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Abstract

Securing networks and their confidentiality from intrusions is crucial, and for this rea-
son, Intrusion Detection Systems have to be employed. The main goal of this thesis is
to achieve a proper detection performance of a Network Intrusion Detection System
(NIDS). In this thesis, we have examined the detection efficiency of machine learning
algorithms such as Neural Network, Convolutional Neural Network, Random Forest
and Long Short-Term Memory. We have constructed our models so that they can
detect different types of attacks utilizing the CICIDS2017 dataset. We have worked
on identifying 15 various attacks present in CICIDS2017, instead of merely identifying
normal-abnormal traffic. We have also discussed the reason why to use precisely this
dataset, and why should one classify by attack to enhance the detection. Previous
works based on benchmark datasets such as NSL-KDD and KDD99 are discussed.
Also, how to address and solve these issues. The thesis also shows how the results
are effected using different machine learning algorithms. As the research will demon-
strate, the Neural Network, Convulotional Neural Network, Random Forest and Long
Short-Term Memory are evaluated by conducting cross validation; the average score
across five folds of each model is at 92.30%, 87.73%, 94.42% and 87.94%, respectively.
Nevertheless, the confusion metrics was also a crucial measurement to evaluate the
models, as we shall see.

Keywords: Information security, NIDS, Machine Learning, Neural Network, Con-
volutional Neural Network, Random Forest, Long Short-Term Memory, CICIDS2017.
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Chapter 1

Introduction

Nowadays, the use of the Internet is growing tremendously. As of January 2020, the
number of people using the Internet reached about 4.54 billions [36]. It indicates that
the number of computers and systems connected to the outside world is significant,
which introduces vital security concerns. Since there are no perfectly secured systems,
security components such as Network Intrusion Detection Systems (NIDS) have to be
introduced.

A significant challenge that has been a concern since the first IDS was introduced
is the False Positive Rate [30]. Researchers have been working with this issue as it
adds much burden to security analysts due to the high number of false alarms. Such
a burden can lead analysts to ignore severe cyberattacks unintentionally. IDSs have
to get continuously improved as networks change all the time. Hence, when changes
occur in the network, new types of attacks emerge.

To solve the mentioned challenges, researchers have been working on improving
intrusion detection systems by introducing machine learning techniques. In the case
of intrusion detection systems, machine learning algorithms rely on analyzing massive
data sets to gather useful information, such that they can detect abnormal behavior
on the network. The information gathered from the data sets can be used to enhance
detection systems. It can be achieved by training the algorithms; hence, allowing the
security analysts to gain the desired level of satisfaction in regards to the False Positive
Rate. Additionally, machine learning algorithms do not rely on the knowledge of the
domain, making them easy to design and construct.

The purpose of this thesis is to benefit from some of the popular machine-
learning-based IDSs algorithms. Namely, Neural Network (NN), Convolutional Neural
Network (CNN), Random Forest (RF) and Long Short-Term Memory (LSTM). The
reason behind that is many research papers such as [81][28][62][17] use old datasets
(KDD99 and NSL-KDD) with a small number of features and old attacks. Moreover,
some of these papers train only a small proportion of the dataset and the analysis
merely relies on normal and abnormal traffic, which leads to higher and unreasonable
results. The utilized dataset in this thesis is called CICIDS2017. It is experimented
using the mentioned machine learning algorithms to predict future attacks by training
the models so that they are able to detect the various types of attacks, and not only
normal and abnormal traffic. This dataset is newer, contains more sophisticated at-
tacks, more prominent and realistic. Additionally, a more significant proportion (80%)
of the dataset is utilized for the training part, which leads for more reasonable results.
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This dataset was produced by the Canadian Institute for Cybersecurity (CIC) in 2017.

1.1 Motivation
Today’s networks are not perfectly secured [30], as new technologies emerge, and
continuous change in network infrastructure occurs, new security challenges appear.
Therefore, to cope with these challenges, multiple layers of security have to be designed
securely, i.e., an appropriately defence-in-depth infrastructure has to be deployed.

One of these security layers is the Network Intrusion Detection System. An
IDS helps in notifying if there is an ongoing sophisticated attack. Alternatively, if an
attack was conducted earlier and by whom, indicating that it also helps in identifying
the adversary and its actions.

Intrusion Detection Systems have to be continuously enhanced so that they are
up-to-date and can detect new attacks. However, although a high number of works
have aimed to improve intrusion detection, there are still challenges to build such
systems with high efficiency. For this reason, this thesis will mainly focus on performing
multi-class detection, not just to merely detecting bad connections but also to detect
the attack type, benefiting from different machine learning algorithms.

1.2 Goal
Intrusion Detection Systems (IDS) suffer from high False Positive Rates and unpre-
dictable attacks. Thus, the thesis mainly aims to improve the predictability in terms of
the anomaly-based intrusion detection systems. The goals are to analyze a dataset and
make use of machine learning to predict future intrusions and achieve more reasonable
detection results.

1.2.1 Field of research
Which type of Machine Learning algorithms plays a vital role in how accurate the de-
tection is. However, many researchers have conducted different approaches to improve
Intrusion Detection Systems. Each algorithm has both unique pros and cons, accuracy,
and a distinct level of efficiency. The focus of the thesis is on which machine learning
technique is most efficient in regards to traffic types represented in the CICIDS2017
dataset.

1.3 Hypotheses - Statement of the problem
• Statement 1: How to enhance the network intrusion detection system using

Machine Learning algorithms?

• Statement 2: Why CICIDS2017? How are the results going to be affected when
training the dataset?
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1.4 Contributions
As briefly stated in the introduction, many papers do only use a small proportion of the
dataset (a typical proportion is 10%), which leads to high and unreasonable accuracy.
In this thesis, instead of using old benchmarks datasets such as Cup KDD’99 and
NSL-KDD, the group focuses on using a more significant proportion for training of
a newer (new attacks and more features) dataset witch is the CICIDS2017. It is
expected that the results lead to more reasonable outcome compared to other papers.
Additionally, when the classification is based on identifying normal and abnormal
traffic, the detection is then more straightforward. Therefore, a better approach would
be a classification by attack, i.e., identifying what type of intrusion is occurring, which
is covered in this thesis.

1.5 Report structure
Chapter one briefly introduces the IDS, why it is needed, and the challenges associated
with it along with how this thesis aims to solve these challenges.

Chapter 2, or background, talks about all background information required in
this thesis. Background defines information security, intrusion detection systems and
their working procedures, types of attacks, and both commercial and open-source IDSs.
Additionally, what machine learning is, most popular types and how they are utilized.

Furthermore, State-of-the-art (Chapter 3) discusses the taxonomy of anomaly de-
tection types and how they are implemented in machine learning. It describes different
algorithms types, how they are implemented in IDS, and their benefits and limitations.
Additionally, five distinct research examples (Neural Networks, Convolutional Neural
Network, Random Forest, Long Short-Term Memory and Bayesian Network) and their
results are demonstrated and reviewed.

Moreover, Chapter 4 studies the CICIDS2017 dataset. This chapter provides a
comprehensive analysis of CICDS2017 dataset. It analyzes the attacks CICIDS2017
consists of, including detailed information about each attack and when the attacks
were conducted. In addition, details about how the data is gathered, what systems
used to collect the data, the features and records of the dataset, and mainly why CI-
CIDS2017.

The following chapter, which is approach, describes a design science approach
that is followed to deliver a comprehensive explanation of the taken steps to construct
the models. This chapter explains the preprocessing procedures, the implementation
steps of each algorithm, how the models are evaluated and what tools used to develop
the models.

Testing and evaluation is then shown in Chapter 6, it shows both confusion met-
rics and cross-validation results.

Finally, Chapter 7 discusses the conclusions drawn from the work and observa-
tions of this thesis. Further work is also included.
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Chapter 2

Background

2.1 Information security
Information security revolves around going through certain phases to strengthen the
security posture in a system [38]. As a goal, information security attempts to protect
Confidentiality, Integrity, and Availability (the CIA triad). Confidentiality means the
information is not readable by those who are not authorized, where the goal of integrity
is to protect data from being modified. Availability is the ability to access certain
information when needed by those who are authorized.

2.1.1 Information security process

In the process of information security, there are three main categories, which are
prevention, detection, and response. In order to have a secure system, each phase
requires maintenance, analysis, and organizing strategies to move to the next phase.

Prevention

In this phase, security policies, awareness training, and access controls must be de-
signed and conducted to prevent attacks [52]. These procedures have to be imple-
mented early on as they are related to each other. Security policies are high-level
security measures conducted by organizations to achieve desired security objectives.
Moreover, security policies are based on three main categories, which are physical con-
trols, logical controls, and administrative controls.

Awareness training is a very critical control [51]. Organizations always try to
educate their employees to avoid being victims of cyberattacks. Awareness training
programs highlight the importance of security, how to avoid being a subject for at-
tacks, providing knowledge of best practices (passwords, email, remote work, secure
browsing, etc.), how to report a security issue, and so on.

Access control [38] provides an identity and a specific level of authentication
and authorization to each user. An identity is a unique identifier, and in order to
use specific resources in a system, the identity has to be authenticated or validated by
three main factors, "something you know, something you are and something you have."
Based on the provided information, a certain level of authorization will be given.
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Detection

This phase is an essential one, as defending the network against malicious attacks is
one of the most critical procedures and must be handled by network administrators
and security analysts [38]. One technology that can be used to discover intrusions is
an intrusion detection system (IDS). As mentioned earlier, intrusion detection systems
always have to be improved because no matter how secure the system is, there will
exist attacks that are capable of compromising the system. An IDS is capable of
detecting a conducted attack, for instance, by checking the signatures, and modified
files and configuration. Nevertheless, when an attack or a breach occurs, the IDS
alerts the network’s administrators, then they have to follow a response plan, as will
be discussed shortly.

Response

Organizations have always to be prepared for an incident to defend their systems [50].
It can be achieved by establishing an incident response strategy. A response plan must
describe which procedures to be taken during an incident. Furthermore, for each type
of incident, there must be a specific type of response depending on the threat level.
During the response phase, several steps must be conducted, including containment,
eradication, and recovery. These steps revolve around selecting a strategy to contain
an attack, gathering shreds of evidence to support incident response documentation,
identifying attackers, and eradicating the incident impact on business operations.

2.2 Intrusion detection systems
As shown in Figure 2.1, Intrusion Detection System classes are based on three main
modules, data source, data analysis, and response [5]. The first module is the data
source, this is where the data or the traffic can be gathered using two main techniques,
host-based IDS, where the data gathered is only about one individual, and network-
based, where the data is obtained from the entire network. The second module is
the data analysis. Here, there are two main techniques, misused-based (signature-
based) and anomaly-based in which will be discussed in detail in forthcoming sections.
The third module is called a response, and this is where an appropriate response is
performed based on given data, and the response could be either active or passive.
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Figure 2.1: IDS classes

2.2.1 Data source
Network-based IDS

In general terms, a Network Intrusion Detection System (NIDS) [94] is placed in a
location where it is able to read all incoming traffic, such as the network’s edge. The
reason is to passively detect attacks that target the most vulnerable points. In order
to detect a particular attack, different traffic patterns are compared to a list of known
attacks.

Host-based IDS

A Host Intrusion Detection System (HIDS) [94] relies mainly on being installed on
end-points. Thereby, all devices connected to the network are monitored. A HIDS
provides the ability to take a closer look at the traffic generated at each device. As
well as being an additional layer of security that detects malicious traffic that was
failed to be detected by the NIDS.

The way a HIDS operates is it takes a look at the entire system and bases its
conclusion on a snapshot taken previously. If in any case, it detects suspicious behavior
that is not normal, it notifies the administrator. However, suspicious behavior could
be data and settings modification, data loss, and other things.
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NIDS vs HIDS

NIDS HIDS

Pros

- The detection is done using network
packets.
- One does need to install the software
on each host.
- Checks multiple hosts at the same
time.
- Detects all network protocols.

- Checks encrypted communication
behavior.
- One does need extra hardware to use
HIDS.
- Intrusions are detected using
filesystem, events and system calls.
- Checks item by item, not streams only.

Cons

- Encrypted traffic is a problem, as it is
challenging to identify attacks.
- Hardware is required.
- Analysis challenges in high-speed
networks.
- The biggest threat are insider attacks.

- Takes time to report attacks.
- Requires resources from the host.
- Has to be installed on each host.
- Monitors attacks on where it is installed.

Data
source

- Simple Network Management
Protocol (SNMP).
- TCP/UDP/IP.
- Management Information Base (MIB).
- Netflow.

- System calls.
- Rule patterns.
- Logs.
- Application Program Interface (API).
- Audits records.

Table 2.1: Network Intrusion Detection System vs Host Intrusion Detection System
[6]

2.2.2 Data analysis
Anomaly-based IDS

Anomaly-based IDS is based on identifying unusual data traffic that diverge from the
expected behavior [59]. Anomaly detection has many applications; for instance, in
business, if a suspicious pattern is detected, it could be a sign of a hack. Anomaly
detection has other purposes in healthcare systems, such as detection of any unusual
patterns in an MRI scan. This technique can also detect faults in operating environ-
ments.

There are three main types of anomalies that are categorized as follows:

• Point anomalies: if a single point of data is away far from the rest, then it
is anomalous. For instance, say in business, this detection type discovers credit
card fraud based on the spent sum.

• Contextual anomalies: as the name implies, this detection type is context-
based. If one usually spends 100$ during the holidays, then it would not be
normal otherwise.

• Collective anomalies: it is based on collecting data to analyze the anomalies.
For instance, if an attacker conducts an infiltration attack (i.e., stealing data
from a system), this action is then flagged as a cyberattack.
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Misuse-based IDS

Misuse-based IDS (signature-based IDS) [66] looks for pre-defined signatures stored
in a big database to identify attacks. This detection model requires to be continually
updated with new signatures to detect new attack patterns. An example would be
sending an e-mail containing a specific virus. As long the signature is known by the
IDS, it will be detected.

Misuse-based IDS can be implemented based on of the following approaches:

• Expert systems: this is based on the if-then approach, implying that if all
if-conditions are satisfied, an alarm of misuse will be activated.

• Model based reasoning systems: an existing database that comprises differ-
ent attack patters is used to distinguish an attack scenario. In this approach, the
IDS will gather data about a series of various behaviors that describe a particular
attack.

• State transition analysis: a series of state-transitions that describe the attacks
based on state-transition diagrams [77].

• Key stroke monitoring: this technique is based on registering what is typed
on the keyboard. The reason is to detect if there is an attempt to violate security
policies. It particularly looks for a sequence of commands that caused a violation
in the system. For example, it is capable of detecting a series of commands that
lead to a system compromise [77].

Misuse-based IDS vs anomaly-based IDS

Anomaly-based IDS Misuse-based IDS

Pros

- Efficient against unknown attacks
and Zero-day attacks.
- Monitors any data source.
- Identifies rogue users.

- Not complicated.
- Detects known attacks.
- Efficient if the signatures
are well known.

Cons
- Many false positives.
- It requires the analysts to figure
out what triggered an alarm.

- All signatures must be
up-to-date.
- Large number of signatures.
- Can only detect known
attacks.
- If a known attack has many
variations, it may not be
detected.

Table 2.2: Anomaly-based IDS vs miseuse-based IDS [66][59]

2.2.3 Response
Passive reaction

A passive IDS [23] analyzes the logs that an attack generates, and notifies the system’s
administrator. This type of reaction is not capable of any actions, such as correcting
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issues caused by an attack. Thus, it is not ordinarily susceptible to attacks itself.

Active reaction

An active IDS [23] is capable of making decisions and performing actions against an
attack. Such a system is called Intrusion Prevention System (IPS). An IPS is capable
of blocking attacks automatically if an attack occurs. IPSs are generally placed at the
boundary of the network. Thus, the IPS itself is susceptible to cyberattacks. Moreover,
it can be used as a part of a Denial Of Service attacks by making it sending a vast
number of alarms. Therefore, a well-designed alarm system has to be configured, such
that it does not send many false alarms. However, such a system has an advantage
where it detects attacks in real-time and reacts to them accordingly.

2.2.4 IDS architecture
In Intrusion Detection Systems, there are a diversity of techniques to gather data [7],
but in general, as shown in Figure 2.2, IDSs consist of the following:

• Data gathering (sensors) is device that is responsible for gathering informa-
tion from the system.

• Detector ID - Engine analyzes the data collected from the sensors to identify
any attacks.

• Knowledge base (database) is the component where the IDS contains in-
formation about traffic collected by the sensors. Security professionals usually
provide such information.

• Configuration device tells something about the state of the Intrusion Detec-
tion System.

• Response component is responsible for initiating actions when an attack or
intrusion is detected. The responses are either passive or active.

Figure 2.2: A simplified IDS architecture
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2.2.5 Efficiency of IDS

Prediction performance

Two criteria have to be satisfied to have an excellent prediction performance. Firstly,
the IDS must not identify a legitimate behaviour as an intrusion. Secondly, it must
correctly be able to identify if a behaviour is an intrusion. Such measures can be eval-
uated by determining the False Positive Rate and Detection Rate (also called Recall
or True Positive Rate [27]). Detection Rate is calculated by identifying the number
of detected attacks. In contrast, False Positive Rate is measured by identifying the
number of normal connections that are classified as attacks. Practically, these two
measures are challenging to evaluate due to the difficulty to have a global knowledge
of existing attacks. For this reason, an IDS is evaluated by performing Receiver Op-
erating Characteristics (ROC) analysis, or on what is called F1-score, depending on
the scenario [37]. The ROC analysis is a representation of the trade-off between both
False Positive Rate and Detection Rate. As shown in Figure 2.3, when the ROC is
close to the upper left corner, it means that the IDS detection is effective [7].

