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Abstract

In the international Formula Student competition, only a handful compete in the
driverless category. Most of them using expensive hardware such as LIDAR’s. By
leveraging reinforcement learning, a cheaper camera based system can be created.
In order to train this system a simulator based on a fork of Microsoft’s AirSim by
Formula Technion was used. A virtual replica of a Formula Student car designed
for 2020 by Align Racing UiA, functioned as the test vehicle.

In order to decrease the required training time, a pre-trained imitation learning
network was used. This was implemented into a Deep Q-Learning network in four
different methods. The most successful method was able to accelerate the learning
process by 36%.
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Chapter 1

Introduction

Driverless vehicles offer many potential benefits such as higher efficiency, reduced
cost, universal access and increased convenience compared to human controlled
vehicles. In order to be classified as a Society of Automotive Engineers level 4
vehicle, no human input is permitted. This is a particular issue when attempting
to operate the vehicle close to its limits of handling for example during collision
avoidance or sudden loss of traction. [1]

High-speed autonomous racing can be considered an extreme version of the self-
driving car problem, as precise actions in physically complex environments must
be performed at a high frequency. Autonomous car racing provides a platform
to develop and validate new technologies under these challenging conditions. The
formula student driverless competition arranged by the SAE provides an unique
opportunity to test state of the art methods against each other under safe con-
ditions. Each team is responsible for both building the car and the autonomous
vehicle suite. The sensors found in this suite can range from simple accelerometers
to highly complex and expensive LIDAR systems.
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1.1. Motivation Introduction

By leveraging reinforcement learning, the sensor suite can be simplified to a com-
paratively cheaper camera and driving dynamics sensors. In the case of image
based reinforcement learning, a high correlation between simulator and real-life
can only be achieved with sufficient visual fidelity. Reinforcement learning is how-
ever highly dependant on lengthy training time, as it learns from essentially zero
experience. In general, reinforcement learning has two issues, feature learning and
policy learning. In image based reinforcement learning, the agent is expected to
interpret the images as well, thus further increasing the training time. It there-
fore suffers from poor initial performance as it needs to construct the high-level
features from raw images.

1.1 Motivation

The competitions arranged in Formula Student provide a great opportunity to
test state-of-the art methods in a safe environment. Similarly to the DARPA
competition, several teams compete against each other on the same “playing field”.
As a result, comparisons can be directly drawn between the different methods
chosen by the teams. In order to begin development of a self-driving car system,
the cost must be kept low. At the moment, few Formula Student teams compete in
the driverless competitions compared to the combustion engine and electric engine
categories. Most of these rely on LIDAR systems to provide accurate feedback of
the track. Some exceptions are Sapienza Corse and Formula Technion. The first
of which use cameras to map the track in a similar fashion to a LIDAR system
and the latter uses imitation learning from raw images. [2, 3]

Traditionally, complex models are used to provide an approximation of how fast
the car can drive through different parts of the course. This does however not
account for sudden loss of traction or other disturbances. By using reinforcement
learning, that has instead been trained to control the car and correct itself, a higher
possible speed can be achieved. This does however require that the simulator is as
accurate as possible to optimize potential transfer learning. By using a traditional
Deep Q-learning method, training time would be a major issue. Even when used
on a simulator, as the policy needs many examples and attempts until convergence
begins. By leveraging supervised imitation learning, pre-training of the network
and an initial policy can be instilled on a reinforcement network. Thus potentially
accelerating the training convergence.
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1.2. Report Structure Introduction

1.1.1 Project Goals

Goal 1: Create a simulation for AI training

Goal 2: Import and configure a Formula Student racecar

Goal 3: Apply imitation learning method from Formula Technion

Goal 4: Implement an image-based Deep Q-Learning method for self-driving

Goal 5: Accelerate the DQN learning process with imitation learning

1.2 Report Structure

This report will outline the background for the methods and technologies used in
the project. Current state-of-the will be mentioned briefly followed by a proposed
solution and the details of its implementation. Finally, the conclusion and poten-
tial future work
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Chapter 2

Background

This section will provide some background to the technologies used to complete
this project.

