sets of irregularly spaced time series, as well as handling missing val-
ues with improved accuracy when compared to state-of-the-art imputation
methods. The article focuses on what it refers to as Missing at Random
(MAR) and Missing Completely at Random (MCAR), the distinction be-
ing whether the missingness of datapoints is dependent on variables in the
dataset or not [22].

This research highlights the usefulness of information drawn from similar
time series for handling the problem of missing values. This is important
because for a yearly event to be missing entirely, only a relatively small
number of datapoints have to be missing. However, this article does not
consider clustering to compensate for missing values in the context of pre-
dicting yearly events.

2.4 Summary

The work reviewed in this chapter shows that much effort has been put into
tailoring algorithms to both predict- and categorize time series for different
purposes. It also highlights that more recently, clustering- and prediction al-
gorithms have been combined to produce forecasts with improved accuracy.
However, there still exists a demand for an implementation that targets load
forecasting on yearly events. For such an implementation to be successful,
it would have to be able to predict electricity consumption more accurately
on these events, without compromising predictions outside of the events.

14



Chapter 3

Proposed Solutions
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3.1. Data preparation Proposed Solutions

In this chapter the proposed solution will be described in detail, and it is
structured as follows: Section 3.1 will go through the process of combining
similar time series to create a single, extended dataset. It will describe the
structure of the data, what data is used for the different parts of the solution,
and the origin of the data. For certain experiments, the dataset will have
to be transformed in order to induce stationarity. This process will also
be described in the same section. Section 3.2 will explain how the similar
usage profiles are categorized, what distance metric is used to determine
similarity, and briefly describe two different clustering algorithms that will
be compared in Chapter 4. It will also propose a multi-level approach
to clustering. Section 3.3 will explain how the models are trained on the
extended datasets to produce more accurate predictions for yearly events,
using two different algorithms. The features used to train the model and
make predictions will also be described. The parameters used to tune the
prediction algorithms will be revealed in the last part of this section.

3.1 Data preparation

3.1.1 Dataset structure

Information about power consumption is gathered from smart-meters mea-
suring usage at the substation level. The dataset has an hourly resolution,
is measured in kilo Watts (kW), and consists of 300 time series. These have
been selected in a way that ensures that substations with different compo-
sitions of connected end-users are represented. This is in order to better
preserve the diversity of substation usage profiles, while limiting the com-
putational complexity of both the clustering and prediction problem when
performing the experiments. Temperature, measured in Celcius, is used as
a feature for a set of experiments, and this data is calculated based on data
from the nearest weather stations for each substation.

Clustering is performed on data from 2018, and predictions are based on
data from 2018-06-01 to 2019-11-30, while predictions are made from 2019-
12-01 to 2019-12-31. This ensures that the clustering is not influenced by
the time period that will be predicted, in other words: the prediction test
set. It also ensures that when training the prediction models, the time series
in the training sets contain a single occurrence of the event to predict each.
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3.1. Data preparation Proposed Solutions

While the main focus of the experiments is the prediction accuracy on the
yearly event, which spans from 2019-12-24 to 2019-12-26, the predictions
are made for the entire month when the event takes place. This is to better
understand how the proposed solution performs outside of the event. If
the accuracy decreases significantly outside of the event, the solution will
be of no use. In addition to this, a cross-validation is performed for each
experiment and aggregated statistics from the results are compared between
the proposed solution and the baseline. This will aid in evaluating each
model’s performance outside of the test set.

3.1.2 Time series rescaling

When introducing other similar time series to the training set of a prediction
model, they have to be rescaled. This is because the goal is to simulate
having more data than exclusively the original time series, and if the other
time series are not to scale, the model will misinterpret the added data.
To achieve this, the time series are normalized around the mean for each
month. This involves calculating the monthly mean and standard deviation
of the original-, and the introduced time series, as shown in Algorithm 1
between line 4 and 9. Line 9 describes the following steps: The means are
first subtracted from the respective introduced time series, and then divided
by the standard deviations. Then the standard deviations from the original
time series are multiplied with the introduced time series, and the means
are added.

Algorithm 1 Monthly rescaling of added time series

1: Initialize timeSeriesCluster = {ts0, ..., tsN}
2: for each tsOriginal ∈ timeSeriesCluster do
3: tsAdditional← timeSeriesCluster.GetMostSimilar(tsOriginal)
4: for each month do
5: σorig ← Std(tsOriginal[month])
6: µorig ←Mean(tsOriginal[month])
7: σadd ← Std(tsOriginal[month])
8: µadd ←Mean(tsOriginal[month])

9: tsAdditional[month]← (tsAdditional[month]−µadd)×σorig
σadd

+ µorig
10: end for
11: end for
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Figure 3.1: Original time series within a cluster.

Although the additional time series behave similarly to the original time
series, they still have to be rescaled before they are introduced to the training
sets of their respective prediction models, as seen in Figure 3.1 and 3.2.
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Figure 3.2: Rescaled time series within a cluster.

As a part of the preprocessing stage in the prediction, usage values are
clipped at 0. If a value is below 0 after the rescaling, it will be replaced by
a 0, as negative values are impossible, yet a value of 0 can occur, and must
therefore be considered a real value.
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3.1.3 Time series filtering

When calculating the cross-correlation between time series, a minimum re-
quirement for number of overlapping data-points is set. If there are fewer
than the equivalent of a week, the time series is removed from the dataset.
After this filtering step, 272 of the 300 time series in the initial dataset
remained. For the clustering experiments, the time series are then limited
to the year prior to when the event that will later be predicted takes place.
This means that when predicting a yearly event in 2019, the time series are
clustered based on data from 2018. This is in order to test the validity of
the method in a production setting, where the time series are clustered one
year in order to improve predictions of the yearly event the following year.

3.1.4 Time series transformation

As stated in [10], LSTM can have difficulties learning low frequency cyclic
trends, or the long-term dependencies, in a time series unless enough data
is provided. Therefore, the aim is to ensure that the training data does
not contain such cyclic components. This is done by analyzing the auto-
correlation of the time series for different lag values, and subtracting a
lagged value that has a high statistical significance for a given data-point.
For the usage time series, a lag value of 168 was selected, corresponding
to a lag of one week, and 24 for temperature. When the time series used
to train a prediction model is differenced in this manner, the prediction
model will not learn the low frequency cyclic trends, but the more stochastic
residual. If the model is able to discover a pattern in the residual values, or
a correlation between these and a feature, a more accurate prediction can be
made by predicting the residual before reintroducing the trends that were
removed from the training set. In order to validate the stationarity of the
transformed time series, a windowed mean and standard deviation function
is then applied to the time series. If these properties are near constant with
no apparent trend, it suggests that the time series has achieved a level of
stationarity.
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Figure 3.3: Rolling mean and standard deviation for the raw- and differ-
enced usage time series.