Figure 2.3: Recover Operating Characteristics (ROC) curves

Predicted connection label
Normal

connections Attacks

Actual
connection

label

Normal
connections

True Positive (TP)
- The prediction is correct.

False positive (FP)
- The prediction is positive
but it is false.

Attacks
False Negative (FN)
- The prediction is negative
and it is false.

True Negative (TN)
- The negative prediction is
correct.

Table 2.3: Intrusions evaluation
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Time performance

Time performance [7] depends on the total time the IDS needs in order to detect an
attack (intrusion). This time is measured using two values; propagation time and
processing time. The propagation time is the time it takes for processed information
to be sent to cybersecurity analysts. The processing time depends on the IDS’s speed
to audit occurred events. These two times have to be as short as possible so that
analysts have the sufficient time to react to the adversary’s actions.

Fault tolerance

Intrusion detection systems have to be fault-tolerant [7], meaning that IDSs have to
be robust and resistant to attacks conducted by adversaries. Moreover, IDSs must
be able to recover from an attack and get back to normal and provide secure services
immediately. IDSs have also to be resistant to attacks that target the IDS itself, such
as buffer overflow attacks and similar attacks that can shut down the IDS. However,
it is also essential to have the ability to be resistant to attacks that aim to make the
IDS generate a massive number of false alarms which causes a denial of service.

2.2.6 Evaluation Metrics
Confusion Matrix

As the name suggests, confusion matrix gives an output matrix that describes the
performance of the model [8]. As shown in 2.3, a confusion matrix rely upon four
important terms; TN, FP, FN and TP. To measure the accuracy of a model, one has
to use Equation 2.1, where TotalNumberOfSampels is equal to TN+FP+FN+TP.

Accuracy = TP + FN

TotalNumberOfSamples
(2.1)

Area Under Curve (AUC)

Area Under Curve [8] tells something about the capability of the model of distinguish-
ing between classes. The higher the AUC, the better the model. In order to calculate
the AUC, one must calculate True Positive Rate (TPR) and False Positive Rate (FPR)
as shown in Equations 2.2 and 2.3, respectively.

TPR corresponds to the number of positive data points that are correctly con-
sidered as positive. However, FPR corresponds to the number of negative data points
that are considered as positive.

TPR(Sensitivity) = TP

TP + FN
(2.2)

FPR(Specifity) = FP

FP + TN
(2.3)
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Both TPR and FPR have values located between 0 and 1. AUC is the area under the
curve as shown in Figure 2.3 in section 2.2.5. In addition, the greater the value the
better the performance.

Precision, Recall and F1-score

The score of F1 precisely tells how many instances were correctly classified. In addition,
it tells how robust the model is as it does miss only a minimal number of instances
[8]. However, Precision is the number of true positives divided by the number of true
positives and false negatives (number of positive results). Furthermore, Recall is the
number of true positives divided by true positives and false negatives (all relevant
samples that have been identified as positive). Note that Recall and TPR (sensitivity)
are the same. The equation of F1 score is shown in 2.4, and the precision and recall
are shown in 2.5 and 2.6 respectively.

F1 = 2 ∗ 1
1

precision
+ 1

recall

(2.4)

Precision = TP

TP + FP
(2.5)

Recall = TP

TP + FN
(2.6)

2.2.7 Differences between firewall, IDS and IPS

The main difference between these three technologies [94] is that a firewall blocks
and filters traffic. In contrast, an IPS or IDS detects and notifies the security ana-
lyst/administrator; it can also prevent attacks depending on the configuration. The
placement of each device in a network is shown in 2.4.

A firewall is configured such that it contains a set of rules that describe what
kinds of traffic are allowed to pass through. Firewall rules rely mainly on source and
destination IP address, in addition to port numbers. If a packet does not meet the
specified criteria (rules), then it is denied.

As mentioned in section 2.2.3, an IDS is a passive device that captures and
analyzes the traffic coming into the network. In terms IPS, it is an active device that
is able to prevent attacks by blocking them.
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Figure 2.4: The placement of IDS, IPS and FW
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Firewall IPS IDS

Definition

A device that filters
incoming and outgoing
traffic based on specified
rules.

A device that detects,
inspects and distinguish
the traffic. Then, it
proactively stops
malicious packets.

A device that monitors
a certain system.
If it finds any suspicious
behaviour, whether it is
a malicious or policy
violation, it will alert the
administrator that there
is an issue.

Functionality

The traffic is filtered
or blocked based on IP
addresses and port
numbers.

It inspects the traffic and
make a decision if there
is an attack. If an attack
is occurring, then it is
prevented by the IPS.

The same as IPS, but the
difference here is that
instead of preventing
attacks, it generates
alerts.

Configuration Layer 3 mode.
Transparent mode.

Layer 2 mode.
Inline mode.

Inline mode.
End host mode.

Placement
Inline at the edge of the
network. Firewall should
be first line of defense.

Inline, typically after the
FW.

Non-inline .
IDS should be placed
after the FW.

Traffic
patterns

Traffic patterns in FW
are not analyzed.

Traffic patterns in IPS
are analyzed.

Traffic patterns in IDS
are analyzed.

Actions Blocks the traffic based
on specific rules.

Prevents the traffic on
anomaly detection.

Alerts on anomaly
detection.

Related terms

- Traffic is permitted or
blocked based on IPs
and ports.
- Stateful packet filtering.

- Signature-based
detection.
- Anomaly-based
detection.
- Blocking the attacks.
- Zero day attacks.

- Signature-based
detection.
- Anomaly-based
detection.
- Zero day attacks.
- Monitoring.
- Alarm.

Table 2.4: Firewall vs IPS vs IDS [24]

2.3 Types of attacks

2.3.1 Scanning Attacks

A scanning attack [94] is an attack that attempts to send packets of information to a
network system to gather information about the topology. It involves looking for ports
which are either open or closed, what type of traffic is permitted and not permitted,
which hosts are active or even the type of hardware running on different devices. For
instance, a type of attack that finds weak points in a network is Blind SQL injection
attacks. A Blind SQL injection attack is an attempt to ask a database questions that
make it respond by a Boolean value to find vulnerabilities. These types of attacks often
attempt to find open ports to be exploited by injecting malicious code or malware.

14



2.3.2 Asymmetric Routing

When packets take a specific route to the destination, and a different route back to
the source, this behaviour is called asymmetric routing [94]. This behaviour is normal
in general, but it is unwanted. The reason behind that is adversaries can benefit from
asymmetric routing by sending malicious data through particular parts of the network
to bypass security systems, depending on firewalls configuration. If the network is
allowed to perform asymmetric routing, then it is exposed to attacks such as SYN flood
attacks. An SYN flood attack is an attack that attempts to open many connections
without closing them (half-open attack), which leads to a total consumption of system
or server resources so that it becomes unresponsive. This attack is a DDoS attack
type, and one reason to deactivate asymmetric routing in the network.

2.3.3 Buffer Overflow Attacks

Buffer overflow [94] attacks attempt to replace normal data with malicious data in pen-
etrated memory parts, such that a malicious code gets executed later on. In generic
terms, a buffer overflow attack writes more data in the memory’s buffer than it can
handle; performing this action results in making the data overflow into the neighbour-
ing memory.

2.3.4 Protocol-Specific Attacks

As the name implies [94], these attacks is conducted using specific protocols such as
ICMP (Internet Control Message Protocol), TCP (Transmission Control Protocol) and
ARP (Address Resolution Protocol).

ICMP is a protocol that can be used the devices to communicate with each other.
For instance, the ping and traceroute commands use ICMP packet to determine if a de-
vice is on a network and to determine the path to a certain device, respectively. ICMP
protocol is used by attackers to conduct attacks called ping floods. These attacks
revolve around over flooding the network by these packets so it becomes unrespon-
sive by consuming the bandwidth. Additionally, ICMP is also used to what is called
tunnelling attacks where the firewalls are bypassed, such as smurf attacks (an attack
where the source address is spoofed) and port scanning attacks (the error messages
generated by the ICMP are used to determine if a port is open or not).

TCP is one protocol that is often used to conduct attacks. Such a protocol can
be used to conduct, for instance, a SYN flood attack as mentioned in 2.3.2.

ARP is also used for flooding attacks. For instance, an adversary can send a
massive number of ARP requests/packets to fill up ARP tables with data. An attack
called ARP poisoning is often used to link the adversary’s device to victims device by
luring the network into believing that the adversary owns a MAC address which is not
his. By performing this action, the adversary is able to intercept packets directed to
the legitimate owner of the MAC address. It results in making the attacker modify or
stop these packets.
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2.4 Commercial and open source intrusion detec-
tion systems

Many software variants provide IDS/IPS functionalities. Therefore, this section re-
volves about describing only two of the most popular commercial and open source
systems, which are McAfee NSP and Snort, respectively.

2.4.1 Snort

Snort [10] is open-source software for intrusion prevention and detection. Snort per-
forms real-time analysis detection and packet logging. It is capable of detecting mal-
ware, probe attacks, exploits and harmful threats. There are three main methods to
configure snort; network intrusion detection, packet logger and sniffer. In network in-
trusion detection mode, snort will monitor the traffic in real-time and compare it with
the rules determined by the administrator. Packet logger mode logs network packets
and stores the data. In the sniffer mode, the program will inspect the packets and
show the information to the administrator. A snort rule is represented in Figure 2.5.

What makes Snort a good software is it is open-source. It provides the simplicity
in writing rules that determine what traffic is allowed to pass through. Moreover, the
flexibility of deployment and good community support to solve issues rapidly.

On the other hand, many people may be a bit frustrated because there is no
GUI to set up the rules. Besides, it is relatively slow in terms of processing network
packets.

Figure 2.5: A snort rule [55]

2.4.2 McAfee NSP

McAfee NSP (The McAfee Network Security Platform) [49] is a commercial tool used
for intrusion and threat prevention. It provides many features such as SSL encryp-
tion, learning engines and behavioural analysis, automation, high performance, and
so on. In simple terms, McAfee NSP is like any IPS/IDS system, but the difference
is it performs better as it is developed by a more prominent company with many
professionals.
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2.5 Machine learning methods

2.5.1 Supervised learning vs Unsupervised learning
Supervised learning [80] is a technique used to train a machine using labelled datasets.
As the name implies, it means that some of the labelled data is tagged with the correct
answer. The way supervised learning works is by training the labeled data, one can
predict unforeseen results. For instance, suppose that one wants to train a machine to
predict how long it does take between from a location to another; specific data must be
gathered and analyzed. Namely, such data may include weather conditions, holidays,
time of the day, and route chosen. All these details are considered as inputs. Naturally,
if it is raining, one assumes that it will take a longer time to reach the desired location,
but a machine needs statistics. Consequently, in order to create a dataset that can
get trained, specific data such as the total time it takes from a start location and
corresponding data that includes time, weather condition, route, and so one. Based
on the given information, the machine will be able to see the relationship between
different data and predict the time it takes to travel from a location to another.

Unsupervised learning [80] is a technique where a machine learning model does
not need to be supervised. The model will instead try to discover the information
by itself, which means that unsupervised learning deals with unlabeled datasets. In
unsupervised learning, the machine can find all types of data patterns, and it also
helps in identifying the features one needs to categorize the data.

Supervised learning Unsupervised learning
Process Input and output data are given. Only input data is given.

Input data The machine is trained
using labeled data.

The machine is not given
unlabeled data.

Algorithms used
SVM, NN, Random Forest,
Linear and Logistics regression,
Classification trees.

Different categoriez: K-means,
Cluster algorithms,
Hierarchical clustering, and so on.

Computational
complexity Simple. Complex.

Use of data Uses training data and relate
input and output results. Does not use output data.

Accuracy of results Accurate and trustworthy. Less accurate and trustworthy.
Real time learning Learning is offline. Real-time.
Number of classes Known. Unknown.

Main drawbacks Big data is a challenge.
No precise information in regards
to data sorting, and the output is
not known.

Table 2.5: Supervised learning vs unsupervised learning
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Semi-supervised learning

There is another type of learning, which is called semi-supervised learning [80]. This
technique makes use of both supervised learning and unsupervised learning. It com-
bines some of the labeled data with a massive amount of unlabeled data during the
training phase.

2.5.2 Neural Networks (NN)
In simple terms, a Neural Network [53] is a network that contains a number of neurons
used to process information. A Neural Network consists of three main components;
input layer, hidden layers and output layer, as shown in Figure 2.6. Moreover, each of
these layers consists of neurons, connections and weights, propagation function and a
learning rule.

Figure 2.6: Neural network components

Neurons (nodes) are what the Neural Networks are built upon. Each neuron in a
Neural Network has an input and an output. It means that input neurons and output
neurons represent a Neural network. In regards to the input layer, the neurons it con-
sists of have outputs but does not have inputs. However, when it comes to the output
layer neurons, they have inputs but no successor outputs.

The connections and weights are essential parts of the Neural Network. The
connections transfer the output from, say hidden layer 1, to hidden layer 2, which in
this case, the input of hidden layer 2 neurons. Indeed, each of these connections has a
weight which represents in simple terms the importance of the input.

A propagation function is a function used to compute a neuron’s inputs. This
function is typically used when training the data.

The learning rule function is essential when determining and modifying the
weights of the connections. It helps in achieving the desired output from the Neu-
ral Network. This functions, just as the propagation functions, is used during the
training phase.

The way a Neural Network operates is [42]; firstly, the input layer is the layer
where information is given to the network, and each of these circles represents a feature.
Secondly, the hidden layers are those layers that process the data given. The number
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of layers may vary; one can choose as many layers as needed to process the data. In
generic terms, the more hidden layers, the more accurate the results. Each of these
layers consists of neurons that receive information from the previous layer’s nodes.
When the information is received, the information is then multiplied with weight, and
a bias is added. Finally, output layers gather the information processed in the last
hidden layer of the network and produces the desired output. As shown in Figure 2.7
and equation 2.7, a mathematical description of NN is represented, where w is the
weight, x is input vector, b is neuron bias, � is the element-wise multiplication, f is
the activation function and y is the neuron output.

y(x) = f(w � x+ b)[45] (2.7)

Figure 2.7: How a neurons operate [45]

2.5.3 Long Short-Term Memory (LSTM)
Before describing what an LSTM is, Recurrent Neural Networks (RNN) have to de-
scribed as the LSTM is a variant of the RNN. The main idea behind RNNs is to benefit
from the sequential information [60]. In regular Neural Networks, the assumption is
that inputs and outputs are independent of each other, and in many case scenarios,
this is a bad idea. The reason is that if one wants to predict a particular value, in-
formation about the previous one is essential to have. The RNN is called recurrent
due to its ability in performing computations based on the given information in the
"memory", including information about what has been considered in the calculation
so far.

LSTM [21] is an RNN variant and can learn from long term dependencies. As
the name implies (Long Short-Term Memory), this algorithm is capable of remem-
bering given information for long periods. It operates by performing three main step
processes called gates; Forget gate, Input gate and Output gate. A complete overview
of LSTM is shown in 2.8.

• Forget gate is what makes a decision about how much of the past to remember.
It determines what information to remove from the cell in a particular timestamp
which decided by the sigmoid function (or a squashing function which limits the
output to a range between 0 and 1 in order to predict the probability). As
shown in Figure 2.9, it checks the previous state ht-1 and the given input xt, then
it decides whether to delete or keep the information by outputting a number
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Figure 2.8: LSTM gates [60]

between 0 (delete this) and 1 (keep this) for each number in the cell state Ct-1.
The forget gate equation is represented in 2.8.

f t = σ(W f · [ht-1, xt] + bf) (2.8)

Figure 2.9: LSTM forget gate [60]

• Update gate/input gate is what decides how much of a particular piece of
information to add to the current state. In this gate, just as in the forget gate
shown in equation 2.9, the sigmoid function decides which value will go through
and which will not. In addition, a tanh function, as shown in equation 2.10, is
used to weight the values passed to determine their importance, represented by
a specific value from -1 and 1. LSTM update gate/input gate is shown in Figure
2.10.

it = σ(W i · [ht-1, xt] + bi) (2.9)

C̃t = tanh(WX · [ht-1, xt] + bC) (2.10)
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Figure 2.10: LSTM update gate/input gate [60]

• Finally, the output gate shown in 2.11, is the gate used to decide which piece
of information will make it to the output. The sigmoid and the tanh functions
are used for the same purpose as in both forget and input gates. Both of the
equations are represented in 2.11 and 2.12, respectively.

ot = σ(W o[ht-1, xt] + bo) (2.11)

ht = ot ∗ tanh(Ct) (2.12)

Figure 2.11: LSTM output gate [60]

2.5.4 Convolutional Neural Network (CNN)
CNN [31] is like Neural Networks as it is made up of neurons with weights and biases.
Each neuron has inputs and outputs. The inputs have weights that represent the
importance of the data; this data gets passed through an activation function and
respond with an output.

The main difference is that CNNs function over volumes and this means that the
CNN takes a multi-channelled image as the input in contrast to NN where the input is
a vector. There are three main components in a CNN [82]; input layer, convolutional
layer and output layer, as shown in Figure 2.12. However, CNN is capable of dealing
with text as well; this will be shown in Chapter 5.
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Figure 2.12: The architecture of CNN [82]

Input layers in CNN are directly connected to convolutional layers that are considered
as a building block of CNNs. The primary purpose of convolutional layers is to extract
the features from an image and then learn these features to help in detection tech-
niques. The input layer contains pixel values that have both height and weight; these
values are used by the filters to convolve around the input layer and provide results
which return the features with fewer dimensions.