2.1 Formula Student Driverless

Formula student is an international engineering competition with contenders from
over 600 universities. These are divided into three categories, combustion, electric
and driverless vehicles. [4] The concept of the competition is to design and create a
prototype formula style racecar which competes in a series of static and dynamic
events. The static events consist of a business plan, cost/manufacturing and
engineering design. These are as the name implies, events where the vehicle
is static. The dynamic events are acceleration, skidpad, trackdrive and finally
efficiency.

The trackdrive is the major obstacle during the dynamic events as its layout is the
most complex. It consists of ten laps around an unknown track designated by blue
and yellow cones. The track is up to 500m with a track width of 3m and distance
between cones of maximum 5m. [4] In 2017, the first formula student driverless
competition was arranged in Germany with other countries following suit in 2018.
Formula Student Germany has previously stated that they wish to remove the
combustion engine category and make driverless participation mandatory. [5]
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2.2. Artificial Neural Networks Background

2.1.1 Formula Student Racecar

Each car built for the Formula Student competitions are built in accordance to a
strict formula defined by its rule book. Their propulsion system are categorized
as either electric or combustion, whereas the driverless vehicles can be either. The
vehicles can differ in weight from 100kg to over 300kg, but are generally less than
3m long and 2.5m wide. [4]

2.2 Artificial Neural Networks

An artificial neural network or ANN is, as the name implies, is similar in function
to brain neurons. The ANN can be made in both software and hardware, but in
the context of this project, software is the main focus. The network itself consists
of several interconnected processing elements called neurons, that work together
to solve specific problems. In order for this to happen, an input layer is used to
send data to the neurons, the neurons then fire off in a specific pattern based on
the response and output an answer. In much the same way organic neurons are
able to change or modify their function; artificial neurons are able to change what
they output in order to learn.

A convolutional neural network is a more specialized neural network that is able
to find patterns in large inputs. This is particularly useful for images as they
can have both high resolution and several color channels. By multiplying a filter
matrix and the input matrix, a feature map can be created. The purpose of the
filter can be to for example, perform edge detection, sharpen or blur the image
input. An RGB image, for example, can also be converted from 3 channels to
32 by changing the filter size. This allows for greater detection of specific large
objects compared to smaller filter sizes. Typically, the stride of the filter matrix
is 1, which means that it moves across the input matrix 1 pixel at a time. The
stride can be increased to allow the network to search for an overlapping pattern,
but finer details are however lost. If an image is too large to process efficiently,
a pooling layer can be applied. This pooling layer downsamples the image input
into either the max, average or sum of a specified area such as 2x2. By doing this,
dimensionality is reduced, but important information is retained.

By connecting every the neurons between every layer, a fully connected or dense
layer can be created. This is especially useful in a convolutional neural network as
the outputs need to be interpreted. To do this, the final layer of the convolutional

6



2.2. Artificial Neural Networks Background

network is flattened and input into a dense layer. Afterwards, the output can be
sent to an output layer with an activation function to provide a response.

2.2.1 Activation Functions

The neurons in an artificial neural network need to have a function that defines
how they output information. Below, the most commonly used activation func-
tions are shown:

• Linear:f(x) = x

• Binary step: f(x)

• ReLU: f(x) = max(0, x)

• Sigmoid: f(x) = 1/(1 + e−x)

• Tanh: f(x) = 2/(1 + e−2x) − 1

Figure 2.1: Graphed activation functions

2.2.2 Training

In order to train a network, changes must occur. To train as efficiently as possible,
an optimizer is used. This is optimization is done by deciding the amount of
change in relation to the input. Gradient decent is perhaps the most well known
optimizer, it works by calculating the resulting loss when changing a weight. As
the name implies, it uses the gradient and momentum to calculate the change in
weight. Another way of implementing momentum is used in Adam. By adding
fractions of previous gradient to the current one, a more accurate momentum can
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2.2. Artificial Neural Networks Background

be achieved. Both Adagrad and RMSprop are similar to gradient decent, but
adagrad uses individual learning rates for different weights and RMSprop only
lets gradient accumulate momentum in a fixed window.

2.2.3 Imitation learning

Imitation learning techniques seek to imitate a given behaviour by recognizing and
reproducing similar actions. This behaviour can either be given from a demon-
strator or demonstrations. This allows it to learn the ideal action on the specific
states provided in the demonstrations. As a result, performance scales with the
demonstrations given. If a state in which no exact demonstration exists, the actor
will attempt to perform a similar action.