An Augmenter Dickey Fuller test is used to further validate the stationarity
of the time series after the transformation. It evaluates the null hypothesis
which states that the time series has a unit root. This means that it displays
a form of seasonality, or cyclic trend. The results of the test will reveal with
what statistical significance the null hypothesis can be rejected.

Time
series

ADF
Statistic

p-value CV 1% CV 5% CV 10%

Raw -0.833 0.809 -3.431 -2.862 -2.567

Differenced -8.249 0.000 -3.431 -2.862 -2.567

Table 3.1: Results of an Augmented Dickey Fuller test before and after
differencing.

A p-value below 0.05 indicates that we can disprove the presence of a unit
root in the time series. As the results in Table 3.1 show, there exists a unit
root in the raw time series, but not after the differencing. We can also, by
looking at the ADF statistic, with a significance of less than 1% say that
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the time series is stationary after the differencing, since the value is below
the 1% critical value. Figure 3.4 and 3.5 show the effect of the differencing
on the correlation with lagged values in the time series, and that the lower
frequencies have a significantly reduced influence on the time series. It also
clearly shows the presence of a weekly cyclic trend in the raw time series,
as every 168th lagged value has a correlation of close to 1.
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Figure 3.4: Autocorrelogram shows a strong correlation with the lagged
value equivalent to last week’s value in the raw time series.
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Figure 3.5: Autocorrelogram shows that the correlation with last week’s
value is greatly reduced after differencing.

Figure 3.5 reveals that there still exist relatively highly correlated lagged
values for a given data-point in the time series. However, as the lag increases,
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this correlation clearly drops off within a week. The 95% confidence interval
for whether a lagged value is significant to the given data-point or not is
shown by the filled area of the plot. This means that statistically, we can
expect to see 1 non-significant lagged value outside of this interval for every
20th data-point, but the trend is still a decreasing correlation as the lag value
increases. This suggests that the low frequency cycles have been removed.

Through statistical analysis, the time series have been made stationary
through differencing. By removing the low frequency cyclic trends, LSTM
will be able to discover patterns in the residual time series, even if it lacks
the necessary data to learn the long-term dependencies. The removed trends
will then be reintroduced to the predicted values.

3.2 Clustering

3.2.1 Usage profile clustering features

There are several categories of whole time series clustering: feature based,
shape based and model based. As stated in [5], an advantage of feature based
clustering is its robustness to missing data-points, noise and scale difference
of the time series. For example, normalized features can be used, removing
the need to rescale each time series when clustering, if it is beneficial to
do so. Time series can also be of different lengths, and still be accurately
represented by features extracted from them, making the approach more
robust in this regard compared to other methods.

The cross-correlation coefficient between two time series is a normalized
measure of similarity based on the change in difference between the data-
points in each time series. This will be a useful measure of behavioral
similarity, as it will be directly affected by the relative change in power
consumption between substations. As it is a normalized feature, there is no
need for rescaling or normalization of the time series when clustering.

However, as previously mentioned, there are several cyclic trends that will
affect the correlation between time series: yearly, weekly and daily. For
many substations, the yearly trend, which to a large degree is dependent on
the temperature, will have the greatest influence on the cross-correlation.
On top of these low frequency cycles, there will typically be a weekly pattern.
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Lastly, as a general rule, there exists a daily trend. The importance of each
of these trends will depend on how far one wishes to predict, but they should
all be accounted for in the clustering process, and a cluster should show
similarity also in the higher frequency components. Ideally the weekly trend
should indicate how the time series responds to yearly events by revealing
the behavior around more frequent, yet special events like weekends.

The experiments conducted in Chapter 4 will include a multi-level cluster-
ing, as described in Algorithm 2, one for each component in a predefined
set aimed at targeting the cyclic trends. The results will be compared to
a baseline where the clustering algorithm is implemented on the raw time
series correlation matrix. The time series will be transformed as needed
to calculate these different correlation coefficients. This will be achieved
through the use of a windowed mean function of appropriate size to smooth
out the raw time series to remove higher frequencies. For the yearly com-
ponent, this will be enough, but in order to isolate the higher frequencies,
the lower frequencies must also be removed. These lower frequencies will be
removed by subtracting a smoothed version of the same time series.

Algorithm 2 shows pseudo code for the multi-level clustering method. The
different components that will be extracted from each time series are: yearly,
yearly residual, monthly residual and weekly residual. Each of these compo-
nents are defined by an upper- and lower frequency cut-off value, as shown
in line 1. The values can be seen in Table 3.2. The low-pass values refer to
the size of the windowed mean function applied to smooth the time series.
High-pass filters also refer to the the same windowed mean function, but
when this filter is applied, the resulting time series is subtracted from the
original time series. For the yearly component, the high-pass filter is set to
NaN, which means that this filter is not applied. The same is true for the
low-pass filter in the weekly residual component.

23



3.2. Clustering Proposed Solutions

Algorithm 2 Multi-level clustering

1: Initialize components =
{{yearly : (NaN, lowpass)},
{yearlyResidual : (highpass, lowpass)},
{monthlyResidual : (highpass, lowpass)},
{weeklyResidual : (highpass,NaN)}}

2: Initialize timeSeries =
{{tsIdx0 : ts0}, ..., {tsIdxN : tsN}}

3: Initialize tsComponents = {}

4: for each compName, limits ∈ components do
5: tsComponents.update({compName : {}})
6: for each tsIdx, ts ∈ timeSeries do
7: tsDecomposed← FilterHighpass(ts, limits[0])
8: tsDecomposed← FilterLowpass(tsDecomposed, limits[1])
9: tsComponents[compName].update({tsIdx : tsDecomposed})

10: end for
11: end for

12: for each compName, ∈ components do
13: tsComponent← tsComponents[compName]
14: corrMat← CreateCorrelationMatrix(tsComponent)
15: euclidMat← CalculateEuclideanDistance(corrMat)
16: tsCluster ← C[clusterIdx] ∼ CreateClusters(euclidMat)
17: tsComponents← FilterT imeSeries(tsComponents, tsCluster)
18: end for
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Component Low-pass High-pass

Yearly 672 NaN

Yearly residuals 168 672

Monthly residuals 72 168

Weekly residuals NaN 24

Table 3.2: Table shows filter cut-off values.

