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Abstract

Hex is an abstract mathematical board game where the players aim
to build a connection of pieces, traversing the board from edge to
edge. The game requires the use of certain patterns to be played
at a high level. Artificially Intelligent Hex players have had success
using Monte Carlo tree search and current research efforts have in-
troduced neural networks. This thesis looks into the recent Tsetlin
Machine pattern-recognition technique, relying on interpretability, in
combination with the Monte Carlo tree search method to play the
game of Hex. A supervised learning approach has been employed in
an effort to teach the Tsetlin Machine beneficial patterns for winning,
resulting in around 91% accuracy, 87% recall and 97% precision. It
is demonstrated with a Hex tournament that the Tsetlin Machine is
unable to play perfectly on a board of size 6× 6 alone, but performs
much better in combination with Monte Carlo tree search. Monte
Carlo tree search reduced the number of averagely placed piece from
around 35.5 down to around 20 and below. The benefit of using the
Tsetlin Machine’s interpretable clauses and pattern capabilities are
that they can provide valuable knowledge needed for gameplay, and
appear helpful for ventures into larger unexplored board sizes.

Keywords: Hex, Tsetlin Machine, Monte Carlo tree search, tree
search, board evaluation
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Ole André Haddeland

Grimstad, May 2020

ii



Table of Contents

Abstract i

Preface ii

Glossary v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis definition . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Thesis Goals . . . . . . . . . . . . . . . . . . . 3
1.2.2 Hypotheses . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 The game of Hex . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Compared to the game of Go . . . . . . . . . . 7
2.1.2 Virtual Connections . . . . . . . . . . . . . . . 7

2.2 The Tsetlin Machine . . . . . . . . . . . . . . . . . . . 8
2.2.1 The Tsetlin Automaton . . . . . . . . . . . . . 8
2.2.2 Clause . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Hyperparameters . . . . . . . . . . . . . . . . . 13
2.2.4 Multi-Class Tsetlin Machine . . . . . . . . . . . 13
2.2.5 Weighted Tsetlin Machine . . . . . . . . . . . . 14

2.3 Tree Search . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



Table of Contents Table of Contents

2.3.1 Breadth-First Search . . . . . . . . . . . . . . . 15
2.3.2 Depth-First Search . . . . . . . . . . . . . . . . 15
2.3.3 Monte-Carlo Tree Search . . . . . . . . . . . . 16

2.4 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . 17

3 State-of-the-art 20
3.1 Early programs . . . . . . . . . . . . . . . . . . . . . . 20
3.2 MoHex . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Solution 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Creating data . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Double Dataset . . . . . . . . . . . . . . . . . . 27
4.3 Training the Tsetlin Machine . . . . . . . . . . . . . . 28

4.3.1 Data binarization . . . . . . . . . . . . . . . . . 29
4.3.2 K-fold Cross Validation . . . . . . . . . . . . . 30

4.4 Separating based on moves . . . . . . . . . . . . . . . 31
4.5 Search Evaluation . . . . . . . . . . . . . . . . . . . . 32

4.5.1 Dual Tsetlin Machines . . . . . . . . . . . . . . 32
4.5.2 Tree Search . . . . . . . . . . . . . . . . . . . . 34
4.5.3 More data . . . . . . . . . . . . . . . . . . . . . 36
4.5.4 Tree Search Evaluation . . . . . . . . . . . . . 36
4.5.5 Hyperparameter optimization strategy . . . . . 38

4.6 Playing the game of Hex . . . . . . . . . . . . . . . . . 38
4.6.1 Tournament . . . . . . . . . . . . . . . . . . . . 40

4.7 Interpreting Tsetlin Machine patterns . . . . . . . . . 40

5 Results 43
5.1 Classification Accuracy . . . . . . . . . . . . . . . . . . 43

5.1.1 Single TM on 17k dataset . . . . . . . . . . . . 44
5.1.2 Single TM on 35k dataset . . . . . . . . . . . . 45
5.1.3 Dual TMs on 287k dataset . . . . . . . . . . . 46

5.2 Separating Moves . . . . . . . . . . . . . . . . . . . . . 48
5.3 Search Evaluation . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Recall Graphs . . . . . . . . . . . . . . . . . . . 49
5.3.2 Precision Graphs . . . . . . . . . . . . . . . . . 53

5.4 Playing Hex . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 RandomRollout player . . . . . . . . . . . . . . 59

iv



Table of Contents Table of Contents

5.4.2 Tree Search players . . . . . . . . . . . . . . . . 59
5.4.3 MCTS players . . . . . . . . . . . . . . . . . . 62

5.5 Learned clause patterns . . . . . . . . . . . . . . . . . 67
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusion 72

7 Future Work 74

Bibliography 81

Appendices 82
A Hardware Specification . . . . . . . . . . . . . . . . . . 82

v



List of Figures

2.1 A Hex board showing a win for black that has con-
nected the pieces vertically. The connection is shown
with a yellow line. . . . . . . . . . . . . . . . . . . . . 6

2.2 Hex bridge patterns. Figure graphic adapted from Hen-
derson et al. [37] . . . . . . . . . . . . . . . . . . . . . 8

2.3 Tsetlin Automaton learning between two actions with
two states per action. . . . . . . . . . . . . . . . . . . 9

2.4 A clause with TA for the features x1 and x2 that has
learned an XOR pattern for output 1. Circles represent
the current TA state. . . . . . . . . . . . . . . . . . . . 11

2.5 A clause with TA for the features x1 and x2 that has
learned XOR pattern for output 0. Circles represent
the current TA state . . . . . . . . . . . . . . . . . . . 12

2.6 Multi-Class Tsetlin Machine architecture [27] . . . . . 13
2.7 Tree structure of 2 × 2 Hex boards. Figure graphic

adapted from Henderson et al. [37] . . . . . . . . . . . 15
2.8 Monte Carlo tree search loop. Reprinted from Chaslot

et al. [14] . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Regions of dead cells. Figure reprinted from Henderson
et al. [37] . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Solution Pipeline . . . . . . . . . . . . . . . . . . . . . 24
4.2 A subset of the dataset being transformed into binary

format. Each input is doubled, with respect the to
black and white players’ pieces . . . . . . . . . . . . . 29

4.3 2× 2 Hex board position . . . . . . . . . . . . . . . . . 30
4.4 Tree Search Process . . . . . . . . . . . . . . . . . . . 32

vi



List of Figures List of Figures

4.5 Example tree search down to 3rd level. Nodes are num-
bered in the way they are searched with the breadth-
first search . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 One iteration of the tree search’s file structure on disk 35
4.7 R5 and P5 including only the top 5 positions from each

file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 The 16 TA for negated and non-negated features cor-

responding to the positions on the 2 × 2 Hex board.
Features x1−4 for black pieces and x5−8 for white pieces 41

4.9 Querying the actions for the TA responsible for a 2× 2
Hex board reveals the learned conjunction: x2 ∧ x̄7 ∧ x̄8 42

4.10 A more easily understandable pattern form based on
learned actions in figure 4.9 . . . . . . . . . . . . . . . 42

5.1 Accuracy of TM based on training with separated moves 48
5.2 Recall graph for 1st iteration of tree search evaluation 49
5.3 Recall graph for 2nd iteration of tree search evaluation 50
5.4 Recall graph for 10th iteration of tree search evaluation 51
5.5 Recall graph for 27th iteration of tree search evaluation 52
5.6 Precision graph for 1st iteration of tree search evaluation 53
5.7 Precision graph for 2nd iteration of tree search evaluation 54
5.8 Precision graph for 10th iteration of tree search evaluation 55
5.9 Precision graph for 27th iteration of tree search evaluation 56
5.10 Finished games showing RR strategy . . . . . . . . . . 59
5.11 TM4 (black) vs Random (white) . . . . . . . . . . . . 61
5.12 TM5 (black) vs Random (white) . . . . . . . . . . . . 62
5.13 Finished games played by TM1 against Random . . . 63
5.14 Finished games played by TM1 against TM3 . . . . . 64
5.15 Finished games played by TM3 against itself . . . . . 64
5.16 First moves, MoHex 2.0 and the TM players in the

tournament . . . . . . . . . . . . . . . . . . . . . . . . 66
5.17 Winning clause pattern with weight 291, taken from

TM1 trained on 17k dataset . . . . . . . . . . . . . . . 67
5.18 Losing clause pattern with weight 244, taken from TM1

trained on 17k dataset . . . . . . . . . . . . . . . . . . 68
5.19 Winning clause pattern with weight 247, taken from

TM3 trained on 287k dataset. . . . . . . . . . . . . . 68

vii



List of Figures List of Figures

5.20 Winning clause pattern with weight 164, taken from
TM3 trained on 287k dataset . . . . . . . . . . . . . . 69

5.21 Losing clause pattern with weight 223, taken from TM3
trained on 287k dataset . . . . . . . . . . . . . . . . . 69

viii



List of Tables

2.1 AND logic operator . . . . . . . . . . . . . . . . . . . . 10
2.2 XOR logic operator . . . . . . . . . . . . . . . . . . . . 10
2.3 Confusion Matrix for positive and negative classes . . 18

4.1 17k dataset class distribution . . . . . . . . . . . . . . 27
4.2 Class distribution for the 287k dataset . . . . . . . . . 36
4.3 Confusion matrix for top 5 scores of file 1, 2, 99 and 100 38

5.1 Varying clauses for TM trained on 17k dataset with
6000 Threshold and 10 S-value . . . . . . . . . . . . . 44

5.2 Accuracy with various Thresholds and S-values for 500
clauses trained on 17k dataset . . . . . . . . . . . . . . 44

5.3 Varying clauses for TM trained on 35k dataset with
6000 Threshold and 10 S-value . . . . . . . . . . . . . 45

5.4 Accuracy with various Thresholds and S-values for 1700
clauses trained on 35k dataset . . . . . . . . . . . . . . 45

5.5 Class distribution of Dual TM on 287k dataset . . . . 46
5.6 Varying clauses for Black TM trained on 287k dataset

with 12000 Threshold and 40 S-value . . . . . . . . . . 47
5.7 Accuracy for Black TM with various Thresholds and

S-values for 9600 clauses trained on 287k dataset up to
50th epoch . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Tsetlin Machine players in the Hex Tournament . . . . 58
5.9 Tournament Results. Playing as black in rows and as

white in columns . . . . . . . . . . . . . . . . . . . . . 58
5.10 Average number of pieces placed between players in all

10 games . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



Chapter 1

Introduction

The game of Hex is an abstract board game with territorial and con-
nection aspects, features similar to its inspirational sibling game Go
[12]. Go is an abstract strategy board game believed to derive from
ancient China [47], while Hex was first invented in the 1940s by Dan-
ish mathematician Piet Hein [36]. At first glance, Hex and Go appear
similar, yet the winning conditions are drastically different and Hex
has the unique property of being drawless, guaranteeing a winner.