2.2.4 Reinforcement Learning

By interacting with an environment, the reinforcement learning agent is able to
learn the results of its actions. The actions are chosen either on the basis of
past experiences, or by attempting new actions. This is called exploitation and
exploration respectively. After each action, a numerical reward is given based
on the environment feedback. The agents goal is to maximize the accumulated
reward over time based on trial and error.

Figure 2.2: Reinforcement learning
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2.3. Simulator Background

2.2.5 Deep Q-Learning

Deep Q-learning uses a neural network to approximate the Q-value function. Un-
like regular Q-learning, only the state is input and the neural network outputs
a Q-value for each of the actions that are possible. Essentially, if given a state,
it will return the Quality of each action instead of just one Q-value. The action
with the highest Q-value can then be chosen. Similarly to regular Q-learning,
the network is able to learn without any pre-existing knowledge or policy. It is
however reliant on a reliable scoring system from the environment.

Figure 2.3: Q-learning and Deep Q-learning

2.3 Simulator

2.3.1 Unreal Engine

Unreal is a game engine that is programmed using C++ . It is able to support
both 2D and 3D games and has a plethora of tutorials and existing code available.
Unreal engine was chosen as it provides high fidelity environments with little work.
It is also highly customizable to suit most needs for the project. [6]
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Chapter 3

State-of-the-art

Due to the time investment needed as well as large startup cost, few teams are
competing in the driverless categories. In 2019 FSUK out of 81 teams competing 3,
were driverless and 0 raced their own car. The competition is higher in Germany,
where 20 driverless teams competing out of 99 total. There were however only 5
teams that were able to actually complete all events. Based on recent advances
in AI such as OpenAI, DeepMind and the ever growing presence of automotive
companies in the field. It is of course not expected that student teams are able
to compete at the cutting edge, however, many of the methods that are available
have not been utilized yet. [7, 8, 9]

The majority of competing teams currently use either a LIDAR and/or Image
based SLAM to locate the track cones. Afterwards, the locations are superim-
posed on a virtual environment and methods such as Model Predictive Contouring
Controller are used to control the car. In general, most of the top teams in the
driverless competition use methods similar to MPCC with a state-of-the art car
dynamics model. In the field of deep learning however, there seems to be un-
tapped potential. Formula Technion has already shown that an imitation based
deep learning method is viable. It should therefore be reasonable to assume that
a pure reinforcement learning method can be viable as well. [3]

One of the major issues is however the required training time. By using a simula-
tor, this can be made more viable. However, since reinforcement learning is often
performed in near real-time, the training time is still an obstacle. Using human
examples to improve training is a fairly old concept, imitation learning however
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State-of-the-art

has gained more interest in recent years.

A landmark paper in this field is DeepMind’s Deep Q-Learning from Demonstra-
tions (DQfD) [saus]. Their method pre-trains the DQN with human demonstra-
tions to closely imitate the demonstrator. Alpha Go similarly trains a supervised
learning actor on human demonstrations. The supervised learner is then used
to initialize the reinforcement learning network. How this can be applied to an
existing Deep Q-learning network, especially one used for autonomous racing, will
be explored in this paper. [10, 11]
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Chapter 4

Proposed Solution

This project will attempt to create an estimated model and simulation of a planned
formula student car, AR20, from Align Racing at the University of Agder. Three
different methods will be used to provide the driverless system of the car.

4.1 Simulator

For this project, Microsoft’s Airsim will be used to provide the simulation aspect.
The specific fork of Airsim is created by Formula Technion and includes their 2018
Driverless contender and setup. Modifications have however been made to make
it more compatible with reinforcement learning. The most important of which
is the map rotator and checkpoint system. The simulator can be used to train
drivers and show off the car during recruitment as well. Therefore, additional im-
provements have been made to the user interface and plug-and-play compatibility
for various input methods. [12, 13]

The simulator was chosen as it provides high-fidelity environment with great sup-
port for modifications. AirSim includes a weather system, that affects both the
visuals and physics. In addition to this, AirSim also includes, color cameras, depth
cameras, distance sensors and a LIDAR implementation. It should therefore be
more than adequate for future driverless vehicle development as well. Tradition-
ally, its used to simulate urban environments, but due to it being based on Unreal,
major modification can be made.[12]
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4.1. Simulator Proposed Solution