One essential function of CNN is padding. Padding is the number of pixels added
to an image while processing the image by the kernel. It works by extending the image
by a border of pixels of an image. The kernel of CNN moves across the image and
scans each pixel and then converts the data it finds into a smaller or bigger format.
This process assists the kernel is processing the image it scans, and the padding is
used to add more data to the frame of the image so that the kernel can cover more
space of the image. The padding of an image increases the accuracy of image analysis.

To increase the computational power in a CNN, one has to reduce the parameters,
and either average pool or max-pooling does this. As the name implies, max-pooling
operates by extracting the maximum value from the filter, whereas the average pooling
operates by extracting the average from the filter. Hence, pooling is performed when
reducing the dimensionality, whereas padding is used only when necessary.

2.5.5 Random Forest (RF)
RF is a supervised machine learning algorithm [16] that mainly operates based on the
classification to solve problems. This algorithm combines multiple Decision Trees, and
the more trees, the more accurate the results. These decision trees are feed with data
and trained to produce outputs (predictions); the Random Forest algorithm will then
choose the best prediction (solution) based on voting. Figure 2.13 shows an example
of a decision tree.

A Random Forest algorithm starts with selecting random data samples from a

22



dataset. Then, for each chosen sample, a decision tree is built, and the prediction
results are gathered from each one. When the results are gathered, a voting process
is performed in order to select the best prediction result as a final solution. A simple
illustration of the functionality is shown in Figure 2.14.

Figure 2.13: Decision tree [15]

Figure 2.14: Random Forest [16]

A decision tree [64] consists of three components; the nodes where each node represents
an attribute or a feature, the links that represent the rules (decisions), and leaves that
represent the outcomes.
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2.5.6 A comparison between NSL-KDD and KDD Cup 99
(KDD99)

KDD Cup 99

This dataset is the most known and most used one by researchers [19][54]. It is utilized
by the researchers to conduct experiments on anomaly detection using machine learn-
ing algorithms. The traffic in this dataset was gathered using a virtual environment
and is a subset of a dataset called 1998 DARPA (Defense Advanced Research Projects
Agency).

The KDD Cup 99 is a benchmark dataset and contains three main components;
the whole KDD Cup 99 dataset which contains different attacks and normal connec-
tions, 10% proportion which is used for training of classifiers, and the KDD test dataset
used for testing. In total, the whole dataset consists of 4 898 431 single connection
records, and each record composes 41 features labelled as attacks or normal traffic.
These features are divided into four categories:

• Basic features: are gathered from the packet header without checking contents
such as duration, protocol type, service, flag and number of bytes.

• Content features: the content of TCP packet analyzed and determined.

• Time features: provides information about the time taken (duration) from a
source IP to reach the destination (i.e., target IP address).

• Traffic features: are based on a window that has a number of connections.
Suitable for prolonged attacks.

Furthermore, KDD Cup 99 consists of four main attack categories:

• Probe: attacks that used to collect information about the system to find known
vulnerabilities. Information gathered about such vulnerabilities is used to con-
duct later attacks.

• DoS: Denial of Service attacks that prevent authorized users from accessing the
system.

• U2R: User to Root attacks used to exploit weaknesses in the system in order
to acquire administrator privileges. For instance, the attacker starts by compro-
mising a user account, then looks for weaknesses to escalate his privileges.

• R2L: Root to Local attacks are used to get access to the remote system without
a user account.
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Whole dataset 10% training set test set

Attack category Number of
instances (%) Number of

instances (%) Number of
instances (%)

Normal 492 798 19.86% 97 278 19.69% 60 593 19.48%
Probe 41 102 0.84% 4 107 0.83% 4 166 1.34%
DoS 3 883 370 79.30% 391 458 79.24% 229 853 73.94%
U2R 52 0.00% 52 0.01% 70 0.02%
R2L 1 126 0.02% 1 126 0.23% 16 347 5.26%

Table 2.6: A description of the KDD Cup 99 dataset

There are many criticisms to this dataset, and this is due to several issues it has:

• Calculations are complex.

• Both the training set and testing set have a high level of complexity.

• The redundancy impacts the machine learning algorithms.

• Attack traffic is high compared to normal traffic.

• Attack categories relationship is not realistic.

• The accuracy of detecting the distribution of attacks is low.

NSL-KDD

As the KDD Cup 99 contains both redundant (78%) and duplicate (75%) records, an
enhanced dataset so-called NSL-KDD was released in 2009 to eliminate these prob-
lems [19]. NSL-KDD eliminated problems such as redundant records in the training
dataset and duplicated records in the testing dataset by selecting a reasonable num-
ber of features from the KDD99 dataset. NSL-KDD dataset helps in increasing the
performance of the classifier as it does not have any duplicated records; hence, it will
not be biased with other techniques when training the machine. Additionally, since
both training and testing sets contain a smaller number of instances, it would be more
efficient to conduct experiments on the whole dataset instead of randomly choosing a
small portion.

In the NSL-KDD dataset, there are 37 attacks in total, where 21 attacks are
present in the training dataset and all of them in the test dataset. Just like in KDD99
dataset, there are four main categories of attacks in NSL-KDD; Probe, DoS, U2R and
R2L.

The amount of normal traffic the training dataset consists of is 67 343 instances,
and this number is out of 125 973 instances in total. In the test dataset, there are 9
711 normal traffic instances out of 22 850 instances in total.
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Dataset type Number of records
Records Normal DoS Probe U2R L2R

NSL-KDD Train+
(full NSL-KDD train set) 125 973 67 343 45 927 11 656 52 995

NSL-KDD Train+ 20%
(A 20% subset of the KDD Train+) 25 192 13 449 9 234 2 289 11 209

NSL-KDD Test+
(The full NSL-KDD test set) 22 544 9 711 7 458 2 421 200 2 754

NSL-KDD Test-21
(A subset of the KDDTest+) 11 850 2 152 4 342 2 402 200 2754

Table 2.7: Details of NSL-KDD dataset

Summary

Dataset Features Advantages Disadvantages

DARPA 1998 -
- Broad range of attacks.
- First dataset for
evaluating IDSs

- Generating the
traffic was simple due
to models used
- Does not reflect how
real networks operate.

KDD Cup 99

- 41 features:
(32 numeric)

&
(9 categorical)

- Used to evaluate
anomaly-based systems.
- Attacks in the training
set are distinguished
from those in the testing
set.

- Redundant records
and duplicate records.
- Very old.

NSL-KDD 2009

- 41 features:
(32 numeric)

&
(9 categorical)

- No redundancy
and no duplication in
terms of records.
- Reasonable number of
records compared to
KDD99.

- Not good enough to
represent real-world
networks.

Table 2.8: A comparison between KDD Cup 99 and NSL-KDD 2009
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Chapter 3

State-of-the-art

In this chapter, the taxonomy of anomaly detection types and how they are imple-
mented in regards to machine learning will be represented. Moreover, a summary of
the latest research in this field will be considered. As mentioned earlier, this thesis
revolves around how to improve the anomaly detection using machine learning algo-
rithms. However, the classification of anomaly-based detection is pretty broad, and
many machine learning techniques can be applied [39][20].

3.1 Anomaly-based NIDS architecture

According to [78], a simplified architecture of Anomaly-based Network Intrusion De-
tection System (A-NIDS) that describes the workflow of such a system, is shown in
Figure 3.1.

This architecture includes three main stages, which are parameterization, train-
ing, and detection.

• Parameterization focuses on collecting data to be modelled from the monitored
network.

• Training stage analyzes the normal or abnormal behavior of the system and
based on given data, a corresponding model is built.

• Detection stage compares the built model with incoming traffic to detect if
something is suspicious. If the behaviour exceeds a pre-defined thresh hold, an
alarm will be triggered.
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Figure 3.1: A simplified anomaly-based NIDS architecture

3.2 Anomaly-based ML techniques

3.2.1 Distance-based methods
According to [46], distance-based methods are categorized into two primary categories,
clustering-based anomaly detection and nearest neighbour-based anomaly detection
approaches. These methods are based on the similarity function between data in-
stances.

Nearest neighbour-based methods

This approach is capable of detecting an irregular data point based on its distance
from other points (neighbours) or on the density [47].

One of these methods is k-Nearest Neighbours (kNN). This method calculates
the anomaly score, which is the distance between the neighbours (data instances). If
the score exceeds a specific score level, then it is anomalous.

Density-based identify whether a point is anomalous or not by checking if the
density around a data point is low or high. If the density is low, then the data point is
abnormal, and normal if the density is high. For example, an algorithm called Local
Outlier Factor (LOF) is a method used in combination with k-nearest neighbours to
compute the average density ratio of the points and anomaly score, so that it identifies
if there are any abnormal behaviours.

Indeed, LOF works better than kNN in terms of detecting the density in large
datasets. However, both techniques have scalability issues when used for large datasets.
The reason is that both need to compute the distance between data points in order
to determine nearest-neighbours. Moreover, using these two techniques increases the
computational complexity in both training and testing phases.

Clustering-based methods

As the name implies, this technique arranges similar objects into groups [47]. For
instance, the well-known k-means algorithm is a technique used for anomaly detection.
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It works by assuming that anomalous data points are far from their clusters, or that
they are not assigned to any cluster at all. In terms of clustering-based anomaly
detection methods, there are three main categories:

• The first category relies on assuming that normal data points (instances) belong
to a cluster, whereas anomalies do not (noise).

• The techniques used in the second category assume that normal instances are
close to the centroid of the cluster. In the case of anomalies, they lie far away
from the centroid. In order for anomaly to work, there are two requirements, an
algorithm to cluster the data and then compute the anomaly score for each data
instance based on the distance between this instance and its cluster centroid.

• In the third category, the issue with the previous two methods is addressed after
the anomalies clusters are formed. The reason is that normal data points are
grouped into large and dense clusters, whereas anomalies belong to scattered or
small clusters.

Clustering-based anomaly detection methods also suffer from scalability issues. How-
ever, the test phase is much faster compared to the Nearest neighbour-based methods,
as the algorithm only needs to compare a few number of clusters with each other.
There are efficient variants used such as heuristic techniques (e.g., k-means), approxi-
mate clustering and advanced-indexing techniques for data partitioning.

3.2.2 Ensemble-based methods
According to [14], there are several ensemble-based methods used for anomaly detec-
tion. Ensemble-based methods category, there are classical anomaly detection models
such as the Local Outlier Factor (LOF) to combine the resulting score when using sets
of hyperparameters.

Isolation Forest (IF) is another method among ensemble-based methods used for
anomaly detection. The algorithm works by building decision trees for data instances
classifying. Furthermore, the average score (anomaly score) is calculated from the root
to the sample location based on the path lengths. Using this algorithm, to detect the
anomalies, they are isolated based on path lengths. If the path is shorter than normal
instances, then the data instance is anomalous. This approach is efficient and can be
used to capture the anomalies in streaming data. In [70], they have showed a variant
of Isolation Forest to improve anomaly scores by correcting the bias resulted when
using the classical Isolation Forest.

The disadvantage [11] with ensemble methods is when the model is complicated
enough, a reduction of interpretation ability of the system decreases. Besides, the
computation and design time is pretty high, which means that ensemble methods are
not good enough for real-time applications. Also, it is essential to mention that cre-
ating an ensemble model is quite complicated. On the other hand [11], in terms of
mathematics, ensemble methods are able to give a degree of freedom when it comes
to bias and variance tradeoff, which allows complicated problems to reach a particular
hypothesis. Moreover, ensemble methods are unlikely to overfit.
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3.2.3 Statistical methods

Statistical methods [41] are based on the probability. In terms of anomaly detection,
these methods estimate and assume that normal data reside in high probability density
areas, whereas anomaly data reside in regions that have low probability density. The
probability distribution is calculated using the training data, and the threshold is used
to differentiate normal and anomalous data instances. Some of the techniques that
are widely used are:

• Gaussian mixture models (GMM): these probabilistic models are used in
anomaly detection by calculating the distance between the data instance and the
estimated mean, and the distance, in this case, is the anomaly score. However, if
an instance gets a score beyond the threshold, then it is considered anomalous.

• Independent component analysis (ICA): ICA is a statistical technique that
finds the factors, latent variables or sources of anomalies data. This is done
by increasing the statistical independence of the estimated components to the
maximum level.

• Regression model-based: such methods are a two-step approach. The re-
gression model has first be fitted on the training data. Next, the result is used
to differentiate the real value and predicted value in the test phase. Vector
Auto-Regressive (VAR), Autoregressive Integrated Moving Average (ARIMA)
and Recurrent Neural Network (RNN) are examples of statistical methods.

The disadvantage with statistical methods is their assumption mainly rely on that the
data is generated from a specific distribution. Since anomaly detection is pretty wide
and complex field of research, the assumption is usually not correct [89].

3.2.4 Domain-based methods

Domain-based methods [88] base their results on separating the data into two domains,
normal and anomalies based on the training data. Support Vector Machines (SVM)
is the most and the only used technique in domain-based approaches. More precisely,
the One-Class Support Vector Machines (OC-SVM) variant.

SVM works by assuming that the training data represent the normal data; thus,
the normal data region is well defined; consequently, if the data drop outside the
defined normal domain, then it is considered anomalies.

The benefit using of such techniques, particularly multi-class techniques, is the
ability to make use of powerful algorithms that can discriminate between different
data instances that belong to different classes. Furthermore, the testing phase is fast
because each instance would be compared to the pre-computed model. However, the
downside here is that these techniques depend on the availability of accurate labels
for different normal traffic classes, which is, in most cases not possible. Additionally,
it becomes a disadvantage when labelling each test instance because one desires a
meaningful anomaly score for these instances [86].
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3.2.5 Reconstruction-based methods
Recurrent Neural Networks (RNN)

RNN [41] is a Neural Network type that is suited for time series processing. One
issue with RNN is that it suffers from learning long term patterns [85]. The reason
is so-called a gradient vanishing problem (a problem that occurs when training the
data. What happens is that the gradient may be so small so that it prevents the
weight from changing its value). It happens when applying Backpropagation Through
Time (BPTT) (a supervised algorithm used to correct the network when specific errors
occur) algorithm when training the data. Therefore, the standard RNN is not usually
implemented in terms of real-world applications. One RNN approach or variant is
Long Short-Term Memory (LSTM).

The fundamental idea behind the use of LSTM for anomaly detection is the
system checks the past values over a certain amount of time and tries to predict the
behaviour for the upcoming minute. If the behaviour in the next minute belongs to
normal behaviours, then it is normal, and anomaly otherwise [74] [22].

Stacked LSTM RNN is used for anomaly detection, as showed in [43]. In this
approach, the model is designed to accept only one-time step as input and the LSTM
state is maintained across the input sequence. The data is trained with normal time
series instead of training on normal data only. Thus, for each observation, there are
multiple predictions made at different times previously. The predictions information
is then gathered to calculate error vectors using a multivariate Gaussian distribution
to detect an anomaly.

Nevertheless, there also other NN methods used for anomaly detection such as
Convolutional Neural Networks (CNN). Research examples are discussed in ??.

3.2.6 Research examples
Neural Networks (NN)

One approach that was implemented by researchers is Deep Learning for Intrusion
Detection in Software Defined Network (SDN) [81]. As demonstrated in Figure 3.2,
the experiment revolved around building a Deep Neural Network with an input layer
(dimension: 6), three hidden layers (neurons: 12, 6, and 3) and an output layer
(dimension: 2).
The dataset used in the experiment is NSL-KDD. Researchers have been using this
dataset to evaluate the performance of NIDS. Even it is an old dataset (2009), it is yet
to be an excellent dataset to compare with NIDS models. There are 125973 and 22554
network traffic samples in KDDTrain+ and KDDTest+, respectively. Additionally,
each traffic sample has 41 features, and it contains four main types of attacks, which are
DoS (Denial of Service attacks), Probe (Probing attacks), U2R (User To Root attacks),
and R2L (Remote To Local attacks). Each one of these attack families consists of
several types of attacks, and the number of features chosen is 6 (out of 41). The
six features are duration (connection length in seconds), protocol_type (TCP, UDP,
ICMP, etc.), src_bytes (number of data bytes from source to destination), dst_bytes
(number of data bytes from destination to source), count (number of connections to
the same host) and srv_count (number of connections to the same service).

Regarding the evaluation metrics, Accuracy (AC), precision (P), recall (R), and
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Figure 3.2: Deep Learning Network Model [81]

F-measure (F) were used. Indeed, a confusion matrix was used in order to calculate
each one.

The experiments conducted were based on two approaches, normal and abnormal
traffic. As an attempt to optimize the model, four learning rate values were used (0.1,
0.01, 0.001, 0.0001). According to [81], as shown in Table 3.1 and Table 3.2, in terms
of accuracy metrics, loss, and accuracy, when choosing the learning rate as 0.001, the
best results are achieved.

Learning Rate Train Set Test Set
Loss (%) Accuracy (%) Loss (%) Accuracy (%)

0.1 11.49 88.04 31.26 72.05
0.01 8.41 90.9 20.15 73.03
0.001 8.26 91.62 19.51 75.75
0.0001 7.45 91.7 20.3 74.67

Table 3.1: Loss and accuracy evaluation for different learning rates

Learning Rate Precision (%) Recall (%) F1-score (%)
0.1 79 72 72
0.01 82 73 72
0.001 83 76 75
0.0001 83 75 74

Table 3.2: Accuracy metrics for different learning rates

What is missing?