Hex has been considered difficult to solve due to the sheer amount of
complexity the game has, in comparison to games like Chess. Chess
was played at above top level with classical heuristic search as early as
1997, with Deep Blue beating Garry Kasparov, the world champion
at the time [13]. Chess is played on an 8 × 8 board and has an
approximate complexity of 4.6 ∗ 1046 legal positions, while 11 × 11
Hex has 2.4 ∗ 1056 legal positions, a sizable difference [49, 12].

Go is rooted in Chinese culture, and is played by over 46 million peo-
ple wordwide [47, 19]. Go is more popular than Hex, and naturally
established itself as the complex game to play above top level, instead
of Hex. In 2006, the Monte Carlo tree search (MCTS) algorithm
was introduced to Go [15, 26], and there was a noticeable strength-
gap between programs that used it and those who did not. MCTS
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1.1. Motivation Introduction

was capable of beating strong amateur human players on 9 × 9 Go
boards [41]. Ten years later in early 2016, Deepmind released their
work on the program AlphaGo, an artificially intelligent (AI) player
for Go. AlphaGo combined MCTS with deep neural networks to play
Go above top level [48]. AlphaGo was the first program to beat a
professional human Go player at the full-size game of Go, an achieve-
ment thought by some to be unattainable by the state-of-the-art at
the time, due to the game’s complexity [50].

In 2018, Prof. Ole-Christoffer Granmo at the University of Agder
introduced the Tsetlin Machine [27], a novel and promising machine
learning tool using propositional logic for pattern recognition. It is an
alternative learning technique relying on interpretability, in compari-
son to black box neural networks [27, 44]. Interpretability is critical
for understanding machine learning, especially in the medical field
[44, 10].

1.1 Motivation

Current research efforts in improving Hex AI are pursuing the use of
neural networks. The recently introduced Tsetlin Machine shows com-
petitive results to neural networks [27] and deep neural networks have
achieved great success in competitive Go. However, these networks
are difficult to decipher. The benefit of having the Tsetlin Machine
for this task is to get a better understanding of how and what the al-
gorithm learns. As such, the Tsetlin Machine is an exciting new tool
for exploring game solving. The novelty of the Tsetlin Machine is a
motivation for exploring this domain with the game of Hex, a similar
game to Go.

2



1.2. Thesis definition Introduction

1.2 Thesis definition

1.2.1 Thesis Goals

Goal 1: Use the Tsetlin Machine’s pattern recognition capabilities
to evaluate game boards in Hex, in order to predict the game winner.

Goal 2: Optimize the Tsetlin Machine’s parameters to make profi-
cient and accurate evaluations of any given Hex board.

Goal 3: Utilize the Tsetlin Machine’s evaluations of game boards to
select winning moves.

Goal 4: Combine the Tsetlin Machine with tree search and the Monte
Carlo tree search method to make an artificially intelligent Hex player.

1.2.2 Hypotheses

Hypothesis 1: Hex is an abstract game of patterns, where the
Tsetlin Machine can learn winning sub-patterns.

Hypothesis 2: The Tsetlin Machine will not be able to play the game
at a reasonable level, where the Monte Carlo tree search method will
be an effective addition to the Tsetlin Machine.

1.3 Contributions

This thesis examines the recent Tsetlin Machine’s ability using super-
vised learning to evaluate board positions in Hex, looking at accuracy,
precision and recall, with the evaluations as pointers for gameplay.
Tree search and Monte Carlo tree search algorithms were combined
with the Tsetlin Machine to make artificially intelligent Hex players.
Using the Tsetlin Machine for board evaluation, the Monte Carlo tree
search players are able to play some promising moves.

3



1.4. Thesis outline Introduction

The provided contributions have set a baseline for the Tsetlin Ma-
chine’s use-case in playing Hex, which opens up several future possi-
bilities.

1.4 Thesis outline

• Chapter 2 explains necessary theory about the game of Hex, the
Tsetlin Machine, tree search and Monte Carlo tree search.

• Chapter 3 presents the state-of-the-art within artificially intel-
ligent Hex players and their concepts.

• Chapter 4 explains the proposed Tsetlin Machine Hex solution,
and how Hex was evaluated.

• Chapter 5 will present results and discuss the findings related
to the implementations in Chapter 4.

• Chapter 6 concludes the work.

• Chapter 7 propose future work.

4



Chapter 2

Background

This section will give an overview of concepts and techniques used
in this thesis, as theoretical background. Firstly, the game of Hex
is explained. Section 2.2 then explains the Testlin Machine. Section
2.3 explains tree search and the Monte Carlo Tree Search algorithm
used for playing the game of Hex. Lastly, section 2.4 explains con-
fusion matrices, which are important tables for assessing a classifier’s
performance.

2.1 The game of Hex

Hex was invented by Danish mathematician Piet Hein in 1942 and
later independently re-invented by John Nash in 1948 [35, 37]. Hex is
played on a rhombus board where two players take alternating turns
putting pieces on empty spots anywhere on the board. A board size
of 11×11 is popular because this was used by Hein in 1942, see figure
2.1a, while John Nash advocated using 14× 14 boards.

The first player uses black pieces and the second player uses white
pieces. The goal for the first player is to form a connection with the
pieces from the top edge to the bottom edge, while the second player

5



2.1. The game of Hex Background

will try to form a connection from the left edge to the right edge,
see figure 2.1b. In this thesis, ”first player” and ”black” will be used
interchangeably, the same is true for ”second player” as ”white”.

(a) Empty 11x11 Hex board (b) Finished Hex game where Black
is the winner

Figure 2.1: A Hex board showing a win for black that has connected
the pieces vertically. The connection is shown with a yellow line.

A game of Hex can never end in a draw. Proving this is equivalent to
proving the Brouwer fixed-point theorem for two dimensions, as done
by David Gale [20]. As such, the only way to completely block the op-
ponent is to form a connection with one’s own pieces. In his invention
of the game, John Nash proved that there exists a perfect strategy for
black, using a strategy-stealing argument, in order to win every game
on boards of size n× n [25]. Finding these strategies become increas-
ingly difficult with larger board sizes, with current research having
solved up to 9× 9 boards and also some of the 10× 10 openings [42].

Due to this significant favoring of the first player, the game is com-
monly played with the swap rule. This rule states that after black
has placed his first piece, white can choose to swap this piece for a
white piece. Play then continues with black, which has now effectively
become the second player. If white wins after the usage of the swap
rule, the game still regards it as a win for the second player.

6



2.1. The game of Hex Background

2.1.1 Compared to the game of Go

As mentioned by Sensei’s Library [2], Hex has some similarities with
Go:

• Both have territorial and connective aspects.

• Both have non-mobile pieces, different from Chess.

• Similar branching factors at similar board sizes. At 11×11 board
size, Hex has 2.4 ∗ 1056 legal positions while Go has 7.9 ∗ 1056

legal positions [12, 50].

• Both Hex and Go have been considered difficult for computers
due to their complexity.

There are also some differences:

• In Hex the pieces are never captured or removed from the board.
Once a piece has been placed that position can never be empty
again. As a result the game is finite and ends faster.

• Having a piece on any given position is better than not having
a piece placed there, unlike Go and Chess where a badly placed
piece can be detrimental to a player’s game.

2.1.2 Virtual Connections

Hex is an abstract game relying on patterns to be played at a high
level. The most crucial ability is to use virtual connections. Vir-
tual connections secure links between pieces without the need to have
pieces side by side. The most important virtual connection in Hex is
the bridge pattern. If two pieces of the same color is separated by a
gap of two empty spots, a connection is secured. Figure 2.2 illustrates
this pattern with 3 bridges (a, b, c), where the black player can form
a link from top to bottom without the white player being able to stop

7



2.2. The Tsetlin Machine Background

him. If white tries to block a bridge (either a, b, or c), black can place
in the other spot to secure it. Because of virtual connections, a win
or loss can be determined in advance because of the inevitability to
form a link.

(a) Black player having the bridges
a, b and c

(b) White tries to block the b bridge,
but black upholds the connection

Figure 2.2: Hex bridge patterns. Figure graphic adapted from Hen-
derson et al. [37]

2.2 The Tsetlin Machine

The Tsetlin Machine (TM) is based on the work of M.L. Tsetlin and
his Tsetlin Automaton (TA) [51], as well as clauses from propositional
logic [27]. The TM is composed of multiple logical clauses built up
of several TA that learn in a decentralized manner. A TM relies on
interpretability with logic, and is more efficient without the need for
backpropagation, required to train neural networks [27].

2.2.1 The Tsetlin Automaton

A TA is a learning mechanism within reinforcement learning, that
adapts based on rewards and penalties and is capable of solving the
multi-armed bandit problem [27]. Given a two-action environment
the TA will learn which action to take, and is in its essence merely
an integer value, keeping track of the state of the automaton. Given

8



2.2. The Tsetlin Machine Background

N states per action, the automaton can be between state 1 and 2N.
Rewards and penalties, which are unknown to the TA and can also
change over time, increase and decrease the TA state respectively.
This is done with stochasticity to prevent each automaton from be-
coming equivalent. If the state is between 1 and N the first action is
selected, and if the state is between N+1 and 2N the second action is
selected. Higher values of N will allow the automaton to become more
confident on an action. Figure 2.3 illustrates this learning scheme for
a single Tsetlin Automaton with N=2, meaning two states for each
action and four states in total.