Figure 4.1: Race Track environment from PolyPixel

4.1.1 Maps

The maps used during testing are the same as used by Formula Technion which
were provided by PolyPixel. It consists of a high fidelity racetrack environment,
with an additional flat asphalt plane. The main bulk of the training was performed
using an asphalt plane as it closely resembles the competition venue in Formula
Student. Several cones are placed to outline the track and invisible walls are
placed between them to ensure that the car does not leave the track. The car is
not able to detect the walls, as they are only used to trigger overlap events. A
penalty is then given to the car, its position reset and an end of episode flag is
set.

Figure 4.2: One of the maps used for training
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4.1. Simulator Proposed Solution

4.1.2 Car

The car used in the simulation is based on and adjusted to imitate AR20, a for-
mula student car designed by Align Racing for the 2020 season. By comparing
prior vehicles, design spec sheets, as well as competitors with similar designs, an
approximation of its performance has been created. The basis of the vehicle is
the same method that was used by Formula Technion, an Nvidia Physx vehicle.
This allows for the model to use the same gear ratios, torque/horsepower curves,
suspension profiles etc. as AR20 is currently designed. Some simplifications have
been made regarding the aerodynamic downforce and general temperature effects
to allow real-time simulation. Fine tuning of the car was performed using video
and driver feedback based on prior cars from Align Racing UiA as well as competi-
tors. The final model performs and acts as is expected from its design. Ideally,
this should be validated against the real car, but due to the ongoing COVID-19
pandemic, the manufacturing of the car has been delayed. [13]

In order to get accurate training data for a potential deployment on the real
car, the model should be visually identical to real-life. Since Align Racing UiA
uses computer-aided design software to design the car, the same model has been
converted to function in the simulator. The CAD model is however massive in
both size and complexity since it contains every single component including screw
threads and resistors on circuit boards. It was therefore simplified, converted to
a mesh and skinned to be visually similar to the finished and painted AR20. A
skeletal system is then applied to the mesh to allow the wheels to rotate as well
as the steering wheel. The skeleton contains six nodes, a center mass node and
one node for each wheel and steering wheel. This is important since the tyres can
be deformed and compressed, but they should not be affected by the suspension
of the car. Additionally, the sprung weight of the car would be 20 kg higher if the
tyres are added, thus greatly affecting handling.

Two models of the car exist, one for driverless and one with a human driver.
The driverless model weighs around 230 kg, which is the best case weight with
additional hardware. Due to the addition of a human, the weight of the other
model is 70 kg higher. This is again the best case weight based on expected
drivers.
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4.1. Simulator Proposed Solution

Figure 4.3: Model of AR20 in simulator

In order to function with the DQN, a discretized action space is applied. It consists
of the following potential actions: Set throttle 0.4, brake 0 and steering 0

• Set throttle 1 (Not available for IM)

• Set brake 1 (Not available for IM)

• Steering of 0.25 steps from -1 (−27◦) to 1 (27◦)

• Do nothing (Steering 0)

4.1.3 Sensors

A single camera with a 60◦ field of view is mounted to the main roll hoop of the car
with a 20◦ angle downwards. This is done since most of the valuable data is below
the horizon. Due to the height of the camera location, this also provides better
parallax which should aid the car in determining depth. The camera image is a
color image of size 144x255, that is cut into 61x184 to show the most important
details. In addition to this, the velocity and lateral acceleration in the Y-axis is
input on a lower layer of the network.

Considering the vantage point, the cameras were placed on the main roll hoop,
above the driver’s seat in the car, see Figure 4. This offers the advantage that the
occlusion among cones is reduced to a minimum and even the cones placed one
behind the other (in line of sight) can be perceived sufficiently well.
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4.2. Driverless System Proposed Solution

Figure 4.4: View from camera with cropped area in red

4.1.4 Simulator

The simulator is setup as a Markov Decision Process issue, where a state st and
stlm are observed every time step t. An action at is then performed which leads
to state s t+1 and s tlm+1 and a reward r t = R((s t,s tlm),a t). The transition
between each action is defined as T(s t,s tlm,a t,s t+1,s tlm+1)

Each time step t corresponds to an image st from the environment as well as the
lateral acceleration in the Y-axis and the current speed in any direction as s tlm.
After the state has been processed by the network, a response a is returned. This
does however mean that it is possible for large state changes if the network takes
too long to respond. To mitigate this, a semi-discrete method is used. This works
by pausing the physics of the simulator when a state is received, the simulator
is then unpaused after the action has been sent. This does however cause some
issues with the physics engine which can cause the car to jump upwards when
hitting a cone. This is mitigated by making the cones static and resetting the car
if its Z-acceleration is too high, no negative penalty is given in this case.