Firstly, comparing this research to others, the accuracy achieved is less than the ac-
curacy obtained using other machine learning algorithms. As demonstrated in Table
3.3, the only algorithm that resulted in less accuracy was Support Vector Machine
(SVM). The reason is they have used only six features for training and testing, and
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this number is minimal, considering that there are 41 features in total.

Algorithm Accuracy (%)
J48 81.05
Naive Bayes (NB) 76.56
NB Tree 81.59
Random Forest 80.67
Random Tree 81.59
Multi-layer Perception 77.41
Support Vector Machine (SVM) 69.52
The DNN approach 75.75

Table 3.3: Accuracy comparision of different algorithms

Secondly, the main focus of the research was based on normal and abnormal
traffic, meaning they did not consider the attack type. Moreover, in order to detect
sophisticated attacks, more features, and a more significant proportion of the dataset
have to be selected. Hence, the sub-dataset given to the DNN algorithm was not
enough to generalize the characteristics of different attacks.

Finally, the number of features selected to train the machine plays a vital role
in terms of loss and accuracy. Therefore, one of the goals in this thesis is to show
that considering a more extensive training dataset and selecting a higher number of
features will result in achieving better numbers.

Bayesian Network

Bayesian Network is one of the most used ML techniques in intrusion detection sys-
tems. In [28], a dataset called DARPA KDD99 was used to test the IDS. This dataset
is an accessible dataset among researchers due to various types of attacks it contains.
This dataset contains three subsets, which are "Whole KDD," "10% KDD," and "Cor-
rected KDD." In their experiment, they have only used 10% KDD and corrected KDD
as their training and testing sets, respectively.

The KDD dataset contains four main types of attacks, which are DoS (Denial
of Service attacks), Probe (Probing attacks), U2R (User To Root attacks), and R2L
(Remote To Local attacks). Both training and testing sets contain 22 and 17 attacks,
respectively, meaning that there are 39 attacks in total.

The Bayesian technique was used as a filter, and it worked by making the ma-
chine recognize that different features have different probabilities in terms of attacks
and regular TCP traffic. The filter was able to recognize different attacks after adjust-
ing the probabilities of the features. The main idea was to provide information about
each TCP connection so it can tell if it is normal or abnormal (attack) traffic.

As shown in Figure 3.3, the IDS-based Bayesian system is represented. Each
labeled input represents the type of connection. After training, the system is tested
using the corrected dataset.
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Figure 3.3: The training engine [28]

In the training phase, KDD 10% that contains 494020 records are used as the
training dataset. The records to be trained include both normal traffic and abnormal
data traffic (DoS, Probe, U2R, and R2L). Several experiments were conducted using
this training engine. In each experiment, one attack type was selected and compared to
normal traffic. The reason is to recognize how each attack type would affect the results.

• Using DoS records and normal traffic: TN = 99.6%, TP = 99.24%, FN = 0.4%,
FP = 0.76% and DR = 99.24%.

• Using Probing records and normal traffic: TN = 99.4%, TP = 81.9%, FN =
0.6%, FP = 18.1% and DR = 81.9%.

• Using U2R records and normal traffic: TN = 99.7%, TP = 93%, FN = 0.3%,
FP = 7% and DR = 93%.

• Using L2R records and normal traffic: TN = 68.03%, TP = 85.35%, FN =
31.97%, FP = 14.65% and DR = 85.35%.

What is missing?

In the case of this approach, the issue here is that only 10% of the dataset was used for
training, but in contrast to the DNN approach, the 41 features were utilized. Hence,
it would be reasonable to achieve high accuracy. So again, what if a higher proportion
of the dataset is used, and how would the result be?

Random Forests (RF)

A Random Forest based system was proposed in [62]. As shown in Figure 3.4, the
system uses the NSL-KDD dataset to train the model. The NSL-KDD dataset (full
dataset) is split into two parts, 75% for training and 25% for testing. The training
data in the proposed model is labelled, whereas the testing data is not. Next, perform
data preprocessing and then select all appropriate features. The Random Forest is
then applied to obtain the trained model. Finally, the performance evaluation of the
model is given.
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Figure 3.4: Proposed model [62]

The feature selection in this approach is performed using Gini importance (Mean
Decrease in Impurity MDI - it calculates the importance of each feature). The reason
is that even though the RF has an implicit feature selection, using Gini importance
increases the performance of the algorithm. Additionally, noise and less important
features are eliminated. However, the resulted subset of features is then evaluated
to determine if it is more efficient than the whole. This operation was done multiple
times to eliminate the features with less importance. Finally, the used subset is the
one with the best performance.

When the subset is selected, the training data proportion is then given to the
RF algorithm. The number of used decision trees was 1000 due to the high number
of features. As shown in Table 3.4, the accuracy of the proposed model is higher than
the basic one.

Parameters Basic RF model Proposed model
Accuracy (%) 99.752 99.880
Inaccuracy (%) 0.248 0.120

Table 3.4: Evaluation results

What is missing?

This approach is based on an old dataset (NSL-KDD) which consists of some disad-
vantages as mentioned in Table 2.8, Section 2.5.6, Chapter 2. Moreover, the proposed
approach does not classify by attack, which one of the main issues to be solved in this
thesis.

Convolutional Neural Networks (CNN)

One approach that aimed to use CNN for anomaly detection is [97]. The main aim was
to design a method that is capable of converting NSL-KDD data format to visual image
type so that CNN can handle it. This goal was achieved by mapping various types of
features into binary vector space. The binary vector space is then transformed into
an image. For instance, one-hot encoder mapping was used to map symbolic features
such as protocol_type, flag and service into binary vectors, as shown in Figure 3.5.
As an example, protocol_type feature has three values "TCP, UDP, ICMP", and these
values can be turned into "100, 010, 100" using the one-hot encoder.

35



Figure 3.5: Mapping symbolic features into binary vectors

Additionally, continuous features that include integer and float types were normalized
into a range from 0 to 1. For this purpose, a standard scaler was utilized (scaling
data to a specific interval). The normalization method used in the approach is shown
in Equation 3.1. According to the equation, x stands for numeric feature value, xmin
stands for minimal value of the feature, xmax stands for the max value and xnew stands
for the value after normalization. When the normalization process is finished, scaled
continuous value is discretized into 10 intervals. The one-hot encoder is then used to
encode the order number into 10 binary vectors, as demonstrated in Figure 3.6.

xnew = x− xmin

xmax − xmin
(3.1)

Figure 3.6: Discretization and binarization on continuous features

When the NSL-KDD dataset is preprocessed and turned into a binary vector with 464
dimensions, each 8 bits are turned into grayscale pixel. The binary vector with 464
dimensions is transformed into 8*8 grayscale image with vacant pixel padded by 0. As
demonstrated in Figure 3.7, one can see how different samples were transformed into
images.

Images (a) and (b) represent normal data, images (c) and (d) represent DoS
attacks, images (e) and (f) represent probe attacks, images (g) and (h) represent R2L
(Remote to Local), and images (i) and (j) represent U2R (User to Root).
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Figure 3.7: Images of different NSL-KDD samples

To conduct the experiments, ResNet 50 and GoogLeNet were used as CNN models. To
train ResNet 50, 100 epochs with 256 batch size were used. In regards to GoogLeNet,
50 and 100 epochs with 64 batch size were used. Additionally, to evaluate the accuracy
of the model; Precision, Recall, and F1 score are utilized as evaluation metrics.

As stated, NSL-KDD dataset was used in this approach. More precisely, the data
files used were NSL-KDD Train+, NSL-KDD Test+ and NSL-KDD-21. The details
of each set is demonstrated in Table 2.7, Section 2.5.6. It is also necessary to mention
that each file of these files has a corresponding binary labeled files which are utilized
to conduct the CNN-based anomaly detection approach. The performance of binary
labeled class using ResNet 50 and GoogLeNet is shown in Table 3.5.

Accuracy (%) Precision (%) Recall (%) F1 score (%)
ResNet 50
NSL-KDD Test+ 79.14 91.97 69.41 79.12

ResNet 50
NSL-KDD Test-21 81.57 81.81 99.63 89.85

GoogLeNet
NSL-KDD Test+ 77.04 91.66 65.64 76.50

GoogLeNet
NSL-KDD Test-21 81.84 81.84 100 90.01

Table 3.5: Performance of binary labelled class

As the results show, the Recall is highest when it comes to NSL-KDD Test-21. It is
due to the difficulty of this dataset, and the uneven distribution of data within it. As
one can see in Figure 2.7, the number of normal data records is small, which leads
the CNN to consider the normal data as an attack class data. However, Table 3.6
compares the accuracies of proposed methods (ResNet50 and GoogLeNet) with other
methods conducted by [54], and the results of confusion metrics are shown in Figure
3.8.
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Classifier Accuracy on
NSL-KDD Test+ (%)

Accuracy on
NSL-KDD Test-21 (%)

J48 81.05 63.97
Naive Bayes 76.56 55.77
NB Tree 82.02 66.16
Random Forest 80.67 62.26
Random Tree 81.59 58.51
Multi-Layer Perceptron 77.41 57.34
SVM 69.52 42.29
Proposed method
ResNet50 79.14 81.57

Proposed method
GoogLeNet 77.04 81.84

Table 3.6: Accuracy comparison of different algorithms

Figure 3.8: Confusion matrices of the binary test

What is missing?

As in other papers, the proposed model uses an old dataset (NSL-KDD) that has a
less number of features and is not realistic compared to a dataset like CICIDS2017.
Moreover, the proposed model does not classify by attack (which is one of the main
objectives to solve in this thesis).

3.2.7 A relevant Machine-Learning-based IDS work for CI-
CIDS2017

The authors (I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani) of CICIDS2017
[33] have conducted experiments applying different machine learning algorithms. The
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authors used a Random Forest Regressor to conclude which features are best to use
to detect each attack family. Then, 8000 randomly selected benign records and 2000
attack flows for each type of attack from the training dataset are selected (a com-
prehensive analysis of the dataset is done in Chapter 4). This number is little in
comparison to the number of total records in the complete dataset. Consequently, the
authors have conducted experiments using selected features by utilizing various ma-
chine learning algorithms such as Random Forest (RF), K-Nearest Neighbour (KNN),
Naive Bayes (NB), Iterative Dichotomiser 3 (ID3), Multi-Layer Perceptron (MLP) and
Quadratic Discriminant Analysis (QDA). The achieved results are shown in Table 3.7.

Algorithm Precision (%) Recall (%) F1 score (%)
KNN 96 96 96
RF 98 97 97
ID3 98 98 98
Adaboost 77 84 77
MLP 77 83 76
Naive-Bayes 88 4 4
QDA 97 88 92

Table 3.7: The performance examination results

What is missing?

We believe that using only 8000 and 2000 records for both benign and attack flows,
respectively, is not sufficient, which means that results shown in Table 3.7 are not
reasonable. Hence, in this thesis, the whole dataset (all records) is used to evaluate
the models.
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Chapter 4

CICIDS2017 - Dataset

CICIDS2017 [34] [33] is an intrusion detection evaluation dataset released by the Cana-
dian Institute for Cybersecurity in 2017. This dataset is a realistic dataset that con-
tains both benign (normal) and malicious traffic (most up-to-date common attacks)
gathered and saved in PCAP files. Additionally, this dataset is labelled with data flows
that are based on the timestamp, source IP, destination IP, source port, destination
port, used protocols and types of attacks (CSV files). It was built by what is called
B-profile system, which means this dataset was made based on the human’s interac-
tions in the network. CICIDS2017 was made based on the behaviour of 25 users who
used different type of protocols which are HTTP, HTTPS, FTP, SSH, and other email
protocols. However, more details about why this dataset was chosen for this thesis is
discussed in Section 4.4.

4.1 CICIDS2017 attacks
As this dataset is a realistic one, it contains a variety of attack scenarios. It contains
eight attack profiles that represent different attack categories; Web-based, Brute force,
DoS, DDoS, Infiltration, Heart-bleed, botnet and Scan are covered in this dataset.

4.1.1 Description of attack types
Web-based attack

Web-based attacks [69] aim to breach both confidentiality and integrity by targeting
websites to exploit existing vulnerabilities. In this dataset, the SQL Injection attack
was conducted to make the database return sensitive information. Cross-Site Scripting
(XSS) is another attack that is done by an adversary by injecting scripts; this happens
when the developers of a website do not sanitize their code. Brute Force over HTTP
attack is also conducted; this attack aims to find the administrator’s password by
trying a list of passwords.

Brute force attack

Brute force attacks [90] are widespread attacks that aim not only to crack passwords
but also to find hidden pages and hidden contents in web pages. It is based on trial

40



and error principle until the desired outcome is achieved. The brute force attacks were
conducted against FTP, SSH and HTTP in this dataset.

DoS/DDoS attack

DoS (Denial-of-Service) attacks [92] aims in the first place to make systems not acces-
sible so that legitimate users cannot access the resources. DoS attacks can be achieved
by flooding the target system with data.

The DDoS (Distributed Denial-of-Service) attack [93] is a variant of DoS attacks;
as instead of initiating an attack from only one system, the attack is initiated from
multiple systems or computers to flood the victim’s network or bandwidth with a mas-
sive amount of traffic.

DoS/DDoS attacks conducted in this dataset are DoS slowloris, DoS Slowhttptest,
DoS Hulk and DoS GoldenEye.

Infiltration attack

Infiltration attacks [76] revolve around exploiting a vulnerable software, and then make
a backdoor so that attacker is able to conduct various attacks on the victim’s network
using this backdoor.

Heart-bleed attack

Heart-Bleed [83] is an attack that is based on a bug in the OpenSSL cryptography
library. This library is used to implement the Transport Layer Security (TLS) protocol.
By sending a malicious request with a payload to and a large length field to make the
server leak sensitive information. The information may include various types of data
such as passwords, credit card numbers, medical records, and private email contents
or even social media messages.

Scan attack

A scan attack [63] is an attempt to send data requests to a number of ports or addresses
in order to find exploitable open ports.

Botnet attack

This attack is a form of DDoS attacks [13]. By having control over multiple Internet-
connected devices, the adversary can perform many actions, for instance, stealing data
and sending spams.

4.2 CICIDS2017 dataset details
The capturing process started at 09:00 on Monday, which is July 3rd and gathered all
traffic data for 5 days. The capturing process continued until 17:00 on Friday, July
7th. As shown in Table 4.1, a list of different attacks and at what day each attack
was executed is represented. Nevertheless, a list of used tools to conduct the variety
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of attacks is shown in Table 4.3, and the size of each one of the 14 attacks and benign
traffic is shown in Table 4.2.

Days Labels
Monday Benign.
Tuesday Brute force, SFTP and SSH.

Wednesday DoS and Heartbleed attacks.
Slowloris, Slowhttptest, Hulk and GoldenEye.

Thursday
Web and Infiltration attacks.
Web Brute Force, XSS and Sql Injection, Infiltration Dropbox Download
and Cool disk.

Friday DDoS LOIT, Botnet ARES, PortScans (sS, sT, sF, sX, sN, sP, sV, sU, sO,
sA, sW, sR, sL and B).

Table 4.1: Related attacks to each day [34]

Traffic type Size (number of records)
Benign 2273097
DoS Hulk 231073
Port Scan 158930
DDoS 128027
DoS GoldenEye 10293
FTP Patator 7938
SSH Patator 5897
DoS Slow Loris 5796
DoS Slow HTTP Test 5499
Botnet 1966
Web Attack: Brute Force 1507
Web Attack: XSS 652
Infiltration 36
Web Attack: SQL Injection 21
HeartBleed 11

Table 4.2: The size of each attack class [34]
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Attack Tools

Brute force attack
(Tuesday morning-
afternoon)

- Hydra, Medusa, Ncrack, Metasploit and Nmap NSE scripts
to crack passwords.
- Hashcat and hash pump for cracking hashed passwords.
- Patator (the used one as it is one of the best multi-threaded
tools).

DoS attack
(Wednesday morning)

LOIC, HOIC, Hulk, GoldenEye, Slowloris, and Slowhttptest.
This attack scenario was conducted using these tools excluding
first two.

Dos attack
(Wednesday afternoon)

Heartleech; a tool used to exploit heartbleed vulnerability, and
scan the system to discover the vulnerabilities.

Web attack
(Thursday morning)

DVWA (Damn Vulnerable Web App) used to implement the
attack scenarios. DVWA is vulnerable PHP/MySQL web
application.

Infiltration attack
(Thursday afternoon)

Metasploit was used for implementing this attack scenario,
as it is most common in terms of verifying vulnerabilities
and security issues. When the infected file was downloaded
on the victim’s machine from either Dropbox or an infected
USB flash, Nmap was used by the attacker to scan the second
level of the victim’s network.

Botnet attack
(Friday morning)

Grum, Windigo, Storm and Ares.
Ares was the used tool to conduct the attack, as it is able to
capture screenshots, provide a remote shell, keylogging or even
download/upload files.

DDoS attack and Port-
Scan
(Friday afternoon)

High Orbit Ion Canon (HOIC), Low Orbit Ion Canon (LOIC),
and DDoSIM.
However, LOIC was used in this scenario by sending a huge
amount of UDP, TCP or HTTP requests to the victim’s server.

Table 4.3: Tools used to conduct the attack scenarios [33]

The testing architecture used to make this dataset is shown in Figure 4.1. As demon-
strated, there are two separated networks; a victim-network and a an attack-network.
In the victim’s network, necessary components which are one router, one firewall, two
switches, three servers and ten PCs are deployed. Additionally, different operating
systems such as Windows, Linux and Macintosh are installed. On the other side, the
attack-network consists of one router, one switch and four PCs that run Kali, and
Windows 8.1 operating systems. Moreover, Table 4.4 shows different workstations,
firewalls and servers along with their both private and public IP addresses.