Figure 2.3: Tsetlin Automaton learning between two actions with two
states per action.

The problem with the TA is that when making them work together
there is an increasing noise with each added TA, an effect referred
to as the vanishing signal-to-noise ratio problem [27]. However, this
problem is overcome with the Tsetlin Machine game [27]. Essentially,
the game is played such that all automata individually decide upon
an action (1 or 2). They each get reward/penalty based on their
collective actions, then the next round of the game is played. Given
W automata, there exist 2W unique action configurations. The TA
never interact with each other, meaning the process is decentralized.

2.2.2 Clause

In logic, a clause is an expression composed of literals, negated or
non-negated, while a TM clause is a conjunction of several Tsetlin

9



2.2. The Tsetlin Machine Background

Automata. A conjunction is also referred to as the AND operator,
see table 2.1.

Table 2.1: AND logic operator

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

The inputs in the AND operator must all be 1 for the output to be 1.
This is identical to multiplying the inputs together as any instances
of 0 will make the result be 0.

A TM clause has two automata responsible for each feature. One
automaton for the negated literal form and one automaton for the
non-negated literal form. Each automaton learns whether to include
or exclude (two-action environment) its literal from the clause con-
junction. Thus, each clause conjunction makes a pattern based on
the features.

A clause pattern can be explained using the binary logic expression
XOR as an example. The XOR expression is shown in table 2.2 below,
and states that both inputs must be different from each other for it
to output 1.

Table 2.2: XOR logic operator

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

10



2.2. The Tsetlin Machine Background

A TM clause learning the XOR pattern will assign two TA per feature.
This is shown in figure 2.4 where it assigned a TA for x1, x2, x̄1

and x̄2. Each TA that has learned the include action is part of the
conjunctive clause. In figure 2.4 these are x1 and x̄2, and as such the
conjunction will be x1∧ x̄2. This is a good pattern for output 1 of the
XOR problem. Both inputs must be different in XOR and the pattern
states that x2 must be different from x1 for the conjunction to output
1. Conversely, the other pattern that captures this is x̄1 ∧ x2.

Figure 2.4: A clause with TA for the features x1 and x2 that has
learned an XOR pattern for output 1. Circles represent the current
TA state.
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2.2. The Tsetlin Machine Background

A different configuration of TA states will perhaps learn the pattern
x1 ∧ x2 as in figure 2.5. This is a pattern for XOR output 0 where
both features must be equal. The other pattern that captures output
0 is x̄1 ∧ x̄2.

Figure 2.5: A clause with TA for the features x1 and x2 that has
learned XOR pattern for output 0. Circles represent the current TA
state

Using multiple clauses, several patterns will be learned and pattern
recognition of new features is possible. Here the TM uses a clause
voting system which makes up the TM classifier, voting in favor of
a given class or against. Each feature vector in the input will be
matched with each clause’s pattern. This is done by calculating the
conjunction’s outcome, either 1 or 0. If the output is 0 the clause will
abstain to vote, but if the output is 1 it will vote. Even numbered
clauses add positive votes for the given class, while odd numbered
clauses add negative votes. Figure 2.4 could be an example of an even
numbered clause voting in favor of XOR output 1. Figure 2.5 could
be an example of an odd numbered clause voting for XOR output 0.
At last, the unit-step function decides the final class. If the total votes
> 0 the TM classifier is in favor of class 1, otherwise it outputs 0.

12



2.2. The Tsetlin Machine Background

2.2.3 Hyperparameters

A TM requires certain values to be decided before training. This
is similar to neural networks where the topology of layers, number
of epochs, learning rate and mini-batch size is important [30]. The
hyperparameters for the TM is: number of clauses, threshold and s-
value [27]. Clauses decide the number of patterns to express, threshold
is how easily the available clauses are spent representing each specific
sub-pattern and s-value decide the granularity of the clause patterns.
The higher the s-value is, the more finely the patterns captured will
be.

2.2.4 Multi-Class Tsetlin Machine

A single TM classifier can only decide upon a binary class output.
Using several TM classifiers, each deciding on a single class, the TM
can be built to execute multi-class predictions [27]. An argmax op-
erator decide upon the TM classifier that has the most votes (most
confident) and this will be the selected class [27]. This Multi-Class
Tsetlin Machine (MTS) architecture is illustrated in figure 2.6, where
the MTM will decide upon win, loss or draw in an arbitrary board
game. The figure shows the win and loss classifiers are in agreement
for a win, with the loss classifier having a negative amount of votes.

Figure 2.6: Multi-Class Tsetlin Machine architecture [27]
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2.2.5 Weighted Tsetlin Machine

The Weighted Tsetlin Machine (WTM) is an improvement upon the
MTM that introduces weights, similar to neural networks [43, 5]. The
weights can be integers or continuous values and each clause is given
a weight coefficient that determines the significance of that partic-
ular clause [43, 5]. When voting, each clause will provide as many
votes as their weight. The weights are increased and decreased dur-
ing learning based on clause feedback. True positive patterns have
their weight increased and false positive patterns have their weight
decreased. This enforces true positive and suppresses false positives
[43]. Compared to the MTM, the WTM is shown to achieve similar
results with fewer clauses. MTM is strengthened with many clauses,
but the weights converge more rapidly [43]. Reducing the amount of
clauses also speeds up the TM training and inference [5].

2.3 Tree Search

Given a Hex board of size n×n, the empty starting configuration has
n × n possible moves. Each move gives a new unique configuration
of pieces on the board. These configurations can be organized hier-
archically in a tree structure. With the starting configuration as the
root node, each reachable board position from this position will be
children attached to the node. This tree continues down to terminal
nodes, positions where the game is finished. Figure 2.7 shows how a
tree of 2 × 2 Hex expands. A full tree have branches for all possible
moves in the entire game.
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Figure 2.7: Tree structure of 2×2 Hex boards. Figure graphic adapted
from Henderson et al. [37]

Tree Search is a method of searching such a structure from a given
start position, to find beneficial board positions lower in the tree [45].
Some tree search strategies for exploring the tree are Breadth-First
Search and Depth-First Search.

2.3.1 Breadth-First Search

Breadth-First Search starts at the root node and searches through all
nodes on a level before searching through nodes on the next level [4].
It guarantees to find the shortest path solution if one exists, with the
drawback of high memory usage.

2.3.2 Depth-First Search

Depth-First Search starts at the root node and traverse the tree down-
wards until it reaches a terminal node, then it backtracks to the parent
node whose children are not fully examined. If the tree is very large
or infinite, the depth-first search will be stuck spiraling downwards
a single path. It does not guarantee to find the shortest path solu-
tion unlike Breadth-First-Search, but as a result demands much less
memory [4].
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2.3.3 Monte-Carlo Tree Search

Many problems are deterministic and in theory solvable using known
methods. However, some problems are too complex making them
practically unsolvable, because they can not be solved within a rea-
sonable timeframe. Monte Carlo methods are a term for algorithms
that combat this problem with stochasticity [28]. Monte Carlo meth-
ods work by performing simulations where random samples are drawn
from a problem space using a probability distribution [28]. Determin-
istic methods are used to evaluate the sample. A simulation will
approximate a solution, that will be more accurate when several sim-
ulations are performed. When the number of simulations tend to
infinity, Monte Carlo methods converge to optimal solutions [28].

In 2006, Rémi Coulom applied the Monte Carlo method to tree search,
giving it the name Monte Carlo tree search (MCTS) [15]. Since
the game trees in Go and Hex have such large branching factors,
the Monte Carlo tree search algorithm randomly samples the game
tree, instead of searching all node, to find strong continuation paths.
A variant of the algorithm was developed by Levente Kocsis and
Csaba Szepesvári called the UCT (Upper Confidence bounds applied
to Trees) algorithm [39].

Monte Carlo tree search with UCT is an algorithm that builds a hi-
erarchical tree of possible board positions by iterating four stages:
Selecting, Expanding, Simulating, and Backpropagation [14]. Selec-
tion traverses the tree from the root node to find a node with the
highest possibility of winning using the algorithm UCB1 [39]:

Si = Xi + C
√

ln(t)
ni

where;

• Si = value of a node i

• Xi = empirical mean of a node i
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• C = exploration constant

• t = total number of simulations

Expanding creates several child nodes from the selected node. Simu-
lation use random decisions down the tree until it reaches a leaf node,
giving this leaf node a value. Now that a value has been given to the
leaf node the trees values need to be updated, this is done by using
backpropagation. The values are then updated from the leaf node
all the way up to the root node. After all values are updated step 1
(Selection) begins, creating a loop, a process visualised in figure 2.8

Figure 2.8: Monte Carlo tree search loop. Reprinted from Chaslot et
al. [14]

2.4 Confusion Matrix

A confusion matrix is table summarizing a classification process, list-
ing the possible outcomes based on what the true value was and what
the classifier predicted [1]. Confusion matrices are commonly used
in machine learning when it comes to statistical classification of data
and the name refers to the fact that a confusion matrix makes it easy
to see when a classifier confuses classes. They are also often called
error matrices. Given two classes, positive and negative, the confusion
matrix turns into table 2.3.
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Table 2.3: Confusion Matrix for positive and negative classes

True value
Positive Negative

Prediction
Positive TP FP
Negative FN TN

With a confusion matrix for Hex, one could say that the positive
class is a win and the negative class is a loss. The confusion matrix
terminology will then be [1]:

• Positive: Win is observed

• Negative: Loss is observed

• True Positive (TP): Win is observed and win was predicted.

• False Negative (FN): Win is observed and loss was predicted.

• False Positive (FP): Loss is observed and win was predicted.

• True Negative (TN): Loss is observed and loss was predicted.

Given the numbers gained from a confusion matrix some measure-
ments of the classifier’s strength can be calculated.