4.2 Driverless System

In order for the car to drive autonomously, three methods have been used. They
are all based on neural networks, the first of which is a recreation of an imitation
learning method used by Formula Technion in 2018. The latter two are based on
deep Q-learning, a subset of reinforcement learning.
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4.2. Driverless System Proposed Solution

4.2.1 Network

Two slightly different networks will be used to allow efficient training of both the
imitation and reinforcement learning algorithms. Nvidia’s PilotNet has already
been proven to work by Formula Technion with their imitation learning solution.
As a result, the same general setup will be used for the reinforcement learning as
well. [13]

It consists of 5 convolutional layers, with a dropout layer with probability 0.5 be-
tween convolution layer 3 and 4. After convolution layer 5, the output is flattened
to 1x11776 and input into 3 dense layers. This differs a bit from PilotNet as the
additional layer of 1164 is missing. During testing, this proved to be unnecessary
to achieve good results and caused additional response delay. The networks used
differ a bit after the flattening as the reinforcement learning network receives an
additional input. This input is the telemetry data from the car, namely speed
and Y-acceleration.

Regarding activation functions, all convolutional layers use ReLU as negative
values wont improve the performance during feature recognition in the images. It
is also comparatively cheap regarding computation compared to other activators
such as Sigmoid.

In order to provide an additional temporal axis, a stack of 4 grey image were
tested in place of the RGB image. This allows the network to infer the movement
of the car directly from the images. The accuracy of the cone detection drops
dramatically as it now essentially gets one real time image and 3 images from
the past. Unlike the RGB method which has three identical images to consult.
Additional networks were tested to improve this, but in general, the method of
injecting telemetry data was chosen instead due to performance.
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4.2. Driverless System Proposed Solution

Figure 4.5: Some heatmaps of activations from last convolutional layer

The network used by Formula Technion is a modified version of PilotNet from
NVIDIA. It consists of 3 convolutional layers, before a dropout layer with keep
probability of 0.5. This is followed by two additional convolutional layers and 3
fully connected layers. [13]

Figure 4.6: Modified PilotNet from Formula Technion

When applying the same network to DQN training, one of the fully connected
layers have been dropped. The two remaining fully connected layers are instead
increased in size.

18



4.2. Driverless System Proposed Solution

Figure 4.7: Modified PilotNet used in DQN

4.2.2 Scoring

The reward is based on the current forward velocity of the car. It is measured in
meters per second and should therefore provide an approximation of the distance
travelled as well. In order to promote careful driving and avoid crashes, the
cumulative reward in each episode is given as the reward. In the case of the DQN,
this allows it to measure the change in reward to maximize our Q value. Since
the car is reset after every crash, it also resets the episode reward.

The maps are too narrow in relation to its 27◦ maximum steering angle and it can
therefore not turn 180◦ around and drive backwards. If the car hits a cone or the
invisible boxes between the cones. The car and score is reset to 0. This is however
only the case during training. When testing, collisions are penalized, but the car
is not reset. Several checkpoints are placed around the track which start and stop
a timer function in the simulator. If a lap is completed in the correct checkpoint
order, the lap time is displayed and saved as an additional performance metric.
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4.2. Driverless System Proposed Solution

4.2.3 Technion Imitation Learning

The method used by Formula Technion is based on an older version of both Air-
sim and Unreal engine and their trained model is therefore no longer performing
ideally. The same method used to train their system has therefore been repeated.
Data was recorded from five different maps over the course of 250 minutes using
the AR20 model. The data consists of several images and corresponding inputs
given to the car, the recorded data was then cooked and trained using the same
method as Formula Technion.