For reference, the low-pass filters in Table 3.2 starting from Yearly are the
equivalent of four week-, one week- and three day intervals. The yearly, and
yearly residual components are interpolated using a quadratic function as
the large window sizes make them prone to missing values. The graphical
representation of these components can be seen in Figure 5.41, 5.42, 5.43
and 4.1. Then, between line 4 and 11, the individual time series will be
decomposed and mapped to the id of the original time series, before being
mapped again to their respective component names. The last section, from
line 12 to 18, describes the creation of the correlation matrices for each
component, calculation of the pairwise Euclidean distance and clustering
process. For each iteration of the loop, a cluster is selected in line 16, and
the clusters formed in the next iteration will be from these time series on
the next component. Euclidean distance is a popular measure of distance
used for clustering [16], and will allow the model to be able to determine
how close each time series is to another in terms of the similarity measure,
which in this case is cross-correlation.
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Figure 3.6: Figure shows the cluster selection process where time series
are grouped based on cross-correlation on different frequency components
within the time series.

3.2.2 Usage profile clustering model

There exists a wide range of clustering algorithms that are useful for dif-
ferent applications when clustering time series. Amongst the most popular
are Hierarchical clustering and K-Means. Hierarchical clustering has the
advantage of allowing the number of clusters to be determined indirectly
by a parameter defining a clustering threshold, as explained earlier. It can
be used to cluster similar time series based on a correlation matrix as de-
scribed in [23]. The distance between each cluster candidate to each cluster
can also be measured from for example the farthest-/nearest point or cen-
troid of each cluster. The latter of which allows one to lessen the effect
of outliers on the distance between clusters and new candidates. However,
complexity increases faster per data-point than with models like K-Means,
thus making it less ideal for large clustering operations. Since both K-Means
and Hierarchical clustering are commonly used clustering algorithms, they
will both be tested, and results will contribute to the model selection.
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3.3 Prediction with clustering

3.3.1 Load forecasting features

In order to analyze the effects of introducing additional data from a cluster
to the training set, features should be limited to time stamp meta data for
a portion of the experiments. What is meant by this, is to limit the features
to what can be deduced from the time stamp of each data-point within each
time series: year, month of year, day of month, day of week, hour of day
and information about various holidays. This is in order to isolate the effect
of the additional data as much as possible. Importance of relevant features
will be analyzed and compared between the models where additional events
were introduced to the training set, and where they were not.

The time stamp meta data will not be represented categorically or numeri-
acally, i.e. the feature hour being 1, 2, 3, etc., but rather as a cyclic feature,
represented by the sine and cosine values as seen in [24]. The cyclic features
are created as shown in Equation 3.1 and 3.2: Each value in the feature col-
umn is first rescaled so they span from 0 to 2π. Then the sine and cosine
function is applied, resulting in a column for the sine- and another for the
cosine value.

cosFeature = cos(2π × featureV alue/lengthOfPeriod), (3.1)

sinFeature = sin(2π × featureV alue/lengthOfPeriod). (3.2)

The advantage of this approach over using categorical- or numerical features
in this case is that it will more accurately represent the relationship between
the values of the features: hour 23 is as close to hour 0 as hour 0 is to hour
1. This will not be reflected when the feature is represented categorically or
numerically. The aim is to allow the models to better understand the cyclic
nature of these features, thus improving prediction accuracy. Then other
features can be added, such as temperature, and the effect can be analyzed
further. The impact of introducing additional events will then be analyzed
in the same manner as described earlier.

The features used for the prediction models in the experiments conducted
in Chapter 4 will be: a cyclic encoding of hour of day, -day of week and
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-month of year, and a column for a selection of Norwegian holidays where
1 indicates that the observation takes place on the corresponding holiday,
otherwise the column is 0. The set of holiday features consists of: Box-
ing Day, first- and second day of Pentecost, Easter Sunday and -Monday,
Workers’ Day, New Year’s Eve, Constitution Day, Christmas Eve, Ascen-
sion Day, Good Friday, Easter (whole week) and Maundy Thursday. For a
set of experiments, temperature is also added.

3.3.2 Load forecasting model

XGBoost and LSTM are popular ML prediction models that are effective at
making short-term load forecasts. A major advantage of using tree models
like XGBoost over various forms of NNs is that they can more easily be
analyzed. The forests created in the training phase can be displayed, and the
training can then be evaluated. This is especially useful when experimenting
with training models in less traditional ways, like introducing multiple time
series into the training set.

XGBoost can also display feature importance by various metrics, both by
number of times the feature made an impact on the prediction, as well as the
improvement in prediction accuracy. This can be useful when evaluating the
features related to the yearly events when additional events are added, and
will be used to analyze the effect of adding time series to the training set.
XGBoost has been used specifically for this purpose in earlier research [25],
in conjunction with another ML model for performing the actual prediction.
There are various metrics for estimating the importance of a feature, but
for this purpose, it is most useful to look at gain. Rather than for example
counting the number of times the feature occurs in each tree or branch in
the trained model, gain is determined by the degree to which the feature
improves the prediction accuracy during the training phase.

Predictions will also be made using LSTM to see if the method of intro-
ducing additional data from similar time series can be successfully imple-
mented using a popular state-of-the-art prediction algorithm for short-term
load forecasting. Like with the XGBoost experiments, a regular implemen-
tation of LSTM will be used as a baseline, and results will be analyzed and
compared to the clustering approach where the model trains on additional
time series. The necessary data preparation described earlier will be applied
when utilizing LSTM, and predicted values will be processed accordingly.
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Algorithm 3 Prediction based on similar time series

1: Initialize timeSeriesCluster = {ts0, ..., tsN}

2: for each tsOriginal ∈ timeSeriesCluster do
3: tsAdditional← timeSeriesCluster.GetMostSimilar(tsOriginal)
4: tsAdditional←MonthlyRescale(tsAdditional, “mean”)

5: if includeTemperature then
6: tsAdditional← AddTemperature(tsAdditional)
7: tsOriginal← AddTemperature(tsOriginal)
8: end if

9: if predictionAlgorithm == “LSTM” then
10: tsAdditional← Stationarize(tsAdditional)
11: tsAdditional← Normalize(tsAdditional, “minmax”)
12: tsOriginal← Stationarize(tsOriginal)
13: tsOriginal← Normalize(tsOriginal, “minmax”)
14: end if

15: tsCombined← tsAdditional.Append(tsOriginal)
16: tsCombined← CreateT imeStampFeatures(tsCombined)
17: model← model.T rain(tsCombined)
18: prediction← model.Predict()

19: if predictionAlgorithm == “LSTM” then
20: prediction← DeTransform(prediction)
21: end if
22: end for
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Algorithm 3 shows the pseudocode for the prediction method. Firstly, a
cluster of time series from Section 3.2 is selected. Then, for each of the time
series, the following steps are applied: Line 3 is where the time series which
is most similar to the original time series based on the weekly residuals is
drawn out from the cluster. Then, in the following line, it is rescaled for
each month as explained at the beginning of the chapter and in Algorithm 1.
For the experiments including weather data, temperature is added to both
time series. Between line 9 and 14 each time series is made stationary and
normalized if the selected prediction algorithm for the experiment is LSTM.
For XGBoost, this step is not applied. The original- and the additional time
series are then combined to a single time series, which the prediction model
is trained on. In line 16, features from the time stamp of each value in the
training set, like hour of day and holidays, are extracted. If the prediction
algorithm used is LSTM, the predicted values must be detransformed as
they will be normalized and stationary like the training set.