Accuracy is the total number of correctly predicted outcomes divided
by the total number of outcomes [1]. The formula for accuracy is:

Accuracy = TP+TN
TP+TN+FP+FN

Accuracy has some shortcomings with unevenly distributed data and
should therefore be paired with Recall and Precision to give a clearer
picture of reality. For example, a dataset with 90 observed wins and
10 observed losses would result in an accuracy of 90% if only win was
predicted. Such a classifier has not learned anything, but it appears
to be a good result.
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Recall is the number of true positives divided by the total amount of
positives [1]. A high recall number indicates that the positive class is
not mistaken for the negative class.

Recall = TP
TP+FN

Precision is the number of true positives divided by the total number
of predicted positives [1]. A high precision indicates that the negative
class is not mistaken as the positive class, resulting in the positive
predictions being precise.

Precision = TP
TP+FP

19



Chapter 3

State-of-the-art

This chapter will explain the current state-of-the-art in the field of ar-
tificially intelligent Hex players. Some Hex AI history is also explained
leading up to today.

3.1 Early programs

Alpha-beta search [17] was prominent in early Hex programs, exploit-
ing the differences from Go described in section 2.1.1. An analog Hex
player was made in the 1950s by C. Shannon and E.F. Moore, using
a network of resistors as edges and lightbulbs as vertices [46]. This
machine was the inspiration for the program Hexy [3, 6]. Hexy used
Shannon’s ideas in an alpha-beta search evaluation and also intro-
duced H-search, a way of combining virtual connection (VC) patterns
together to build more complex patterns. H-search was shown to be
incomplete, and due to this can only find a subset of all VCs [6].
Nevertheless, Hexy was a strong player and won the first Computer
Olympiad for Hex in 2000 on a board size of 11 × 11 [3]. Improving
upon Hexy, the program Six won the Computer Olympiads in 2003,
2004 and 2006 [34].
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3.2. MoHex State-of-the-art

Further improvement in the Hex analysis field is Inferior Cell Analysis
(ICA), which finds game positions that are dead, i.e. useless and need
not be considered [31, 11]. Figure 3.1 illustrates such dead cells. The
program Wolve was developed based on H-search and ICA, and won
the Computer Olympiad in 2008 [7].

Figure 3.1: Regions of dead cells. Figure reprinted from Henderson
et al. [37]

3.2 MoHex

Inspired by Go and MCTS, MoHex was created by Arneson et al.
[9] in early 2007 and as part of the Benzene Project codebase1. The
Benzene Project is a Hex framework built upon Fuego [18], a C++
library developed at the University of Alberta for the game of Go.
Both Wolve and MoHex’s source codes are available through Benzene.
In 2008, MoHex came second in the Computer Olympiad, while in
2009 it was able to beat Wolve and get the gold medal [8].

MoHex uses tricks in order to speed up the MCTS algorithm. It
employs tree knowledge, with H-search and ICA, to prune the game
tree and make reduced game boards. Monte Carlo simulations are
done on these reduced boards [9, 36]. In addition to MCTS, Mo-
Hex runs a parallel Hex solver using Depth-first Proof Number search
(DFPN) [42], able to find perfect moves if searching long enough.
If the DFPN search finishes before the time limit per move, Mo-
Hex will play perfectly. MoHex 2.0 is an improvement on MoHex

1http://benzene.sourceforge.net/

21

http://benzene.sourceforge.net/
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which strengthens the simulations of the MCTS [38]. The simula-
tions are weighted with prior knowledge using learned patterns from
a minorization-maximization algorithm [16].

Since 2009, MoHex has won all Computer Olympiads in Hex [32]. Re-
cent wins are however different forms of MoHex, as since 2016 when
AlphaGo was introduced, research efforts went in to explore the use
of neural networks for the game of Hex. Therefore, in the Computer
Olympiad of 2016, MoHexNet based on NeuroHex [33, 52], was intro-
duced and won. Since then MoHex-CNN won in 2017 [32, 21], and
MoHex-3HNN - the successor - won in 2018 [23, 22].

As current research efforts explore the use of neural networks, this
thesis will focus on the Tsetlin Machine. MoHex uses a custom MCTS
algorithm based on various tricks, but the TM will run on a vanilla
Monte Carlo tree search implementation, with the focus being on the
TM’s pattern recognition capabilities.
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Chapter 4

Solution

This chapter will explain how supervised learning with the Tsetlin
Machine was carried out and evaluated for Hex, and additionally, the
process of playing the game with tree search and Monte Carlo tree
search.
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4.1. Overview Solution

4.1 Overview

A systematic overview of the presented solution is illustrated in figure
4.1. The method is outlined in parts that capture a thorough insight
into the TM implementation. The arrow in the top-left corner marks
the start of the process.

Figure 4.1: Solution Pipeline

The subsequent sections elaborate on the individual steps of the pipeline.

• Section 4.2: Creating data describes the first step of acquir-
ing data necessary for supervised learning.

• Section 4.3: Training the Tsetlin Machine describes the
process of training the TM machine, corresponding to thesis
goals 1 and 2, by way of binarizing the input data. The trained
TM was analyzed on account of accuracy, precision and recall.

• Section 4.4: Separating based on moves refers to an exper-
iment used to find the depth required for tree search evaluation.
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• Section 4.5: Search Evaluation elaborates on the tree search
evaluation process, an important step in relation to thesis goal
3. Tree search encompass all board positions down to a given
level, and served as a systematic approach for observing the TM
classifier.

• Section 4.6: Playing the game of Hex explains how a Hex
tournament, between TMs and other player, were conducted.
This section corresponds to thesis goals 3 and 4 as well as hy-
pothesis 2.

• Section 4.7: Interpreting Tsetlin Machine patterns ex-
plains the process of making the TM clause conjunctions illus-
trated as Hex boards - to be interpretable. This correlates with
thesis hypothesis 1.

4.2 Creating data

In order to train the Tsetlin Machine, good data was needed. As
mentioned by Gao et al. [24], previous data from MoHex 2.0 training
were not available, so they generated their own by MoHex 2.0 self-
play. Self-play is the concept of making an algorithm play against
itself, instead of having a manual opponent. Self-play enables rapid
play without the program having to wait for other input. Unfortu-
nately, the link to the MoHex 2.0 self-play data was broken. As a
consequence, a new data generation was performed. An implementa-
tion of MoHex 2.0 was found on Github1 that allowed for modifications
to generate new data.

To get winning positions from both players, all the possible starting
moves for black and white were iterated over several games. The
Benzene project uses x- and y-coordinates to refer to the Hex board
positions. This generation process is exemplified in Algorithm 1 with
pseudocode. MoHex 2.0 took over and played the rest of the games

1https://github.com/cgao3/benzene-vanilla-cmake
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from move 3 onwards. Each game’s board positions were saved to a
dataset file on disk.

Algorithm 1 Data generation
Input Text file: file, Board size: bsize

1: procedure GenerateData(file, bsize)
2: for by ← 1, . . . , bsize do . Iterate all possible positions
3: for bx← 1, . . . , bsize do . for black first move
4: for wy ← 1, . . . , bsize do . Iterate all possible positions
5: for wx← 1, . . . , bsize do . for white first move
6: if bx == wx and by == wy then
7: continue . Prevent placing in same spot
8: end if
9: game ← NewGame(bsize, bsize)

10: game.placePiece(bx , by) . Place first black piece
11: game.placePiece(wx ,wy) . Place first white piece
12: winner ← MoHexSelfPlay(game) . Play out game
13: file.write(game.toString(),winner) . Write data
14: end for
15: end for
16: end for
17: end for
18: end procedure

With a board size of 5 × 5 there are 25 possible starting moves for
black, and 24 possible continuation moves for white. By fixing the
starting positions this gave 25*24 = 600 different games. Increasing
the board size to 6 × 6 gave 36*35 = 1260 different games. A board
size of 6× 6 was selected for the dataset because it was a reasonable
size. Using smaller board sizes, than e.g. 11×11, was much faster and
MoHex 2.0 could find the perfect moves. Given that current research
efforts had analysed up to 10 × 10 boards [42], a 6 × 6 board was
deemed a reasonable starting point for analysis with the TM.

In the data that was generated, each feature vector represented a
board position and each feature in the vector was either ’b’ (black),
’w’ (white) or ’e’ (empty). The feature vectors consisted of features
for the first row of the board, then features from the second row
and so forth. Each class was the winning player, noted after the
game had finished. So, each game was played until the end and every
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board position in each game was assigned the class of that winner.
The dataset classes were set to ’w’ for white win and ’b’ for black
win. Table 4.1 shows the class distribution over all game boards. The
dataset was assigned the name 17k dataset because it had 17880 game
boards.

Table 4.1: 17k dataset class distribution

Class Game Boards

White 1294

Black 16586

Total 17880

4.2.1 Double Dataset

As seen in table 4.1, there is an uneven distribution of the classes.
Since black is the starting player he has an advantage, resulting in
16586 / 17880 = 92.8% of the classes to be his wins. This results in the
TM needing a prediction accuracy of over 92.8% to be better than just
selecting black class. The swap rule in Hex allows the second player
to basically become the first player. This means that changing all
’b’ features to ’w’ and vice verca will result in new theoretically legal
positions. Therefore, in order to try and balance this bias towards the
first player, the dataset was doubled. By adding all changed positions
and classes to the dataset, this became the 35k dataset. The 35k
dataset consists of an equal amount of classes, making guessing chance
equal 50%.
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4.3 Training the Tsetlin Machine

This solution used a weighted multi-class TM with integer weights [5].
Remaining mentions of the TM will refer to this variant. After having
generated 17k and 35k datasets as explained in section 4.2, the TM
algorithm was trained in Python using the pyTsetlinMachineParallel2

library. This library is a CPU implementation of the multi-class TM,
which has support for multi-threaded performance during training
making it more time efficient.

2https://github.com/cair/pyTsetlinMachineParallel
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4.3.1 Data binarization

The TM is based on clauses from logic and requires the input features
to be binary. Figure 4.2 shows how this process was applied.