4.2.4 DQN

The DQN setup starts by filling the replay buffer without updating the weights
during an observation phase. Random actions are performed throughout the ob-
servation, which consists of 50000 frames. One frame corresponds to an input
and an output from the network. This does however mean that the training time
may influence the time between frames. A semi-discrete setup was therefore used
for the simulation, which pauses the simulator between responses. When transi-
tioning to the exploration phase, DQN actions are chosen if a random number is
smaller than epsilon. Epsilon is also annealed from 0.5 to 0.001 over the course
of 200000 exploration frames.

During training, the network samples mini-batches of size 32 from the replay
memory to train on. The reason for this was to allow the network to respond
quicker as training is performed on every frame. With higher batch sizes, for
example 64, the estimated training time would be several days as the simulator
would run at less than 1 action per second. With a batch size of 32, this is
increased to 2.5 actions per second. The reason for this is that for each time
step, the network is used to discover the max Q values of the current mini-batch.
Then a forward pass to calculate the error value, before updating the weights.
The performance impact on the network is minor with a low mini-batch, but the
training efficiency in relation to real time is much higher. This is however not an
issue when not training.
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4.2. Driverless System Proposed Solution

4.2.5 Imitation Accelerated DQN

In order to accelerate the DQN learning, the same DQN setup was used and
imitation actions introduced in three different ways. The first method works by
allowing training during the observation phase and letting the imitation learning
system control the car instead of random actions. This also means that the replay
buffer contains imitation examples that are then sampled by the experience replay.
Since the imitation learning setup outputs a steering angle, it has been discreetized
at 0.25 steps from -1 to 1. The second method is to seed the actions with responses
from the imitation learning system. When the a random number is lower than
epsilon, which is annealed from 1 to 0.01, it has a 50 percent chance to choose an
imitation action rather than a random action.

Due to the examples given to the imitation learning system, it essentially tries to
keep itself in the middle of the track. This can be leveraged as part of the reward
function. When an action is performed that is similar to what the imitation
system would have chosen, a minor reward of 0.01 is given. These methods can
also be combined to further aid the training of the DQN.
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Chapter 5

Results

This chapter will outline the process used to test the networks and their perfor-
mance.

5.1 Introduction

Each training step corresponds to the amount of telemetry packets received from
the unity socket. The decay rate was set to 0.99 since the system is highly reliant
on consecutively performed actions. The epsilon was set to 0.5 and decreased to
0.001 after a specified amount of exploration frames. A mini-buffer of size 50 and
replay memory of 500 was used as well as an initial 500 observation frames for
every run to populate the replay memory. To test the car, four maps of increasing
difficulty were used. Modifications to this setup was performed based on the maps
used for training.

All testing was performed locally, but during training, the UiA servers were used
for the imitation learning method. It is possible to get actions directly from a
remote server to the simulator running locally, but latency impedes the training
process. Generally, the delay between an image being sent and a response received
has been kept at less than 500ms. During testing AMZ found that their greatest
bottleneck was up to 500ms in their vision pipeline. The simulator and code used
for this project can however run at less than 5ms per action if needed. In real-life
this performance is expected to be closer to the 500ms experienced by AMZ. [14]
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5.2. Result of Imitation Learning Results

5.2 Result of Imitation Learning

A major limitation of imitation learning is that the actor is only able to perform
as well as the behaviour it is imitating. Since the data is gathered from the car
at a fixed speed and fed into the imitation learning system, a major increase in
speed is not viable. Formula Technion used a simple function to decrease the
throttle in relation to the steering angle, thus increasing the speed when going
straight. This is however an issue on the model of AR20 as it changes gears based
on the current RPM. When the throttle is decreased in a corner and the RPM
subsequently drops, a gear change is initiated. This causes the car to ”jump” and
become unsettled, as the new gear is initiated and the gear ratio changes. This
is the same behaviour that is expected of a car in real life. Due to this, the gear
system is locked into gear 1, which is the same as when recording.

Figure 5.1: Loss per epoch during imitation training
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5.3. Result of DQN Results

The performance of the imitation learning method is as expected. It was trained
on a server provided by the University of Agder over the course of one hour. After
73 epochs, the network is fully trained and able to be deployed. When applied
to the simulator, it is instantly able to navigate the environment with a fairly
reasonable score. When trained locally, the results were similar, but the training
time was greatly increased.