43



Figure 4.1: Networks used to make the dataset [33]

Machine OS IPs

Victim-Network

Servers
Win Server 2016 (DC and DNS) 192.168.10.3

Ubuntu 16 (Web Server) 192.168.10.50 and
205.174.165.68

Ubuntu 12 192.168.10.51 and
205.174.165.66

PCs

Ubuntu 14.4 (32, 64) 192.168.10.19 and
192168.10.17

Ubuntu 16.4 (32-64) 192.168.10.16 and
192.168.10.12

Win 7 Pro 192.168.10.9
Win 8.1-64 192.168.10.5
Win Vista 192.168.10.8

Win 10 (Pro 32-64) 192.168.10.14 and
192.168.10.15

Mac 192.168.10.25
Firewall Fortinet

Attack-Network PCs

Kali 205.174.165.73
Win 8.1 205.174.165.69
Win 8.1 205.174.165.70
Win 8.1 205.174.165.71

Table 4.4: Victim-Network and attackers [34]

4.3 Attack scenarios details

Monday, July 3, 2017
Benign traffic

Tuesday, July 4, 2017
Brute Force
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• FTP-Patator (9:20 - 10:20 a.m.)

• SSH-Patator (14:00 - 15:00 p.m.)

Attacker: Kali, 205.174.165.73
Victim: WebServer Ubuntu, 205.174.165.68 (Local IP: 192.168.10.50)
NAT Process on Firewall:
Attack: 205.174.165.73 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.10 -> 192.168.10.50
Reply: 192.168.10.50 -> 172.16.0.1 -> 205.174.165.80 -> 205.174.165.73

Wednesday, July 5, 2017
DoS/DDoS

• DoS slowloris (9:47 - 10:10 a.m.)

• DoS Slowhttptest (10:14 - 10:35 a.m.)

• DoS Hulk (10:43 - 11 a.m.)

• DoS GoldenEye (11:10 - 11:23 a.m.)

Attacker: Kali, 205.174.165.73

Victim: WebServer Ubuntu, 205.174.165.68 (Local IP192.168.10.50)

NAT Process on Firewall:

Attack: 205.174.165.73 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.10 ->
192.168.10.50

Reply: 192.168.10.50 -> 172.16.0.1 -> 205.174.165.80 -> 205.174.165.73

Heartbleed

• Heartbleed Port 444 (15:12 - 15:32)

Attacker: Kali, 205.174.165.73

Victim: Ubuntu12, 205.174.165.66 (Local IP192.168.10.51)

NAT Process on Firewall:

Attack: 205.174.165.73 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.11 ->
192.168.10.51

Reply: 192.168.10.51 -> 172.16.0.1 -> 205.174.165.80 -> 205.174.165.73
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Thursday, July 6, 2017
MORNING
Web attack

• Brute Force (9:20 - 10 a.m.)

• XSS (10:15 - 10:35 a.m.)

• Sql Injection (10:40 - 10:42 a.m.)

Attacker: Kali, 205.174.165.73

Victim: WebServer Ubuntu, 205.174.165.68 (Local IP192.168.10.50)

NAT Process on Firewall:

Attack: 205.174.165.73 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.10 ->
192.168.10.50

Reply: 192.168.10.50 -> 172.16.0.1 -> 205.174.165.80 -> 205.174.165.73

AFTERNOON
Infiltration - Dropbox download

• Meta exploit Win Vista (14:19 and 14:20-14:21 p.m.) and (14:33 -14:35)

Attacker: Kali, 205.174.165.73

Victim: Windows Vista, 192.168.10.8

• Infiltration - Cool disk - MAC (14:53 p.m. - 15:00 p.m.)

Attacker: Kali, 205.174.165.73

Victim: MAC, 192.168.10.25

Infiltration - Dropbox download

• Win Vista (15:04 - 15:45 p.m.)

First Step:

Attacker: Kali, 205.174.165.73

Victim: Windows Vista, 192.168.10.8

Second Step (Portscan + Nmap):

Attacker:Vista, 192.168.10.8

Victim: All other clients
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Friday, July 7, 2017
MORNING
Botnet ARES

• Botnet ARES (10:02 a.m. - 11:02 a.m)
Attacker: Kali, 205.174.165.73
Victims: Win 10, 192.168.10.15 + Win 7, 192.168.10.9 + Win 10, 192.168.10.14
+ Win 8, 192.168.10.5 + Vista, 192.168.10.8

AFTERNOON
PortScan

• Firewall rule on (13:55 - 13:57, 13:58 - 14:00, 14:01 - 14:04, 14:05 - 14:07, 14:08
- 14:10, 14:11 - 14:13, 14:14 - 14:16, 14:17 - 14:19, 14:20 - 14:21, 14:22 - 14:24,
14:33 - 14:33, 14:35 - 14:35)

• Firewall rules off (sS 14:51-14:53, sT 14:54-14:56, sF 14:57-14:59, sX 15:00-
15:02, sN 15:03-15:05, sP 15:06-15:07, sV 15:08-15:10, sU 15:11-15:12, sO 15:13-
15:15, sA 15:16-15:18, sW 15:19-15:21, sR 15:22-15:24, sL 15:25-15:25, sI 15:26-
15:27, b 15:28-15:29)

Attacker: Kali, 205.174.165.73
Victim: Ubuntu16, 205.174.165.68 (Local IP: 192.168.10.50)

NAT Process on Firewall:
Attacker: 205.174.165.73 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.1

DDoS LOIT

• DDoS LOIT (15:56 - 16:16)
Attackers: Three Win 8.1, 205.174.165.69 - 71
Victim: Ubuntu16, 205.174.165.68 (Local IP: 192.168.10.50)

NAT Process on Firewall:
Attackers:205.174.165.69, 70, 71 -> 205.174.165.80 (IP Valid Firewall) -> 172.16.0.1

Day and file size (GB) Activity
Monday - 11GB Normal activity
Tuesday - 11GB Attacks and normal activity
Wednesday - 13GB Attacks and normal activity
Thursday - 13GB Attacks and normal activity
Friday - 8.3GB Attacks and normal activity

Table 4.5: A description of dataset files [34]
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4.4 Why CICIDS2017?
The reason why CICIDS2017 dataset was chosen is it fulfils the most important criteria
[32].

• Complete Network Configuration: the attacks were conducted against a
network with a realistic configuration. The network contains multiple devices
such as computers, servers, routers and firewalls.

• Complete Traffic: the traffic is generated from different types of devices.
Hence, traffic generation technique results in having realistic traffic in the dataset.
The reason is the pseudo-realistic traffic contains real-world traffic such as simu-
lated human behaviour on the network, in addition to realistic attack scenarios.

• Labelled Dataset: since this dataset is labelled with different types of attacks,
it provides much more comfort when analyzing it. Indeed, it is desirable to have
a dataset with accurate and informative data/labels about each attack and not
only benign or malicious. Having a labelled dataset helps particularly in avoiding
the calculation and analyzing the features.

• Complete Interaction: a complete interaction within and between LANs (Lo-
cal Area Network) was required in order to get an accurate interpretation of the
results.

• Complete Capture: capturing all the traffic is essential to calculate the false-
positive percentage of the intrusion detection system. Some of the other datasets
remove traffic that is not labelled or not functional.

• Available Protocols: as there are many types of attacks that function using
different types of protocols, it is essential to have data generated from a variety
of protocols to get the best results from the IDS testing.

• Attack Diversity: attack diversity is essential in a dataset. The reason is
as the technology gets improved and more sophisticated, more attacks appear.
Hence, new attacks for evaluating IPS and IDS are vital to have. According to
2016 McAfee report, attacks are categorized into seven groups; browser-based,
brute force, DoS, Scan, backdoors, DNS and other attack types, for instance,
Heartbleed, shellshock and Apple SSL library bug.

• Anonymity: other datasets than the CICIDS2017 have removed the payloads
because of some privacy issues. The impact of this procedure is that it decreases
the usefulness of some detection mechanisms such as deep packet inspection.

• Heterogeneity: it is essential to have different sources of traffic to conduct
proper IDS research. The reason is to cover all aspects of the detection process.
In contrast to heterogeneity, a homogeneous dataset uses only one source of
traffic, and this is only useful for testing particular detection systems.

• Metadata: many datasets lack sufficient documentation. In regards to the
CICIDS2017 dataset, it is one of the best documented datasets available as it
provides information about network configuration, OS for both the attacker and
victim machines, attack scenarios and much more.
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As shown in Table 4.6, based on the discussed criteria, it is evident that CICIDS2017
is better than DAPRA, KDD’99 and NSL-KDD for IDS testing and evaluation. More-
over, in regards to the number of features in CICIDS2017, there are 85 features which
is much higher than the number of features in DAPRA (-), KDD’99 (41 features) and
NSL-KDD 2009 (41 features). All features that CICIDS2017 contains are shown in
Table 4.7.

It is also necessary to mention that the CICIDS2017 dataset consists of two
zipped files which are MachineLearningCSV and GeneratedLabelledFlows. The differ-
ence is that the first one (MachineLearningCVE) consists of 79 features, whereas the
second one (GeneratedLabelledFlows) consists of 85 features as just stated. It means
that there are 6 removed features from the dataset. These extra 6 features in the
second dataset identify the flow as stated by the authors of the dataset. The 6 deleted
features are "FlowID, SourceIP, SourcePort, DestinationIP, Protocol and timestamp".
One reason why these features were removed is that, for instance, IP addresses and
source ports change continuously. Moreover, features like "SourceIP, SourcePort, Des-
tinationIP and DestinationPort" are considered repeated features because the FlowID
feature includes all of them. Hence, in this thesis, MachineLearningCVE dataset,
which consists of 79 features, is going to be used in the experiments.

DAPRA KDD’99/NSL-KDD CICIDS2017
Network 3 3 3

Traffic 7 7 3

Labelled dataset 3 3 3

Complete interaction 3 3 3

Complete capture 3 3 3

Protocols

HTTP 3 3 3

HTTPS 7 7 3

SSH 3 3 3

FTP 3 3 3

Email 3 3 3

Attack
diversity

Browser 7 7 3

Brute force 3 3 3

DoS 3 3 3

Scan 3 3 3

Back door 7 7 3

DNS 7 7 3

Other 3 3 3

Anonymity 7 7 3

Heterogeneity 7 7 3

Feature Set 7 7 3

Metadata 3 3 3

Table 4.6: A comparison between most known datasets [34]
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No Feature No Feature No Feature No Feature

1 Flow ID 22 Flow Packets/s 43 Fwd Packets/s 64 Fwd Avg
Packets/Bulk

2 Source IP 23 Flow IAT Mean 44 Bwd Packets/s 65 Fwd Avg
Bulk Rate

3 Source Port 24 Flow IAT Std 45 Min Packet
Length 66 Bwd Avg

Bytes/Bulk

4 Destination IP 25 Flow IAT Max 46 Max Packet
Length 67 Bwd Avg

Packets/Bulk

5 Destination Port 26 Flow IAT Min 47 Packet Length
Mean 68 Bwd Avg

Bulk Rate

6 Protocol 27 Fwd IAT Total 48 Packet Length
Std 69 Subflow Fwd

Packets

7 Timestamp 28 Fwd IAT Mean 49 Packet Length
Variance 70 Subflow Fwd

Bytes

8 Flow Duration 29 Fwd IAT Std 50 FIN Flag
Count 71 Subflow Bwd

Packets

9 Total Fwd
Packets 30 Fwd IAT Max 51 SYN Flag

Count 72 Subflow Bwd
Bytes

10 Total Backward
Packets 31 Fwd IAT Min 52 RST Flag

Count 73 Init_Win_bytes
_forward

11 Total Length
of Fwd Packets 32 Bwd IAT Total 53 PSH Flag

Count 74 Init_Win_bytes
_backward

12 Total Length
of Bwd Packets 33 Bwd IAT Mean 54 ACK Flag

Count 75 act_data_pkt
_fwd

13 Fwd Packet
Length Max 34 Bwd IAT Std 55 URG Flag

Count 76 min_seg_size
_forward

14 Fwd Packet
Length Min 35 Bwd IAT Max 56 CWE Flag

Count 77 Active Mean

15 Fwd Packet
Length Mean 36 Bwd IAT Min 57 ECE Flag

Count 78 Active Std

16 Fwd Packet
Length Std 37 Fwd PSH Flags 58 Down/Up

Ratio 79 Active Max

17 Bwd Packet
Length Max 38 Bwd PSH Flags 59 Average Packet

Size 80 Active Min

18 Bwd Packet
Length Min 39 Fwd URG Flags 60 Avg Fwd

Segment Size 81 Idle Mean

19 Bwd Packet
Length Mean 40 Bwd URG Flags 61 Avg Bwd

Segment Size 82 Idle Std

20 Bwd Packet
Length Std 41 Fwd Header

Length 62 Fwd Header
Length_1 83 Idle Max

21 Flow Bytes/s 42 Bwd Header
Length 63 Fwd Avg

Bytes/Bulk 84 Idle Min

85 Lable

Table 4.7: CICIDS2017 Features
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Chapter 5

Approach

In an attempt to achieve the goals described in Section 1.2, Chapter 1, several ex-
periments were conducted by tuning the parameters of each model, following typical
machine learning procedures [25]. Trying various parameters such as the number of
layers, batch size, epochs, dimensions and others, have assisted in achieving the goals
we aimed for. Hence, finding out which algorithm is most efficient regarding attack
types represented in CICIDS2017.

Notwithstanding, this chapter explains each step taken to build the models and
their determined parameters. Besides, it describes different aspects such as prepro-
cessing of the dataset, the structure of each algorithm and the tools used to develop
the models. Further, the results of each model will be shown in Chapter 6. Questions
such as "were the attacks predicted correctly? And which model did get the best and
most reasonable results?" are going to be discussed in Chapter 6 as well.

The approach is going to be based on supervised machine learning as each traffic
type is labelled with a name. However, intrusion detection systems learn by examples;
the models that are going to be constructed will be able to extract each attack’s fea-
tures, making it possible to classify each one.

Each utilized algorithm learns, classifies and then detects. It is essential to ex-
tract more worthy and distinguish features to help the models differentiate an attack
from the others (multi-class classification). Machine learning in intrusion detection
systems is a necessity. The reason behind it is if one desires to detect a sophisticated
attack, an intelligent IDS is required. An intelligent IDS needs a good foundation,
meaning that an IDS has to be feed with a sufficient amount of data which the system
can learn. Consequently, CICIDS2017 is utilized as it contains 15 attacks (including
benign traffic) and 79 features.
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5.1 Constructing the models

Figure 5.1: A general overview of the steps taken to build the models.

Figure 5.1 shows the steps taken to construct the models. The first step is to collect
the data needed to build the models. The reason why CICIDS2017 is chosen as a
dataset to utilize in this approach is discussed in Section 4.4, Chapter 4.

The following step is to preprocess the data so it is ready to be used to train the
models. In this step, unnecessary and incomplete information, in addition to white
spaces are removed from the dataset, and the labels are vectorized. Then, the data is
both normalized and sampled, and split into both train and test sets. More informa-
tion about each step is going to be reviewed in Section 5.1.1.

The subsequent step is to choose the model. There are several models to take ad-
vantage of regarding intrusion detection systems. However, NN, RF, CNN and LSTM
are four popular algorithms used for intrusion detection systems, as stated in Chapter
3. Consequently, they were chosen to get utilized for training the models.

Training step is a vital step in machine learning. The training step is where the
data is utilized to gradually enhance the models’ ability to predict the type of attack
by discriminating the classes. Further explanation of which parameters selected before
starting the training and how each model was built is shown in Section 5.1.2.

After the training is finished, the models have to be evaluated to see if they per-
form well. It allows for testing the model against data that it has never seen before,
i.e., used for training. However, the cross-validation is utilized to evaluate the models.
See Section 5.2.

When the evaluation is done, parameter tuning is conducted to see if it is pos-
sible to get any better results. As an example, one can modify the number of times
(epochs) the model runs through the dataset during the training phase, rather than
just once, in addition to adjusting the learning rate (how fast the model adapts to
the problem), which may lead to better results. The parameters determined for each
algorithm are shown in Section 5.1.2.

Finally, the prediction step. When the models are trained, and the results are
achieved, it is the time to answer questions. It is where the worth of machine learning
accomplished, and to find out if the goals of this thesis are attained.

5.1.1 Pre-processing
In machine learning, preprocessing the data correctly can have a huge impact on the
results of the experiments. As mentioned earlier, CICIDS2017 contains 79 features.
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This dataset was incomplete since it consists of several Nan and whitespace that had
to be deprecated. The CICIDS2017 dataset has initially been in several files separated
by day but was concatenated into one file. The new file created was split into X_train,
Y_train, X_test and Y_test in a ratio of 80/20. X_train consists of only float values
that will be passed into the model and contains X features. Y-train on the other hand
consists of 15 various attacks (included normal traffic).

• Removing information: Flow Bytes/s and Flow Packets/s were removed from
the dataset because they contain both Nan (missing features) and infinity values.

• Removing white spaces: In CICIDS2017, there are white spaces that have
to be removed. If there are white spaces in the beginning and at the end of a
string, the data is then not the same as the actual value. Removing white spaces
also results in having a more consistent dataset with a smaller size.

• Label encoding: The Label feature is a multi-class feature that includes string
values (attack names). To make the model learn about this data type, the Label
data was transformed into integer values. The values range from 0 to 14 (number
of each attack including benign traffic).