The generated dataset consisted of features with the values, ’b’, ’w’
and ’e’, so they could not directly be changed into bits. Instead, the
feature vector was separated in two parts, represented as a composite
vector of 72 bits. Two bits for each board position on the 6×6 board.
The first 36 positions had bits set to 1 where black had pieces placed,
and the last 36 positions had bits set to 1 where white had pieces
placed. This resulted in a new feature vector in binary format. An
empty position was represented by value 0 in both parts.

Figure 4.2: A subset of the dataset being transformed into binary
format. Each input is doubled, with respect the to black and white
players’ pieces
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The data binarization process can be exemplified with the arbitrary
board position given in figure 4.3.

Figure 4.3: 2× 2 Hex board position

The dataset from the board position in figure 4.3 is ebwe and would
transform to binary as follows:

ebwe −→ 0100 (black)

ebwe −→ 0010 (white)

01000010 (final)

4.3.2 K-fold Cross Validation

To determine the TM classifier’s accuracy, some of the data was seper-
ated as test data. Instead of splitting the data in e.g. 90% training
and 10% test, K-fold Cross-Validation (KCV) was used to validate
the classifications more robustly [29]. First, the dataset was shuffled,
then it was divided into k groups. To avoid having part of a game
in training and the rest of that game in testing, the data was split
on whole games. This ensured that data from the same game was
not split in the cross-validation groups. The testing used a k=10, so
10 groups were made. For each group, a TM was trained on 9 of the
groups and tested on the remaining group. The group used for testing
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was switched with one of the 9 from training until all groups had been
the tested group. The KCV was stratified, meaning each group had
the same ratio of classes, to ensure the testing and training data was
not split dependent.

4.4 Separating based on moves

The longer a game of Hex goes one, the easier it is to tell who will
win. As a first step towards tree search, a Tsetlin Machine with
500 clauses, 6000 threshold and 10 s-value was tested on data where
various amounts of pieces were placed on the board. The intention
was to get a better understanding of the evaluation strength of sparse
or dense game boards. The 17k dataset was divided into separate
datasets based on number of pieces. Individual TMs were trained on
each of the sets to find their accuracy.
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4.5 Search Evaluation

To play Hex with the TM, it needs to be able to help a tree search
algorithm find strong continuation paths. It is crucial for the TM to
guide the search towards paths that are winning. Figure 4.4 illustrates
this evaluation process.

Figure 4.4: Tree Search Process

4.5.1 Dual Tsetlin Machines

So far, the TM has been used to give a binary prediction of who will
win some given board position. Going further, trying to guide a search
requires the TM to differentiate between strong wins, weak wins and
losses. In addition, it must rank positions based on the black and
white players’ perspective. Currently, only an objective prediction of
the winner is given. This lead to two TMs being trained instead of
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one; one TM for the black player and one TM for the white player. It
is game losing to start the game with a piece in the corner, for both
players. Therefore, weak moves for black does not imply strong moves
for white, so a single TM solution fails.

OpenSpiel did not have support for the swap rule in the Hex imple-
mentation, so the 17k dataset was used. The TM evaluates board
positions after a player has placed their piece. Therefore, the black
TM was trained on board positions where black had just placed (odd
number of pieces & white’s turn). The white TM was trained on
board positions where white had just placed (even number of pieces
& black’s turn).

In order to rank positions within the same prediction class, it was
possible to use the sum of the voting from conjunctive clauses in
the TM, a score indicating its confidence. The weighted MTM used
one TM classifier for each class; win, loss and each produced a vote
total. To get the final score for a position the losing TM’s votes were
subtracted from the winning TM’s votes. This constituted the ranking
process of given board positions.
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4.5.2 Tree Search

With two TMs it was possible to do tree search, evaluating board
positions from both the black and white perspective. The hyperpa-
rameters set for these two TMs were 6400 clauses, 12000 threshold
and 40 s-value.

The tree search was executed with stochasticity, meaning the start-
ing board positions, where the search was to begin, were randomly
created. An integer between 2 and 15 for the number of pieces were
randomly determined, and then pieces were placed arbitrarily on the
board until it matched this integer. The fastest a game of 6× 6 Hex
can end is in 11 moves (6 black moves and 5 white moves). Not all
games end this quickly, so the top interval value was set a certain
amount of moves higher than this. From this position, a breadth-first
approach was used to find all possible paths in the tree - on the 3rd
level, see figure 4.5.

A depth of 3 was chosen based on some factors. Firstly, the test
described in section 4.4. Secondly, the level of the search had to
coincide with the game’s turn alternations. Because the TM evaluates
after a move is done, even numbered depths like 2 or 4 would not work.
On these depths the opponent’s last move would be evaluated, i.e.
not the correct player, meaning the depth had to be an odd number.
Lastly, it was computationally feasible - where a higher depth of 5 was
to slow to compute. At the start of the game, a depth of 3 will expand
to 36*35*34 = 42840 possibilities. Finding all of these possibilities
and evaluating them with the TM took around 2 seconds. A depth
of 5 however expands to 36*35*34*33*32 = 45239040 possibilities,
approximately 1000 times larger.
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Figure 4.5: Example tree search down to 3rd level. Nodes are num-
bered in the way they are searched with the breadth-first search

When the 3rd level was reached, the TM evaluated all the possible
board positions, giving each of them a score. The top 100 scoring
positions were selected for analysis. As such, these were saved to a
file on disk. The file contained the top position’s score and the TM
predicted class. Additionally, MoHex 2.0’s DFPN search was utilized
to output correct win class to the file.

The tree search was executed in iterations and each iteration was
decided to involve 100 stochastic boards. Therefore, each iteration
created 100 individual files. Figure 4.6 shows this file structure on
disk with some dummy values.

Figure 4.6: One iteration of the tree search’s file structure on disk

The TM scores are the sum of the TM clause voting process and
each clause is multiplied by its corresponding weight coefficient. This
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means that the real values can be quite high, often in the tens of
thousands, depending on the size of the weights. Therefore, the scores
in the files were normalized between -1 and 1, as in the exemplary
figure 4.6.

4.5.3 More data

When performing tree search, as explained in section 4.5.2, it was de-
termined the data in the 17k dataset was insufficient. Random search
revealed new board positions not previously seen in the dataset, re-
sulting in low and sometimes negative TM scores for (actual) winning
positions. To resolve this, the files on disk from tree search was used as
additional data. After 27 tree search iterations, where each iteration
generated 100 board positions, a total of 2700 were generated. Finding
100 top scoring future positions for each gave 270000 new positions.
Combined with the 17k dataset, this became the 287k dataset.

Table 4.2: Class distribution for the 287k dataset

Class Game Boards

Black 175968

White 111826

Total 287794

4.5.4 Tree Search Evaluation

To analyse the TM’s ability of finding winning paths in the tree search,
recall and precision graphs were made. Recall was calculated with the
formula:

Recall = TP
TP+FN

And precision was calculated with the formula:

Precision = TP
TP+FP

Since the files from tree search had information about TM prediction
and MoHex 2.0 true value, it was possible to calculate a confusion

36



4.5. Search Evaluation Solution

matrix and derive the values for true positive (TP ), false negative
(FN) and false positive (FP ).

The boards, created stochastically, could start off in losing positions
before the tree search even began. With the recall formula these
boards were ignored, as recall only focuses on positives (the positions
that are winning). Recall will reflect the TM’s ability to not predict
true wins as loss, and a high value will mean it is adept at this task.

Precision was calculated to show how accurate the TM was at not
predicting true loss as win. In turn, a high precision would mean the
TM was good at filtering out losses in presented board positions.

Looking at an increasing number of top positions from each file, sev-
eral values of recall and precision was calculated. The first recall, R1,
and the first precision value, P1, was calculated by only including the
highest scoring position from each of the files. R2 and P2 was cal-
culated by looking at the top two positions from each file. This was
continued until R100 and P100 that included all the positions from
all the files. Figure 4.7 illustrates how R5 and P5 was calculated by
including only the top 5 positions:

Figure 4.7: R5 and P5 including only the top 5 positions from each
file

With the dummy values from figure 4.7, a confusion matrix would
look like table 4.3.
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Table 4.3: Confusion matrix for top 5 scores of file 1, 2, 99 and 100

True value
Win(1) Loss(0)

Prediction
Win(1) 13 TP 1 FP
Loss(0) 3 FN 3 TN

Calculating the Recall from this matrix gives:

R5 = 13
13+3 = 81.25%

Calculating the Precision from this matrix gives:

P5 = 13
13+1 = 92.86%

4.5.5 Hyperparameter optimization strategy

The method for hyperparameter optimization used for this thesis was:

1. Setting threshold and s-value to some guesstimated numbers.

2. Varying the number of clauses by halving and doubling the value
until a satisfactory accuracy was found.

3. Taking that best clause value and varying the threshold and
s-value using halving and doubling.

This method was stopped after a reasonable amount of time, because
it could be repeated indefinitely with exponentially lower returns, and
time was better spent elsewhere.

4.6 Playing the game of Hex

Having finished training the TM with new data, the game could be
played. Deepmind’s OpenSpiel3 framework [40] supports the game

3https://github.com/deepmind/open_spiel
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of Hex and was used to get access to legal moves to choose from.
Additionally, it provided easy integration with the Monte Carlo tree
search algorithm 4. This implementation is based on the UCT variant
by Kocsis and Szepesvári [39].

The evaluator method used to rank non-terminal nodes during the
MCTS was overriden in the implementation, in order for the TM to
score the nodes during search. Algorithm 2 shows this evaluation
procedure, with the UCT constant set to

√
2.

Algorithm 2 MCTS Evaluator
Input Board position: brd
Output Board position score

1: procedure Evaluate(brd)
2: pieces placed ← CountPieces(brd) . Count non-empty hexes
3: turn ← (pieces placed%2 == 0) . Figure out whose’s turn
4: tm ← SelectTM(turn) . Select black TM or white TM
5: binary brd ← BinarizeBoard(brd) . Turn into binary input
6: predictions, votes ← tm.predict(binary brd) . Give input to TM
7: win votes ← votes[1] . Extract votes from TM for each class
8: loss votes ← votes[0]
9: vote diff ← win votes − loss votes

10: score ← vote diff /100000 . Normalize value
11: score ← max(score,−1.0)
12: score ← min(score, 1.0)
13: return score
14: end procedure

Since two TMs were employed, it was necessary find whose turn it
was to let the respective TM evaluate the position. This was achieved
by counting number of pieces on the board, where an even number
meant black player’s turn and an odd number meant white player’s
turn.