The performance of the IL is a relatively straight line. The network is sometimes
fooled by simulated lens flares which causes it to deviate. This deviation can
cause the network to fail if an example of the specific state was not present in the
training data.

5.3 Result of DQN

When training the DQN, unlike the imitation learning method, the simulator
must be directly interacted with. As a result, the training time required is greatly
increased. The network was first given an observation phase of 25000 timesteps,
followed by 100000 frames of observation/training. This allowed it to navigate the
track with partial success, as it still collided with a few cones. Since the reward
given is the cumulative reward for each episode, and the reward is set to 0 when
a collision occurs. This means that the potential loss is massive. As a result, the
braking action was chosen too frequently and many time steps were wasted. The
highest quality action does however change after a few time steps of zero reward
increase, which causes the car to move again. The rewards start at around 1400
after the observation phase ends. Afterwards a minor increase in rewards occur
consistently until time step 100000.
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5.4. Result of Accelerated DQN Results

Figure 5.2: Reward from DQN on time step 30000 to 100000

5.4 Result of Accelerated DQN

The exact same network as used in the DQN method was used for the imitation
accelerated DQN as well. A total of four methods were tested.

Pre training: The network is pretrained with examples from the imitation learning
network.

Seeding: When selecting a random action, there is a 50 percent chance to select
an action from the imitation learning network instead.

Q-Imitation: The DQN is scored positively if it performs the same actions as
would have been chosen by the IL network.

Combined: All prior methods combined.

In order to test the different methods, a smaller run of 100000 time steps was
performed. For each run, only one of the methods were applied, with the exception
of the combined method.

Pre training offered an initial improvement burst that did not persist for more than
25000 time steps. It was however useful in stabilizing the scores at a higher level
compared to the regular DQN. Seeding however, had the biggest improvement as
it essentially gives the DQN a close to ideal action to perform. This in as sense
solves the reliability issue when training a DQN. Since the action in a regular
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5.4. Result of Accelerated DQN Results

Method Improvement

DQN 0%
Pre training 5%

Seeding 31%
Q-Imitation 22%
Combined 36%

Figure 5.3: Improvement of methods in percent after 100000 timesteps

DQN is random, there is a possibility that an ideal action is never performed.
This subsequently causes the network to train a non optimal policy.

The Q-Imitation method is similar in its final result, although the training method
is far more difficult. Since the reward function only returns a reward if the action
was similar to the IL and not the speed, the seeding method has an advantage.
However, when all these methods are combined, their combined improvement is
better than the individual methods.

Figure 5.4: Reward from Combined method DQN on time step 30000 to 100000

When comparing the graphs of figure 5.2 and figure 5.4. A clear difference can be
seen. In graph X, the starting point is substantially higher, although the growth
rate is fairly similar. Since the imitation accelerated DQN already has a fairly
good policy, a large increase in the reward is therefore harder to achieve. And the
growth rate is therefore more or less similar across the 100000 time steps.
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5.5. Lap Time Metric Results

5.5 Lap Time Metric

In order to provide an accurate performance baseline, the same map as used in
Formula Student Germany 2018 has been recreated. It will however only be an
approximation and the car will also not be identical to the vehicles used during
the competition.

Figure 5.5: Map from FSG 2018 trackdrive discipline [14]

The best time during FSG Driverless was achieved by Akademischer Motor-
sportverein Zürich (AMZ). The map used in figure X is from their paper ”AMZ
Driverless: The Full Autonomous Racing System” which includes the lap times
they achieved on their simulator. When deployed on the actual track in 2018,
they were able to achieve an error of only 1% between the simulator lap time and
real life.

Since the car used by AMZ is substantially different than AR20, notably since
AMZ uses an electric car. This allows for much greater acceleration, in their case,
a 0-100 km/h time of under two seconds. AR20 is expected to be closer to 4
seconds. Despite this, it is still interesting to see how the solution in this paper
compares to the current top team in Formula Student Driverless. [14]
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5.5. Lap Time Metric Results

Controller Time (Seconds)

AMZ 28.5928
IL 55.1013

DQN 47.4523
Accelerated DQN 44.8932

Human 31.7732

Figure 5.6: Average time from 10 laps on FSG map from 2018

The imitation learning setup is severely limited by the fact that it has been trained
to stay in the center of the track. This does however mean that it is able to avoid
the cones more successfully, at the cost of speed. It would however be able to get
a better lap time if the control method is optimized further. Currently, it only
accounts for steering angle and sets the throttle cautiously to avoid drifting.