• Normalization: Because the features have different ranges, normalization is
required. In this approach, the normalization value was assigned to be between
-1 and 0.

• Sampling: To solve the imbalance problem in the dataset, sampling had to
be used. On the one hand, all small classes were oversampled so that their
population are equal to the mean number of samples per class. On the other
hand, all big classes were undersampled so that their population are equal to the
mean number of samples per class. As one can see in Table 4.2 (Chapter 4), the
number of records associated to each attack is not balanced.

5.1.2 Models architecture

Neural Network (NN)

After the preprocessing stage, the data is feed to the neural network model. As
mentioned in Section 5.1.1, the CICIDS2017 is not balanced; hence it was essential to
solve this problem to balance the data (Section 5.2 describes the problems regarding
unbalanced datasets). However, the data is then split into train and test sets, then
shuffled using Sklearn library. The test proportion is set to 20%, which is used for
validation and test, and the train proportion is 80%. Next, the hyperparameters [84]
Batch Size (describes the number of samples feed to the network to train), Optimizer
(adaptive learning rate algorithm), Epochs (the number of times the data passed to
the network), Learning Rate, and Regularization (attempts to modify the algorithm
slightly to make it perform better, by adding a penalty to the loss function; hence,
avoiding overfitting problem) are shown in Table 5.1.
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Hyperparameters Values
K-Folds 5
Batch Size 81920
Optimizer Adam
Epochs 100
Learning rate 0.001
Regularization 1e-6
Activation function Rectified Linear Unit (ReLU)

Table 5.1: Neural network hyperparameters

To normalize the inputs in the model, Batch Normalization is utilized to have an
approximately equal distribution in every training step in the Neural Network. Batch
normalization solves the internal covariate shift problem, which in simple terms means
slowing the training process because every layer in the NN has to adapt itself to the
new distribution, in every training step [26]. As an activation function, the ReLU is
utilized, which is a nonlinear and the most used activation function for both NN and
CNN. The formula of ReLU is demonstrated in Equation 5.1 [79].

y = max(0, x) (5.1)

Additionally, to avoid the overfitting problem and have a good generalization, Dropout
is used [2]. Dropout refers to dropping neurons in a Neural Network. It is needed
during the training phase to drop a random set of neurons by "ignoring" them.

Moreover, the number of layers used were 3, where 1 of them is a hidden layer,
1 input layer and 1 output layer. The value of the hidden dimension is 1024; the
reason is that the dataset is quite large, and a significant amount of data has to be
processed. Furthermore, the input dimension is set to 76 (number of features), and
the output dimension is set to 15 (number of classes), as shown in Table 5.2. Finally,
the model is trained and tested. Chapter 6 demonstrates the results for each attack,
its Precision, Recall (True Positive Rate [27]) and F1-score. However, more details
about how Neural Networks work can be located in Section 2.5.2, Chapter 2.

Parameter Value
Input dimension 76
Hidden dimension 1024
Output dimension 15
Dropout 0.5

Table 5.2: Neural network model

Convolutional Neural Network (CNN)

In the CNN approach, Batch Normalization and ReLU activation function are also
utilized. Since the input is text, the used CNN operation is what is called 1D con-
volution [12]. However, more information about CNN is discussed in 2.5.4. Table 5.3
shows two convolution layers with their parameters which are used in this approach.
In addition to these two layers, one Fully-Connected layer is also added to them to
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classify the features. The input of the Fully-Connected layer is 9728 (128*76 where
128 is input dimension and 76 is number of features), and the output dimension is 15
(number of classes). The kernel size assists the 1D convolution in processing more data
by padding data to an array to increase the accuracy. Choosing 3x3 as a padding size
is quite common when utilizing CNN [3]. Stride is set to 1 to encode more information.
Mainly because it performs better when identifying the same data in the next layer.
Having a small stride value assists in avoiding overlapping.

Parameter Conv. layer 1 Conv. layer 2
Input channels 1 64
Output channels 64 128
Kernel size 3 3
Padding size 1 1
Stride 1 1

Table 5.3: Convolutional model

The hyperparameters used before training the CNN model is shown in Table 5.4.
However, the confusion metrics for each attack are also measured. The reasons that
these parameters were used are discussed in Section 5.1.2. Regarding batch size utilized
here, 20480 provided better results than a batch size of 81920.

Hyperparameters Values
K-Folds 5
Batch Size 20480
Optimizer Adam
Epochs 100
Learning rate 0.001
Regularization 0.001
Activation function Rectified Linear Unit (ReLU)

Table 5.4: Convolutional Neural network hyperparameters

Random Forest (RF)

In RF, after the data is normalized and balanced, the utilized hyperparameteres are
shown in Table 5.5. The number of estimators represents how many Decision Trees
used. In addition, Min Samples Split, which is the minimum number required to spilt
and internal node, and Min Samples Leaf, which is the minimum number of samples
required to be at a leaf node, are set to their default values [72].

Hyperparameters Values
K-Folds 5
Estimators 20
Min Samples Split 2
Min Samples Leaf 1

Table 5.5: Random Forest hyperparameters
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The Random Forest utilized in this approach consists of 20 decision trees to classify
the data. The default value of the decision trees is 10. However, since increasing
the number of trees typically improves the performance of the classifier [57], we have
increased it to 20 trees, as it depends on the number of votes made by each one.

Furthermore, Min Samples Split can constrain the tree. The reason is the tree
has to consider more samples at each node, which can result in underfitting. Hence,
the default value is chosen based on the experiments we have conducted. Moreover,
this problem applies also for Min Samples Leaf; meaning that increasing the value
might cause underfitting [48]. Determining the values of these two parameters depend
on the experiments conducted. Mainly because these values depend on the size and
the complexity of the data. We have decided to use the hyperparameters shown in
Table 5.5 after conducting several experiments, and we have concluded that these are
the optimal values. Section 6.3.2, Chapter 6, is going talk more about which attempts
we have conducted. For more information about Random Forest, review Section 2.5.5,
Chapter 2.

After these hyperparameters are determined, the classifier is used to generate the
confusion metrics, and to calculate Precision, Recall and F1-Score for each attack.

Long Short-Term Memory (LSTM)

After the prepossessing stage is accomplished, the data is feed to the LSTM model.
As in previous models, the test proportion is set to 20%, which is used for validation
and test, and the train proportion is 80%, as this is a quite common ratio in machine
learning.

The parameters utilized to build the LSTM model are shown in Table 5.6, and
these parameters are based on a standard LSTM approach. The input size represents
the number of features in the CICIDS2017. Hidden size is the number of units/neurons
in each of the 4 layers in the model [75]. The dataset used in this thesis is quite large
and complex. Therefore, it would be beneficial to use a larger number of layers. In
a standard machine learning approach, it is quite common to use 1 or 2 layers. As
shown in [29], LSTM performs better when increasing the number of layers, depending
on the size of the dataset.

Dropout in LSTM is also utilized to avoid the overfitting problem. Finally, the
number of output features is 15, which represents the number of classes in CICIDS2017.
For more details regarding LSTM, see Section 2.5.3, Chapter 2.

Parameter Value
Input size 76
Hidden size 32
Number of layers 4
Dropout 0.3
Output features 15

Table 5.6: LSTM model

Hyperparameters used in the model could be found in Table 5.7. A common used
learning rate in machine learning fields is 0.01. Regarding the epochs and batch
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size, these hyperparameters uses a more unconventional approach that is going to be
discussed more in Section 6.4, Chapter 6.

Hyperparameter Value
Epochs 50
Batch size 4096
Learning rate 0.01

Table 5.7: LSTM hyperparameters

5.2 Evaluating the models

Figure 5.2: Cross validation with K=5

Evaluating the performance of each algorithm is essential. Hence, cross validation
approach is utilized to test the accuracy on the test set. Cross validation method is
used to validate the performance of machine learning models. CICIDS2017 is going to
be divided into five (K) subsets; four subsets for training, and one subset for testing.
Each time an algorithm runs, the next subset (which is 20%) is going to be used as
a test set, and the rest are for training. All results achieved using this technique are
added to each other. Furthermore, the sum is divided by 5 to get the overall conclusion
that describes the performance of the model. Figure 5.2 shows how cross validation
works.

Since CICIDS2017 is not balanced, typical optimization metrics such as accuracy
is not good enough as it does not show the actual performance of the models (even
the dataset is balanced in the preprocessing step) [61]. There are several classes with
very few records compared to other classes in the dataset. Hence, these events are
infrequent, making it very difficult to find the data that would be used to balance
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the class distribution. It can also introduce a disadvantage which is bias, where the
classifier is more sensitive to detect classes with a high number of records. Thus, F1-
score is a better measurement score than overall accuracy. That said, most research
examples discussed in Section 3.2.6, Chapter 3, utilize the accuracy metric, which
is not enough to evaluate the models, knowing that NSL-KDD and KDD99 are also
unbalanced datasets. However, since it is desired that no positive sample will be
classified as negative, the average Recall across all five experiments is the right metric
to evaluate the model as it is equal to the True Positive Rate [9][27]. Section 2.2.5,
Chapter 2, mentions that True Positive Rate is used to evaluate the performance of
an IDS.

In terms of intrusion detection systems, Precision is the portion of the data that
is predicted as positive, and it is indeed positive. However, Recall evaluates the lacking
part in precision, which is the proportion of the genuine attack covered by the classifier.
Thus, the classifier should have a high Recall value. On the other hand, F1-score is
the harmonic mean between Recall and Precision, and it is desirable to use this metric
when one accuracy metric is wanted for the evaluation. The formulas of F1-score,
Precision and Recall are shown and explained in Section 2.2.6, Chapter 2.

5.3 Development tools

5.3.1 Software
The implementation of the approach was developed in Python using the following
libraries:

• NumPy is a Python library that provides a multidimensional array object, and
tools used to implement these arrays [56].

• Pandas is a Python library used for data manipulation and analysis. More
specifically, it provides the ability to manipulate numerical tables and time series
[58].

• PyTorch is used instead of NumPy to use GPU power. It is a deep learning
platform that affords maximum flexibility and speed [95].

• Matplotlib is a Python library used for visualization. It is used to create static,
interactive, and animated visualizations [87].

• Scikit-learn or so-called sklearn is a python library that is built on NumPy,
SciPy and Matplotlib, and used for predictive data analysis. In addition, it is
capable of providing classification, regression, clustering, dimensionality reduc-
tion, model selection and preprocessing features [68].

5.3.2 Hardware
To conduct the experiments, it was crucial to use a lot of power to train the algorithms.
The experiments were done using the university’s powerful computer that has the
specifications demonstrated in Table 5.8.
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Hardware Specification
GPU 128 NVIDIA Tesla V100 GPUs
Memory 12 TB system memory
Storage 256 TB storage
GPU memory 4 TB GPU memory

Table 5.8: The specifications used for the training
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Chapter 6

Testing and evaluation

This chapter revolves about the experiments conducted and the achieved results. Re-
call, Precision and F1-score obtained from each algorithm are going to be demonstrated
in the form of tables and heat maps. Furthermore, the best K fold result of each algo-
rithm is going to be represented, and the rest is moved to the appendixes. Additionally,
for each model, the cross validation average score is also going to be demonstrated and
discussed to evaluate the performance. A further explanation of the results achieved
and why we believe that the results ended up as they are will also be reviewed. Finally,
a performance comparison between algorithms is going to be conducted. The purpose
is to find out which one performs best in terms of Recall, Precision, F1-score and cross
validation, when detecting each attack found in the CICIDS2017 dataset.

It is essential to observe and distinguish the model’s results to discover which
one does perform best in terms of multi-class classification detection. Observing the
outcomes from each one would answer questions such as which algorithm performs
best regarding multi-class classification intrusion detection? Which algorithm per-
forms best in terms of True Positive Rate (Recall)? And which one provides the best
Precision score? How would F1-score be affected based on both Recall and Precision?
And finally, is it beneficial to detect each attack, or is it better to detect the attack
type (family)?

By the end of this chapter, the Statements in Section 1.3, Chapter 1, will be
answered.
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6.1 Neural network (NN)

6.1.1 Results

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.94 0.97 454620
Botnet 0.05 1.00 0.10 393
DDoS 0.95 1.00 0.97 25606
DoS
GoldenEye 0.87 1.00 0.93 2059

DoS Hulk 0.94 1.00 0.97 46214
DoS
Slowhttptest 0.82 1.00 0.90 1100

DoS
Slowloris 0.78 0.99 0.87 1159

FTP Patator 0.84 1.00 0.91 1587
Heartbleed 0.50 1.00 0.67 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.76 1.00 0.86 31786
SSH Patator 0.52 0.90 0.66 1180
Web Attack
Brute Force 0.18 0.53 0.27 302

Web Attack
SQL Injection 0.01 1.00 0.02 4

Web Attack
XSS 0.06 0.74 0.11 130

Table 6.1: Neural Network Fold #1. The cross validation result is 93.91.
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Figure 6.1: Neural Network Confusion Metrics Heat map Fold #1

Folds Cross validation
Fold #0 93.90
Fold #1 93.91
Fold #2 91.97
Fold #3 90.46
Fold #4 91.30
Average 92.30

Table 6.2: Neural Network cross validation results
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6.1.2 Discussion

After many attempts with different options, hyperparameters, dimensions and layers,
the Neural Network model has lead to the results shown in Table 6.1 and 6.2. We
have tried different batch sizes (4096, 40960, 81920 and 122880), a various number
of epochs (20, 50 and 100) and other commonly used learning rates (0.1, 0.01 and
0.001). Furthermore, we have also examined different numbers of layers (3 and 5),
and a different number of dimensions (128, 256, 512 and 1024). However, utilizing the
values shown in Table 5.1 and Table 5.2 resulted in the most significant outcome in
terms of True Positive Rate and cross validation.

As shown in Table 6.1, the test dataset has 566148 records, which is 20% of the
entire dataset. Out of these records, 454620 records belong to Benign traffic, and the
remaining belong to malicious traffic. Figure 6.1 shows that Neural Network algorithm
was able to correctly classify 426451 (93.80%) records out of 454620 records that belong
to Benign traffic, and the remaining is classified as something else. Confusion metrics
heat map shows the correctly classified records of each attack.

As a reminder, Precision is the proportion of attack cases that were correctly
predicted relative to the predicted size of the attack class. However, some results show
low Precision scores (even after sampling), and this is expected due to the number of
records, which are very low compared to other records.

Regarding Precision scores, it is shown that the smaller the class, the worse the
Precision score. For instance, Botnet, Brute Force, SQL Injection, XSS and Infiltration
have very few records compared to others. The Precision score of these classes shows
that the model suffers when detecting them.

The reason why we believe that Botnet’s Precision is pretty low is that detecting
Botnet traffic is a challenging task. The data traffic that gets generated by each bot is
legitimate because the bots themselves are legitimate devices [91]. As an example, the
Precision of botnet is calculated by 392/(392+7285), which is the precision formula;
392 are the true positives, and 7285 are false positives. It means that 7285 records of
the benign traffic were classified as a botnet.

Moreover, we have realized that for Neural Networks to be very efficient in in-
trusion detection, a massive amount of data has to be feed to the network, and this
is due to its training complexity. That said, since some classes have a few numbers of
records (the dataset is highly unbalanced), it indeed does need refinements so that it
can get better and more accurate results regarding Precision [1]. How such a problem
can be solved is going to be discussed in Conclusions, Chapter 7.

However, in terms of Recall scores, the model performs well and solves the lacking
part in Precision, which is the proportion of the genuine attack covered by the classifier.
It means that even the Precision is low in some classes, Recall makes it possible to
detect the attack as it deals with false negatives. For instance, botnet Recall (True
Positive Rate) is approximately 100%, and it is calculated by 392/(392+1) where 1
is the false negative (the prediction is negative, and it is false, meaning that 1 record
was classified as benign), and 392 are true positives.

As mentioned earlier, F1-Score is based on both Precision and Recall, that is, a
good Precision score means that we have both False Positive Rate and False Negative
Rate, which means that the model is able to classify the attack and is not disturbed
by false alarms. In our case, F1-score is a better metric score than accuracy because
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the dataset is unbalanced [65]. As shown in Table 6.1, the F1-score is the weighted
average between Precision and Recall (the formula is shown in section 2.2.6, chapter
2).

Folds 0, 1, 2, 3 and 4 are shown in Table 6.2 (for more details about each fold
check the Appendixes). As the tables show, each fold provides different results. The
reason is that each class has a different number of records, and dividing the dataset
into several splits makes the difference. The highest cross validation score achieved,
which is Fold #1, is shown in Table 6.2, and the average score across all 5 folds is
92.30%, which we believe is a good result. More information about each fold can be
found in A.1.

6.2 Convolutional Neural Network (CNN)

6.2.1 Results

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.93 0.96 454620
Botnet 0.04 1.00 0.08 393
DDoS 0.91 1.00 0.95 25606
DoS
GoldenEye 0.80 0.99 0.88 2059

DoS Hulk 0.92 1.00 0.96 46214
DoS
Slowhttptest 0.81 0.98 0.88 1100

DoS
Slowloris 0.51 0.99 0.67 1159

FTP Patator 0.86 1.00 0.92 1587
Heartbleed 0.12 1.00 0.21 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.82 1.00 0.90 31786
SSH Patator 0.35 0.99 0.52 1180
Web Attack
Brute Force 0.14 0.56 0.23 302

Web Attack
SQL Injection 0.00 1.00 0.00 4

Web Attack
XSS 0.06 0.81 0.11 130

Table 6.3: Convolutional Neural Network Fold #2. The cross validation result is
94.99%.