The LSTM used in this thesis is a Python implementation provided by
Keras. The model consisted of one LSTM layer with 48 hidden neurons,
and a Dense layer, also provided by Keras. Instead of adding an Input
layer, the input data was reshaped to a 1D array, and its dimensions were
passed directly to the first layer of the model. The batch size was set to
168, updating weights for each time the model has seen a week’s worth
of hourly values, and epochs to 100, passing the training set through the
network 100 times. The selected number of epochs resulted in the loss
function converging without increasing after reaching its minimum, which
could have suggested overfitting. Mean squared error was used as the loss
function, and the learning rate was set to 0.01.

The XGBoost model used is also a Python implementation provided by the
XGBoost API. The fraction of randomly sampled feature columns before
creating each tree in the training phase was set to 0.4, and the randomly
sampled fraction of observations was set to 0.6. A learning rate of 0.01
was used. Max depth of each tree in the trained model was set to 10,
minimum child weight to 1.5, and regularization parameters gamma, reg -
alpha and reg lambda were set to 1, 0.75 and 0.45 respectively. The number
of estimators was set to 2000 and the objective function reg:squarederror
was used to train the model.
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Chapter 4

Experiments and Results
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4.1. Clustering model evaluation Experiments and Results

This chapter will present and analyze the results of the experiments con-
ducted as part of evaluating the proposed solution, and is structured as
follows: Section 4.1 will show and explain results that contributed to the
clustering model selection. It will also describe how the models are im-
plemented for the different experiments. Two clustering algorithms are
evaluated, both with the proposed multi-level implementation, as well as
a baseline approach. Section 4.2 will explain the choice of clustering al-
gorithm. Section 4.3 will present the actual prediction results and how
the experiments were conducted. The proposed solution where prediction
models are trained on multiple time series is compared to a baseline where
models are trained on a single time series each. Section 4.4 will analyze the
results further as they relate to the problem statement, and comment on
various aspects of the experiments and how they were conducted.

4.1 Clustering model evaluation

In this section, two clustering algorithms will be evaluated: Hierarchical
clustering and K-Means. Each algorithm will be implemented using a multi-
level approach, as explained in Chapter 3. The results will be compared with
each other, as well as with a baseline implementation of the algorithms. The
goal of these experiments is to determine which algorithm to use as part of
the proposed prediction with clustering method.

In the following experiments, the unprocessed time series are referred to
as the raw time series, meaning that no components like cyclic trends are
extracted. This method of clustering will act as a baseline for each model,
and will be compared to the multi-level clustering implementation. Results
will be presented as tables with statistics describing the clusters formed by
each implementation of the clustering algorithms. Because the statistics are
from the final clusters, those that are formed by clustering on multiple time
series components have one statistic for residential profiles, and another for
industrial profiles. These two sets of profiles distinctly resemble the profiles
of substations where all connected usage points are either residential or
industrial, but have been detected at an earlier stage in the multi-level
clustering implementation.

After filtering the time series as a part of the data preparation stage, the
remaining dataset consists of 272 time series. In order to create the fea-
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tures for the clustering algorithms, the correlation matrix is made, and the
pairwise Euclidean distance is calculated. In order to evaluate the pro-
posed clustering algorithms’ ability to form groups based on the pairwise
Euclidean distance of the cross-correlation between the time series, statistics
are gathered from each cluster for each implementation, which are labeled
as follows:

• Hierarchical clustering on the raw time series (HR)

• Hierarchical clustering performed on multiple components (HMI for
industrial clusters, HMR for residential clusters)

• K-Means on the raw time series (KR)

• K-Means performed on multiple components (KMI for industrial clus-
ters, KMR for residential clusters)

Statistics for each model implementation are calculated by looking at the
correlation matrix of each cluster, denoted as clusterCorrMats in Algo-
rithm 4. This algorithm is run for each model implementation in order
to better evaluate the clustering performance. The number of rows, mean
and standard deviation are calculated for each column of the matrix, as seen
between line 5 and 9. The result is that each cluster’s correlation matrix is
reduced to a set of aggregated statistical values for each column. The aver-
age of each statistic from the current matrix is stored from line 10 to 12. At
this point each matrix is reduced to a single average mean, -standard devi-
ation and -row count value. Then an average for each statistic is calculated
across all matrices, as shown from line 14 to 16, giving a general overview
of each cluster’s similarity with a single average cluster size number, -mean
and -standard deviation. In line 17, the total number of time series in all
clusters is added resulting in the following values: average cluster size (avg
cnt), average mean correlation (avg mean), average standard deviation (avg
std), and total number of members in all clusters (tot cnt). This is done
for the original, unprocessed time series within each cluster, as well as each
time series component.
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Algorithm 4 Correlation matrix statistics

1: Initialize clusterCorrMats = {corrMat0, ..., corrMatN}

2: Initialize avgStats = {{std : {}}, {mean : {}}, {cnt : {}}}

3: for each corrMat ∈ clusters do

4: Initialize stats = {{std : {}}, {mean : {}}, {cnt : {}}}

5: for each col ∈ corrMat do
6: stats[std].append(Std(col))
7: stats[mean].append(Mean(col))
8: stats[cnt].append(Len(col))
9: end for

10: avgStats[std].append(Mean(stats[std]))
11: avgStats[mean].append(Mean(stats[mean]))
12: avgStats[cnt].append(Mean(stats[cnt]))
13: end for

14: Initialize avgCnt←Mean(avgStats[cnt])
15: Initialize avgMean←Mean(avgStats[mean])
16: Initialize avgStd←Mean(avgStats[std])
17: Initialize totCnt← Sum(avgStats[cnt])
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When determining the parameters for the different clustering algorithms, it
is important to ensure that the resulting clusters contain distinct groups like
residential- and industrial profiles. However, if many time series with one of
these usage profiles appear as lone members in their own clusters, the clus-
tering will not be of any use, as there will be no other time series to append
to the original time series to create the extended prediction model training
sets. The number of centroids for the KR clustering experiments was set to
a value of 100, at which distinct clusters of usage profiles emerged, without
removing the residential or industrial profiles entirely. With the number set
too high, the remaining clusters would mostly be various residential profiles.
In the HR clustering experiments, a similar goal was achieved by selecting
a threshold value of 0.05. This value is relative to the maximum value of
the matrix used to evaluate the distance between cluster candidates. For
the multilevel experiments, the threshold and number of clusters was set to
an appropriate value for each step in order to first filter out outliers for the
yearly component. The process was then repeated for the yearly-, monthly-
and weekly residuals. For the K-Means experiments, the number of yearly
clusters was set to 2, yearly residuals 2, monthly residuals 4, and weekly
residuals for residential- and industrial clusters 10. For the Hierarchical
clustering experiments, the threshold value relative to the maximum value
of the distance matrix was set to 0.2 for the yearly component, 0.5 for the
yearly residual, 0.175 for the monthly residual, and 0.15 for the weekly
residual for the industrial cluster, and 0.05 for the residential.

stat HMI HMR HR KMI KMR KR

avg cnt 4.5 8 9 5.333 9.167 3.804

avg
mean

0.902 0.962 0.893 0.882 0.915 0.848

avg std 0.077 0.028 0.085 0.077 0.046 0.156

tot cnt 18 16 171 16 55 213

Table 4.1: Statistics for original component of time series.