The TM votes could be in the tens of thousands, so they were normal-
ized between the values of -1.0 and 1.0 by dividing them by 100000.
This was set as an upper and lower bound for the votes based on some
high votes from tree search (section 4.5). Normalization was a critical

4https://github.com/deepmind/open_spiel/blob/master/docs/

algorithms.md
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4.7. Interpreting Tsetlin Machine patterns Solution

step as without this step MCTS was behaving very poorly. This was
due to board positions being indistinguishable for the algorithm as all
were above 1.0, the best score.

4.6.1 Tournament

To evaluate the playing strength of the Tsetlin Machine Hex players,
a tournament was played. In the tournament, players using the 287k
dataset and the 17k dataset took part, with tree search and MCTS.
The MCTS players used 10000 Monte Carlo simulations per move.
In addition, since the 287k dataset was created based on randomly
generated game boards, the TMs were pitted against two non-TM
players. One player doing completely arbitrary moves, and one player
using the MCTS algorithm with random rollouts as an evaluation
strategy. A rollout is a simulation to the end of the game to find
a winner. This information was used to score the evaluated board
positions. The random rollout player performed 1000 Monte Carlo
simulations and did 20 random rollouts for each board evaluation.

Tree search players participated in the tournament to test hypothesis
2. They played by ranking all board positions on the 3rd level and then
selected the one with the highest score. The move on depth 1 from
this board position was chosen as the move. For these players it was
important that the top scoring board position was a win. Therefore
a high first precision value, P1, was important for these players.

4.7 Interpreting Tsetlin Machine patterns

The last yet important part of the solution was to interpret the TM
patterns. The strength of the TM is to clearly visualize the patterns
that it learns.

Each clause consists of a team of Tsetlin Automata, with two au-
tomata responsible for each position on the Hex board. Tsetlin Au-
tomata learns to include or exclude negated and non-negated features.
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By querying each Tsetlin Automaton’s learned action, the clause con-
junction could be extracted.

For example on a 2 × 2 Hex board, there are 4 possible positions
for pieces to be places. In other words the positions can be expressed
with a vector of 4 features, with each feature corresponding to a board
position. In fact, during the binarization step to fit the input to the
TM’s requirements, the positions were doubled. Meaning there is
one vector for possible positions of black’s pieces and one vector for
possible positions of white’s pieces. This means the composite input
vector must have 8 features. As a consequence, there are 8*2 = 16
TA created - one for negated and one for non-negated. Figure 4.8
illustrates how these TA correspond to the Hex board of size 2× 2.

Figure 4.8: The 16 TA for negated and non-negated features corre-
sponding to the positions on the 2× 2 Hex board. Features x1−4 for
black pieces and x5−8 for white pieces

As such, a Hex board can be created for each clause to illustrate where
the pattern determines it is beneficial to have pieces and where it is
inferior. Querying each TA’s learned action in figure 4.8 might for
example reveal the pattern in figure 4.9
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4.7. Interpreting Tsetlin Machine patterns Solution

Figure 4.9: Querying the actions for the TA responsible for a 2 × 2
Hex board reveals the learned conjunction: x2 ∧ x̄7 ∧ x̄8

Finally, the pattern can be cleaned up and be illustrated as in figure
4.10. The blank position is ignored by the pattern, while a red X
means that this piece must not be in that position.

Figure 4.10: A more easily understandable pattern form based on
learned actions in figure 4.9

The clauses with high weights are interesting because they have a
higher likelihood of being true positives. Here it was important to
distinguish even and odd numbered clauses. Only even numbered
clauses voted in favor of the class, while odd numbered clauses were
counter-examples for the class. Figure 4.10 might be an example of
an even numbered clause in favor of win for black.
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Chapter 5

Results

This chapter will go over the findings based on the implementations
described in Chapter 4. Results are presented on the experiments
of prediction rate on a given Hex board, the quality of tree search,
pattern interpreting and on the success of playing Hex with the Tsetlin
Machine using MCTS and tree search.

5.1 Classification Accuracy

The following subsections will present prediction accuracies, precision
and recall with 10-fold cross validation for the datasets explained in
Chapter 4. Single TM means one TM trained on all data and then
evaluated. Dual TMs means one TM for black player and one for white
player. All these TMs have 3 hyperparameters - clauses, threshold and
s-value - that must be balanced in order to achieve the optimal results
on any given data. This can be time consuming to achieve and the
TMs presented in this chapter has not been fully optimized.
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5.1. Classification Accuracy Results

5.1.1 Single TM on 17k dataset

The 17k dataset consists of 16586 winning lines for black and 1294
winning lines for white. Guessing chance equals 16586/17880 = 92.8%.
A single TM is trained and the results for the second step of optimiza-
tion (section 4.5.5) is shown in table 5.1. The final optimization step
is shown in table 5.2. The tables include precision and recall for black
being the positive class in the confusion matrix.

Table 5.1: Varying clauses for TM trained on 17k dataset with 6000
Threshold and 10 S-value

Clauses Precision Recall Accuracy (%)

500 0.98 1.00 97.58± 0.80

1000 0.98 1.00 97.52± 0.93

1500 0.98 0.99 97.37± 1.74

1600 0.98 1.00 97.40± 1.09

1700 0.98 0.99 97.55± 1.04

2000 0.98 0.99 97.74± 0.90

Table 5.2: Accuracy with various Thresholds and S-values for 500
clauses trained on 17k dataset

10 s 15 s 20 s

5000 t 97.09± 1.21 96.92± 2.15 96.74± 1.68

6000 t 97.59± 1.21 97.09± 1.61 96.76± 1.80

7000 t 97.28± 0.82 97.21± 0.89 96.80± 0.96
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5.1.2 Single TM on 35k dataset

Table 5.3 shows a single TM trained on the 35k dataset. The table
includes precision and recall for black being the positive class in the
confusion matrix.

Table 5.3: Varying clauses for TM trained on 35k dataset with 6000
Threshold and 10 S-value

Clauses Precision Recall Accuracy (%)

500 0.90 0.85 87.73± 1.54

1000 0.89 0.88 88.50± 1.17

1500 0.97 0.99 96.83± 1.78

1600 0.97 0.99 97.11± 1.03

1700 0.98 0.99 97.21± 0.94

2000 0.97 1.00 96.78± 1.43

Table 5.4 shows the final optimization step of table 5.3 for 1700
clauses. Different hyperparameter values are explored to see if the
clause with the highest accuracy could be improved upon.

Table 5.4: Accuracy with various Thresholds and S-values for 1700
clauses trained on 35k dataset

10 s 15 s 20 s

5000 t 96.54± 1.18 96.61± 1.45 96.77± 1.53

6000 t 97.21± 0.94 96.76± 0.93 97.10± 2.01

7000 t 96.54± 2.25 96.74± 1.22 96.45± 1.08
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5.1.3 Dual TMs on 287k dataset

Table 5.5 shows the class distribution for each of the TMs, black and
white, split by the 287k dataset.

Table 5.5: Class distribution of Dual TM on 287k dataset

(a) Black TM

Class Game boards

Win 99645

Loss 39017

Total 138662

(b) White TM

Class Game boards

Win 71515

Loss 59737

Total 131252

The hyperparameters for the dual TMs are optimized for black and
the same values are used for white. Table 5.6 shows the second opti-
mization step for the 287k dataset.

As seen in table 5.6, the TMs that ran for 100 epochs were overfitted.
Overfitting means to be overspecialized on the training data, such
that the TM would perform poorly on non-identical data, like what
was used for testing. The following TMs were therefore trained to 50
epochs and not 100.

The tree search evaluation was performed using 6400 clauses, 12000
threshold and 40 s-value, performing worse than the TM with 9600
clauses and 12800 clauses. The difference between 9600 and 12800
was not as significant as between 6400 and 9600, so the one with 9600
clauses was selected when choosing players for the Hex tournament,
as a middle-ground. The highest performing TM with 9600 clauses
was selected from the values shown in table 5.7
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Table 5.6: Varying clauses for Black TM trained on 287k dataset with
12000 Threshold and 40 S-value

100th epoch 50th epoch

Clauses Precision Recall Accuracy (%) Accuracy (%)

500 0.87 0.92 84.44± 0.98 85.09± 0.77

1700 0.90 0.93 87.33± 1.02 88.21± 1.15

3200 0.90 0.94 88.48± 1.17 89.60± 1.43

6400 0.93 0.92 88.89± 2.44 90.39± 2.41

9600 0.93 0.92 89.45± 1.73 91.19± 2.10

12800 0.93 0.93 89.95± 2.55 91.28± 2.21

Table 5.7: Accuracy for Black TM with various Thresholds and S-
values for 9600 clauses trained on 287k dataset up to 50th epoch

10 s 15 s 20 s 40 s

3000 t 81.41± 1.42 84.89± 1.42 85.46± 1.31 88.13± 1.81

6000 t 83.01± 2.21 85.73± 2.30 86.49± 2.57 89.30± 2.60

9000 t 83.78± 2.99 85.75± 3.00 86.68± 3.55 90.25± 2.54

12000 t 83.61± 2.32 86.59± 2.06 87.67± 1.31 91.19± 2.10
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5.2 Separating Moves

The results from the experiment on separating moves (section 4.4) is
shown in figure 5.1

A TM with 500 clauses, 6000 threshold and 10 s-value was trained
on subsets of the 17k dataset, separated by moves. As seen in figure
5.1, the accuracy was low for 2 moves, but quickly increased as more
moves were done and more pieces allowed for better clause patterns.
The figure decreases as even more moves were done, as data from
these number of moves were sparse. The final spike in the figure can
thus be explained by the data having few games with 26 moves, and
that those that were trained on were similar.