64



Figure 6.2: Convolutional Neural Network Confusion Metrics heat map Fold #2

Folds Cross validation
Fold #0 94.08
Fold #1 94.46
Fold #2 94.99
Fold #3 94.53
Fold #4 94.07
Average 94.42

Table 6.4: Convolutional Neural Network cross validation results
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6.2.2 Discussion
The results achieved are based on the parameters shown in Section 5.1.2, Chapter
5. Indeed, these results are achieved after conducting several different experiments.
Namely, different batch sizes (1024, 4096, 20480 and 81920), various number of epochs
(50, 100 and 150), learning rates (0.1, 0.01 and 0.001) and other experiments in regard
to the number of layers (output and input channels, kernel size, etc.).

However, just as the Neural Network model, some Precision scores are low be-
cause of the number of samples associated with each attack. For instance, Botnet,
DoS Slowloris, Heartbleed, SSH Patator, Brute Force, SQL Injection and XSS have
few records where the latter two are the worse in comparison to other attacks, and
Benign which is the most significant one. It is also important to mention that the
difference between DoS attacks is that they are tools used to conduct DoS attacks
(see Table 4.3, Wednesday morning). Hence, we assume that would affect the result
of DoS Slowloris (notice that DoS Slowloris has less more records than Slowhttpstest
but still has higher precision score). Generally, based on the results we have achieved,
we realize that the fewer the number of records, the worse the Precision.

Recall score of each attack except Brute Force is pretty satisfying. For some
reason, Brute Force attack did not get a high Recall, and this applies for all CNN
folds even though we believe that Web Attack Brute Force is easy to detect since the
traffic of login attempts is unique (the DVWA framework was used to conduct this
attack. Review Table 4.3, Section 4.2, Chapter 4). However, it could also be due to
the number of records.

As stated earlier, F1-score is the harmonic mean between Precision and Recall.
Hence, the F1-score results would be affected by them. However, some classes such as
Benign, DDoS, DoS attacks, FTP Patator and PortScan provide good results, where
the rest does not, due to the reason we have mentioned.

Convolutional Neural Network’s Fold #2 was able to provide the best cross vali-
dation fold result across all folds among all utilized models. As demonstrated in Table
6.3, the cross validation result is 94.99%. The heat map of CNN fold #2 is shown
in Figure 6.2. Additionally, the average score (94.42%) and the result of each fold is
shown in Table 6.4. More details about each fold are demonstrated in A.2.
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6.3 Random forest (RF)

6.3.1 Results

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.99 1.00 454619
Botnet 0.13 1.00 0.23 393
DDoS 1.00 1.00 1.00 25604
DoS
GoldenEye 0.99 1.00 0.99 2059

DoS Hulk 0.98 1.00 0.99 46215
DoS
Slowhttptest 0.98 0.99 0.99 1099

DoS
Slowloris 0.99 0.99 0.99 1160

FTP Patator 1.00 1.00 1.00 1587
Heartbleed 1.00 1.00 1.00 2
Infiltration 0.75 0.86 0.80 7
PortScan 0.99 1.00 1.00 31786
SSH Patator 1.00 1.00 1.00 1180
Web Attack
Brute Force 0.73 0.73 0.73 301

Web Attack
SQL Injection 0.29 0.50 0.36 4

Web Attack
XSS 0.31 0.40 0.35 131

Table 6.5: Random Forest Fold #2. The cross validation result is 89.72%.
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Figure 6.3: Random Forest Confusion Metrics heat map Fold #2

Folds Cross validation
Fold #0 88.68
Fold #1 86.12
Fold #2 89.72
Fold #3 85.76
Fold #4 88.41
Average 87.73

Table 6.6: Random Forest cross validation results
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6.3.2 Discussion
Getting the most out of the Random Forest required trying different parameters to
achieve the best possible results. We have tried different numbers of Decision Trees
(10, 20, 25 and 30) in combination with the default values of Min Samples Split and
Min Samples Leaf, which is 2 and 1 respectively. Furthermore, we have combined each
number of the Decision Trees with different numbers of both Min Samples Split and
Min Samples Leaf. However, we have ended up choosing the values of each parameter
as shown in Table 5.5; namely, 20 trees, 2 (default) Min Samples Split and 1 (default)
Min Samples Leaf.

Table 6.5 shows the best cross validation result (89.72%), and Figure 6.3 shows
its heat map. The Random Forest classifier was able to provide satisfying results
even some attacks have few numbers of records, such as Heartbleed and Infiltration.
Classes such as Web attack XSS, SQL injection and Botnet did get pretty poor results
compared to other attacks. It could be because of their small number of records, and
other issues such as those mentioned in Section 6.1.2.

Generally, based on the results Table 6.5 shows, we realize that large, and the
most of small classes often have great Precision compared to NN, CNN and LSTM (as
we will see shortly). The results we have achieved are quite satisfying for the most
part, regardless the issues mentioned in Section 6.1.2. F1-score performs exceptionally
well in big classes, and in classes with a fewer number of records such as Infiltration
and Heartbleed.

In a Random Forest architecture, each Decision Tree gives a vote that indicates
the tree’s decision. The dataset utilized in this thesis is quite large; it contains 76
various features (after removing two features and vectorizing the label feature, as
discussed in Section 5.1.1, Chapter 5). Random Forest has the advantage that it runs
effectively on large and unbalanced datasets compared to other algorithms. One of the
reasons we thought Random Forest would become a success is that it has no nominal
data problem and does not over fit the data. In Random Forest, one does not need to
provide cross validation or test-set for predicting the test error [40]. However, we have
performed cross validation to determine the optimal values for hyperparameters.

Regarding the cross validation results, they are not the best so far, but the results
are acceptable. Table 6.6 shows the results of the cross validation, where the average
result is 87.73%. More details about each fold can be found in A.3.
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6.4 Long Short-Term Memory (LSTM)

6.4.1 Results

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.95 0.97 454620
Botnet 0.07 0.99 0.12 393
DDoS 0.95 1.00 0.97 25606
DoS
GoldenEye 0.88 1.00 0.94 2059

DoS Hulk 0.93 1.00 0.97 46214
Dos
Slowhttptest 0.81 0.99 0.89 1100

DoS
Slowloris 0.77 0.99 0.87 1159

FTP Patator 0.79 1.00 0.88 1587
Heartbleed 1.00 1.00 1.00 2
Infiltration 0.00 0.86 0.01 7
PortScan 0.83 1.00 0.91 31786
SSH Patator 0.58 0.99 0.73 1180
Web Attack
Brute Force 0.16 0.43 0.24 302

Web Attack
SQL Injection 0.01 0.75 0.01 4

Web Attack
XSS 0.07 0.81 0.13 130

Table 6.7: Long Short-Term Memory Fold #1. The cross validation result is 91.78%.
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Figure 6.4: Long Short-Term Memory Confusion Metrics heat map Fold #1

Folds Cross validation (%)
Fold #0 84.78
Fold #1 91.78
Fold #2 86.42
Fold #3 86.85
Fold #4 89.88
Average 87.94

Table 6.8: Long Short-Term Memory cross validation results
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6.4.2 Discussion
An unavoidable disadvantage of LSTM is it takes a lot of time to train. Hence, it was
reasonable to use a large batch size (81920) and 100 epochs. However, the results have
shown that the larger the batch size, the worse the results, and since the number of
epochs is 100, it took more time than expected to train.

The next attempt was the decrease both batch size to 4096 and the number of
epochs to 50 (if the number of epochs remained the same, training the algorithm would
have taken a much longer time), and a commonly used learning rate value which is
0.01, see Table 5.7. Using these adjusted parameters have resulted in better results as
shown in Table 6.7 and Figure 6.4.

The Precision of LSTM suffers when it comes to small classes. For instance,
classes such as Botnet, SSH Patator, Web Attack Brute Force, Web Attack SQL
Injection and Web Attack XSS get low Precision scores due to the number of classes
and the issues mentioned in Section 6.1.2, as we believe. Additionally, Section 5.2,
Chapter 5, also talks about the balance problem that would affect the results.

True Positive Rate or Recall score shows pretty good results when detecting most
attacks except Web Attack Brute Force and Web Attack SQL Injection. However, by
taking both Precision and Recall into account, some of the F1-scores seem to be
satisfying. Classes such as Botnet, Infiltration, and all web attacks got terrible results,
and this is due to the low scores of Precision.

Table 6.8 shows the results of each fold. The score of Fold #1 was able to reach
92.78%, and its Table and Heat Map are shown in 6.7 and 6.4, respectively. However,
the average score across five-folds was 87.84%, which we believe is acceptable. More
details about each fold and the heat maps can be found in A.4.
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6.5 Comparing the algorithms

6.5.1 Precision

Attack Precision
NN-Fold#1

Precision
RF-Fold#2

Precsion
CNN-Fold#2

Precision
LSTM-Fold#1

Benign 1.00 1.00 1.00 1.00
Botnet 0.05 0.13 0.04 0.07
DDoS 0.95 1.00 0.91 0.95
DoS
GoldenEye 0.87 0.99 0.80 0.88

DoS Hulk 0.94 0.98 0.92 0.93
Dos
Slowhttptest 0.82 0.98 0.81 0.81

DoS
Slowloris 0.78 0.99 0.51 0.77

FTP Patator 0.84 1.00 0.86 0.79
Heartbleed 0.50 1.00 0.12 1.00
Infiltration 0.00 0.75 0.00 0.00
PortScan 0.76 0.99 0.82 0.83
SSH Patator 0.52 1.00 0.35 0.58
Web Attack
Brute Force 0.18 0.73 0.14 0.16

Web Attack
SQL Injection 0.01 0.29 0.00 0.01

Web Attack
XSS 0.06 0.31 0.06 0.07

Average 0.55 ≈0.81 ≈0.49 0.59

Table 6.9: Precision comparison
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6.5.2 Recall

Attack Recall
NN-Fold#1

Recall
RF-Fold#2

Recall
CNN-Fold#2

Recall
LSTM-Fold#1

Benign 0.94 0.99 0.93 0.94
Botnet 1.00 1.00 1.00 0.99
DDoS 1.00 1.00 1.00 1.00
DoS
GoldenEye 1.00 1.00 0.99 1.00

DoS Hulk 1.00 1.00 1.00 1.00
Dos
Slowhttptest 1.00 0.99 0.98 0.99

DoS
Slowloris 0.99 0.99 0.99 0.99

FTP Patator 1.00 1.00 1.00 1.00
Heartbleed 1.00 1.00 1.00 1.00
Infiltration 1.00 0.86 1.00 0.86
PortScan 1.00 1.00 1.00 1.00
SSH Patator 0.90 1.00 0.99 0.99
Web Attack
Brute Force 0.53 0.73 0.56 0.43

Web Attack
SQL Injection 1.00 0.50 1.00 0.75

Web Attack
XSS 0.74 0.40 0.81 0.81

Average ≈0.94 ≈0.90 0.95 ≈0.92

Table 6.10: Recall comparison
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6.5.3 F1-score

Attack F1-Score
NN-Fold#1

F1-Score
RF-Fold#2

F1-Score
CNN-Fold#2

F1-Score
LSTM-Fold#1

Benign 0.97 1.00 0.96 0.97
Botnet 0.10 0.23 0.08 0.12
DDoS 0.97 1.00 0.95 0.97
DoS
GoldenEye 0.93 0.99 0.88 0.94

DoS Hulk 0.97 0.99 0.96 0.97
Dos
Slowhttptest 0.90 0.99 0.88 0.89

DoS
Slowloris 0.87 0.99 0.67 0.87

FTP Patator 0.91 1.00 0.92 0.88
Heartbleed 0.67 1.00 0.21 1.00
Infiltration 0.01 0.80 0.01 0.01
PortScan 0.86 1.00 0.90 0.91
SSH Patator 0.66 1.00 0.52 0.73
Web Attack
Brute Force 0.27 0.73 0.23 0.24

Web Attack
SQL Injection 0.02 0.36 0.00 0.01

Web Attack
XSS 0.11 0.35 0.11 0.13

Average ≈0.61 ≈0.83 ≈0.55 ≈0.64

Table 6.11: F1-Score comparison

6.5.4 Cross validation

Algorithm Cross validation
Neural Network 92.30
Random Forest 87.73
Convulotional
Neural Network 94.42

Long Short-Term
Memory 87.94

Table 6.12: Average cross validation comparison
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6.5.5 Discussion

Table 6.9 shows a comparison between our models. Random Forest model has proven
that it has the best Precision scores. However, all models suffer in terms of Botnet
detection due to the type of traffic as we have mentioned earlier. Although the little
number of records both Infiltration and Heartbleed have, Random Forest was able
to get the highest Precision score compared to the rest of the models. We can also
observe that it has a much better score regarding web attacks.

The best average score across all models in terms of Precision is the result of
Random Forest (81%). The rest of the algorithms performed poorly in terms of average
score. We are going to discuss how to avoid this problem and get better results in
Conclusions, Chapter 7.

The Recall score (True Positive Rate) provides good results. Concerning the
average Recall score (95%), Convolutional Neural Network had the best score, as
demonstrated in Table 6.11. Despite that it had the best average score, Random
Forest does have a much better score in terms of Web Attack Brute Force detection.
CNN has also gotten a lower result than the other models regarding Benign traffic.
Random Forest average Recall score had the lowest score among the others, and it
is due to the poor performance in detecting web attacks such as SQL injection and
XSS. Both LSTM and CNN perform best when detecting XSS, whereas NN and CNN
perform best when detecting SQL Injection. In generic terms, we can observe that
web attacks’ detection provides the poorest results (excluding SQL Injection when
utilizing NN and CNN) compared to the detection of other attacks due to the issues
we mentioned earlier.

Nevertheless, F1-score gets impacted significantly due to the low scores of Pre-
cision. This applies for all implemented models, expect Random Forest.

As shown in Table 6.12, observe that the Convolutional Neural Network provides
the best cross validation result among all other applied algorithms. Hence, we can con-
clude that CNN performs best, then comes NN. Indeed, LSTM and RF are acceptable.

Answering Statement 1 in Section 1.3, Chapter 1, improving the detection of an
intrusion detection system relies on various factors; the form of data that is feed to
the model (i.e. balanced, imbalanced, types of features, labelled or not, and so on),
the size of the data, number of classes, whether the detection is a binary or multi-class
classification or not, how the models are built and their hyperparameters, and other
factors.

By examining those four models, we have discovered how they would perform
in terms of multi-class classification. As mentioned in Statement 1, Section 1.3, we
desired to find out how each of the algorithms would perform using this exact dataset
(CICIDS2017) by detecting each attack. Identifying each attack could be beneficial if
the desire is to discover how the attacks are conducted using which tool. The ability
to detect each attack makes it possible to specify the attack conducted at what time,
and which countermeasures should be considered to prevent such an attack. However,
Table 2.2 in Section 2.2.2, Chapter 2, mentions that in an anomaly-based IDS, security
analysts are required to figure out what triggered an alarm. Hence, we would say that
our approach would solve such a problem.

Sometimes, the main goal is to stop the attack. For instance, the purpose of

76



conducting DoS attacks is to make systems unavailable. We believe that preventing
a DoS attack is much more important than identifying the type. Hence, a better
approach that could be carried out is to concatenating all DoS attacks with each
other. It can be done by relabelling each of them so that all of them are called "DoS"
(this approach will be explained in Chapter 7 as a Further work).

Nevertheless, we believe that achieving high Recall values is an indicator that
the models perform well. The reason is that True Positive Rate (which is the same
as Recall) is quite high, meaning that most of the attacks get classified correctly.
Thus, although the Precision score is low, Recall will overcome this issue by correctly
classifying the attacks.

Regarding Statement 2 in Section 1.3, Chapter 1, we have answered the questions
in both Section 4.4, Chapter 4, and this chapter where we have demonstrated and
discussed the results.
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Chapter 7

Conclusions

In this thesis, we have utilized the CICIDS2017 dataset provided by Canadian Institute
for Cybersecurity for machine learning. The dataset is quite large, as it contains
2830743 records, 79 features and 15 types of attacks.

This research has focused on four different algorithms; Neural Network, Con-
volutional Neural Network, Random Forest and Long Short-Term Memory which are
quite common to utilize in this filed of research.

As the research has demonstrated, the Neural Network, Convulotional Neural
Network, Random Forest and Long Short-Term Memory models have achieved aver-
age scores across five-folds at 92.30%, 94.42%, 87.73% and 87.94%, respectively.

By analyzing the results, we could observe that average Recall score of each
model models is quite high, where the lowest average is achieved by Random Forest,
which is 90%, as observed in Table 6.11.

Regarding the Precision results, we have observed that there are some issues when
detecting classes with few records. As we believe, the reason is due the imbalance of
the dataset. Hence, an approach that could be done to overcome this challenge will be
discussed in Further Work. Besides, since many attacks do have low Precision score,
F1-Score is automatically affected.

In this research field, many papers merely classify on normal and abnormal traf-
fic, such as those presented in Section 3.2.6, Chapter 3. Contrary to our case, we have
performed prediction on every attack scenario in the dataset. Therefore, the results
we have achieved became less accurate than theirs. Additionally, in contrast to other
research papers, our experiments utilize the whole CICIDS2017 dataset, which con-
tains real world data.