Table 4.1 shows statistics from the final clusters on the unprocessed time
series for each model and implementation. There is a high average corre-
lation for all model implementations, but the total number of time series
within each cluster varies greatly. For HMI, HMR, KMI and KMR, this is
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mostly due to the filtering that happens when the residential and industrial
clusters are formed at the monthly residual level. For HR and KR, clusters
that consist of only a single member will be filtered out. Because Hierar-
chical clustering only forms groups of the most similar member candidates
for each step of the algorithm, outliers might be filtered out more easily
compared to when K-Means is implemented and clusters comprised of only
a single member are removed. This could explain why the total count is
lower when Hierarchical clustering is implemented.

stat HMI HMR HR KMI KMR KR

avg cnt 4.5 8 9 5.333 9.167 3.804

avg
mean

0.921 0.998 0.977 0.964 0.991 0.912

avg std 0.078 0.002 0.023 0.032 0.008 0.106

tot cnt 18 16 171 16 55 213

Table 4.2: Statistics for yearly component of time series.

When analyzing the yearly component in Table 4.2 of the same clusters, the
cross-correlation is, as hypothesized, high for both HR and KR as it will
have had a large effect on the correlation between the raw time series.

stat HMI HMR HR KMI KMR KR

avg cnt 4.5 8 9 5.333 9.167 3.804

avg
mean

0.789 0.958 0.812 0.84 0.885 0.792

avg std 0.167 0.029 0.172 0.102 0.062 0.22

tot cnt 18 16 171 16 55 213

Table 4.3: Statistics for yearly residual component of time series.

For the yearly residual, there is a distinct drop in correlation for most profiles
in Table 4.3. The standard deviation is also higher for these clusters. HMI
has the lowest average cross-correlation, while HMR has the highest. The
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residential profiles clustered using K-Means are also more highly correlated
for this component than the industrial profiles on average.

stat HMI HMR HR KMI KMR KR

avg cnt 4.5 8 9 5.333 9.167 3.804

avg
mean

0.95 0.883 0.804 0.912 0.741 0.772

avg std 0.038 0.081 0.158 0.059 0.124 0.221

tot cnt 18 16 171 16 55 213

Table 4.4: Statistics for monthly residual component of time series.

At the monthly residuals, shown in Table 4.4, the model implementations
start to deviate in terms of both consistency as seen in avg std, and avg mean.
The main reason why Hierarchical clustering is able to outperform K-Means
at this point might be due to the bottom to top approach. This could lead
to Hierarchical clustering being able to better distinguish the residential
profiles without filtering out the industrial profiles in later iterations of the
clustering operation. Note that the filtering is not part of the algorithms
themselves, but clusters of single time series are filtered out as part of the
clustering script.

stat HMI HMR HR KMI KMR KR

avg cnt 4.5 8 9 5.333 9.167 3.804

avg
mean

0.902 0.872 0.677 0.863 0.691 0.661

avg std 0.079 0.091 0.236 0.083 0.134 0.315

tot cnt 18 16 171 16 55 213

Table 4.5: Statistics for weekly residual component of time series.

Finally, Table 4.5 shows the statistics for the correlation between the weekly
residuals. At this level, both models outperform their baseline implementa-
tion, in terms of mean values and standard deviation. Figure 4.1 shows the
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weekly residual component of a sample of time series. It becomes clear that
this component can reveal certain characteristics of a substation’s usage
profile on events related to time stamp meta data, like day of week. There-
fore, it is hypothesized that a high cross-correlation between time series in
this component is a good indication of similar behavior on yearly events.
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Figure 4.1: Weekly residual component.

4.2 Clustering model selection

From the results of the experiments analyzed in this chapter, it is concluded
that Hierarchical clustering should be utilized as a part of the proposed
prediction method. This is because it is difficult to determine the optimal
number of clusters in this case, as is required when using K-Means, and it is
more logical for this application to let the number of clusters be determined
by a similarity parameter. It would also seem that outliers will not be
assigned a cluster until later iterations of the clustering process, which allows
them to be filtered out through the removal of clusters with only a single
member. The algorithm will be implemented using the multi-level clustering
approach. This will ensure a high cross-correlation for all cyclic trends
described earlier, and also make use of the distinction between residential-
and industrial profiles found in the clustering based on monthly residuals. In
Section 4.3, a single residential cluster, along with a single industrial cluster
will be used to evaluate the prediction models, as well as the proposed
solution where the models are trained on additional time series.
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4.3 Prediction with clustering

The prediction experiments were conducted using two different algorithms:
XGBoost and LSTM. A cluster of industrial profiles, and a cluster of resi-
dential profiles were used, and a prediction was made by each algorithm for
every time series within the clusters for one month containing a yearly event.
The average errors were calculated using overall Mean Absolute Percentage
Error (MAPE), MAPE on the yearly event, MAPE on non events, as well
as a daily MAPE. In Equation 4.1, t0 denotes the first hour, T denotes the
last hour, and N is the number of values in the error estimate.

MAPE =
1

N

T∑
t=t0

∣∣∣∣real[t]− predicted[t]

real[t]

∣∣∣∣ . (4.1)

In order to detect overfitting, a 5-fold cross-validation step was also added
to the experiments. Temperature was added to the training sets as a feature
for one set of experiments, while another consisted of only usage data, as
well as time stamp meta data, as explained earlier.

A case was also added where the time series that the model was predicting
had the event removed before training. This was done in order to evaluate
the method’s ability to make up for missing data by supplying the training
set with events from a similar time series. The yearly event selected for the
experiments was Christmas Eve, Christmas Day and Boxing Day, and time
series training sets started at 2018-06-01, and ended at 2019-11-30, leaving
each time series with a single occurrence of the yearly event.

Initially, experiments were run with the inclusion of all time series within
the selected cluster when training the prediction model, but as this seemed
to decrease accuracy for predictions outside of the time period of the event,
only one additional time series was introduced. When selecting which time
series to introduce to the training set, the one with the highest correlation
on the weekly residuals was selected.