Figure 5.1: Accuracy of TM based on training with separated moves
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5.3 Search Evaluation

This section is related to solution section 4.5, tree search, and will
display results from this implementation. It will show TM’s improve-
ment in search capability, caused by the stochastic generation of new
data, shown by the recall and precision graphs.

5.3.1 Recall Graphs

The first iteration of the search was using a TM trained on the 17k
dataset. 100 stochastic board positions were generated and classified
by the TM. The corresponding recall graph is shown in figure 5.2.

Figure 5.2: Recall graph for 1st iteration of tree search evaluation
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5.3. Search Evaluation Results

As more top positions were included in the recall calculations the
percentage value sank, as seen by the slope of figure 5.2 becoming
gradually lower. Only the top 100 ranking board positions were eval-
uated, yet the graph’s slope indicates that it converges at some point,
given more top board positions. The spike between R10 and R20 can
be explained by randomness. This indicates most of the positions
were completely new to the TM at this point, making it unsure.

Figure 5.3 shows the recall graph from the second tree search iteration.
This TM was trained on the previous board positions from the first
iteration in addition to the 17k dataset. The graph increased with
around 10% from figure 5.2, a strong improvement from the previous
iteration, indicating more data improves the TM.

Figure 5.3: Recall graph for 2nd iteration of tree search evaluation
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5.3. Search Evaluation Results

After ten tree search iterations, figure 5.4, the recall appears to not
increase. The value is slightly lower than in the second iteration, but
this may be attributed to randomness. This TM was trained on the
board positions from all previous iterations in addition to the 17k
dataset.

Figure 5.4: Recall graph for 10th iteration of tree search evaluation

Continuing the search to the 27th tree search iteration seen in figure
5.5, indicates the recall value continuously increase - however more
subtly. The first recall value, R1, has taken slower and more granular
steps. Nevertheless, the lower values from R15−100 has increased a fair
bit and the gap between R1 has narrowed. This may indicate that
the TM has become more rigorous in its evaluation. Instead of only
correctly classifying a couple of top scoring board positions, it gets
more of the winning positions correct. The TM in iteration 27 was
trained on the 26 previous iteration’s data in addition to the original
17k dataset.
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5.3. Search Evaluation Results

By looking at the overall improvement from the 1st iteration (figure
5.2) to the 27th iteration (figure 5.5), all recall values, R1−100, have
improved greatly. This can be interpreted as the TM having learned
important patterns to recognize wins for a wider range of board posi-
tions. The TM trained on the 17k dataset has a focused awareness of
only the best moves to take from MoHex 2.0 self-play. The stochastic
board positions in the 287k dataset gives the TM a larger repertoire
to form valuable clauses.

Figure 5.5: Recall graph for 27th iteration of tree search evaluation
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5.3. Search Evaluation Results

5.3.2 Precision Graphs

The following precision graphs are calculated from the same confu-
sion matrices as the recall graphs in subsection 5.3.1. Figure 5.6 has
around chance (50%) precision, resulting in the TM not recognising
that about half of the top scoring positions were losses and still clas-
sified them as wins. This indicates that the TM had not seen these
board positions before, and was therefore not able to differentiate win
from loss.

Figure 5.6: Precision graph for 1st iteration of tree search evaluation
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5.3. Search Evaluation Results

Figure 5.7 shows the precision graph from the 2nd tree search itera-
tion. The graph has a 25-30% increase in precision depending on how
many positions were included. This indicates that adding generated
data helped the TM in not classifying loss as win.

Figure 5.7: Precision graph for 2nd iteration of tree search evaluation
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5.3. Search Evaluation Results

Figure 5.8 shows the graph from the 10th tree search iteration. The
precision has increased, but with less gain than from iteration 1 to
iteration 2.

Figure 5.8: Precision graph for 10th iteration of tree search evaluation
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5.3. Search Evaluation Results

Figure 5.9 shows the graph from the 27th tree search iteration. The
precision value has not converged yet, indicating that adding more
training data would increase precision some more, the same observa-
tion made in the 27th recall graph, figure 5.5.

Figure 5.9: Precision graph for 27th iteration of tree search evaluation
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5.4 Playing Hex

This section presents the results from the Hex tournament. The non-
TM players in the tournament were the following:

• Random (Rand.): Arbitrary moves

• RandomRollout (RR): Used rollouts as an evaluation strat-
egy in MCTS for non-terminal nodes.

The TM players, with corresponding hyperparameters and playing
method, are shown in table 5.8. Each player was pitted against all
other players in 10 games, each getting the chance to play as both
black and white. Tournament results are shown in table 5.9. Table
5.10 show the average number of pieces placed on the board from the
10 games. Random vs Random and RR vs RR is not of interest and
was not done.
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Table 5.8: Tsetlin Machine players in the Hex Tournament

TM Clauses Threshold S-value Dataset Method

1 500 6000 10 17k MCTS

2 500 12000 40 287k MCTS

3 9600 12000 40 287k MCTS

4 500 6000 10 17k Tree Search

5 9600 12000 40 287k Tree Search

Table 5.9: Tournament Results. Playing as black in rows and as white
in columns

Players
W H I T E

Rand. RR TM1 TM2 TM3 TM4 TM5

B
L
A
C
K

Rand. — 0-10 1-9 0-10 0-10 8-2 6-4
RR 10-0 — 10-0 10-0 10-0 10-0 10-0

TM1 10-0 0-10 10-0 10-0 5-5 10-0 10-0
TM2 10-0 0-10 10-0 10-0 10-0 10-0 10-0
TM3 10-0 0-10 10-0 10-0 9-1 10-0 10-0
TM4 5-5 0-10 0-10 0-10 0-10 0-10 0-10
TM5 5-5 0-10 0-10 0-10 0-10 10-0 10-0

Table 5.10: Average number of pieces placed between players in all
10 games

Players
W H I T E

Rand. RR TM1 TM2 TM3 TM4 TM5

B
L
A
C
K

Rand. — 12.0 18.5 16.4 19.2 32.4 34.6
RR 11.2 — 11.0 11.6 11.6 11.0 11.0

TM1 19.6 12.6 21.2 16.0 20.9 25.8 17.0
TM2 11.4 12.4 14.4 11.0 11.0 20.6 11.8
TM3 18.6 12.2 17.0 17.0 18.1 23.8 24.8
TM4 33.9 12.2 16.0 23.6 14.0 36.0 36.0
TM5 32.3 12.6 17.8 24.8 18.4 35.0 35.0
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5.4.1 RandomRollout player

As seen in table 5.9, the RR player played very well and lost no games.
Table 5.10 shows that these games finished quickly, usually after 11
or 12 moves. This was the smallest amount of pieces needed on the
board to win as black or white respectively. The RR player employed
a basic yet effective strategy by building a connection piece by piece.
It did not use any VCs like the bridge. Figure 5.10 below shows two
finished games played by RR against TM3 and TM4. TM3 was cut
off early, while TM4 indicates wanting to capture the center, having
no concern for the edge positions.

(a) RR (black) vs TM3 (white) (b) RR (black) vs TM4 (white)

Figure 5.10: Finished games showing RR strategy

5.4.2 Tree Search players

It became clear that the tree search players placed many pieces on the
board that resulted in long games. They played an average of 35 and
36 moves against themselves as seen in table 5.10, essentially covering
the entire board. Apart from when playing against RR, TM4 had
averages exclusively over 20 moves as white. Table 5.9 clearly points
out that TM4 and TM5 was the worst players out of all the TM
players in the tournament.

TM4 and TM5 placed a similar amount of pieces against Random. As
black, Random won the majority of these games, while as white Ran-
dom won half. Results show that all these games covered at least 32
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spaces on average, seemingly arbitrary placements, implying neither
tree search player had a good winning strategy for ending the game.

The precision graph in figure 5.9 indicates a starting precision of P1

= 94.7%, a high percentage. However, when performing tree search
and selecting only the top scoring board position, the probability for
this board position to remain as a win diminishes. For example, doing
tree search ten times in a row will give a rough estimate of 0.94710

= 0.58. This means that when selecting the tenth move, there was a
58% chance of this move still remaining as a winning position.

Figures 5.11 and 5.12 look at some the games Random played against
TM4 and TM5, in order to get an understanding of their inadequate
play. Subfigures a-c show three board positions from a single game,
where the tree search player won, and subfigure d shows a game where
Random won by luck. The tree search players both played as black.
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(a) TM4 started out well with
bridges in place to secure the win

(b) However it did not capitalize and
continued to place in the middle

(c) Empty spots got filled one after
the other, until TM4 was forced to
place on the edge and win

(d) Different game where Random
won by making a connection in the
top row, filling the board

Figure 5.11: TM4 (black) vs Random (white)

The games indicate that TM4 favored the middle positions when avail-
able, mostly disregarding his own edges, as also seen in figure 5.10b.
Likewise, figure 5.12 show the same effect for TM5.
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(a) TM5 started well
(b) However the bottom (and win-
ning) edge position was not filled

(c) Only two spots were left before
TM5 placed on the bottom edge po-
sition to win

(d) Different game where white ran-
domly placed in the bottom row to
win by luck

Figure 5.12: TM5 (black) vs Random (white)

The figures 5.11d and 5.12d shows win by Random on the top and
bottom edges. It appears that when the tree search players favored
the center, Random would get lucky and place connected pieces on
the edges, leading to wins.

5.4.3 MCTS players

Tournament results show the MCTS players performed much better,
in comparison to the tree search players, against Random. Apart from
one game facing TM1, Random lost all these games. This indicates
that combining the MCTS algorithm with the TM was effective at
creating more systematic play.
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The TM inference is deterministic, so the tree search players played
without randomness. Consequently, all the games played by TM4
against TM5 and by TM5 against TM4 were identical. The same
trained TM was used in TM3 and TM5, and in TM1 and TM4. This
TM gave the same scores for the same board positions. Yet, identical
games were not seen by these pairs, with the MCTS players being
strengthened by random Monte Carlo simulations. Pure tree search
was chosen to show the TM’s ability without any search algorithms
help. The resulting improvement with MCTS supports thesis hypoth-
esis 2, that a plain TM would not be adequate.