The DQN was able to perform a bit better than the IL method since it is able
to increase its throttle. It is however extremely prone to crashing, but was given
less than ideal training time.

When using the IL to accelerate the DQN, the results were very similar, although
the probability of crashing was lowered. Generally, it seems like the setup has
gained more stability due to the more efficient training.

The best time achieved by AR20 was from a human driver, which is somewhat
to be expected. It is however possible that minor improvements can be made,
but given the performance of the human drivers, large improvements are unlikely.
This therefore makes it an appropriate lap time to compare against the others.
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Chapter 6

Conclusion

By applying a pre-trained IL network to an existing RL network via the four
different approaches, a clear improvement can be made. In the context of au-
tonomous racing this is especially the case as the general policy can successfully
be inferred on the RL network. By training the IL to stay in the middle of the
track, it also successfully functioned as part of the reward function. Since the IL
is trained to function by itself, its also possible to train it further to provide a
solid baseline performance for other reinforcement learning methods.

The DQN setup is still not fully trained and has room for more improvements.
Event though the training time was greatly reduced, it is still substantial. It could
therefore be an improvement to move the simulator to a more powerful server or
send actions from the server to a the local simulator via RPC.

The straightforward solution of performing supervised learning on demonstrated
data and applying it to the DQN was not ideal on its own. The IL network was
therefore used during the DQN learning phase as well. The result of this allows
the DQN to outperform both the IL network and demonstrations given if enough
training time is provided.

The convolutional network chosen for this task proved to function well, but it is
perhaps more complex than necessary. Since PilotNet is a fairly general network,
which is most often used for urban driving. In the context of autonomous racing,
the environment is much more sparse, nevertheless, it was able to successfully
detect the cones.
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Conclusion

The network is greatly affected by latency and delay when training, a more efficient
layout would help to mitigate this. Additionally, the code used for this project is
based on an old version of tensorflow which should be updated. It is still sufficient,
for the purpose of this thesis.

In order to control the car, the throttle, braking and steering is used as input.
This is however not ideal as it causes a major increase in training time compared
to using a static throttle. When using a simplified driving model which controls
the throttle based on current steering angle, similar to Formula Technion. The
required training time does not increase substantially, it can therefore be assumed
that something similar to the bicycle type model used by teams such as AMZ can
be applied. This does however mean that the driving model must be fine tuned,
unlike the DQN which learns by itself. [14]
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Chapter 7

Future Work

Initially, the system was going to be tested on an Nvidia JetBot as a proof of con-
cept. But this was sadly not possible due to the covid-19 pandemic. Regarding the
real-life AR20, which was scheduled for release in April 2020. Its construction has
been delayed and some minor changes may occur as it will be modified to compete
in 2021 instead. This additional development does however also means that there
is a greater chance for more driverless specific system to be implemented. There
is still a massive amount of work to compete in Formula Student Driverless, but
the methods used in this paper should facilitate future development.

Since the IL has the ability to learn directly from gathered data in the simulator,
it should therefore also be able to learn from real-life data. Which will further
enhance the accuracy of the simulator via comparison with direct demonstrations.

Even though a partial parallax effect is achieved by placing the camera high on
the car, additional cameras should also be considered. This can be especially
useful if cameras with different field of views are used. Similarly, a depth camera
can be used instead or in conjunction with regular cameras. This was however
not explored further, in order to reduce cost in the planned real world proof of
concept.

Even though the temporal dimension was perceived by the DQN via additional
telemetry data injected into the fully connected layers, more research into this
should be performed. In order to increase the performance further in edge cases
under high speed.

31



Future Work

Since the current simulator is non-continuous, a DQN performed adequately. Air-
Sim is however designed to be continuous, and it would therefore be interesting
to see how a gradient based method such as DDPG or possibly PPO functions
with the same imitation acceleration method. A more advanced version of a DQN
such as Rainbow would also be interesting to test, as it can provide better results
at the cost of additional required training time.
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Appendices

The code and simulator is available on:
https://github.com/Align-NikolaiEllingsen/IKT590
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