Error values shown in Table 4.6, 4.7, 4.10 and 4.11 are categorized as follows:

• MAPE using additional data from cluster on event (MCE)

• MAPE not using data from cluster on event (MNCE)
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• MAPE using additional data from cluster not on event (MCNE)

• MAPE not using additional data from cluster not on event (MNCNE)

Experiments shown in Table 4.6, 4.7, 4.10 and 4.11 are labeled as follows:

• Industrial cluster (I)

• Residential cluster (R)

• Univariate training data (U)

• Temperature as feature (T)

• Missing event in predicted time series (M)

4.3.1 XGBoost

As shown in Table 4.6 in column MCE and MNCE, the model trained on
an additional time series from its cluster has improved accuracy on average
when predicting the yearly event, with one exception. This suggests that
when the clustering method is applied, the model is able to predict the
event more accurately when compared to the baseline, as well as in the
case of the actual event being absent in the original time series, as seen in
Figure 4.2 and 4.3. The MAPE is calculated per day to better understand
how the prediction models perform throughout the predicted time period.
The average of these values are then calculated for all experiments conducted
for the industrial and the residential cluster respectively. clustered mape
denotes the results when prediction models were trained on additional time
series, while non clustered mape represents when they were trained on a
single time series.
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Figure 4.2: Figure shows average daily MAPE for the time series in the
industrial cluster performed by XGBoost.

Dec
2019

3002 09 16 23
15

20

25

30

35

40

45 clustered_mape
non_clustered_mape

Figure 4.3: Figure shows average daily MAPE for the time series in the
industrial cluster performed by XGBoost when the yearly event was missing
in the time series to predict.

As for experiment RUM, there are two important findings to point out: the
baseline performed better than when additional data was introduced, and
the baseline performed better when the event was not present in the time
series at all. When observing the results in Figure 4.4 and 4.5 it becomes
apparent that the decrease in accuracy happens on Christmas Eve, while
Christmas Day saw improved predictions, and there was little difference on
Boxing Day.
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Figure 4.4: Figure shows average daily MAPE for the time series in the
residential cluster performed by XGBoost.
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Figure 4.5: Figure shows average daily MAPE for the time series in the
residential cluster performed by XGBoost when the yearly event was missing
in the time series to predict.

This might suggest that for this cluster, the model is not able to learn the
influence of the feature related to Christmas Eve with either implementa-
tion. This is also true when temperature is added as a feature. However,
when temperature is introduced to the training set, the model trained on
an additional time series from the same cluster, MAPE is lower in both
cases, and the difference is much smaller between the experiment where the
event is present in the original time series and where it is not (see Figure 4.6
and 4.7).
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Figure 4.6: Figure shows average daily MAPE for the time series in the
residential cluster performed by XGBoost.
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Figure 4.7: Figure shows average daily MAPE for the time series in the
residential cluster performed by XGBoost when the yearly event was missing
in the time series to predict.

When we look at the predictions made for the rest of the month, excluding
the yearly event (MCNE and MNCNE), the predictions for the time series
within the industrial cluster are improved for all experiments when the
model is trained on multiple time series. As expected, the improvement is
more subtle than for the event, but performance is improved. The difference
in prediction accuracy is much smaller outside of the event, suggesting that
this approach achieves the goal of specifically improving the prediction of
yearly events by bettering the model’s understanding of the corresponding
feature.
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experiment MCE MNCE MCNE MNCNE

IU 26.639 30.008 20.719 21.011

IUM 28.311 40.198 20.768 21.329

RUM 15.757 14.467 12.718 12.725

RU 16.08 17.076 12.777 12.594

IT 31.184 32.411 18.155 18.243

ITM 32.257 40.558 18.084 18.447

RTM 13.515 14.319 9.56 9.511

RT 13.978 15.413 9.527 9.394

Table 4.6: Average error values on various subsections of the predicted time
series measured in MAPE predicted by XGBoost.

The decrease in accuracy for certain predictions of power consumption on
the yearly event when temperature is introduced as a feature might be
caused by the event’s effect not being related to temperature. This can be
seen in IT and ITM in Table 4.6. As the prediction model to a larger degree
relies on temperature in order to make a forecast, the importance of features
indicating that an event takes place might not influence the model to the
same degree. When we analyze the feature importance calculated by the
XGBoost model, as shown in 4.8, it shows that when a similar time series
from a cluster is introduced to the model’s training data, the importance
of features related to the yearly event is increased more in the experiments
where temperature is introduced.

In addition to observing the average errors in predictions and comparing
the proposed solution to the baseline approach, it is necessary to analyze
the standard deviation in accuracy. Table 4.7 shows the average standard
deviation in prediction accuracy for the prediction made for each time series
within each cluster. Once more, statistics are calculated both for the event,
as well as for the rest of the month, excluding the event. The proposed use
of clustering to improve prediction accuracy for yearly events is of no use if
the prediction accuracy is much less consistent than the baseline approach.
However, there is generally little difference between the two approaches in
this regard, and for most experiments the proposed solution has a smaller
standard deviation in prediction accuracy.

44



4.3. Prediction with clustering Experiments and Results

experiment MCE MNCE MCNE MNCNE

IU 5.292 5.976 7.675 7.738

IUM 4.272 6.147 7.594 7.842

RUM 2.534 2.77 1.886 1.869

RU 1.693 1.843 1.878 1.894

IT 8.483 8.934 5.779 6.234

ITM 6.371 6.703 6.044 6.533

RTM 2.779 2.908 1.105 1.111

RT 2.661 2.059 1.144 1.199

Table 4.7: Standard deviation of error values on various subsections of the
predicted time series measured in MAPE predicted by XGBoost.

As previously explained, XGBoost evaluates the importance of each feature
in the training set that results in splits in the various trees when the model is
trained. Table 4.8 shows the percentage change in importance of the features
related to the yearly event in the prediction experiments in terms of gain
when comparing the proposed solution to the baseline. The results show
a consistently higher increase in feature importance for the experiments
where temperature was used as a feature. The events are denoted as follows:
Christmas Eve (CE), Christmas Day (CD) and Boxing Day (BD).

experiment CE CD BD

IU -3.769 10.819 15.421

RU 1.625 -4.775 25.696

IT 30.52 31.207 28.318

RT 6.515 18.145 27.062

Table 4.8: Table shows percentage increase in feature importance when
comparing the proposed solution to the baseline.