Further Work
If this research were to continue, there would be improvements that could enhance

the results. As an example, to achieve a higher Precision score, instead of detecting
each class, what could be done is to detect attacks based on which family they belong
to, using CICIDS2017. This approach might be conducted by combining all DoS
attacks and have them as one class. Similarly, all web attacks can be concatenated
with each other, so they are one class. Additionally, FTP Patator and SSH Patator
can be one class because they are Brute Force attacks, and PortScan as another class.
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Finally, Infiltration and Heartbleed are two other classes (Heartbleed might also be
added to DoS due to the minimal number of classes). We believe that reconstructing
(relabelling) the data in that way would be beneficial because the number of records
will increase (the dataset gets more balanced); hence much better Precision and F1-
score results. However, we have stated earlier that it is not what we aim for in this
thesis, but it regarded KDD99 and NSL-KDD datasets which are old and have several
disadvantages, as discussed in Section 2.5.6, Chapter 2.

An additional improvement that could be done is re-implement the models in
C instead of Python, which will impact the execution time tremendously. It is also
possible to benefit from Camel case notation, as it is quite a typical code style, and
introducing it to our code might be beneficial and more readable for other developers.

Implementing the utilized models presented in this thesis in a live system, and
measure the models’ performance be beneficial to see how the models perform in the
real world.

When implementing the four different models, a lot of different hyperparameters
have been tried out. By trying out even further hyperparameters, could the results
become even better than we have accomplished?

In terms of CICIDS2017, the dataset contains formerly 79 (before removing two
features as we have shown in this thesis) distinct features. By removing even furthers
that are nonessential for the result, could the prediction results become even more
significant? It is especially important to try out using LSTM because it takes a
substantial amount of time to train.
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Appendix A

Appendixes

A.1 Neural Network (NN) results

A.1.1 Neural Network - Folds 0, 2, 3 and 4

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.94 0.97 454620
Botnet 0.05 1.00 0.10 394
DDoS 0.95 1.00 0.97 25605
DoS
GoldenEye 0.87 1.00 0.93 2059

DoS Hulk 0.94 1.00 0.97 46214
DoS
Slowhttptest 0.84 0.99 0.91 1100

DoS
Slowloris 0.78 0.99 0.87 1159

FTP Patator 0.86 0.99 0.92 1588
Heartbleed 0.25 1.00 0.40 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.76 1.00 0.86 31786
SSH Patator 0.51 0.92 0.66 1179
Web Attack
Brute Force 0.18 0.54 0.27 302

Web Attack
Sql Injection 0.01 1.00 0.02 4

Web Attack
XSS 0.06 0.71 0.11 130

Table A.1: Neural Network Fold #0. The cross validation result is 93.90.



Figure A.1: Neural Network Confusion Metrics heat map Fold #0.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.94 0.97 454619
Botnet 0.05 1.00 0.10 393
DDoS 0.95 1.00 0.97 25606
DoS
GoldenEye 0.87 1.00 0.93 2059

DoS Hulk 0.94 1.00 0.97 46215
DoS
Slowhttptest 0.82 0.99 0.90 1099

DoS
Slowloris 0.79 0.99 0.88 1160

FTP Patator 0.84 1.00 0.91 1587
Heartbleed 0.33 1.00 0.50 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.76 1.00 0.86 31786
SSH Patator 0.51 0.90 0.65 1180
Web Attack
Brute Force 0.19 0.54 0.29 301

Web Attack
SQL Injection 0.01 0.75 0.01 4

Web Attack
XSS 0.06 0.69 0.10 131

Table A.2: Neural Network Fold #2. The cross validation result is 91.97.



Figure A.2: Neural Network Confusion Metrics heat map Fold #2.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.94 0.97 454619
Botnet 0.05 1.00 0.10 393
DDoS 0.95 1.00 0.97 25605
DoS
GoldenEye 0.87 1.00 0.93 2058

DoS Hulk 0.95 1.00 0.97 46215
DoS
Slowhttptest 0.83 0.99 0.90 1100

DoS
Slowloris 0.79 0.99 0.88 1159

FTP Patator 0.85 1.00 0.92 1588
Heartbleed 0.43 1.00 0.60 3
Infiltration 0.00 1.00 0.01 7
PortScan 0.76 1.00 0.86 31786
SSH Patator 0.51 0.91 0.66 1179
Web Attack
Brute Force 0.18 0.59 0.28 301

Web Attack
SQL Injection 0.00 0.50 0.01 4

Web Attack
XSS 0.05 0.66 0.10 131

Table A.3: Neural Network Fold #3. The cross validation result is 90.46.



Figure A.3: Neural Network Confusion Metrics heat map Fold #3.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.94 0.97 454619
Botnet 0.05 1.00 0.10 393
DDoS 0.94 1.00 0.97 25605
DoS
GoldenEye 0.87 1.00 0.93 2058

DoS Hulk 0.94 1.00 0.97 46215
DoS
Slowhttptest 0.81 0.99 0.89 1100

DoS
Slowloris 0.79 1.00 0.88 1159

FTP Patator 0.85 1.00 0.92 1588
Heartbleed 0.67 1.00 0.80 3
Infiltration 0.00 1.00 0.01 8
PortScan 0.75 1.00 0.86 31786
SSH Patator 0.50 0.89 0.64 1179
Web Attack
Brute Force 0.17 0.51 0.26 301

Web Attack
SQL Injection 0.01 0.60 0.01 5

Web Attack
XSS 0.06 0.77 0.11 130

Table A.4: Neural Network Fold #4. The cross validation result is 91.30.



Figure A.4: Neural Network Confusion Metrics heat map Fold #4.



A.2 Convolutional Neural Network (CNN) results

A.2.1 Convolutional Neural Network - Folds 0, 1, 2 and 4

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.93 0.96 454620
Botnet 0.04 1.00 0.08 394
DDoS 0.91 1.00 0.95 25605
DoS
GoldenEye 0.80 0.99 0.89 2059

DoS Hulk 0.92 1.00 0.96 46214
DoS
Slowhttptest 0.81 0.98 0.89 1100

DoS
Slowloris 0.49 0.99 0.66 1159

FTP Patator 0.87 1.00 0.93 1588
Heartbleed 0.11 1.00 0.20 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.82 1.00 0.90 31786
SSH Patator 0.36 0.99 0.53 1179
Web Attack
Brute Force 0.13 0.49 0.21 302

Web Attack
SQL Injection 0.00 1.00 0.00 4

Web Attack
XSS 0.05 0.74 0.10 130

Table A.5: Convolutional Neural Network Fold #0. The cross validation result is
94.08%.



Figure A.5: Convolutional Neural Network Confusion Metrics heat map Fold #0.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.93 0.96 454620
Botnet 0.04 1.00 0.08 393
DDoS 0.91 1.00 0.95 25606
DoS
GoldenEye 0.79 1.00 0.88 2059

DoS Hulk 0.92 1.00 0.96 46214
DoS
Slowhttptest 0.80 0.97 0.88 1100

DoS
Slowloris 0.51 0.99 0.67 1159

FTP Patator 0.87 1.00 0.93 1587
Heartbleed 0.14 1.00 0.25 2
Infiltration 0.00 1.00 0.01 7
PortScan 0.82 1.00 0.90 31786
SSH Patator 0.36 0.99 0.53 1180
Web Attack
Brute Force 0.13 0.52 0.21 302

Web Attack
SQL Injection 0.00 1.00 0.00 4

Web Attack
XSS 0.06 0.78 0.11 130

Table A.6: Convolutional Neural Network Fold #1. The cross validation result is
94.46%.



Figure A.6: Convolutional Neural Network Confusion Metrics heat map Fold #1.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.93 0.96 454619
Botnet 0.04 0.99 0.08 393
DDoS 0.91 1.00 0.95 25605
DoS
GoldenEye 0.80 1.00 0.89 2058

DoS Hulk 0.92 1.00 0.96 46215
DoS
Slowhttptest 0.79 0.98 0.88 1100

DoS
Slowloris 0.51 0.99 0.67 1159

FTP Patator 0.86 1.00 0.93 1588
Heartbleed 0.12 1.00 0.22 3
Infiltration 0.00 1.00 0.01 7
PortScan 0.83 1.00 0.90 31786
SSH Patator 0.36 0.99 0.53 1179
Web Attack
Brute Force 0.13 0.48 0.20 301

Web Attack
SQL Injection 0.00 1.00 0.00 4

Web Attack
XSS 0.06 0.82 0.11 131

Table A.7: Convolutional Neural Network Fold #3. The cross validation result is
94.53%.



Figure A.7: Convolutional Neural Network Confusion Metrics heat map Fold #3.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.93 0.96 454619
Botnet 0.04 1.00 0.08 393
DDoS 0.91 1.00 0.95 25605
DoS
GoldenEye 0.80 0.99 0.88 2058

DoS Hulk 0.92 1.00 0.96 46215
DoS
Slowhttptest 0.77 0.99 0.86 1100

DoS
Slowloris 0.51 0.99 0.67 1159

FTP Patator 0.86 1.00 0.92 1588
Heartbleed 0.14 1.00 0.25 2
Infiltration 0.01 1.00 0.01 8
PortScan 0.82 1.00 0.90 31786
SSH Patator 0.36 0.99 0.53 1179
Web Attack
Brute Force 0.13 0.48 0.20 301

Web Attack
SQL Injection 0.00 1.00 0.00 5

Web Attack
XSS 0.05 0.75 0.10 130

Table A.8: Convolutional Neural Network Fold #4. The cross validation result is
94.07%.



Figure A.8: Convolutional Neural Network Confusion Metrics heat map Fold #4.



A.3 Random Forest (RF) results

A.3.1 Random Forest - Folds 0, 2, 3 and 4

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.99 1.00 454620
Botnet 0.14 1.00 0.25 394
DDoS 1.00 1.00 1.00 25605
DoS
GoldenEye 0.98 1.00 0.99 2059

DoS Hulk 0.98 1.00 0.99 46214
DoS
Slowhttptest 0.98 0.99 0.99 1100

DoS
Slowloris 0.99 1.00 0.99 1159

FTP Patator 1.00 1.00 1.00 1588
Heartbleed 1.00 1.00 0.67 2
Infiltration 0.50 0.71 0.59 7
PortScan 0.99 1.00 1.00 31786
SSH Patator 1.00 1.00 1.00 1179
Web Attack
Brute Force 0.73 0.71 0.72 302

Web Attack
SQL Injection 0.11 0.50 0.18 4

Web Attack
XSS 0.42 0.41 0.41 130

Table A.9: Random Forest Fold #0. The cross validation result is 88.68.



Figure A.9: Random Forest Confusion Metrics heat map Fold #0.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.99 1.00 454620
Botnet 0.12 0.99 0.22 393
DDoS 1.00 1.00 1.00 25606
DoS
GoldenEye 0.99 1.00 0.99 2059

DoS Hulk 0.97 1.00 0.99 46214
DoS
Slowhttptest 0.98 1.00 0.99 1100

DoS
Slowloris 1.00 1.00 1.00 1159

FTP Patator 1.00 1.00 1.00 1587
Heartbleed 0.50 1.00 0.67 2
Infiltration 1.00 0.57 0.73 7
PortScan 0.99 1.00 1.00 31786
SSH Patator 1.00 1.00 1.00 1180
Web Attack
Brute Force 0.72 0.73 0.72 302

Web Attack
SQL Injection 0.33 0.25 0.29 4

Web Attack
XSS 0.36 0.39 0.38 130

Table A.10: Random Forest Fold #1. The cross validation result is 86.12.



Figure A.10: Random Forest Confusion Metrics heat map Fold #1.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.99 1.00 454619
Botnet 0.16 0.98 0.27 393
DDoS 1.00 1.00 1.00 25605
DoS
GoldenEye 0.99 1.00 0.99 2058

DoS Hulk 0.97 1.00 0.99 46215
DoS
Slowhttptest 0.98 0.99 0.99 1100

DoS
Slowloris 1.00 0.99 0.99 1159

FTP Patator 1.00 1.00 1.00 1588
Heartbleed 1.00 0.67 0.80 3
Infiltration 1.00 0.57 0.73 7
PortScan 0.99 1.00 1.00 31786
SSH Patator 1.00 1.00 1.00 1179
Web Attack
Brute Force 0.73 0.74 0.74 301

Web Attack
SQL Injection 0.67 0.50 0.57 4

Web Attack
XSS 0.32 0.43 0.37 131

Table A.11: Random Forest Fold #3. The cross validation result is 85.76.



Figure A.11: Random Forest Confusion Metrics Heat map Fold #3.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.99 1.00 454619
Botnet 0.12 1.00 0.22 393
DDoS 1.00 1.00 1.00 25605
DoS
GoldenEye 0.99 1.00 0.99 2058

DoS Hulk 0.97 1.00 0.99 46215
DoS
Slowhttptest 0.99 0.99 0.99 1100

DoS
Slowloris 0.99 0.99 0.99 1159

FTP Patator 1.00 1.00 1.00 1588
Heartbleed 0.67 1.00 0.80 2
Infiltration 1.00 0.62 0.77 8
PortScan 0.99 1.00 1.00 31786
SSH Patator 1.00 1.00 1.00 1179
Web Attack
Brute Force 0.73 0.75 0.74 301

Web Attack
SQL Injection 0.25 0.60 0.35 5

Web Attack
XSS 0.29 0.32 0.31 130

Table A.12: Random Forest Fold #4. The cross validation result is 88.41.



Figure A.12: Random Forest Confusion Metrics heat map Fold #4.



A.4 Long Short-Term Memory (LSTM) results

A.4.1 Long Short-Term Memory - Folds 0, 2, 3 and 4

Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.95 0.97 454620
Botnet 0.07 1.00 0.14 394
DDoS 0.94 1.00 0.97 25605
DoS
GoldenEye 0.89 1.00 0.94 2059

DoS Hulk 0.94 1.00 0.97 46214
Dos
Slowhttptest 0.72 0.99 0.83 1100

DoS
Slowloris 0.79 0.99 0.88 1159

FTP Patator 0.85 1.00 0.92 1588
Heartbleed 0.67 1.00 0.80 2
Infiltration 0.00 0.43 0.00 7
PortScan 0.82 1.00 0.90 31786
SSH Patator 0.46 0.92 0.61 1179
Web Attack
Brute Force 0.15 0.49 0.23 302

Web Attack
SQL Injection 0.01 0.25 0.01 4

Web Attack
XSS 0.06 0.72 0.11 130

Table A.13: Long Short-Term Memory Fold#0. The cross validation result is 84.78%.



Figure A.13: Long Short-Term Memory Confusion Metrics heat map Fold #0.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.95 0.97 454619
Botnet 0.08 0.99 0.15 393
DDoS 0.93 1.00 0.96 25606
DoS
GoldenEye 0.91 0.99 0.95 2059

DoS Hulk 0.94 0.99 0.97 46215
Dos
Slowhttptest 0.77 0.99 0.87 1099

DoS
Slowloris 0.81 0.99 0.89 1160

FTP Patator 0.79 1.00 0.88 1587
Heartbleed 0.50 1.00 0.67 2
Infiltration 0.00 0.57 0.00 7
PortScan 0.83 1.00 0.90 31786
SSH Patator 0.52 0.99 0.68 1180
Web Attack
Brute Force 0.20 0.40 0.27 301

Web Attack
SQL Injection 0.00 0.25 0.00 4

Web Attack
XSS 0.08 0.84 0.15 131

Table A.14: Long Short-Term Memory Fold #2. The cross validation result is
86.42%.



Figure A.14: Long Short-Term Memory Confusion Metrics heat map Fold #2.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.96 0.98 454619
Botnet 0.11 0.99 0.19 393
DDoS 0.96 1.00 0.98 25605
DoS
GoldenEye 0.91 1.00 0.95 2058

DoS Hulk 0.95 1.00 0.97 46215
Dos
Slowhttptest 0.79 0.99 0.88 1100

DoS
Slowloris 0.86 0.99 0.92 1159

FTP Patator 0.89 1.00 0.94 1588
Heartbleed 0.67 0.67 0.67 3
Infiltration 0.04 0.71 0.08 7
PortScan 0.83 1.00 0.91 31786
SSH Patator 0.67 0.95 0.78 1179
Web Attack
Brute Force 0.17 0.39 0.23 301

Web Attack
SQL Injection 0.01 0.50 0.03 4

Web Attack
XSS 0.08 0.88 0.14 131

Table A.15: Long Short-Term Memory Fold #3. The cross validation result is
86.85%.



Figure A.15: Long Short-Term Memory Confusion Metrics heat map Fold #3.



Attack Precision Recall F1-Score Tested
Records

Benign 1.00 0.95 0.98 454619
Botnet 0.09 0.99 0.16 393
DDoS 0.95 1.00 0.97 25605
DoS
GoldenEye 0.83 1.00 0.90 2058

DoS Hulk 0.94 1.00 0.97 46215
Dos
Slowhttptest 0.72 1.00 0.84 1100

DoS
Slowloris 0.89 0.99 0.94 1159

FTP Patator 0.53 1.00 0.69 1588
Heartbleed 0.18 1.00 0.31 2
Infiltration 0.00 0.75 0.01 8
PortScan 0.83 1.00 0.90 31786
SSH Patator 0.62 0.80 0.70 1179
Web Attack
Brute Force 0.14 0.46 0.21 301

Web Attack
SQL Injection 0.01 0.80 0.01 5

Web Attack
XSS 0.07 0.75 0.13 131

Table A.16: Long Short-Term Memory Fold #4. The cross validation result is
89.88%.



Figure A.16: Long Short-Term Memory Confusion Metrics heat map Fold #4.



A.5 Resources
- Neural Networks (NN), Convolutional Neural Networks (CNN) and Random Forest
(RF) approaches are based on:
https://github.com/Jumabek/net_intrusion_detection

- Our models can be found here:
https://github.com/AmirSA92/ML-IDS-Thesis

https://github.com/Jumabek/net_intrusion_detection
https://github.com/AmirSA92/ML-IDS-Thesis
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