In the tournament, TM1 was one of the players using the smaller 17k
dataset and fewer clauses. It lost once to random and only managed
to win half of the games against TM3 when playing as black. Figure
5.13a shows the lost game played by TM1 against Random, while
figure 5.13b shows one winning game against Random. It seems that
the lost game was due to Random placing a blockade in the bottom-
left corner. TM1 made a vertical path in the middle in both cases,
but in the winning game the bottom-left corner was open.

(a) Random (black) vs TM1 (white) (b) Random (black) vs TM1 (white)

Figure 5.13: Finished games played by TM1 against Random

Figure 5.14 shows two finished games between TM1 and TM3, where
TM1 played as black. TM1 lost half of these games and the figure
shows one loss and one win. It seems that the critical move for black
was to connect the upper-middle pieces with the pieces near the bot-
tom. If white placed here first TM3 would win, and TM1 seemed to
place in this gap only 50% of the time.
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(a) TM1 (black) vs TM3 (white) (b) TM1 (black) vs TM3 (white)

Figure 5.14: Finished games played by TM1 against TM3

TM3 lost one game as black playing against itself. Figure 5.15 shows
the one lost game and another won game. The loss may be due to ran-
domness with Monte Carlo simulation, where the lost game sampled
inferior board positions compared to the won game.

(a) TM3 (black) vs TM3 (white) (b) TM3 (black) vs TM3 (white)

Figure 5.15: Finished games played by TM3 against itself

All these figures imply the MCTS algorithm was able to alleviate
the tree search players’ problem in that they were too focused on
the center. An important difference between the MCTS players and
the tree search players, was that MCTS would score finished board
positions by giving them the highest or lowest score possible. This
meant that positions on the edges, leading to wins, would be picked
by MCTS players. On the other hand, tree search would rely solely
on the TM’s top score. In Hex it is strong to start in the middle, and
it was observed that the TM learned the advantage of this, placing
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center pieces. However, it did not learn the winning edge positions.
This would lead to the tree search players filling up the center at
all times, due to being the top score. Some potential solutions are
proposed in future work, to improve the Tsetlin Machine’s ability to
recognize these moves.

Figure 5.16 shows the first moves selected by the TM players in the
tournament, in addition to MoHex 2.0 which played perfectly as black
and white on the 6 × 6 board. The first three moves for black and
white are shown in order of play. TM4 and TM5 played deterministi-
cally, while the MCTS players had some variation due to Monte Carlo
simulations, and as such a representative selection of first moves was
chosen. As seen in the figure, the TMs have a similar first move to
MoHex 2.0, but the subsequent moves differ partially due to the TM
not blocking its opponent.

The figure illustrate a pattern between the TM players, showing a
tendency to place center pieces on the short diagonal. As black, all
TMs have pieces placed in the same positions as TM1’s first and third
placements.
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(a) MoHex 2.0 vs MoHex 2.0 (b) TM1 vs TM1

(c) TM2 vs TM2 (d) TM3 vs TM3

(e) TM4 vs TM4 (f) TM5 vs TM5

Figure 5.16: First moves, MoHex 2.0 and the TM players in the tour-
nament
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5.5 Learned clause patterns

This section will accentuate the interpretability of the TM by showing
explicit examples of learned patterns. All examples used in this section
are extracted from even numbered clauses, voting in favor of their
given class.

TM1, from the Hex tournament in section 5.4, trained on the 17k
dataset had a lot of TA for negated features choosing the include
action. This resulted in the two figures 5.17 and 5.18 having several
negated pieces in their clauses. The 17k dataset is heavily center
focused and this may indicate that the TM is given a higher reward
when placing pieces in the middle of the board. Figure 5.17 which
represents win is a clear example of how highly the TM values not
placing on the edges, due to all negated pieces on the edge positions.

Figure 5.17: Winning clause pattern with weight 291, taken from TM1
trained on 17k dataset
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Figure 5.18 represents loss, likely due to black blocking its own path
with negated pieces on the bottom edge making the above piece re-
dundant.

Figure 5.18: Losing clause pattern with weight 244, taken from TM1
trained on 17k dataset

Figure 5.19 is a frequent 287k clause pattern, which is filled up with
negated white and black pieces, making it difficult to interpret on its
own.

Figure 5.19: Winning clause pattern with weight 247, taken from TM3
trained on 287k dataset.
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The clause in figure 5.20 has made a virtual connection (a bridge) for
black, recognising that this is a winning strategy for the given player.

Figure 5.20: Winning clause pattern with weight 164, taken from TM3
trained on 287k dataset

The clause in figure 5.21 represents loss, likely due to blocking one
potential bridge, making it challenging to connect previously placed
pieces - effectively squandering one piece.

Figure 5.21: Losing clause pattern with weight 223, taken from TM3
trained on 287k dataset
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Clauses in the TM work together and it is therefore challenging to
select individual clauses that represent what the TM has learned. The
clause patterns represented above was chosen based on interpretability
and representability of their given class (win/loss) by themselves. This
was done in order to make the results more comprehensible.

In a clause, the TA that states a piece must be included in a given
board position are much more explicit than the TA for the negated
feature. The latter can match with both empty positions and pieces
of the other color, making them more versatile. The figures presented
in this section include a majority of negated features, rather than
non-negated. This may be the reinforcement learning part of the TA
attempting to match as many inputs as possible. The TA wanted
rewards more often and versatile patterns achieve this.
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5.6 Summary

This chapter has presented the findings from the solution with the
corresponding results and Hex tournament. A TM trained on the 17k
dataset was shown to have weaknesses, when playing the game, appar-
ent from first tree search iteration’s precision graph. This weakness
was improved with tree search, as the recall and precision graphs show
significant improvements on new data derived from stochastic board
positions. This is shown step-by-step by the TM using the original
data compared to the final TM trained on the 287k dataset. The final
TM achieved a first recall value of R1 = 97.8% and a first precision
value of P1 = 94.7%, compared to the initial values R1 = 87.5% and
P1 = 50%

The Hex tournament show that TM4 and TM5 had problems with
finishing their games, due to top score selection being a narrow ap-
proach with the given data. The MCTS players were not able to beat
random rollouts as an evaluation strategy. Random rollouts rely on
playing the game until the end, and appears to be an effective esti-
mate on small boards like 6×6. On larger boards, the effectiveness of
a random rollout evaluation may diminish and become more difficult
as the number of possible moves grow.
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Chapter 6

Conclusion

This chapter overviews the thesis as a whole, concluding the find-
ings, where the game of Hex has been examined using the recently
introduced Tsetlin Machine technique.

Initial board evaluations were giving promising results of around 97%
accuracy, yet gameplay revealed a lack of knowledge concerning board
positions, making the Tsetlin Machine uncertain and prone to make
untrained choices. The introduction of data derived from stochastic
board positions gave the Tsetlin Machine versatile information, allevi-
ating the gaps in the original data. Transforming the accuracy down
to around 91%, but turning the initial recall from R1 = 87.5% to R1

= 97.8%, and precision from P1 = 50% to P1 = 94.7%. This allowed
for educated choices during gameplay.

Still, in a conducted Hex tournament the Tsetlin Machine struggled
with finishing the game with tree search, due to scoring the center
positions higher than the edge positions. The tree search players were
shown to fill the entire board before winning. Monte Carlo tree search
was therefore introduced along with the Tsetlin Machine, effectively
solving the problem of the board being filled, by giving the highest
score to board positions that were found to result in a guaranteed
win.
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Conclusion

The thesis goals are fulfilled and a working Hex player has been
demonstrated. Currently, the mixture of the Tsetlin Machine and
Monte Carlo tree search was not able to beat a player using random
rollouts as an evaluation strategy, on a board of size 6×6. The results
are not at a competitive level, but are encouraging and can lead to
bigger things. Based on ideas proposed in Chapter 8, future work,
it is not unreasonable for the TM to perform competitively on larger
board sizes, with further investigations needed to be certain.

We can therefore conclude that the TM is a good baseline that appears
to be viable for playing Hex.
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Chapter 7

Future Work

This chapter will discuss some interesting ideas sprung forth as we
worked on this thesis. The ideas and their related challenges are
explained below and should be explored in future research.

• Extend tree search selection: Make the tree search select
several of the top evaluated board positions instead of only the
best one. The search could be extended to go further in depth
from these candidates and then finally select the top scoring
board position amongst these evaluated boards. This extends
the search perimeter to examine additional board positions that
could be winning, alleviating evaluation mistakes done by the
Tsetlin Machine.

• Metadata: The dataset could be extended with the use of
metadata, for example to indicate the winning and losing move
based on perfect play.

• Move prediction: Instead of doing board evaluations, the in-
ference process could be switched to move prediction, as is done
with reinforcement learning. The system would then predict the
best legal move, instead of ranking whole board positions. This
is challenging, requiring significant work, but it is an interesting
prospect.
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Future Work

• Self-play feedback loop: A natural next step is to employ
self-play improvements on the Tsetlin Machine, moving away
from the supervised data. Deepmind’s AlphaGo improved by
being fed it’s own best games as training data [48]. By sav-
ing the games from the Hex tournament as data, this could be
used to re-train the Tsetlin Machine. A process, if repeated,
could hopefully improve the pattern capabilities of the Tsetlin
Machine over time, to make it sophisticated enough to beat the
basic strategy employed by the RandomRollout player.

• Larger boards: Results show the Tsetlin Machine is capable
of constructing reasonable patterns, but lack the precision of
perfect play like MoHex 2.0 on the 6×6 board size. Yet, MoHex
2.0 is incapable of perfect play on much larger board sizes, this
should narrow the gap between the methods.

• Supporting MoHex: Even though the Tsetlin Machine does
not play perfectly, it appears to give good pointers for gameplay.
Supporting the state-of-the-art MoHex with beneficial patterns,
based on self-play, could be a fitting use-case for the Tsetlin
Machine. The Tsetlin Machine could be acting like an intuition
before search is done.
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Appendices

A Hardware Specification

Operating System Ubuntu 17.10

Processor Intel i9-9900K

Memory 64GB DDR4
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