The cross-validation results from each experiment are also evaluated. If
the proposed solution where prediction models are trained on multiple time
series has increased accuracy, but the cross-validation score is significantly
lower, it suggests overfitting. This means that the model has been trained
on noise, rather than learning characteristic patterns within the time se-
ries. The average cross-validation results for each experiment are labeled
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experiment MC SC MNC SNC

IU 0.842 0.03 0.674 0.082

IUM 0.84 0.031 0.678 0.084

RUM 0.827 0.074 0.352 0.298

RU 0.827 0.076 0.359 0.281

IT 0.875 0.024 0.738 0.081

ITM 0.874 0.024 0.741 0.085

RTM 0.892 0.038 0.623 0.143

RT 0.892 0.04 0.623 0.139

Table 4.9: Table shows the average cross-validation results from the XG-
Boost experiments.

as follows: mean cross-validation clustered (MC), standard deviation cross-
validation clustered (SC), mean cross-validation non clustered (MNC), and
standard deviation cross-validation non clustered (SNC).

The results reveal that the models show less signs of overfitting in all the
experiments where the proposed solution is utilized. When inspecting the
standard deviation in the cross-validation score, it also shows that these
results are more consistent than for the baseline. This underlines the validity
of the actual prediction results.

4.3.2 LSTM

The LSTM experiments were conducted in the same way as those for XG-
Boost, except that the time series for temperature and usage were made
stationary as explained earlier. When analyzing the average statistics for
predictions made for the event, most experiments show an improved ac-
curacy when the additional time series is introduced to the training set.
However, when temperature is added as a feature, the predictions have a
decreased accuracy when including an additional time series for the residen-
tial cluster (RT and RTM), as seen in Figure 4.8 and 4.9.
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Figure 4.8: Figure shows average daily MAPE for the time series in the
residential cluster performed by LSTM.
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Figure 4.9: Figure shows average daily MAPE for the time series in the
residential cluster performed by LSTM when the yearly event was missing
in the time series to predict.

For these two experiments, the accuracy for the rest of the month is still
improved. In fact, when the temperature is used as a feature, the accuracy
outside of the event is improved for all experiments, while it is decreased
for 3 out of 4 experiments where the dataset was univariate.
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experiment MCE MNCE MCNE MNCNE

IU 31.928 34.401 20.099 20.035

IT 27.655 29.261 17.267 19.25

ITM 27.115 39.349 17.277 17.663

RTM 22.543 17.024 11.0 12.625

RT 23.269 18.59 10.932 12.751

IUM 35.104 50.42 22.6 19.917

RUM 26.81 27.645 19.998 18.059

RU 26.082 26.093 18.001 18.026

Table 4.10: Average error values on various subsections of the predicted
time series measured in MAPE predicted by LSTM.

Table 4.11 shows much inconsistency in the prediction accuracy when com-
paring the baseline implementation to the proposed solution. However, for
the experiments where the yearly event was removed from the original time
series, the standard deviation in accuracy for the event is lower when an ad-
ditional time series is introduced, except for RTM. The industrial clusters
show the greatest improvement.

experiment MCE MNCE MCNE MNCNE

IU 5.416 4.492 7.893 7.397

IT 6.806 3.227 6.895 6.403

ITM 7.624 10.825 6.269 7.72

RTM 4.468 3.714 1.694 2.741

RT 3.558 3.784 1.413 2.68

IUM 9.785 13.549 10.837 7.833

RUM 4.926 6.382 3.437 3.888

RU 5.33 5.169 2.345 4.007

Table 4.11: Standard deviation of error values on various subsections of the
predicted time series measured in MAPE predicted by LSTM.

When examining the cross-validation results for the LSTM experiments
in 4.12, it becomes apparent that the models score very low. While the
results are more stable when the proposed solution is utilized, they are ei-
ther equal to- or in certain cases lower than the baseline. The low scores
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over all might suggest that the models are not able to learn the cyclic trends
in the time series. This could indicate that the differencing used for remov-
ing the lower frequency patterns in the time series left a time series with no
significant pattern for the model to learn. It is important to keep in mind
that the scores reflect the model’s ability to predict the residuals after the
time series has been differenced. The scores can be expected to be lower,
as the seasonality has been removed for the most part, meaning that the
residuals will be less predictable.

experiment MC SC MNC SNC

IU 0.005 0.001 0.005 0.002

IT 0.005 0.001 0.005 0.002

ITM 0.005 0.001 0.005 0.002

RTM 0.003 0.001 0.007 0.003

RT 0.003 0.001 0.007 0.003

IUM 0.005 0.001 0.005 0.002

RUM 0.003 0.001 0.007 0.003

RU 0.003 0.001 0.006 0.003

Table 4.12: Table shows the average cross-validation results from the LSTM
experiments.

4.4 Discussion

When conducting the experiments described earlier in this chapter, obser-
vations were made that will be analyzed further in this section. Comments
will also be made on results and how certain experiments were conducted.

Both K-Means and Hierarchical clustering were able to create clusters con-
taining distinct industrial- and residential profiles. However, the optimal
number of clusters for K-Means was difficult to determine through the el-
bow method, and was increased until the distinct profiles emerged, like with
the Hierarchical clustering results. The fact that it was possible to distin-
guish time series with a residential- and industrial profile is interesting, and
might prove useful as it is not always easy to determine this without man-
ually labelling each time series through observing it. Also the resulting
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profile is, as stated earlier, not necessarily determined purely by the num-
ber of industrial or residential customers connected to a substation, but in
combination with their total usage for each hour.

While both LSTM and XGBoost could improve predictions for the indus-
trial profiles, LSTM with the proposed solution for expanding the model’s
training set performed worse at the yearly event for residential profiles when
temperature was added as a feature when compared to the regular imple-
mentation. This could be due to the added complexity caused by the dif-
ferencing, which is necessary to make the time series stationary. Perhaps
through further analysis of the residential time series one could solve this
issue, but then the process would be more difficult to automate, and thus
harder to implement on a large scale. This might suggest that it is ben-
eficial to use models like XGBoost that are able to handle non-stationary
data with the provided amount in these experiments when implementing the
method described in this thesis, as it can learn these cyclic characteristics
of the time series on its own. In order to compare the two prediction models
fairly, one would have to run experiments where both models are trained
on stationary time series. The goal of the experiments that have been con-
ducted was to evaluate the proposed solution for improving the prediction
of time series around yearly events through clustering of similarly behaving
time series with two different popular algorithms.
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Conclusion and Future Work
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5.1 Conclusion

It is necessary for grid companies to make accurate predictions of its cus-
tomers’ power consumption in order to provide high quality electricity re-
liably. Certain events that correlate with abnormally high- or low usage
take place once per year. It can be difficult for prediction models to make
accurate load forecasts for these events, as the models will require an entire
year of additional data in order to acquire another example of the event for
their training sets. If the event is missing in the training set, the model can-
not predict its influence on power consumption until another year of data
is gathered.

In this thesis, a method is proposed that seeks to improve load forecast-
ing accuracy on yearly events by appending similar time series to create
extended training sets for prediction models. By introducing additional
time series, we can also add more yearly events from said time series to the
training set. A clustering algorithm creates groups of similarly behaving
time series, and each extended training set is formed by transforming the
appended time series to fit the scale of the initial time series.

Through experiments conducted on different usage profiles, the proposed
solution is shown to increase accuracy when predicting electricity usage on
the event, without significantly affecting the forecast outside of the event.
The method is also shown to be effective at compensating for missing events
in the original time series. The method developed for transforming the
appended time series successfully simulates having a larger training set for
prediction models to be trained on. However, when the time series and its
features are differenced and normalized, results indicate that the method
might have to be adjusted.

The state-of-the-art, presented as part of the related work in this thesis,
addresses the issue of inadequate prediction accuracy through the use of
clustering. However, this thesis contributes with a solution that can improve
the prediction of power consumption on yearly events for time series with
an hourly resolution. It also does not require a large number of end-users to
be connected to a single substation. These two advantages are this thesis’s
main contributions to the state-of-the-art.
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5.2 Future Work

Future research on the topic of improving prediction of usage on yearly
events should consider implementing the solution proposed in this thesis on
a larger scale, on other profiles of similarly behaving time series for usage
on the substation level. Also, performing experiments with another yearly
event, possibly one that occurs on different dates each year, like Easter.

Experiments could be conducted in order to further explore the possibility
of adding additional time series to the training set. For the experiments
described in this thesis the number of added time series was limited to
one, but it is possible that a process could be developed through which
the optimal number of time series could be determined. It would also be
interesting to compare prediction accuracy when a single time series has two
occurrences of an event to a prediction made when the model was trained
on two similar time series, each with only one occurrence of the same event.

Another possibility would be to develop a method of training a single model
for all time series within a cluster. The purpose of this would not only be
to decrease the number of models that would have to be trained, but to
improve the accuracy of the predictions for each time series performed by
a single model. This would require the time series to be transformed in a
way that solves the scale issue.
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XGBoost results
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Figure 5.1: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on an additional time series.
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Figure 5.2: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on a single time series.

Industrial univariate missing event
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Figure 5.3: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on an additional time series when the event is missing in
the original time series.
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Figure 5.4: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on a single time series when the event is missing.
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Residential univariate
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Figure 5.5: Figure shows a prediction for a residential cluster when XGBoost
is trained on an additional time series.
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Figure 5.6: Figure shows a prediction for a residential cluster when XGBoost
is trained on a single time series.

Residential univariate missing event

62



References References

15
Dec
2019

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

60

80

100

120

with clustering - MAPE: 15.593173036080128
Usage_pred
Usage_real

Figure 5.7: Figure shows a prediction for a residential cluster when XGBoost
is trained on an additional time series when the event is missing in the
original time series.
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Figure 5.8: Figure shows a prediction for a residential cluster when XGBoost
is trained on a single time series when the event is missing.
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Figure 5.9: Figure shows average daily MAPE for the time series in the
industrial cluster performed by XGBoost.
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Figure 5.10: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on an additional time series.
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Figure 5.11: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on a single time series.
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Figure 5.12: Figure shows average daily MAPE for the time series in the
industrial cluster performed by XGBoost when the yearly event was missing
in the time series to predict.
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Figure 5.13: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on an additional time series when the event is missing in
the original time series.
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Figure 5.14: Figure shows a prediction for an industrial cluster when XG-
Boost is trained on a single time series when the event is missing.
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Residential with temperature
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Figure 5.15: Figure shows a prediction for a residential cluster when XG-
Boost is trained on an additional time series.
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Figure 5.16: Figure shows a prediction for a residential cluster when XG-
Boost is trained on a single time series.

Residential with temperature missing event
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Figure 5.17: Figure shows a prediction for a residential cluster when XG-
Boost is trained on an additional time series when the event is missing in
the original time series.
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Figure 5.18: Figure shows a prediction for a residential cluster when XG-
Boost is trained on a single time series when the event is missing.
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LSTM results
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Figure 5.19: Figure shows average daily MAPE for the time series in the
industrial cluster performed by LSTM.
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Figure 5.20: Figure shows a prediction for an industrial cluster when LSTM
is trained on an additional time series.
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Figure 5.21: Figure shows a prediction for an industrial cluster when LSTM
is trained on a single time series.
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Figure 5.22: Figure shows average daily MAPE for the time series in the
industrial cluster performed by LSTM when the yearly event was missing
in the time series to predict.
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Figure 5.23: Figure shows a prediction for an industrial cluster when LSTM
is trained on an additional time series when the event is missing in the
original time series.
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Figure 5.24: Figure shows a prediction for an industrial cluster when LSTM
is trained on a single time series when the event is missing.
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Figure 5.25: Figure shows average daily MAPE for the time series in the
residential cluster performed by LSTM.
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Figure 5.26: Figure shows a prediction for a residential cluster when LSTM
is trained on an additional time series.
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Figure 5.27: Figure shows a prediction for a residential cluster when LSTM
is trained on a single time series.
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Figure 5.28: Figure shows average daily MAPE for the time series in the
residential cluster performed by LSTM when the yearly event was missing
in the time series to predict.
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Figure 5.29: Figure shows a prediction for a residential cluster when LSTM
is trained on an additional time series when the event is missing in the
original time series.
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Figure 5.30: Figure shows a prediction for a residential cluster when LSTM
is trained on a single time series when the event is missing.
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Figure 5.31: Figure shows average daily MAPE for the time series in the
industrial cluster performed by LSTM.
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Figure 5.32: Figure shows a prediction for an industrial cluster when LSTM
is trained on an additional time series.
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Figure 5.33: Figure shows a prediction for an industrial cluster when LSTM
is trained on a single time series.
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Figure 5.34: Figure shows average daily MAPE for the time series in the
industrial cluster performed by LSTM when the yearly event was missing
in the time series to predict.
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Figure 5.35: Figure shows a prediction for an industrial cluster when LSTM
is trained on an additional time series when the event is missing in the
original time series.
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Figure 5.36: Figure shows a prediction for an industrial cluster when LSTM
is trained on a single time series when the event is missing.
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Figure 5.37: Figure shows a prediction for a residential cluster when LSTM
is trained on an additional time series.
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Figure 5.38: Figure shows a prediction for a residential cluster when LSTM
is trained on a single time series.

Residential with temperature missing event
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Figure 5.39: Figure shows a prediction for a residential cluster when LSTM
is trained on an additional time series when the event is missing in the
original time series.
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Figure 5.40: Figure shows a prediction for a residential cluster when LSTM
is trained on a single time series when the event is missing.
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Figure 5.41: Yearly component.
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Figure 5.42: Yearly residual component.
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Figure 5.43: Monthly residual component.
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